Compute Library
 21.02
CLDepthwiseConvolutionLayerNativeKernel.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
25 
31 #include "arm_compute/core/Utils.h"
34 #include "src/core/CL/CLValidate.h"
35 #include "src/core/CL/ICLKernel.h"
38 #include "support/StringSupport.h"
39 
40 namespace arm_compute
41 {
42 namespace
43 {
44 Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const DWCWeightsKernelInfo &dwc_weights_info,
45  const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation,
46  const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
47 {
48  ARM_COMPUTE_UNUSED(dwc_info);
49  ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
53  ARM_COMPUTE_RETURN_ERROR_ON(depth_multiplier > 1 && dwc_weights_info.n0 != 1);
54  ARM_COMPUTE_RETURN_ERROR_ON(conv_info.stride().first < 1);
55  ARM_COMPUTE_RETURN_ERROR_ON(conv_info.stride().second < 1);
56  ARM_COMPUTE_RETURN_ERROR_ON((dilation.x() < 1) || (dilation.y() < 1));
57  const size_t idx_c = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
58  ARM_COMPUTE_UNUSED(idx_c);
59  ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_c) != (input->dimension(idx_c) * depth_multiplier));
60 
61  const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
62 
63  const bool is_quantized = is_data_type_quantized(input->data_type());
64 
65  if(biases != nullptr)
66  {
67  ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != output_shape[idx_c]);
68  ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
69 
70  if(is_quantized)
71  {
73  }
74  else
75  {
77  }
78  }
79 
80  if(is_quantized)
81  {
82  ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output_multipliers, output_shifts);
85  ARM_COMPUTE_RETURN_ERROR_ON(output_multipliers->num_dimensions() > 1);
86  ARM_COMPUTE_RETURN_ERROR_ON(output_shifts->num_dimensions() > 1);
87 
88  if(is_data_type_quantized_per_channel(weights->data_type()))
89  {
91  ARM_COMPUTE_RETURN_ERROR_ON(output_shape[idx_c] != output_multipliers->dimension(0));
92  ARM_COMPUTE_RETURN_ERROR_ON(output_shape[idx_c] != output_shifts->dimension(0));
93  }
94  else
95  {
97  ARM_COMPUTE_RETURN_ERROR_ON(1 != output_multipliers->dimension(0));
98  ARM_COMPUTE_RETURN_ERROR_ON(1 != output_shifts->dimension(0));
99  }
100  }
101  else
102  {
104  }
105 
106  if(output->total_size() != 0)
107  {
110  }
111 
112  if(is_data_type_quantized(input->data_type()))
113  {
114  const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
115  const UniformQuantizationInfo wq_info = weights->quantization_info().uniform();
116  const UniformQuantizationInfo oq_info = (output->total_size() != 0) ? output->quantization_info().uniform() : iq_info;
117 
118  float multiplier = iq_info.scale * wq_info.scale / oq_info.scale;
119  int output_multiplier = 0;
120  int output_shift = 0;
121  ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
122  }
123 
124  return Status{};
125 }
126 } // namespace
127 
129  : _input(nullptr),
130  _weights(nullptr),
131  _biases(nullptr),
132  _output(nullptr),
133  _depth_multiplier(1),
134  _output_multipliers(nullptr),
135  _output_shifts(nullptr),
136  _is_quantized(false)
137 {
138 }
139 
140 void CLDepthwiseConvolutionLayerNativeKernel::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const DWCWeightsKernelInfo &dwc_weights_info,
141  const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation,
142  const ICLTensor *output_multipliers, const ICLTensor *output_shifts)
143 {
144  configure(CLKernelLibrary::get().get_compile_context(), input, weights, biases, output, dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation, output_multipliers, output_shifts);
145 }
146 
147 void CLDepthwiseConvolutionLayerNativeKernel::configure(const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output,
148  const DWCWeightsKernelInfo &dwc_weights_info,
149  const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation,
150  const ICLTensor *output_multipliers, const ICLTensor *output_shifts)
151 {
152  ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
153  ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(),
154  dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation,
155  (output_multipliers != nullptr) ? output_multipliers->info() : nullptr, (output_shifts != nullptr) ? output_shifts->info() : nullptr));
156 
157  auto padding_info = get_padding_info({ input, output });
158 
159  const TensorShape output_shape = arm_compute::misc::shape_calculator::compute_depthwise_convolution_shape(*(input->info()), *(weights->info()), conv_info, depth_multiplier, dilation);
160  auto_init_if_empty(*(output->info()), input->info()->clone()->set_tensor_shape(output_shape).set_quantization_info(output->info()->quantization_info()));
161 
162  _input = input;
163  _output = output;
164  _weights = weights;
165  _biases = biases;
166  _depth_multiplier = depth_multiplier;
167  _output_multipliers = output_multipliers;
168  _output_shifts = output_shifts;
169  _is_quantized = is_data_type_quantized(input->info()->data_type());
170 
171  const unsigned int n0 = adjust_vec_size(dwc_weights_info.n0, input->info()->dimension(0));
172 
173  CLBuildOptions build_opts;
174  build_opts.add_option_if(_biases != nullptr, "-DHAS_BIAS");
175  build_opts.add_option_if(_input->info()->tensor_shape().total_size_upper(3) > 1, "-DDST_DEPTH=" + support::cpp11::to_string(static_cast<int>(_output->info()->dimension(2))));
176  build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(_input->info()->data_type()));
177  build_opts.add_option("-DACTIVATION_TYPE=" + lower_string(string_from_activation_func(dwc_info.activation_info.activation())));
178  build_opts.add_option("-DDEPTH_MULTIPLIER=" + support::cpp11::to_string(depth_multiplier));
179  build_opts.add_option("-DN0=" + support::cpp11::to_string(n0));
180  build_opts.add_option("-DSRC_DIM1=" + support::cpp11::to_string(_input->info()->dimension(1)));
181  build_opts.add_option("-DSRC_DIM2=" + support::cpp11::to_string(_input->info()->dimension(2)));
182  build_opts.add_option("-DKERNEL_WIDTH=" + support::cpp11::to_string(weights->info()->dimension(1)));
183  build_opts.add_option("-DKERNEL_HEIGHT=" + support::cpp11::to_string(weights->info()->dimension(2)));
184  build_opts.add_option("-DCONV_PAD_TOP=" + support::cpp11::to_string(conv_info.pad_top()));
185  build_opts.add_option("-DCONV_PAD_LEFT=" + support::cpp11::to_string(conv_info.pad_left()));
186  build_opts.add_option("-DCONV_STRIDE_X=" + support::cpp11::to_string(conv_info.stride().first));
187  build_opts.add_option("-DCONV_STRIDE_Y=" + support::cpp11::to_string(conv_info.stride().second));
188  build_opts.add_option("-DDILATION_X=" + support::cpp11::to_string(dilation.x()));
189  build_opts.add_option("-DDILATION_Y=" + support::cpp11::to_string(dilation.y()));
190  build_opts.add_option("-DVEC_SIZE_LEFTOVER=" + support::cpp11::to_string(_input->info()->dimension(0) % n0));
191 
192  std::string kernel_name = (_is_quantized) ? "dwc_MxN_native_quantized8_nhwc" : "dwc_MxN_native_fp_nhwc";
193 
194  if(_is_quantized)
195  {
196  const UniformQuantizationInfo iq_info = _input->info()->quantization_info().uniform();
197  const UniformQuantizationInfo wq_info = _weights->info()->quantization_info().uniform();
198  const UniformQuantizationInfo oq_info = _output->info()->quantization_info().uniform();
199 
200  build_opts.add_option("-DINPUT_OFFSET=" + support::cpp11::to_string(-iq_info.offset));
201  build_opts.add_option("-DWEIGHTS_OFFSET=" + support::cpp11::to_string(-wq_info.offset));
202  build_opts.add_option("-DOUTPUT_OFFSET=" + support::cpp11::to_string(oq_info.offset));
203  build_opts.add_option_if(is_data_type_quantized_per_channel(weights->info()->data_type()), "-DPER_CHANNEL_QUANTIZATION");
204 
205  // Compute non-per-channel multiplier and shift anyway to make OpenCL kernel simpler
206  float multiplier = iq_info.scale * wq_info.scale / oq_info.scale;
207  int output_multiplier = 0;
208  int output_shift = 0;
209  quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
210  build_opts.add_option("-DOUTPUT_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
211  build_opts.add_option("-DOUTPUT_SHIFT=" + support::cpp11::to_string(output_shift));
212 
213  if(dwc_info.activation_info.enabled())
214  {
215  int a_val{};
216  int b_val{};
217  std::tie(b_val, a_val) = get_quantized_activation_min_max(dwc_info.activation_info, input->info()->data_type(), oq_info);
218 
219  const int o1 = oq_info.offset;
220 
221  build_opts.add_option("-DA_VAL=" + support::cpp11::to_string(a_val));
222  build_opts.add_option("-DB_VAL=" + support::cpp11::to_string(b_val));
223  build_opts.add_option("-DCONST_0=" + support::cpp11::to_string(o1));
224 
225  const float s1 = iq_info.scale;
226  build_opts.add_option("-DS1_VAL=" + float_to_string_with_full_precision(s1));
227  build_opts.add_option("-DO1_VAL=" + support::cpp11::to_string(o1));
228  }
229 
230  build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
231  build_opts.add_option("-DWEIGHTS_TYPE=" + get_cl_type_from_data_type(weights->info()->data_type()));
232  }
233  else
234  {
235  build_opts.add_option_if(dwc_info.activation_info.enabled(), "-DA_VAL=" + float_to_string_with_full_precision(dwc_info.activation_info.a()));
236  build_opts.add_option_if(dwc_info.activation_info.enabled(), "-DB_VAL=" + float_to_string_with_full_precision(dwc_info.activation_info.b()));
237  }
238 
239  Window win = calculate_max_window(*(output->info()), Steps(n0));
240  ICLKernel::configure_internal(win);
241 
242  _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
243 
245 
246  // Set config_id for enabling LWS tuning
247  _config_id = kernel_name;
248  _config_id += "_";
249  _config_id += support::cpp11::to_string(input->info()->dimension(0));
250  _config_id += "_";
251  _config_id += support::cpp11::to_string(input->info()->dimension(1));
252  _config_id += "_";
253  _config_id += support::cpp11::to_string(input->info()->dimension(2));
254  _config_id += "_";
255  _config_id += support::cpp11::to_string(output->info()->dimension(0));
256  _config_id += "_";
257  _config_id += support::cpp11::to_string(output->info()->dimension(1));
258  _config_id += "_";
259  _config_id += support::cpp11::to_string(output->info()->dimension(2));
260  _config_id += "_";
261  _config_id += string_from_data_type(input->info()->data_type());
262 }
263 
265  const DWCWeightsKernelInfo &dwc_weights_info, const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info,
266  unsigned int depth_multiplier, const Size2D &dilation, const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
267 {
268  ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, biases, output, dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation, output_multipliers, output_shifts));
269  return Status{};
270 }
271 
272 void CLDepthwiseConvolutionLayerNativeKernel::run(const Window &window, cl::CommandQueue &queue)
273 {
276 
277  // Collapse window
278  Window window_collapsed = window.collapse(ICLKernel::window(), Window::DimZ);
279  Window slice_in = window.first_slice_window_4D();
280  Window slice_out = window_collapsed.first_slice_window_4D();
281 
282  if(_depth_multiplier != 1)
283  {
284  ARM_COMPUTE_ERROR_ON(slice_out.x().step() != 1);
285  slice_out.set(Window::DimX, Window::Dimension(0, _input->info()->tensor_shape()[0], 1));
286  }
287 
288  unsigned int idx = 2 * num_arguments_per_4D_tensor() + num_arguments_per_3D_tensor();
289 
290  // Set output multipliers in case of quantized data type
291  if(_is_quantized)
292  {
293  add_1D_tensor_argument(idx, _output_multipliers, slice_in);
294  add_1D_tensor_argument(idx, _output_shifts, slice_in);
295  }
296 
297  if(_biases != nullptr)
298  {
299  add_1D_tensor_argument(idx, _biases, slice_in);
300  }
301 
302  do
303  {
304  idx = 0;
305  add_4D_tensor_argument(idx, _input, slice_in);
306  add_4D_tensor_argument(idx, _output, slice_out);
307  add_3D_tensor_argument(idx, _weights, slice_out);
308  enqueue(queue, *this, slice_out, lws_hint());
309  }
310  while(window_collapsed.slide_window_slice_4D(slice_out) && window.slide_window_slice_4D(slice_in));
311 }
312 } // namespace arm_compute
bool is_data_type_quantized(DataType dt)
Check if a given data type is of quantized type.
Definition: Utils.h:1168
Window calculate_max_window(const ValidRegion &valid_region, const Steps &steps, bool skip_border, BorderSize border_size)
#define ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(tensor)
Definition: CLValidate.h:35
const Window & window() const
The maximum window the kernel can be executed on.
Definition: IKernel.cpp:28
Shape of a tensor.
Definition: TensorShape.h:39
#define ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(t,...)
Definition: Validate.h:746
void enqueue(IGCKernel &kernel, const Window &window, const gles::NDRange &lws=gles::NDRange(1U, 1U, 1U))
Add the kernel to the command queue with the given window.
Definition: IGCKernel.cpp:41
TensorShape compute_depthwise_convolution_shape(const ITensorInfo &input, const ITensorInfo &weights, PadStrideInfo conv_info, unsigned int depth_multiplier, const Size2D &dilation=Size2D(1U, 1U))
Calculate the depthwise convolution output shape of a tensor.
virtual size_t dimension(size_t index) const =0
Return the size of the requested dimension.
unsigned int n0
Number of columns processed by each thread.
constexpr int step() const
Return the step of the dimension.
Definition: Window.h:104
cl::NDRange lws_hint() const
Return the Local-Workgroup-Size hint.
Definition: ICLKernel.h:276
#define ARM_COMPUTE_RETURN_ON_ERROR(status)
Checks if a status contains an error and returns it.
Definition: Error.h:204
std::string to_string(T &&value)
Convert integer and float values to string.
virtual DataType data_type() const =0
Data type used for each element of the tensor.
1 channel, 1 F32 per channel
#define ARM_COMPUTE_ERROR_ON(cond)
If the condition is true then an error message is printed and an exception thrown.
Definition: Error.h:466
const std::string & string_from_activation_func(ActivationLayerInfo::ActivationFunction act)
Translates a given activation function to a string.
Definition: Utils.cpp:163
size_t total_size_upper(size_t dimension) const
Collapses given dimension and above.
Definition: TensorShape.h:182
static CLKernelLibrary & get()
Access the KernelLibrary singleton.
Store the tensor&#39;s metadata.
Definition: ITensorInfo.h:40
#define ARM_COMPUTE_ERROR_THROW_ON(status)
Definition: Error.h:455
Quantization info when assuming per layer quantization.
Describe one of the image&#39;s dimensions with a start, end and step.
Definition: Window.h:77
Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon=false)
Calculate quantized representation of multiplier.
Status class.
Definition: Error.h:52
std::string lower_string(const std::string &val)
Lower a given string.
Definition: Utils.cpp:350
#define ARM_COMPUTE_RETURN_ERROR_ON(cond)
If the condition is true, an error is returned.
Definition: Error.h:296
#define ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(...)
Definition: Validate.h:288
void add_3D_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window)
Add the passed 3D tensor&#39;s parameters to the object&#39;s kernel&#39;s arguments starting from the index idx...
Definition: ICLKernel.h:172
Copyright (c) 2017-2021 Arm Limited.
1 channel, 1 F16 per channel
#define ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(...)
Definition: Validate.h:163
1 channel, 1 S32 per channel
void run(const Window &window, cl::CommandQueue &queue) override
Enqueue the OpenCL kernel to process the given window on the passed OpenCL command queue...
Window collapse(const Window &full_window, size_t first, size_t last=Coordinates::num_max_dimensions) const
Collapse the dimensions between first and last.
Definition: Window.inl:111
cl::Kernel create_kernel(const CLCompileContext &ctx, const std::string &kernel_name, const std::set< std::string > &build_opts=std::set< std::string >())
Creates an opencl kernel using a compile context.
Definition: CLHelpers.cpp:403
const std::string & string_from_data_type(DataType dt)
Convert a data type identity into a string.
Definition: Utils.cpp:135
static constexpr size_t DimX
Alias for dimension 0 also known as X dimension.
Definition: Window.h:43
static constexpr unsigned int num_arguments_per_3D_tensor()
Returns the number of arguments enqueued per 3D tensor object.
Definition: ICLKernel.h:214
#define ARM_COMPUTE_UNUSED(...)
To avoid unused variables warnings.
Definition: Error.h:152
bool is_data_type_quantized_per_channel(DataType dt)
Check if a given data type is of per channel type.
Definition: Utils.h:1245
std::string float_to_string_with_full_precision(float val)
Create a string with the float in full precision.
Definition: Utils.h:1262
virtual const TensorShape & tensor_shape() const =0
Size for each dimension of the tensor.
std::pair< int32_t, int32_t > get_quantized_activation_min_max(ActivationLayerInfo act_info, DataType data_type, UniformQuantizationInfo oq_info)
Returns a pair of minimum and maximum values for a quantized activation.
Definition: Utils.cpp:483
quantized, asymmetric fixed-point 8-bit number unsigned
Class to describe a number of elements in each dimension.
Definition: Steps.h:40
std::string kernel_name
UniformQuantizationInfo uniform() const
Return per layer quantization info.
std::string get_cl_type_from_data_type(const DataType &dt)
Translates a tensor data type to the appropriate OpenCL type.
Definition: CLHelpers.cpp:37
Descriptor used by the depthwise convolution kernels.
bool auto_init_if_empty(ITensorInfo &info, const TensorShape &shape, int num_channels, DataType data_type, QuantizationInfo quantization_info=QuantizationInfo())
Auto initialize the tensor info (shape, number of channels and data type) if the current assignment i...
virtual std::unique_ptr< T > clone() const =0
Provide a clone of the current object of class T.
virtual ITensorInfo * info() const =0
Interface to be implemented by the child class to return the tensor&#39;s metadata.
void add_option_if(bool cond, std::string option)
Adds option if a given condition is true;.
Padding and stride information class.
Definition: Types.h:722
void set(size_t dimension, const Dimension &dim)
Set the values of a given dimension.
Definition: Window.inl:49
static constexpr unsigned int num_arguments_per_4D_tensor()
Returns the number of arguments enqueued per 4D tensor object.
Definition: ICLKernel.h:222
void configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const DWCWeightsKernelInfo &dwc_weights_info, const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info, unsigned int depth_multiplier=1, const Size2D &dilation=Size2D(1U, 1U), const ICLTensor *output_multipliers=nullptr, const ICLTensor *output_shifts=nullptr)
Initialize the function&#39;s source, destination and parameters.
Descriptor used by the depthwise convolution kernels to retrieve the number of output elements proces...
virtual QuantizationInfo quantization_info() const =0
Get the quantization settings (scale and offset) of the tensor.
#define ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(k)
Definition: Validate.h:941
bool has_padding_changed(const std::unordered_map< const ITensorInfo *, PaddingSize > &padding_map)
Check if the previously stored padding info has changed after configuring a kernel.
Definition: Utils.cpp:528
CLCompileContext class.
quantized, symmetric per channel fixed-point 8-bit number
Interface for OpenCL tensor.
Definition: ICLTensor.h:42
static constexpr size_t DimZ
Alias for dimension 2 also known as Z dimension.
Definition: Window.h:47
Manages all the OpenCL kernels compilation and caching, provides accessors for the OpenCL Context...
Class for specifying the size of an image or rectangle.
Definition: Size2D.h:34
#define ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(...)
Definition: Validate.h:545
Num samples, height, width, channels.
#define ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(t, c,...)
Definition: Validate.h:792
std::unordered_map< const ITensorInfo *, PaddingSize > get_padding_info(std::initializer_list< const ITensorInfo *> infos)
Stores padding information before configuring a kernel.
Definition: Utils.cpp:513
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, const GEMMLowpOutputStageInfo *output_stage)
Window first_slice_window_4D() const
First 4D slice of the window.
Definition: Window.h:299
bool slide_window_slice_4D(Window &slice) const
Slide the passed 4D window slice.
Definition: Window.h:347
#define ARM_COMPUTE_ERROR_ON_NULLPTR(...)
Definition: Validate.h:161
unsigned int adjust_vec_size(unsigned int vec_size, size_t dim0)
Returns the adjusted vector size in case it is less than the input&#39;s first dimension, getting rounded down to its closest valid vector size.
Definition: Utils.h:1358
quantized, asymmetric fixed-point 8-bit number signed
size_t get_data_layout_dimension_index(const DataLayout data_layout, const DataLayoutDimension data_layout_dimension)
Get the index of the given dimension.
Definition: Helpers.inl:193
void add_1D_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window)
Add the passed 1D tensor&#39;s parameters to the object&#39;s kernel&#39;s arguments starting from the index idx...
Definition: ICLKernel.h:124
void add_4D_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window)
Add the passed 4D tensor&#39;s parameters to the object&#39;s kernel&#39;s arguments starting from the index idx...
Definition: ICLKernel.h:182
Describe a multidimensional execution window.
Definition: Window.h:39
#define ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(f, s)
Definition: Validate.h:205
static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const DWCWeightsKernelInfo &dwc_weights_info, const DWCKernelInfo &dwc_info, const PadStrideInfo &conv_info, unsigned int depth_multiplier=1, const Size2D &dilation=Size2D(1U, 1U), const ITensorInfo *output_multipliers=nullptr, const ITensorInfo *output_shifts=nullptr)
Static function to check if given info will lead to a valid configuration of CLDepthwiseConvolutionLa...
constexpr const Dimension & x() const
Alias to access the first dimension of the window.
Definition: Window.h:145