Compute Library
 20.05
CLReduceMean.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2018-2020 ARM Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
25 
29 #include "arm_compute/core/Error.h"
30 #include "arm_compute/core/Types.h"
32 
33 namespace arm_compute
34 {
35 namespace
36 {
37 Status validate_config(const ITensorInfo *input, const Coordinates &reduction_axis, bool keep_dims, const ITensorInfo *output)
38 {
39  ARM_COMPUTE_UNUSED(keep_dims);
43  ARM_COMPUTE_RETURN_ERROR_ON(reduction_axis.num_dimensions() < 1);
44  ARM_COMPUTE_RETURN_ERROR_ON(reduction_axis.num_dimensions() > input->num_dimensions());
45 
46  const unsigned int reduction_ops = reduction_axis.num_dimensions();
47  const int input_dims = input->num_dimensions();
48  Coordinates axis_local = reduction_axis;
49 
50  for(unsigned int i = 0; i < axis_local.num_dimensions(); ++i)
51  {
52  //axis: The dimensions to reduce. Must be in the range [-rank(input_tensor), rank(input_tensor)).
53  ARM_COMPUTE_RETURN_ERROR_ON(axis_local[i] < (-static_cast<int>(input->num_dimensions())));
54  ARM_COMPUTE_RETURN_ERROR_ON(axis_local[i] >= static_cast<int>(input->num_dimensions()));
55  }
56 
57  if(output->tensor_shape().total_size() != 0)
58  {
59  // Only validate if not using auto_init for the output tensor
60  TensorShape out_shape = input->tensor_shape();
61  // Validate output_shape only if not using auto_init
62  convert_negative_axis(axis_local, input_dims);
63  std::sort(axis_local.begin(), axis_local.begin() + reduction_ops);
64  for(unsigned int i = 0; i < reduction_ops; ++i)
65  {
66  ARM_COMPUTE_RETURN_ERROR_ON(axis_local[i] > 3);
67  ARM_COMPUTE_RETURN_ERROR_ON(static_cast<unsigned int>(axis_local[i]) > input->num_dimensions() - 1);
68  if(output->total_size() > 0 && keep_dims)
69  {
70  ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(axis_local[i]) != 1);
71  }
72  if(keep_dims)
73  {
74  out_shape.set(axis_local[i], 1);
75  }
76  else
77  {
78  ARM_COMPUTE_RETURN_ERROR_ON(i > static_cast<unsigned int>(axis_local[i]));
79  const unsigned int remove_index = axis_local[i] - i;
80  ARM_COMPUTE_RETURN_ERROR_ON(remove_index >= out_shape.num_dimensions());
81  out_shape.remove_dimension(remove_index);
82  }
83  }
84  const TensorInfo out_info = input->clone()->set_tensor_shape(out_shape);
87  }
88  return Status{};
89 }
90 }
91 CLReduceMean::CLReduceMean(std::shared_ptr<IMemoryManager> memory_manager)
92  : _memory_group(std::move(memory_manager)), _reduction_kernels(), _reduced_outs(), _reshape(), _reduction_ops(), _keep_dims()
93 {
94 }
95 void CLReduceMean::configure(ICLTensor *input, const Coordinates &reduction_axis, bool keep_dims, ICLTensor *output)
96 {
97  configure(CLKernelLibrary::get().get_compile_context(), input, reduction_axis, keep_dims, output);
98 }
99 
100 void CLReduceMean::configure(const CLCompileContext &compile_context, ICLTensor *input, const Coordinates &reduction_axis, bool keep_dims, ICLTensor *output)
101 {
102  // Perform validate step
103  ARM_COMPUTE_ERROR_THROW_ON(CLReduceMean::validate(input->info(), reduction_axis, keep_dims, output->info()));
104  // Output auto inizialitation if not yet initialized
106  auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape));
107 
108  _reduction_ops = reduction_axis.num_dimensions();
109  _reduction_kernels.resize(_reduction_ops);
110  _reduced_outs.resize(_reduction_ops - (keep_dims ? 1 : 0));
111  _keep_dims = keep_dims;
112 
113  Coordinates axis_local = reduction_axis;
114  const int input_dims = input->info()->num_dimensions();
115 
116  convert_negative_axis(axis_local, input_dims);
117 
118  // Perform reduction for every axis
119  for(int i = 0; i < _reduction_ops; ++i)
120  {
121  TensorShape out_shape = i == 0 ? input->info()->tensor_shape() : (&_reduced_outs[i - 1])->info()->tensor_shape();
122  out_shape.set(axis_local[i], 1);
123  auto in = (i == 0) ? input : (&_reduced_outs[i - 1]);
124 
125  if(i == _reduction_ops - 1 && keep_dims)
126  {
127  _reduction_kernels[i].configure(compile_context, in, output, axis_local[i], ReductionOperation::MEAN_SUM);
128  }
129  else
130  {
131  _reduced_outs[i].allocator()->init(TensorInfo(out_shape, input->info()->num_channels(), input->info()->data_type(), input->info()->quantization_info()));
132  _memory_group.manage(&_reduced_outs[i]);
133  _reduction_kernels[i].configure(compile_context, in, &_reduced_outs[i], axis_local[i], ReductionOperation::MEAN_SUM);
134  }
135  }
136 
137  // Allocate intermediate tensors
138  for(int i = 0; i < _reduction_ops - (keep_dims ? 1 : 0); ++i)
139  {
140  _reduced_outs[i].allocator()->allocate();
141  }
142 
143  // Configure reshape layer if we want to drop the dimensions
144  if(!keep_dims)
145  {
146  TensorShape out_shape = input->info()->tensor_shape();
147 
148  // We have to sort the reduction axis vectors in order for remove_dimension
149  // to work properly
150  std::sort(axis_local.begin(), axis_local.begin() + _reduction_ops);
151  for(int i = 0; i < _reduction_ops; ++i)
152  {
153  out_shape.remove_dimension(axis_local[i] - i);
154  }
155  auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(out_shape));
156  _reshape.configure(compile_context, &_reduced_outs[_reduction_ops - 1], output);
157  }
158 }
159 
160 Status CLReduceMean::validate(const ITensorInfo *input, const Coordinates &reduction_axis, bool keep_dims, const ITensorInfo *output)
161 {
162  return validate_config(input, reduction_axis, keep_dims, output);
163 }
164 
166 {
167  MemoryGroupResourceScope scope_mg(_memory_group);
168 
169  for(auto &kernel : _reduction_kernels)
170  {
171  kernel.run();
172  }
173 
174  if(!_keep_dims)
175  {
176  _reshape.run();
177  }
178 }
179 } // namespace arm_compute
#define ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(tensor)
Definition: CLValidate.h:34
Shape of a tensor.
Definition: TensorShape.h:39
void remove_dimension(size_t n)
Accessor to remove the dimension n from the tensor shape.
Definition: TensorShape.h:110
#define ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(t, c,...)
Definition: Validate.h:792
1 channel, 1 F32 per channel
static CLKernelLibrary & get()
Access the KernelLibrary singleton.
Store the tensor's metadata.
Definition: ITensorInfo.h:40
#define ARM_COMPUTE_ERROR_THROW_ON(status)
Definition: Error.h:455
Status class.
Definition: Error.h:52
#define ARM_COMPUTE_RETURN_ERROR_ON(cond)
If the condition is true, an error is returned.
Definition: Error.h:296
void configure(ICLTensor *input, const Coordinates &reduction_axis, bool keep_dims, ICLTensor *output)
Configure kernel.
Copyright (c) 2017-2020 ARM Limited.
bool auto_init_if_empty(ITensorInfo &info, const TensorShape &shape, int num_channels, DataType data_type, QuantizationInfo quantization_info=QuantizationInfo())
Auto initialize the tensor info (shape, number of channels and data type) if the current assignment i...
Definition: Helpers.inl:202
1 channel, 1 F16 per channel
void run() override
Run the kernels contained in the function.
void manage(IMemoryManageable *obj) override
Sets a object to be managed by the given memory group.
Definition: MemoryGroup.h:79
#define ARM_COMPUTE_UNUSED(...)
To avoid unused variables warnings.
Definition: Error.h:152
void run() override final
Run the kernels contained in the function.
#define ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(...)
Definition: Validate.h:443
quantized, asymmetric fixed-point 8-bit number unsigned
Coordinates of an item.
Definition: Coordinates.h:37
virtual ITensorInfo * info() const =0
Interface to be implemented by the child class to return the tensor's metadata.
std::array< T, num_max_dimensions >::iterator begin()
Returns a read/write iterator that points to the first element in the dimension array.
Definition: Dimensions.h:194
#define ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(...)
Definition: Validate.h:610
CLCompileContext class.
static Status validate(const ITensorInfo *input, const Coordinates &reduction_axis, bool keep_dims, const ITensorInfo *output)
Static function to check if given info will lead to a valid configuration of CLReduceMean.
#define ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(...)
Definition: Validate.h:163
Memory group resources scope handling class.
Definition: IMemoryGroup.h:82
Interface for OpenCL tensor.
Definition: ICLTensor.h:42
unsigned int num_dimensions() const
Returns the effective dimensionality of the tensor.
Definition: Dimensions.h:122
Status validate_config(const ITensorInfo *input, const Coordinates &reduction_axis, bool keep_dims, const ITensorInfo *output)
CLReduceMean(std::shared_ptr< IMemoryManager > memory_manager=nullptr)
Default constructor.
TensorShape & set(size_t dimension, size_t value, bool apply_dim_correction=true)
Accessor to set the value of one of the dimensions.
Definition: TensorShape.h:78
Store the tensor's metadata.
Definition: TensorInfo.h:45
void configure(const ICLTensor *input, ICLTensor *output)
Initialise the kernel's inputs and outputs.
quantized, asymmetric fixed-point 8-bit number signed
Coordinates & convert_negative_axis(Coordinates &coords, int max_value)
Convert negative coordinates to positive in the range [0, num_dims_input].
Definition: Helpers.h:809
TensorShape calculate_reduce_mean_shape(ITensor *input, const Coordinates &reduction_axis, bool keep_dims)
Calculate the output tensor shape for the reduce mean operation.