Compute Library
 21.02
DequantizationLayer.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Types.h"
28 #include "tests/CL/CLAccessor.h"
30 #include "tests/datasets/DatatypeDataset.h"
31 #include "tests/datasets/ShapeDatasets.h"
33 #include "tests/framework/Macros.h"
36 #include "tests/validation/fixtures/DequantizationLayerFixture.h"
37 
38 namespace arm_compute
39 {
40 namespace test
41 {
42 namespace validation
43 {
44 namespace
45 {
46 const auto dataset_quant_f32 = combine(combine(combine(datasets::SmallShapes(), datasets::QuantizedTypes()),
48  framework::dataset::make("DataLayout", { DataLayout::NCHW }));
49 const auto dataset_quant_f16 = combine(combine(combine(datasets::SmallShapes(), datasets::QuantizedTypes()),
51  framework::dataset::make("DataLayout", { DataLayout::NCHW }));
52 const auto dataset_quant_per_channel_f32 = combine(combine(combine(datasets::SmallShapes(), datasets::QuantizedPerChannelTypes()),
55 const auto dataset_quant_per_channel_f16 = combine(combine(combine(datasets::SmallShapes(), datasets::QuantizedPerChannelTypes()),
58 const auto dataset_quant_nightly_f32 = combine(combine(combine(datasets::LargeShapes(), datasets::QuantizedTypes()),
60  framework::dataset::make("DataLayout", { DataLayout::NCHW }));
61 const auto dataset_quant_nightly_f16 = combine(combine(combine(datasets::LargeShapes(), datasets::QuantizedTypes()),
63  framework::dataset::make("DataLayout", { DataLayout::NCHW }));
64 const auto dataset_quant_per_channel_nightly_f32 = combine(combine(combine(datasets::LargeShapes(), datasets::QuantizedPerChannelTypes()),
67 const auto dataset_quant_per_channel_nightly_f16 = combine(combine(combine(datasets::LargeShapes(), datasets::QuantizedPerChannelTypes()),
70 } // namespace
71 TEST_SUITE(CL)
72 TEST_SUITE(DequantizationLayer)
73 
74 // *INDENT-OFF*
75 // clang-format off
76 DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(
77  framework::dataset::make("InputInfo", { TensorInfo(TensorShape(16U, 16U, 16U, 5U), 1, DataType::F32), // Wrong input data type
78  TensorInfo(TensorShape(16U, 16U, 16U, 5U), 1, DataType::QASYMM8), // Wrong output data type
79  TensorInfo(TensorShape(16U, 16U, 2U, 5U), 1, DataType::QASYMM8), // Missmatching shapes
80  TensorInfo(TensorShape(17U, 16U, 16U, 5U), 1, DataType::QASYMM8), // Valid
81  TensorInfo(TensorShape(16U, 16U, 16U, 5U), 1, DataType::QASYMM8), // Valid
82  }),
83  framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(16U, 16U, 16U, 5U), 1, DataType::F32),
84  TensorInfo(TensorShape(16U, 16U, 16U, 5U), 1, DataType::U8),
85  TensorInfo(TensorShape(16U, 16U, 16U, 5U), 1, DataType::F32),
86  TensorInfo(TensorShape(17U, 16U, 16U, 5U), 1, DataType::F32),
87  TensorInfo(TensorShape(16U, 16U, 16U, 5U), 1, DataType::F32),
88  })),
89  framework::dataset::make("Expected", { false, false, false, true, true})),
91 {
92  ARM_COMPUTE_EXPECT(bool(CLDequantizationLayer::validate(&input_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false))) == expected, framework::LogLevel::ERRORS);
93 }
94 // clang-format on
95 // *INDENT-ON*
96 
97 template <typename T>
98 using CLDequantizationLayerFixture = DequantizationValidationFixture<CLTensor, CLAccessor, CLDequantizationLayer, T>;
99 
100 TEST_SUITE(FP16)
101 FIXTURE_DATA_TEST_CASE(RunSmall, CLDequantizationLayerFixture<half>, framework::DatasetMode::PRECOMMIT, concat(dataset_quant_f16, dataset_quant_per_channel_f16))
102 {
103  // Validate output
104  validate(CLAccessor(_target), _reference);
105 }
106 FIXTURE_DATA_TEST_CASE(RunLarge, CLDequantizationLayerFixture<half>, framework::DatasetMode::NIGHTLY, concat(dataset_quant_nightly_f16, dataset_quant_per_channel_nightly_f16))
107 {
108  // Validate output
109  validate(CLAccessor(_target), _reference);
110 }
111 TEST_SUITE_END() // FP16
112 
113 TEST_SUITE(FP32)
114 FIXTURE_DATA_TEST_CASE(RunSmall, CLDequantizationLayerFixture<float>, framework::DatasetMode::PRECOMMIT, concat(dataset_quant_f32, dataset_quant_per_channel_f32))
115 {
116  // Validate output
117  validate(CLAccessor(_target), _reference);
118 }
119 FIXTURE_DATA_TEST_CASE(RunLarge, CLDequantizationLayerFixture<float>, framework::DatasetMode::NIGHTLY, concat(dataset_quant_nightly_f32, dataset_quant_per_channel_nightly_f32))
120 {
121  // Validate output
122  validate(CLAccessor(_target), _reference);
123 }
124 TEST_SUITE_END() // FP32
125 
126 TEST_SUITE_END() // DequantizationLayer
127 TEST_SUITE_END() // CL
128 } // namespace validation
129 } // namespace test
130 } // namespace arm_compute
static Status validate(const ITensorInfo *input, const ITensorInfo *output)
Static function to check if given info will lead to a valid configuration of CLDequantizationLayer.
Shape of a tensor.
Definition: TensorShape.h:39
1 channel, 1 U8 per channel
1 channel, 1 F32 per channel
ARM_COMPUTE_EXPECT(has_error==expected, framework::LogLevel::ERRORS)
std::enable_if< is_container< T >::value, ContainerDataset< T > >::type make(std::string name, T &&values)
Helper function to create a ContainerDataset.
DequantizationValidationFixture< CLTensor, CLAccessor, CLDequantizationLayer, T > CLDequantizationLayerFixture
Copyright (c) 2017-2021 Arm Limited.
1 channel, 1 F16 per channel
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), }), framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F16), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(30U, 11U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), })), framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::SQRT), })), framework::dataset::make("Expected", { false, true, true, true, false, false, true, true, false })), input_info, output_info, act_info, expected)
DatasetMode
Possible dataset modes.
Definition: DatasetModes.h:40
TEST_SUITE_END() FIXTURE_DATA_TEST_CASE(RunSmall
[CLActivationLayer Test snippet]
quantized, asymmetric fixed-point 8-bit number unsigned
Accessor implementation for CLTensor objects.
Definition: CLAccessor.h:35
TEST_SUITE(U8_to_S8) FIXTURE_DATA_TEST_CASE(RunSmall
validate(CLAccessor(output_state), expected_output)
Num samples, channels, height, width.
FIXTURE_DATA_TEST_CASE(RunSmall, CLAbsLayerFixture< half >, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F16)))
Definition: AbsLayer.cpp:50
Num samples, height, width, channels.
Store the tensor&#39;s metadata.
Definition: TensorInfo.h:45
JoinDataset< T, U > concat(T &&dataset1, U &&dataset2)
Helper function to create a JoinDataset.
Definition: JoinDataset.h:160
zip(zip(framework::dataset::make("Weights", { TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 1U), 1, DataType::F32), }), framework::dataset::make("MVBGInfo",{ TensorInfo(TensorShape(2U), 1, DataType::F32), TensorInfo(TensorShape(2U), 1, DataType::F16), TensorInfo(TensorShape(5U), 1, DataType::F32), })), framework::dataset::make("Expected", { true, false, false}))
combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F32)))
Definition: AbsLayer.cpp:65