Compute Library
 21.02
NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2019-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_NEGEMMLOWPQUANTIZEDOWNINT32TOINT16SCALEBYFIXEDPOINTKERNEL_H
25 #define ARM_COMPUTE_NEGEMMLOWPQUANTIZEDOWNINT32TOINT16SCALEBYFIXEDPOINTKERNEL_H
26 
28 
29 namespace arm_compute
30 {
31 class ITensor;
32 
33 /** Neon kernel used to quantize down the int32 accumulator values of GEMMLowp to QSYMM16
34  *
35  * This kernel takes a final int32 accumulator value (the output of @ref NEGEMMLowpMatrixMultiplyKernel), and processes it to obtain the final QSYMM16 value.
36  * The following computations will be performed by the kernel:
37  *
38  * -# Compute fixed point multiplication between each entry of input by result_fixedpoint_multiplier
39  * -# Add bias to final result if bias tensor is not a nullptr
40  * -# Round to nearest division by a power-of-two using result_shift
41  * -# Clamp the value between the specified min and max bounds
42  * -# Clamp the resulting int32 values to the [-32768, 32767] range and cast to QSYMM16.
43  *
44  */
46 {
47 public:
48  const char *name() const override
49  {
50  return "NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel";
51  }
52  /** Constructor */
54  /** Prevent instances of this class from being copied (As this class contains pointers)*/
56  /** Prevent instances of this class from being copied (As this class contains pointers)*/
58  /** Allow instances of this class to be moved */
60  /** Allow instances of this class to be moved */
62  /** Default destructor */
64  /** Initialise the kernel's input and output.
65  *
66  * @param[in] input Input tensor. Data type supported: S32
67  * @param[in] bias Biases tensor. Only shared biases supported and it can be a nullptr if the biases addition is not required.
68  * Biases are 1D tensor with dimensions [OFM]. Data type supported: Same as @p input.
69  * @param[out] output Output tensor. Data type supported: Data type supported: QSYMM16
70  * @param[in] result_fixedpoint_multiplier Fixed point value to be multiplied to each element of the input matrix when once the result_offset has been add
71  * @param[in] result_shift Integer value used to round to nearest division by a power-of-two the result after the fixed point multiplication
72  * @param[in] min (Optional) Min value used to saturate down the output result before converting back to QSYMM16. Defaults to 0.
73  * @param[in] max (Optional) Max value used to saturate up the output result before converting back to QSYMM16.
74  * Along with @p min, this value can be used to implement "rectified linear unit" activation functions. Defaults to 0.
75  */
76  void configure(const ITensor *input, const ITensor *bias, ITensor *output, int result_fixedpoint_multiplier, int result_shift, int min = 0, int max = 0);
77  /** Static function to check if given info will lead to a valid configuration of @ref NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel
78  *
79  * @param[in] input Input tensor info. Data type supported: S32
80  * @param[in] bias Biases tensor info. Only shared biases supported and it can be a nullptr if the biases addition is not required.
81  * Biases are 1D tensor info with dimensions [OFM]. Data type supported: Same as @p input.
82  * @param[in] output Output tensor info. Data type supported: Data type supported: QSYMM16
83  * @param[in] min (Optional) Min value used to saturate down the output result before converting back to QSYMM16. Defaults to 0.
84  * @param[in] max (Optional) Max value used to saturate up the output result before converting back to QSYMM16,
85  * Along with @p min, this value can be used to implement "rectified linear unit" activation functions. Defaults to 0.
86  *
87  * @return a status
88  */
89  static Status validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min = 0, int max = 0);
90 
91  // Inherited methods overridden:
92  void run(const Window &window, const ThreadInfo &info) override;
93 
94 private:
95  /** Template function to run the NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel
96  *
97  * @param[in] window Region on which to execute the kernel. (Must be a valid region of the window returned by window()).
98  */
99  template <bool is_bounded_relu>
100  void run(const Window &window);
101 
102  /** Common signature for all the specialised NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel functions
103  *
104  * @param[in] window Region on which to execute the kernel.
105  */
106  using QuantizeDownFunctionPtr = void (NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel::*)(const Window &window);
107 
108  QuantizeDownFunctionPtr _func;
109  const ITensor *_input;
110  const ITensor *_bias;
111  ITensor *_output;
112  int _result_fixedpoint_multiplier;
113  int _result_shift;
114  int _min;
115  int _max;
116 };
117 } // namespace arm_compute
118 #endif /* ARM_COMPUTE_NEGEMMLOWPQUANTIZEDOWNINT32TOINT16SCALEBYFIXEDPOINTKERNEL_H */
Neon kernel used to quantize down the int32 accumulator values of GEMMLowp to QSYMM16.
static Status validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min=0, int max=0)
Static function to check if given info will lead to a valid configuration of NEGEMMLowpQuantizeDownIn...
const Window & window() const
The maximum window the kernel can be executed on.
Definition: IKernel.cpp:28
void configure(const ITensor *input, const ITensor *bias, ITensor *output, int result_fixedpoint_multiplier, int result_shift, int min=0, int max=0)
Initialise the kernel&#39;s input and output.
Common interface for all kernels implemented in C++.
Definition: ICPPKernel.h:38
Store the tensor&#39;s metadata.
Definition: ITensorInfo.h:40
Status class.
Definition: Error.h:52
Interface for Neon tensor.
Definition: ITensor.h:36
Copyright (c) 2017-2021 Arm Limited.
NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel & operator=(const NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel &)=delete
Prevent instances of this class from being copied (As this class contains pointers) ...
ScaleKernelInfo info(interpolation_policy, default_border_mode, PixelValue(), sampling_policy, false)
Information about executing thread and CPU.
Definition: CPPTypes.h:235
void run(const Window &window, const ThreadInfo &info) override
Execute the kernel on the passed window.
~NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel()=default
Default destructor.
Describe a multidimensional execution window.
Definition: Window.h:39