Compute Library
 22.08
ROIPoolingLayer.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
26 #include "tests/CL/CLAccessor.h"
27 #include "tests/Globals.h"
28 #include "tests/datasets/ROIDataset.h"
29 #include "tests/datasets/ShapeDatasets.h"
30 #include "tests/framework/Macros.h"
33 #include "tests/validation/fixtures/ROIPoolingLayerFixture.h"
34 
35 namespace arm_compute
36 {
37 namespace test
38 {
39 namespace validation
40 {
41 namespace
42 {
43 RelativeTolerance<float> relative_tolerance_f32(0.01f);
44 AbsoluteTolerance<float> absolute_tolerance_f32(0.001f);
45 
46 constexpr AbsoluteTolerance<uint8_t> tolerance_qasymm8(1);
47 } // end namespace
48 
49 TEST_SUITE(CL)
50 TEST_SUITE(RoiPooling)
51 
52 // *INDENT-OFF*
53 // clang-format off
54 DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(
55  framework::dataset::make("InputInfo", { TensorInfo(TensorShape(250U, 128U, 3U), 1, DataType::F32), // Successful test
56  TensorInfo(TensorShape(250U, 128U, 3U), 1, DataType::QASYMM8), // Successful test (quantized)
57  TensorInfo(TensorShape(250U, 128U, 3U), 1, DataType::F32), // Incorrect rois type
58  TensorInfo(TensorShape(250U, 128U, 3U), 1, DataType::F32), // Mismatching data type input/output
59  TensorInfo(TensorShape(250U, 128U, 2U), 1, DataType::F32), // Mismatching depth size input/output
60  TensorInfo(TensorShape(250U, 128U, 3U), 1, DataType::F32), // Mismatching number of rois and output batch size
61  TensorInfo(TensorShape(250U, 128U, 3U), 1, DataType::F32), // Invalid number of values per ROIS
62  TensorInfo(TensorShape(250U, 128U, 3U), 1, DataType::F32), // Mismatching height and width input/output
63 
64  }),
73  })),
74  framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(7U, 7U, 3U, 4U), 1, DataType::F32),
76  TensorInfo(TensorShape(7U, 7U, 3U, 4U), 1, DataType::F32),
77  TensorInfo(TensorShape(7U, 7U, 3U, 4U), 1, DataType::F16),
78  TensorInfo(TensorShape(7U, 7U, 3U, 4U), 1, DataType::F32),
79  TensorInfo(TensorShape(7U, 7U, 3U, 4U), 1, DataType::F32),
80  TensorInfo(TensorShape(7U, 7U, 3U, 4U), 1, DataType::F32),
81  TensorInfo(TensorShape(5U, 5U, 3U, 4U), 1, DataType::F32),
82  })),
83  framework::dataset::make("PoolInfo", { ROIPoolingLayerInfo(7U, 7U, 1./8),
84  ROIPoolingLayerInfo(7U, 7U, 1./8),
85  ROIPoolingLayerInfo(7U, 7U, 1./8),
86  ROIPoolingLayerInfo(7U, 7U, 1./8),
87  ROIPoolingLayerInfo(7U, 7U, 1./8),
88  ROIPoolingLayerInfo(7U, 7U, 1./8),
89  ROIPoolingLayerInfo(7U, 7U, 1./8),
90  ROIPoolingLayerInfo(7U, 7U, 1./8),
91  })),
92  framework::dataset::make("Expected", { true, true, false, false, false, false, false })),
93  input_info, rois_info, output_info, pool_info, expected)
94 {
95  ARM_COMPUTE_EXPECT(bool(CLROIPoolingLayer::validate(&input_info.clone()->set_is_resizable(true), &rois_info.clone()->set_is_resizable(true), &output_info.clone()->set_is_resizable(true), pool_info)) == expected, framework::LogLevel::ERRORS);
96 }
97 
98 using CLROIPoolingLayerFloatFixture = ROIPoolingLayerFixture<CLTensor, CLAccessor, CLROIPoolingLayer, float>;
99 
100 TEST_SUITE(Float)
102  framework::dataset::combine(framework::dataset::combine(datasets::SmallROIDataset(),
103  framework::dataset::make("DataType", { DataType::F32 })),
104  framework::dataset::make("DataLayout", { DataLayout::NCHW })))
105 {
106  // Validate output
107  validate(CLAccessor(_target), _reference, relative_tolerance_f32, .02f, absolute_tolerance_f32);
108 }
109 
110 TEST_SUITE_END() // Float test suite end
111 
112 // Begin quantized tests
113 template <typename T>
114 using CLROIPoolingLayerQuantizedFixture = ROIPoolingLayerQuantizedFixture<CLTensor, CLAccessor, CLROIPoolingLayer, T>;
115 
117 
118 FIXTURE_DATA_TEST_CASE(Small, CLROIPoolingLayerQuantizedFixture<uint8_t>, framework::DatasetMode::ALL,
119  combine(combine(combine(combine(datasets::SmallROIDataset(),
120  framework::dataset::make("DataType", { DataType::QASYMM8 })),
121  framework::dataset::make("DataLayout", { DataLayout::NCHW })),
122  framework::dataset::make("InputQuantizationInfo", { QuantizationInfo(1.f / 255.f, 127) })),
123  framework::dataset::make("OutputQuantizationInfo", { QuantizationInfo(2.f / 255.f, 120) })))
124 {
125  // Validate output
126  validate(CLAccessor(_target), _reference, tolerance_qasymm8);
127 }
128 
129 TEST_SUITE_END() // end qasymm8 tests
130 
131 TEST_SUITE_END() // RoiPooling
132 TEST_SUITE_END() // NEON
133 
134 } // validation namespace end
135 } // test namespace end
136 } // arm_compute namespace end
Shape of a tensor.
Definition: TensorShape.h:39
1 channel, 1 F32 per channel
ARM_COMPUTE_EXPECT(has_error==expected, framework::LogLevel::ERRORS)
1 channel, 1 U16 per channel
std::enable_if< is_container< T >::value, ContainerDataset< T > >::type make(std::string name, T &&values)
Helper function to create a ContainerDataset.
Copyright (c) 2017-2022 Arm Limited.
static Status validate(const ITensorInfo *input, const ITensorInfo *rois, ITensorInfo *output, const ROIPoolingLayerInfo &pool_info)
Static function to check if given info will lead to a valid configuration of CLROIPoolingLayer.
1 channel, 1 F16 per channel
Interface to enqueue OpenCL kernels and get/set the OpenCL CommandQueue and ICLTuner.
Quantization information.
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), }), framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F16), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(30U, 11U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), })), framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::SQRT), })), framework::dataset::make("Expected", { false, true, true, true, false, false, true, true, false })), input_info, output_info, act_info, expected)
DatasetMode
Possible dataset modes.
Definition: DatasetModes.h:40
TEST_SUITE_END() FIXTURE_DATA_TEST_CASE(RunSmall
[CLActivationLayer Test snippet]
quantized, asymmetric fixed-point 8-bit number unsigned
Accessor implementation for CLTensor objects.
Definition: CLAccessor.h:36
validate(CLAccessor(output_state), expected_output)
Num samples, channels, height, width.
FIXTURE_DATA_TEST_CASE(RunSmall, CLAbsLayerFixture< half >, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F16)))
Definition: AbsLayer.cpp:50
ROI Pooling Layer Information class.
Definition: Types.h:1384
ROIPoolingLayerFixture< CLTensor, CLAccessor, CLROIPoolingLayer, float > CLROIPoolingLayerFloatFixture
Store the tensor&#39;s metadata.
Definition: TensorInfo.h:43
zip(zip(framework::dataset::make("Weights", { TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 1U), 1, DataType::F32), }), framework::dataset::make("MVBGInfo",{ TensorInfo(TensorShape(2U), 1, DataType::F32), TensorInfo(TensorShape(2U), 1, DataType::F16), TensorInfo(TensorShape(5U), 1, DataType::F32), })), framework::dataset::make("Expected", { true, false, false}))
TEST_SUITE(QASYMM8_to_F32) FIXTURE_DATA_TEST_CASE(RunSmall
DataType
Available data types.
Definition: Types.h:79
combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F32)))
Definition: AbsLayer.cpp:65