Compute Library
 22.11
ElementwiseSquareDiff.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Types.h"
28 #include "tests/NEON/Accessor.h"
30 #include "tests/datasets/ShapeDatasets.h"
32 #include "tests/framework/Macros.h"
35 #include "tests/validation/fixtures/ElementwiseOperationsFixture.h"
36 
37 namespace arm_compute
38 {
39 namespace test
40 {
41 namespace validation
42 {
43 namespace
44 {
45 RelativeTolerance<float> tolerance_fp32(0.000001f);
46 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
47 RelativeTolerance<float> tolerance_fp16(0.01f);
48 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
49 
50 /** Input data sets **/
51 const auto ElementwiseSquaredDiffQASYMM8Dataset = combine(combine(framework::dataset::make("DataType", DataType::QASYMM8), framework::dataset::make("DataType", DataType::QASYMM8)),
52  framework::dataset::make("DataType",
54 
55 const auto ElementwiseSquaredDiffQASYMM8SignedDataset = combine(combine(framework::dataset::make("DataType", DataType::QASYMM8_SIGNED), framework::dataset::make("DataType", DataType::QASYMM8_SIGNED)),
56  framework::dataset::make("DataType",
58 
59 /** Input data sets **/
60 const auto ElementwiseSquaredDiffS32Dataset = combine(combine(framework::dataset::make("DataType", DataType::S32), framework::dataset::make("DataType", DataType::S32)),
61  framework::dataset::make("DataType",
62  DataType::S32));
63 const auto ElementwiseSquaredDiffS16Dataset = combine(combine(framework::dataset::make("DataType", { DataType::S16 }), framework::dataset::make("DataType", DataType::S16)),
65 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
66 const auto ElementwiseSquaredDiffFP16Dataset = combine(combine(framework::dataset::make("DataType", DataType::F16), framework::dataset::make("DataType", DataType::F16)),
68 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
69 const auto ElementwiseSquaredDiffFP32Dataset = combine(combine(framework::dataset::make("DataType", DataType::F32), framework::dataset::make("DataType", DataType::F32)),
71 const auto InPlaceDataSet = framework::dataset::make("InPlace", { false, true });
72 const auto OutOfPlaceDataSet = framework::dataset::make("InPlace", { false });
73 } // namespace
74 
75 TEST_SUITE(NEON)
76 TEST_SUITE(ElementwiseSquaredDiff)
77 
78 template <typename T>
79 using NEElementwiseSquaredDiffFixture = ElementwiseSquaredDiffValidationFixture<Tensor, Accessor, NEElementwiseSquaredDiff, T>;
80 
81 // *INDENT-OFF*
82 // clang-format off
84  framework::dataset::make("Input1Info", { TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
85  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S32),
86  TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::S32),
87  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S32), // Invalid data type combination
88  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), // Mismatching shapes
89  TensorInfo(TensorShape(1U, 1U, 2U), 1, DataType::QASYMM8_SIGNED), // Mismatching types
90  }),
91  framework::dataset::make("Input2Info",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
92  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S32),
93  TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::S32),
94  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S16),
95  TensorInfo(TensorShape(48U, 11U, 2U), 1, DataType::F32),
97  })),
98  framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
99  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S32),
100  TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::S32),
101  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S32),
102  TensorInfo(TensorShape(48U, 11U, 2U), 1, DataType::F32),
104  })),
105  framework::dataset::make("Expected", { true, true, true, false, false, false})),
107 {
108  ARM_COMPUTE_EXPECT(bool(NEElementwiseSquaredDiff::validate(&input1_info.clone()->set_is_resizable(false), &input2_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false))) == expected, framework::LogLevel::ERRORS);
109 }
110 // clang-format on
111 // *INDENT-ON*
112 
114 FIXTURE_DATA_TEST_CASE(RunSmall, NEElementwiseSquaredDiffFixture<int32_t>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallShapes(), ElementwiseSquaredDiffS32Dataset),
115  InPlaceDataSet))
116 {
117  // Validate output
118  validate(Accessor(_target), _reference);
119 }
120 TEST_SUITE_END() // S32
121 
123 FIXTURE_DATA_TEST_CASE(RunSmall, NEElementwiseSquaredDiffFixture<int16_t>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ElementwiseSquaredDiffS16Dataset),
124  InPlaceDataSet))
125 {
126  // Validate output
127  validate(Accessor(_target), _reference);
128 }
129 TEST_SUITE_END() // S16
130 
131 template <typename T>
132 using NEElementwiseSquaredDiffQuantizedFixture = ElementwiseSquaredDiffValidationQuantizedFixture<Tensor, Accessor, NEElementwiseSquaredDiff, T>;
133 
134 TEST_SUITE(Quantized)
136 FIXTURE_DATA_TEST_CASE(RunSmall, NEElementwiseSquaredDiffQuantizedFixture<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(combine(datasets::SmallShapes(),
137  ElementwiseSquaredDiffQASYMM8Dataset),
138  framework::dataset::make("QuantizationInfo", { QuantizationInfo(5.f / 255.f, 20) })),
139  framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255.f, 10) })),
140  framework::dataset::make("QuantizationInfo", { QuantizationInfo(1.f / 255.f, 5) })),
141  OutOfPlaceDataSet))
142 {
143  // Validate output
144  validate(Accessor(_target), _reference, tolerance_fp32, 0.01);
145 }
146 template <typename T>
147 using NEElementwiseSquaredDiffQuantizedBroadcastFixture = ElementwiseSquaredDiffQuantizedBroadcastValidationFixture<Tensor, Accessor, NEElementwiseSquaredDiff, T>;
148 
150  combine(combine(combine(combine(combine(datasets::SmallShapesBroadcast(),
151  ElementwiseSquaredDiffQASYMM8Dataset),
152  framework::dataset::make("QuantizationInfo", { QuantizationInfo(5.f / 255.f, 20) })),
153  framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255.f, 10) })),
154  framework::dataset::make("QuantizationInfo", { QuantizationInfo(1.f / 255.f, 5) })),
155  OutOfPlaceDataSet))
156 {
157  // Validate output
158  validate(Accessor(_target), _reference);
159 }
161  combine(combine(combine(combine(combine(datasets::TinyShapesBroadcastInplace(),
162  ElementwiseSquaredDiffQASYMM8Dataset),
163  framework::dataset::make("QuantizationInfo", { QuantizationInfo(5.f / 255.f, 20) })),
164  framework::dataset::make("QuantizationInfo", { QuantizationInfo(5.f / 255.f, 20) })),
165  framework::dataset::make("QuantizationInfo", { QuantizationInfo(5.f / 255.f, 20) })),
166  InPlaceDataSet))
167 {
168  // Validate output
169  validate(Accessor(_target), _reference);
170 }
172 
174 FIXTURE_DATA_TEST_CASE(RunSmall, NEElementwiseSquaredDiffQuantizedFixture<int8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(combine(combine(datasets::SmallShapes(),
175  ElementwiseSquaredDiffQASYMM8SignedDataset),
176  framework::dataset::make("QuantizationInfo", { QuantizationInfo(1.f, 5) })),
177  framework::dataset::make("QuantizationInfo", { QuantizationInfo(.5f, 5) })),
178  framework::dataset::make("QuantizationInfo", { QuantizationInfo(.2f, 5) })),
179  OutOfPlaceDataSet))
180 {
181  // Validate output
182  validate(Accessor(_target), _reference);
183 }
186 
187 TEST_SUITE(Float)
188 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
190 FIXTURE_DATA_TEST_CASE(RunSmall, NEElementwiseSquaredDiffFixture<half>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ElementwiseSquaredDiffFP16Dataset),
191  InPlaceDataSet))
192 {
193  // Validate output
194  validate(Accessor(_target), _reference, tolerance_fp16, 0.01);
195 }
196 TEST_SUITE_END() // F16
197 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
198 
200 FIXTURE_DATA_TEST_CASE(RunSmall, NEElementwiseSquaredDiffFixture<float>, framework::DatasetMode::ALL, combine(combine(datasets::SmallShapes(), ElementwiseSquaredDiffFP32Dataset),
201  InPlaceDataSet))
202 {
203  // Validate output
204  validate(Accessor(_target), _reference);
205 }
206 template <typename T>
207 using NEElementwiseSquaredDiffBroadcastFixture = ElementwiseSquaredDiffBroadcastValidationFixture<Tensor, Accessor, NEElementwiseSquaredDiff, T>;
208 
210  ElementwiseSquaredDiffFP32Dataset),
211  OutOfPlaceDataSet))
212 {
213  // Validate output
214  validate(Accessor(_target), _reference);
215 }
216 
218  ElementwiseSquaredDiffFP32Dataset),
219  OutOfPlaceDataSet))
220 {
221  // Validate output
222  validate(Accessor(_target), _reference);
223 }
224 TEST_SUITE_END() // F32
225 TEST_SUITE_END() // Float
226 
227 TEST_SUITE_END() // ElementwiseSquaredDiff
228 TEST_SUITE_END() // Neon
229 } // namespace validation
230 } // namespace test
231 } // namespace arm_compute
Shape of a tensor.
Definition: TensorShape.h:39
static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const ActivationLayerInfo &act_info=ActivationLayerInfo())
Static function to check if given info will lead to a valid configuration of cpu::kernels::CpuArithme...
1 channel, 1 F32 per channel
ARM_COMPUTE_EXPECT(has_error==expected, framework::LogLevel::ERRORS)
std::enable_if< is_container< T >::value, ContainerDataset< T > >::type make(std::string name, T &&values)
Helper function to create a ContainerDataset.
RelativeTolerance< float > tolerance_fp32(0.001f)
Copyright (c) 2017-2022 Arm Limited.
1 channel, 1 F16 per channel
1 channel, 1 S32 per channel
Quantization information.
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), }), framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F16), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(30U, 11U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), })), framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::SQRT), })), framework::dataset::make("Expected", { false, true, true, true, false, false, true, true, false })), input_info, output_info, act_info, expected)
Accessor implementation for Tensor objects.
Definition: Accessor.h:35
DatasetMode
Possible dataset modes.
Definition: DatasetModes.h:40
TEST_SUITE_END() FIXTURE_DATA_TEST_CASE(RunSmall
[CLActivationLayer Test snippet]
quantized, asymmetric fixed-point 8-bit number unsigned
validate(CLAccessor(output_state), expected_output)
1 channel, 1 S16 per channel
FIXTURE_DATA_TEST_CASE(RunSmall, CLAbsLayerFixture< half >, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F16)))
Definition: AbsLayer.cpp:50
Store the tensor&#39;s metadata.
Definition: TensorInfo.h:43
ElementwiseSquaredDiffBroadcastValidationFixture< Tensor, Accessor, NEElementwiseSquaredDiff, T > NEElementwiseSquaredDiffBroadcastFixture
ElementwiseSquaredDiffQuantizedBroadcastValidationFixture< Tensor, Accessor, NEElementwiseSquaredDiff, T > NEElementwiseSquaredDiffQuantizedBroadcastFixture
ElementwiseSquaredDiffValidationFixture< Tensor, Accessor, NEElementwiseSquaredDiff, T > NEElementwiseSquaredDiffFixture
quantized, asymmetric fixed-point 8-bit number signed
zip(zip(framework::dataset::make("Weights", { TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 1U), 1, DataType::F32), }), framework::dataset::make("MVBGInfo",{ TensorInfo(TensorShape(2U), 1, DataType::F32), TensorInfo(TensorShape(2U), 1, DataType::F16), TensorInfo(TensorShape(5U), 1, DataType::F32), })), framework::dataset::make("Expected", { true, false, false}))
TEST_SUITE(QASYMM8_to_F32) FIXTURE_DATA_TEST_CASE(RunSmall
combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F32)))
Definition: AbsLayer.cpp:65