Compute Library
 22.08
L2NormalizeLayer.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Types.h"
28 #include "tests/CL/CLAccessor.h"
30 #include "tests/datasets/ShapeDatasets.h"
32 #include "tests/framework/Macros.h"
35 #include "tests/validation/fixtures/L2NormalizeLayerFixture.h"
36 
37 namespace arm_compute
38 {
39 namespace test
40 {
41 namespace validation
42 {
43 namespace
44 {
45 /** Tolerance for float operations */
46 constexpr AbsoluteTolerance<float> tolerance_f32(0.00001f);
47 constexpr AbsoluteTolerance<float> tolerance_f16(0.2f);
48 
49 auto data = concat(combine(framework::dataset::make("DataLayout", { DataLayout::NCHW }), framework::dataset::make("Axis", { -1, 0, 2 })), combine(framework::dataset::make("DataLayout", { DataLayout::NHWC }),
50  framework::dataset::make("Axis", { -2, 2 })));
51 
52 } // namespace
53 
54 TEST_SUITE(CL)
55 TEST_SUITE(L2NormalizeLayer)
56 
57 // *INDENT-OFF*
58 // clang-format off
59 DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(
60  framework::dataset::make("InputInfo", { TensorInfo(TensorShape(128U, 64U), 1, DataType::F32), // Mismatching data type input/output
61  TensorInfo(TensorShape(128U, 64U), 1, DataType::F32), // Mismatching shape input/output
62  TensorInfo(TensorShape(128U, 64U), 2, DataType::F32), // Number of Input channels != 1
63  TensorInfo(TensorShape(128U, 64U), 1, DataType::S16), // DataType != F32
68  }),
69  framework::dataset::make("OutputInfo", { TensorInfo(TensorShape(128U, 64U), 1, DataType::F16),
77  })),
78  framework::dataset::make("Axis", {
79  0,
80  0,
81  0,
82  0,
83  static_cast<int>(TensorShape::num_max_dimensions),
84  3,
85  -2,
86  0 })),
87  framework::dataset::make("Expected", { false, false, false, false, true, true, true, true })),
89 {
90  bool is_valid = bool(CLL2NormalizeLayer::validate(&input_info.clone()->set_is_resizable(false),
91  &output_info.clone()->set_is_resizable(false),
92  axis));
94 }
95 // clang-format on
96 // *INDENT-ON*
97 
98 template <typename T>
99 using CLL2NormalizeLayerFixture = L2NormalizeLayerValidationFixture<CLTensor, CLAccessor, CLL2NormalizeLayer, T>;
100 
101 TEST_SUITE(Float)
102 TEST_SUITE(FP32)
103 FIXTURE_DATA_TEST_CASE(RunSmall, CLL2NormalizeLayerFixture<float>, framework::DatasetMode::PRECOMMIT,
104  combine(combine(combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F32)), data), framework::dataset::make("Epsilon", { 1e-12 })))
105 {
106  // Validate output
107  validate(CLAccessor(_target), _reference, tolerance_f32);
108 }
110  combine(combine(combine(datasets::LargeShapes(), framework::dataset::make("DataType", DataType::F32)), data), framework::dataset::make("Epsilon", { 1e-12 })))
111 {
112  // Validate output
113  validate(CLAccessor(_target), _reference, tolerance_f32);
114 }
115 TEST_SUITE_END() // FP32
116 TEST_SUITE(FP16)
118  combine(combine(combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F16)), data), framework::dataset::make("Epsilon", { 1e-6 })))
119 {
120  // Validate output
121  validate(CLAccessor(_target), _reference, tolerance_f16);
122 }
124  combine(combine(combine(datasets::LargeShapes(), framework::dataset::make("DataType", DataType::F16)), data), framework::dataset::make("Epsilon", { 1e-6 })))
125 {
126  // Validate output
127  validate(CLAccessor(_target), _reference, tolerance_f16);
128 }
129 TEST_SUITE_END() // FP16
130 TEST_SUITE_END() // Float
131 
132 TEST_SUITE_END() // L2NormalizeLayer
133 TEST_SUITE_END() // CL
134 } // namespace validation
135 } // namespace test
136 } // namespace arm_compute
static Status validate(const ITensorInfo *input, const ITensorInfo *output, int axis, float epsilon=1e-12f)
Static function to check if given info will lead to a valid configuration of CLL2NormalizeLayer.
Shape of a tensor.
Definition: TensorShape.h:39
RelativeTolerance< float > tolerance_f32(0.001f)
F32 Tolerance value for comparing reference&#39;s output against implementation&#39;s output for floating poi...
half_float::half half
16-bit floating point type
Definition: Types.h:48
1 channel, 1 F32 per channel
ARM_COMPUTE_EXPECT(has_error==expected, framework::LogLevel::ERRORS)
std::enable_if< is_container< T >::value, ContainerDataset< T > >::type make(std::string name, T &&values)
Helper function to create a ContainerDataset.
Copyright (c) 2017-2022 Arm Limited.
1 channel, 1 F16 per channel
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), }), framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F16), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(30U, 11U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), })), framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::SQRT), })), framework::dataset::make("Expected", { false, true, true, true, false, false, true, true, false })), input_info, output_info, act_info, expected)
DatasetMode
Possible dataset modes.
Definition: DatasetModes.h:40
TEST_SUITE_END() FIXTURE_DATA_TEST_CASE(RunSmall
[CLActivationLayer Test snippet]
Accessor implementation for CLTensor objects.
Definition: CLAccessor.h:36
validate(CLAccessor(output_state), expected_output)
1 channel, 1 S16 per channel
Num samples, channels, height, width.
FIXTURE_DATA_TEST_CASE(RunSmall, CLAbsLayerFixture< half >, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F16)))
Definition: AbsLayer.cpp:50
L2NormalizeLayerValidationFixture< CLTensor, CLAccessor, CLL2NormalizeLayer, T > CLL2NormalizeLayerFixture
Num samples, height, width, channels.
Store the tensor&#39;s metadata.
Definition: TensorInfo.h:43
JoinDataset< T, U > concat(T &&dataset1, U &&dataset2)
Helper function to create a JoinDataset.
Definition: JoinDataset.h:160
RelativeTolerance< half_float::half > tolerance_f16(half(0.2))
F16 Tolerance value for comparing reference&#39;s output against implementation&#39;s output for floating poi...
zip(zip(framework::dataset::make("Weights", { TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 1U), 1, DataType::F32), }), framework::dataset::make("MVBGInfo",{ TensorInfo(TensorShape(2U), 1, DataType::F32), TensorInfo(TensorShape(2U), 1, DataType::F16), TensorInfo(TensorShape(5U), 1, DataType::F32), })), framework::dataset::make("Expected", { true, false, false}))
static constexpr size_t num_max_dimensions
Number of dimensions the tensor has.
Definition: Dimensions.h:46
TEST_SUITE(QASYMM8_to_F32) FIXTURE_DATA_TEST_CASE(RunSmall
DataType
Available data types.
Definition: Types.h:79
combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F32)))
Definition: AbsLayer.cpp:65