Compute Library
 21.11
CpuTransposeKernel.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
25 
26 #include "arm_compute/core/Error.h"
30 #include "arm_compute/core/Types.h"
35 
36 #include <arm_neon.h>
37 
38 namespace arm_compute
39 {
40 namespace cpu
41 {
42 namespace kernels
43 {
44 namespace
45 {
46 unsigned int num_elems_processed(size_t element_size)
47 {
48  switch(element_size)
49  {
50  case 1:
51  return 8;
52  case 2:
53  case 4:
54  return 4;
55  default:
56  break;
57  }
58 
59  ARM_COMPUTE_ERROR("Element size not supported");
60 }
61 
62 void transpose_8bit_elements(const ITensor *in, ITensor *out, const Window &window)
63 {
64  const int window_step_x = 8;
65  const int window_step_y = 8;
66  const int window_start_x = window.x().start();
67  const int window_end_x = window.x().end();
68  const int window_start_y = window.y().start();
69  const int window_end_y = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
70  const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
71  const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
72  const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
73 
74  // Check if we need a left-over loop for the y dimension
75  bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);
76 
77  Window window_in(window);
78  window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
79  if(left_over_loop_y)
80  {
81  // Check if window_end_y_multiple_of is greater than window_start_y
82  if(window_end_y_multiple_of > window_start_y)
83  {
84  window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
85  }
86  else
87  {
88  window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
89  }
90  }
91 
92  Window window_out(window);
93  window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
94  window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
95 
96  Iterator output(out, window_out);
97 
98  // Run the SIMD path if and only if the input is not a row-vector
99  if(in->info()->dimension(1) != 1)
100  {
101  Iterator input(in, window_in);
102  execute_window_loop(window_in, [&](const Coordinates & id)
103  {
104  // Compute 8x8 elements per iteration
105  int x = window_start_x;
106  for(; x <= (window_end_x - window_step_x); x += window_step_x)
107  {
108  const uint8x8_t row0 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 0 * input_stride_in_bytes));
109  const uint8x8_t row1 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 1 * input_stride_in_bytes));
110  const uint8x8_t row2 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 2 * input_stride_in_bytes));
111  const uint8x8_t row3 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 3 * input_stride_in_bytes));
112  const uint8x8_t row4 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 4 * input_stride_in_bytes));
113  const uint8x8_t row5 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 5 * input_stride_in_bytes));
114  const uint8x8_t row6 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 6 * input_stride_in_bytes));
115  const uint8x8_t row7 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 7 * input_stride_in_bytes));
116 
117  // Transpose 2x2
118  const uint8x8x2_t k0_u8 = vtrn_u8(row0, row1);
119  const uint8x8x2_t k1_u8 = vtrn_u8(row2, row3);
120  const uint8x8x2_t k2_u8 = vtrn_u8(row4, row5);
121  const uint8x8x2_t k3_u8 = vtrn_u8(row6, row7);
122 
123  // Transpose 4x4
124  const uint16x4x2_t k0_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[0]), vreinterpret_u16_u8(k1_u8.val[0]));
125  const uint16x4x2_t k1_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[1]), vreinterpret_u16_u8(k1_u8.val[1]));
126  const uint16x4x2_t k2_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[0]), vreinterpret_u16_u8(k3_u8.val[0]));
127  const uint16x4x2_t k3_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[1]), vreinterpret_u16_u8(k3_u8.val[1]));
128 
129  // Transpose 8x8
130  const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k2_u16.val[0]));
131  const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k2_u16.val[1]));
132  const uint32x2x2_t k2_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[0]), vreinterpret_u32_u16(k3_u16.val[0]));
133  const uint32x2x2_t k3_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[1]), vreinterpret_u32_u16(k3_u16.val[1]));
134 
135  // Compute destination address
136  const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes;
137 
138  vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[0])));
139  vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[0])));
140  vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[0])));
141  vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[0])));
142  vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 4 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[1])));
143  vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 5 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[1])));
144  vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 6 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[1])));
145  vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 7 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[1])));
146  }
147 
148  // Compute left-over elements along the x dimension (1x8)
149  for(; x < window_end_x; ++x)
150  {
151  const uint8_t val0 = *(input.ptr() + x + 0 * input_stride_in_bytes);
152  const uint8_t val1 = *(input.ptr() + x + 1 * input_stride_in_bytes);
153  const uint8_t val2 = *(input.ptr() + x + 2 * input_stride_in_bytes);
154  const uint8_t val3 = *(input.ptr() + x + 3 * input_stride_in_bytes);
155  const uint8_t val4 = *(input.ptr() + x + 4 * input_stride_in_bytes);
156  const uint8_t val5 = *(input.ptr() + x + 5 * input_stride_in_bytes);
157  const uint8_t val6 = *(input.ptr() + x + 6 * input_stride_in_bytes);
158  const uint8_t val7 = *(input.ptr() + x + 7 * input_stride_in_bytes);
159 
160  uint8x8_t result = vdup_n_u8(0);
161  result = vset_lane_u8(val0, result, 0);
162  result = vset_lane_u8(val1, result, 1);
163  result = vset_lane_u8(val2, result, 2);
164  result = vset_lane_u8(val3, result, 3);
165  result = vset_lane_u8(val4, result, 4);
166  result = vset_lane_u8(val5, result, 5);
167  result = vset_lane_u8(val6, result, 6);
168  result = vset_lane_u8(val7, result, 7);
169 
170  // Compute destination address
171  const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes;
172 
173  vst1_u8(output.ptr() + dst_offset_in_bytes, result);
174  }
175  },
176  input, output);
177  }
178 
179  if(left_over_loop_y)
180  {
181  window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
182  window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));
183 
184  Iterator input(in, window_in);
185  Iterator output(out, window_out);
186 
187  // Compute left-over elements along the y dimension (1x1)
188  execute_window_loop(window_in, [&](const Coordinates & id)
189  {
190  const uint8_t val0 = *input.ptr();
191 
192  // Compute destination address
193  const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + id.x() * output_stride_in_bytes;
194 
195  *(output.ptr() + dst_offset_in_bytes) = val0;
196  },
197  input, output);
198  }
199 }
200 
201 void transpose_16bit_elements(const ITensor *in, ITensor *out, const Window &window)
202 {
203  const int window_step_x = 4;
204  const int window_step_y = 4;
205  const int window_start_x = window.x().start();
206  const int window_end_x = window.x().end();
207  const int window_start_y = window.y().start();
208  const int window_end_y = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
209  const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
210  const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
211  const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
212 
213  // Check if we need a left-over loop for the y dimension
214  bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);
215 
216  Window window_in(window);
217  window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
218  if(left_over_loop_y)
219  {
220  // Check if window_end_y_multiple_of is greater than window_start_y
221  if(window_end_y_multiple_of > window_start_y)
222  {
223  window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
224  }
225  else
226  {
227  window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
228  }
229  }
230 
231  Window window_out(window);
232  window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
233  window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
234 
235  Iterator output(out, window_out);
236 
237  // Run the SIMD path if and only if the input is not a row-vector
238  if(in->info()->dimension(1) != 1)
239  {
240  Iterator input(in, window_in);
241  execute_window_loop(window_in, [&](const Coordinates & id)
242  {
243  // Compute 4x4 elements per iteration
244  int x = window_start_x;
245  for(; x <= (window_end_x - window_step_x); x += window_step_x)
246  {
247  const uint16x4_t row0 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
248  const uint16x4_t row1 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
249  const uint16x4_t row2 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
250  const uint16x4_t row3 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
251 
252  // Transpose 2x2
253  const uint16x4x2_t k0_u16 = vtrn_u16(row0, row1);
254  const uint16x4x2_t k1_u16 = vtrn_u16(row2, row3);
255 
256  // Transpose 4x4
257  const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k1_u16.val[0]));
258  const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k1_u16.val[1]));
259 
260  // Compute destination address
261  const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes;
262 
263  vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[0]));
264  vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[0]));
265  vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[1]));
266  vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[1]));
267  }
268 
269  // Compute left-over elements (1x4)
270  for(; x < window_end_x; ++x)
271  {
272  const uint16_t val0 = *(reinterpret_cast<uint16_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
273  const uint16_t val1 = *(reinterpret_cast<uint16_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
274  const uint16_t val2 = *(reinterpret_cast<uint16_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
275  const uint16_t val3 = *(reinterpret_cast<uint16_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
276 
277  uint16x4_t result = vdup_n_u16(0);
278  result = vset_lane_u16(val0, result, 0);
279  result = vset_lane_u16(val1, result, 1);
280  result = vset_lane_u16(val2, result, 2);
281  result = vset_lane_u16(val3, result, 3);
282 
283  // Compute destination address
284  const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes;
285 
286  vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes), result);
287  }
288  },
289  input, output);
290  }
291 
292  if(left_over_loop_y)
293  {
294  window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
295  window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));
296 
297  Iterator input(in, window_in);
298  Iterator output(out, window_out);
299 
300  // Compute left-over elements along the y dimension (1x1)
301  execute_window_loop(window_in, [&](const Coordinates & id)
302  {
303  const uint16_t val0 = *(reinterpret_cast<uint16_t *>(input.ptr()));
304 
305  // Compute destination address
306  const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + id.x() * output_stride_in_bytes;
307 
308  *(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes)) = val0;
309  },
310  input, output);
311  }
312 }
313 
314 void transpose_32bit_elements(const ITensor *in, ITensor *out, const Window &window)
315 {
316  const int window_step_x = 4;
317  const int window_step_y = 4;
318  const int window_start_x = window.x().start();
319  const int window_end_x = window.x().end();
320  const int window_start_y = window.y().start();
321  const int window_end_y = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
322  const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
323  const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
324  const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
325 
326  // Check if we need a left-over loop for the y dimension
327  bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);
328 
329  Window window_in(window);
330  window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
331  if(left_over_loop_y)
332  {
333  // Check if window_end_y_multiple_of is greater than window_start_y
334  if(window_end_y_multiple_of > window_start_y)
335  {
336  window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
337  }
338  else
339  {
340  window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
341  }
342  }
343 
344  Window window_out(window);
345  window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
346  window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
347 
348  Iterator output(out, window_out);
349 
350  // Run the SIMD path if and only if the input is not a row-vector
351  if(in->info()->dimension(1) != 1)
352  {
353  Iterator input(in, window_in);
354  execute_window_loop(window_in, [&](const Coordinates & id)
355  {
356  // Compute 4x4 elements per iteration
357  int x = window_start_x;
358  for(; x <= (window_end_x - window_step_x); x += window_step_x)
359  {
360  const uint32x4_t row0 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
361  const uint32x4_t row1 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
362  const uint32x4_t row2 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
363  const uint32x4_t row3 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
364 
365  // Transpose 2x2
366  const uint32x2x2_t k0_u32 = vtrn_u32(vget_low_u32(row0), vget_low_u32(row1));
367  const uint32x2x2_t k1_u32 = vtrn_u32(vget_high_u32(row2), vget_high_u32(row3));
368  const uint32x2x2_t k2_u32 = vtrn_u32(vget_high_u32(row0), vget_high_u32(row1));
369  const uint32x2x2_t k3_u32 = vtrn_u32(vget_low_u32(row2), vget_low_u32(row3));
370 
371  // Compute destination address
372  const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes;
373 
374  // Swap block 01 with block 10 and store
375  vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vcombine_u32(k0_u32.val[0], k3_u32.val[0]));
376  vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vcombine_u32(k0_u32.val[1], k3_u32.val[1]));
377  vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vcombine_u32(k2_u32.val[0], k1_u32.val[0]));
378  vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vcombine_u32(k2_u32.val[1], k1_u32.val[1]));
379  }
380 
381  // Compute left-over elements (1x4)
382  for(; x < window_end_x; ++x)
383  {
384  const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
385  const uint32_t val1 = *(reinterpret_cast<uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
386  const uint32_t val2 = *(reinterpret_cast<uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
387  const uint32_t val3 = *(reinterpret_cast<uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
388 
389  uint32x4_t result = vdupq_n_u32(0);
390  result = vsetq_lane_u32(val0, result, 0);
391  result = vsetq_lane_u32(val1, result, 1);
392  result = vsetq_lane_u32(val2, result, 2);
393  result = vsetq_lane_u32(val3, result, 3);
394 
395  // Compute destination address
396  const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes;
397 
398  vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes), result);
399  }
400  },
401  input, output);
402  }
403 
404  if(left_over_loop_y)
405  {
406  window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
407  window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));
408 
409  Iterator input(in, window_in);
410  Iterator output(out, window_out);
411 
412  // Compute left-over elements along the y dimension (1x1)
413  execute_window_loop(window_in, [&](const Coordinates & id)
414  {
415  const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr()));
416 
417  // Compute destination address
418  const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + id.x() * output_stride_in_bytes;
419 
420  *(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes)) = val0;
421  },
422  input, output);
423  }
424 }
425 } // namespace
426 
428 {
430 
431  // Destination auto inizialitation if not yet initialized
433  auto_init_if_empty(*dst, src->clone()->set_tensor_shape(dst_shape));
434 
435  // Perform validation step
437 
438  // Note: This kernel performs 16 elements per iteration.
439  // However, since we use a left-over for loop on both dimensions (X and Y), we cannot have any read or write out of memory
440  // For this reason num_elems_processed_per_iteration_x is set to 1
441  const unsigned int num_elems_processed_per_iteration_x = 1;
442  const unsigned int num_elems_processed_per_iteration_y = num_elems_processed(src->element_size());
443 
444  // Configure kernel window
445  Window win = calculate_max_window(*src, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
446 
447  // The CpuTranspose doesn't need padding so update_window_and_padding() can be skipped
448  Coordinates coord;
449  coord.set_num_dimensions(dst->num_dimensions());
450  dst->set_valid_region(ValidRegion(coord, dst->tensor_shape()));
451 
452  ICpuKernel::configure(win);
453 }
454 
456 {
458  //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use CPU FP16 instructions.
460 
461  // Error if input is not 8 bit, 16bit or 32bit
462  ARM_COMPUTE_RETURN_ERROR_ON_MSG(src->element_size() != 1 && src->element_size() != 2 && src->element_size() != 4,
463  "Element size not supported");
464 
465  // Validate configured destination
466  if(dst->total_size() != 0)
467  {
469 
473  }
474 
475  return Status{};
476 }
477 
478 void CpuTransposeKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
479 {
480  ARM_COMPUTE_UNUSED(info);
483 
484  const auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
485  auto dst = tensors.get_tensor(TensorType::ACL_DST);
486 
487  switch(src->info()->element_size())
488  {
489  case 1:
490  transpose_8bit_elements(src, dst, window);
491  break;
492  case 2:
493  transpose_16bit_elements(src, dst, window);
494  break;
495  case 4:
496  transpose_32bit_elements(src, dst, window);
497  break;
498  default:
499  ARM_COMPUTE_ERROR("Element size not supported");
500  break;
501  }
502 }
503 
504 const char *CpuTransposeKernel::name() const
505 {
506  return "CpuTransposeKernel";
507 }
508 } // namespace kernels
509 } // namespace cpu
510 } // namespace arm_compute
virtual size_t num_dimensions() const =0
The number of dimensions of the tensor (rank)
Window calculate_max_window(const ValidRegion &valid_region, const Steps &steps, bool skip_border, BorderSize border_size)
const Window & window() const
The maximum window the kernel can be executed on.
Definition: IKernel.cpp:28
Shape of a tensor.
Definition: TensorShape.h:39
void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override
Execute the kernel on the passed window.
#define ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(...)
Definition: Validate.h:606
#define ARM_COMPUTE_ERROR(msg)
Print the given message then throw an std::runtime_error.
Definition: Error.h:352
virtual DataType data_type() const =0
Data type used for each element of the tensor.
Store the tensor&#39;s metadata.
Definition: ITensorInfo.h:40
#define ARM_COMPUTE_ERROR_THROW_ON(status)
Definition: Error.h:455
Status class.
Definition: Error.h:52
#define ARM_COMPUTE_RETURN_ERROR_ON(cond)
If the condition is true, an error is returned.
Definition: Error.h:296
#define ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(...)
Definition: Validate.h:284
SimpleTensor< float > src
Definition: DFT.cpp:155
Copyright (c) 2017-2021 Arm Limited.
virtual void set_valid_region(const ValidRegion &valid_region)=0
Set the valid region of the tensor.
TensorShape compute_transposed_shape(const ITensorInfo &input)
Calculate the transposed shape of a tensor.
#define ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(...)
Definition: Validate.h:159
const ITensor * get_const_tensor(int id) const
Get constant tensor of a given id.
Definition: ITensorPack.cpp:54
static constexpr size_t DimX
Alias for dimension 0 also known as X dimension.
Definition: Window.h:43
#define ARM_COMPUTE_UNUSED(...)
To avoid unused variables warnings.
Definition: Error.h:152
static Status validate(const ITensorInfo *src, const ITensorInfo *dst)
Static function to check if given info will lead to a valid configuration.
virtual const TensorShape & tensor_shape() const =0
Size for each dimension of the tensor.
const char * name() const override
Name of the kernel.
Class to describe a number of elements in each dimension.
Definition: Steps.h:40
Coordinates of an item.
Definition: Coordinates.h:37
bool auto_init_if_empty(ITensorInfo &info, const TensorShape &shape, int num_channels, DataType data_type, QuantizationInfo quantization_info=QuantizationInfo())
Auto initialize the tensor info (shape, number of channels and data type) if the current assignment i...
virtual std::unique_ptr< T > clone() const =0
Provide a clone of the current object of class T.
virtual size_t element_size() const =0
Element size in bytes calculated as data_size() * num_channels()
#define ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(k)
Definition: Validate.h:915
static constexpr size_t DimY
Alias for dimension 1 also known as Y dimension.
Definition: Window.h:45
ScaleKernelInfo info(interpolation_policy, default_border_mode, PixelValue(), sampling_policy, false)
ITensor * get_tensor(int id)
Get tensor of a given id from the pac.
Definition: ITensorPack.cpp:64
Information about executing thread and CPU.
Definition: CPPTypes.h:158
virtual size_t total_size() const =0
Returns the total size of the tensor in bytes.
#define ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(...)
Definition: Validate.h:541
#define ARM_COMPUTE_RETURN_ERROR_ON_MSG(cond, msg)
If the condition is true, an error is returned.
Definition: Error.h:244
Tensor packing service.
Definition: ITensorPack.h:39
#define ARM_COMPUTE_ERROR_ON_NULLPTR(...)
Definition: Validate.h:157
void execute_window_loop(const Window &w, L &&lambda_function, Ts &&... iterators)
Iterate through the passed window, automatically adjusting the iterators and calling the lambda_funct...
Definition: Helpers.inl:77
void set_num_dimensions(size_t num_dimensions)
Set number of dimensions.
Definition: Dimensions.h:149
Container for valid region of a window.
Definition: Types.h:184
Describe a multidimensional execution window.
Definition: Window.h:39
void configure(const ITensorInfo *src, ITensorInfo *dst)
Configure kernel for a given list of arguments.
#define ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(f, s)
Definition: Validate.h:201