Compute Library
 23.05
NEFullyConnectedLayer.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017-2023 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_NEFULLYCONNECTEDLAYER_H
25 #define ARM_COMPUTE_NEFULLYCONNECTEDLAYER_H
26 
30 
33 
34 #include <memory>
35 
36 namespace arm_compute
37 {
38 namespace weights_transformations
39 {
40 /** Basic function to manage the reshape weights generated from @ref NETranspose */
42 {
43 public:
44  void run() override
45  {
46  _output.allocator()->allocate();
47  _func.run();
48  _reshape_run = true;
49  }
50 
51  void release() override
52  {
53  _output.allocator()->free();
54  }
55 
56  ITensor *get_weights() override
57  {
58  return &_output;
59  }
60 
61  uint32_t uid() override
62  {
63  return _uid;
64  }
65 
66  void configure(const ITensor *input)
67  {
68  _func.configure(input, &_output);
69  }
70 
71 private:
72  static constexpr uint32_t _uid = 0x0;
73  Tensor _output{};
74  NETranspose _func{};
75 };
76 } // namespace weights_transformations
77 
78 /** Basic function to compute a Fully Connected layer. This function calls the following kernels:
79  * -# @ref cpu::kernels::CpuIm2ColKernel (called when the input comes from a convolutional layer)
80  * -# @ref NETranspose (if @p are_weights_reshaped is set to false and transpose_weights is set to true ) (called once)
81  * -# @ref NEGEMM or @ref NEGEMMLowpMatrixMultiplyCore (if quantized asymmetric)
82  * -# @ref cpu::kernels::CpuGemmMatrixAdditionKernel or @ref NEGEMMLowpOutputStage (if quantized asymmetric) (if @p biases is not equal to nullptr)
83  *
84  * @note The fully connected layer accepts "weights" tensors only with 2 dimensions.
85  */
87 {
88 public:
89  /** Constructor */
90  NEFullyConnectedLayer(std::shared_ptr<IMemoryManager> memory_manager = nullptr, IWeightsManager *weights_manager = nullptr);
91  /** Prevent instances of this class from being copied (As this class contains pointers) */
93  /** Prevent instances of this class from being moved (As this class contains pointers) */
95  /** Prevent instances of this class from being copied (As this class contains pointers) */
97  /** Prevent instances of this class from being moved (As this class contains pointers) */
99  /** Default destructor */
101  /** Set the input and output tensors.
102  *
103  * Valid data layouts:
104  * - NHWC
105  * - NCHW
106  *
107  * Valid data type configurations:
108  * |src0 |src1 |src2 |dst |
109  * |:--------------|:------------------|:------|:--------------|
110  * |F16 |F16 |F16 |F16 |
111  * |F32 |F32 |F32 |F32 |
112  * |QASYMM8 |QASYMM8 |S32 |QASYMM8 |
113  * |QASYMM8_SIGNED |QASYMM8_SIGNED |S32 |QASYMM8_SIGNED |
114  *
115  * @param[in] input Source tensor. Data type supported: QASYMM8/QASYMM8_SIGNED/F16/F32.
116  * @param[in] weights Weights tensor. The weights must be 2 dimensional.
117  * If this function is called after a Convolution Layer, the (transposed) weights will have as many rows as the product of the first 3 input's dimensions.
118  * If it is called after another FullyConnected Layer, the (transposed) weights will have as many rows as the input's first dimension.
119  * Data type supported: Same as @p input.
120  * @param[in] biases Bias tensor. Can be nullptr. Data type supported: Same as @p weights, S32 if @p weights is QASYMM8/QASYMM8_SIGNED.
121  * @param[out] output Destination tensor. Its shape should be equal to the output of a matrix multiplication between:
122  * - The output of im2col on the input and the (transposed) 2D weights, if the function is called after a Convolution Layer
123  * - The input tensor and the (transposed) 2D weights, if the function is called after another FullyConnected Layer.
124  * Data type supported: Same as @p input.
125  * @param[in] fc_info (Optional) Fully connected layer additional info
126  * @param[in] weights_info (Optional) Stores neccessary compute information when weights are already reshaped
127  */
128  void configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output,
130  /** Static function to check if given info will lead to a valid configuration of @ref NEFullyConnectedLayer
131  *
132  * Similar to @ref NEFullyConnectedLayer::configure()
133  *
134  * @return a status
135  */
136  static Status validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
138 
139  /** Static function that queries whether fixed-format kernel exists for a given problem description
140  *
141  * @param[out] expected_weight_format Format in which weights should be for found fixed format kernel
142  * @param[in] input Source tensor
143  * @param[in] weights Weights tensor.
144  * @param[in] biases Bias tensor. Can be nullptr. Data type supported: Same as @p weights, S32 if @p weights is QASYMM8/QASYMM8_SIGNED.
145  * @param[in] output Destination tensor
146  * @param[in] fc_info Fully connected layer additional info
147  * @param[in] weights_info Describes weights shape
148  *
149  * @return a status
150  */
151  static Status has_opt_impl(arm_compute::WeightFormat &expected_weight_format, const ITensorInfo *input, const ITensorInfo *weights,
152  const ITensorInfo *biases, const ITensorInfo *output, const FullyConnectedLayerInfo &fc_info, const WeightsInfo &weights_info);
153 
154  //Inherited methods override
155  void run() override;
156  void prepare() override;
157 
158 private:
159  struct Impl;
160  std::unique_ptr<Impl> _impl;
161 };
162 } // namespace arm_compute
163 #endif /* ARM_COMPUTE_NEFULLYCONNECTEDLAYER_H */
Base class for all functions.
Definition: IFunction.h:30
ITensor * get_weights() override
Get a pointer to the transformed weights.
Fully connected layer info.
Definition: Types.h:1829
Store the tensor&#39;s metadata.
Definition: ITensorInfo.h:43
WeightFormat
Memory layouts for the weights tensor.
Definition: Types.h:2035
Status class.
Definition: Error.h:52
Interface for CPU tensor.
Definition: ITensor.h:36
Copyright (c) 2017-2023 Arm Limited.
TensorAllocator * allocator()
Return a pointer to the tensor&#39;s allocator.
Definition: Tensor.cpp:48
Convolution Layer Weights Information class.
Definition: Types.h:2093
void configure(const ITensor *input, ITensor *output)
Initialise the kernel&#39;s inputs and output.
Definition: NETranspose.cpp:46
void run() override
Run the kernels contained in the function.
Definition: NETranspose.cpp:64
void allocate() override
Allocate size specified by TensorInfo of CPU memory.
ITransformWeights & operator=(const ITransformWeights &)=delete
Prevent instances of this class to be copied.
Basic implementation of the tensor interface.
Definition: Tensor.h:37
Basic function to run cpu::kernels::CpuTransposeKernel.
Definition: NETranspose.h:40
void free() override
Free allocated CPU memory.
Weights manager interface to handle weights transformations.
Basic function to compute a Fully Connected layer.
Weights tensor transform interface In order to identify the different reshape functions, each reshape function has to generate a unique id.
uint32_t uid() override
Function that returns a unique id of the reshape function.
Basic function to manage the reshape weights generated from NETranspose.
Status validate(const ITensorInfo *scores_in, const ITensorInfo *boxes_in, const ITensorInfo *batch_splits_in, const ITensorInfo *scores_out, const ITensorInfo *boxes_out, const ITensorInfo *classes, const ITensorInfo *batch_splits_out, const ITensorInfo *keeps, const ITensorInfo *keeps_size, const BoxNMSLimitInfo info)