Compute Library
 23.08
ChannelShuffle.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Types.h"
28 #include "tests/NEON/Accessor.h"
29 #include "tests/datasets/ChannelShuffleLayerDataset.h"
30 #include "tests/datasets/ShapeDatasets.h"
32 #include "tests/framework/Macros.h"
35 #include "tests/validation/fixtures/ChannelShuffleLayerFixture.h"
36 
37 namespace arm_compute
38 {
39 namespace test
40 {
41 namespace validation
42 {
43 TEST_SUITE(NEON)
44 TEST_SUITE(ChannelShuffle)
45 
46 // *INDENT-OFF*
47 // clang-format off
49  framework::dataset::make("InputInfo", { TensorInfo(TensorShape(4U, 4U, 4U), 1, DataType::F32), // Invalid num groups
50  TensorInfo(TensorShape(4U, 4U, 4U), 1, DataType::U8), // Mismatching data_type
51  TensorInfo(TensorShape(4U, 5U, 4U), 1, DataType::F32), // Mismatching shapes
52  TensorInfo(TensorShape(4U, 4U, 4U), 1, DataType::F32), // Num groups == channels
53  TensorInfo(TensorShape(4U, 4U, 4U), 1, DataType::F32), // (channels % num_groups) != 0
54  TensorInfo(TensorShape(4U, 4U, 4U), 1, DataType::F32), // Valid
55  }),
56  framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(4U, 4U, 4U), 1, DataType::F32),
57  TensorInfo(TensorShape(4U, 4U, 4U), 1, DataType::F32),
58  TensorInfo(TensorShape(4U, 4U, 4U), 1, DataType::F32),
59  TensorInfo(TensorShape(4U, 4U, 4U), 1, DataType::F32),
60  TensorInfo(TensorShape(4U, 4U, 4U), 1, DataType::F32),
61  TensorInfo(TensorShape(4U, 4U, 4U), 1, DataType::F32),
62  })),
63  framework::dataset::make("NumGroups",{ 1, 2, 2, 4, 3, 2,
64  })),
65  framework::dataset::make("Expected", { false, false, false, false, false, true})),
67 {
68  ARM_COMPUTE_EXPECT(bool(NEChannelShuffleLayer::validate(&input_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), num_groups)) == expected, framework::LogLevel::ERRORS);
69 }
70 // clang-format on
71 // *INDENT-ON*
72 
73 template <typename T>
74 using NEChannelShuffleLayerFixture = ChannelShuffleLayerValidationFixture<Tensor, Accessor, NEChannelShuffleLayer, T>;
75 
76 TEST_SUITE(U8)
77 FIXTURE_DATA_TEST_CASE(RunSmall, NEChannelShuffleLayerFixture<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallRandomChannelShuffleLayerDataset(),
78  framework::dataset::make("DataType", DataType::U8)),
79  framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
80 {
81  // Validate output
82  validate(Accessor(_target), _reference);
83 }
85  framework::dataset::make("DataType",
86  DataType::U8)),
88 {
89  // Validate output
90  validate(Accessor(_target), _reference);
91 }
92 TEST_SUITE_END() // U8
93 
94 TEST_SUITE(Float)
95 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
96 TEST_SUITE(FP16)
97 FIXTURE_DATA_TEST_CASE(RunSmall, NEChannelShuffleLayerFixture<half>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallRandomChannelShuffleLayerDataset(),
98  framework::dataset::make("DataType",
99  DataType::F16)),
101 {
102  // Validate output
103  validate(Accessor(_target), _reference);
104 }
105 FIXTURE_DATA_TEST_CASE(RunLarge, NEChannelShuffleLayerFixture<half>, framework::DatasetMode::NIGHTLY, combine(combine(datasets::LargeRandomChannelShuffleLayerDataset(),
106  framework::dataset::make("DataType",
107  DataType::F16)),
109 {
110  // Validate output
111  validate(Accessor(_target), _reference);
112 }
113 TEST_SUITE_END() // FP16
114 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
115 
116 TEST_SUITE(FP32)
117 FIXTURE_DATA_TEST_CASE(RunSmall, NEChannelShuffleLayerFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallRandomChannelShuffleLayerDataset(),
118  framework::dataset::make("DataType",
119  DataType::F32)),
120  framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
121 {
122  // Validate output
123  validate(Accessor(_target), _reference);
124 }
126  framework::dataset::make("DataType",
127  DataType::F32)),
129 {
130  // Validate output
131  validate(Accessor(_target), _reference);
132 }
133 TEST_SUITE_END() // FP32
134 TEST_SUITE_END() // Float
135 
136 TEST_SUITE_END() // ChannelShuffle
137 TEST_SUITE_END() // Neon
138 } // namespace validation
139 } // namespace test
140 } // namespace arm_compute
arm_compute::DataLayout::NCHW
@ NCHW
Num samples, channels, height, width.
Datasets.h
arm_compute::test::validation::TEST_SUITE_END
TEST_SUITE_END() FIXTURE_DATA_TEST_CASE(RunSmall
[CLActivationLayer Test snippet]
Definition: DequantizationLayer.cpp:111
arm_compute::test::validation::input_info
input_info
Definition: DirectConvolutionLayer.cpp:547
arm_compute::test::validation::FIXTURE_DATA_TEST_CASE
FIXTURE_DATA_TEST_CASE(RunSmall, CLAbsLayerFixture< half >, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F16)))
Definition: AbsLayer.cpp:50
arm_compute::test::validation::DATA_TEST_CASE
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), }), framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F16), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(30U, 11U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), })), framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::SQRT), })), framework::dataset::make("Expected", { false, true, true, true, false, false, true, true, false })), input_info, output_info, act_info, expected)
Definition: ActivationLayer.cpp:100
arm_compute::test::validation::combine
combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F32)))
Definition: AbsLayer.cpp:65
arm_compute::DataLayout
DataLayout
[DataLayout enum definition]
Definition: CoreTypes.h:109
arm_compute::DataLayout::NHWC
@ NHWC
Num samples, height, width, channels.
Types.h
arm_compute::test::Accessor
Accessor implementation for Tensor objects.
Definition: Accessor.h:35
arm_compute::test::validation::NEChannelShuffleLayerFixture
ChannelShuffleLayerValidationFixture< Tensor, Accessor, NEChannelShuffleLayer, T > NEChannelShuffleLayerFixture
Definition: ChannelShuffle.cpp:74
arm_compute::test::validation::validate
validate(CLAccessor(output_state), expected_output)
TensorAllocator.h
arm_compute::test::validation::output_info
output_info
Definition: DirectConvolutionLayer.cpp:547
arm_compute::test::framework::DatasetMode::ALL
@ ALL
arm_compute::test::validation::ARM_COMPUTE_EXPECT
ARM_COMPUTE_EXPECT(has_error==expected, framework::LogLevel::ERRORS)
arm_compute::test::framework::DatasetMode::NIGHTLY
@ NIGHTLY
arm_compute::DataType::U8
@ U8
unsigned 8-bit number
Asserts.h
Accessor.h
Macros.h
arm_compute::test::framework::DatasetMode::PRECOMMIT
@ PRECOMMIT
Tensor.h
arm_compute::test::framework::dataset::make
std::enable_if< is_container< T >::value, ContainerDataset< T > >::type make(std::string name, T &&values)
Helper function to create a ContainerDataset.
Definition: ContainerDataset.h:160
Validation.h
arm_compute::test::validation::num_groups
const unsigned int num_groups
Definition: Im2Col.cpp:153
arm_compute::test::validation::zip
zip(zip(framework::dataset::make("Weights", { TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 1U), 1, DataType::F32), }), framework::dataset::make("MVBGInfo",{ TensorInfo(TensorShape(2U), 1, DataType::F32), TensorInfo(TensorShape(2U), 1, DataType::F16), TensorInfo(TensorShape(5U), 1, DataType::F32), })), framework::dataset::make("Expected", { true, false, false}))
arm_compute
Copyright (c) 2017-2023 Arm Limited.
Definition: introduction.dox:24
arm_compute::test::validation::TEST_SUITE
TEST_SUITE(QASYMM8_to_F32) FIXTURE_DATA_TEST_CASE(RunSmall
arm_compute::DataType::F16
@ F16
16-bit floating-point number
NEChannelShuffleLayer.h
arm_compute::test::validation::expected
expected
Definition: BatchNormalizationLayer.cpp:166
arm_compute::NEChannelShuffleLayer::validate
static Status validate(const ITensorInfo *input, const ITensorInfo *output, unsigned int num_groups)
Static function to check if given info will lead to a valid configuration of NEChannelShuffleLayer.
Definition: NEChannelShuffleLayer.cpp:40
arm_compute::DataType::F32
@ F32
32-bit floating-point number
arm_compute::test::framework::DatasetMode
DatasetMode
Possible dataset modes.
Definition: DatasetModes.h:40
arm_compute::DataType
DataType
Available data types.
Definition: CoreTypes.h:82
arm_compute::test::framework::LogLevel::ERRORS
@ ERRORS