Compute Library
 22.05
Gather.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2019-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Types.h"
28 
29 #include "tests/NEON/Accessor.h"
31 #include "tests/datasets/GatherDataset.h"
32 #include "tests/datasets/ShapeDatasets.h"
34 #include "tests/framework/Macros.h"
37 #include "tests/validation/fixtures/GatherFixture.h"
38 
39 namespace arm_compute
40 {
41 namespace test
42 {
43 namespace validation
44 {
45 TEST_SUITE(NEON)
46 TEST_SUITE(Gather)
47 
48 // *INDENT-OFF*
49 // clang-format off
50 DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(
51  framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 27U), 1, DataType::F32),
53  TensorInfo(TensorShape(27U, 27U), 1, DataType::F32), // Invalid Indices data type
54  TensorInfo(TensorShape(27U, 27U), 1, DataType::F32), // Invalid Indices dimensionality
55  TensorInfo(TensorShape(5U, 5U, 5U, 5U, 5U), 1, DataType::F32), // Invalid Input dimensionality
56  TensorInfo(TensorShape(27U, 27U), 1, DataType::F16), // Mismatching data type input/output
57  TensorInfo(TensorShape(27U, 27U), 1, DataType::F32), // Invalid positive axis value
58  TensorInfo(TensorShape(27U, 27U), 1, DataType::F16), // Invalid negative axis value
59  }),
60  framework::dataset::make("IndicesInfo", {
69  })),
70  framework::dataset::make("OutputInfo", {
75  TensorInfo(TensorShape(10U, 5U, 5U, 5U, 5U), 1, DataType::F32),
79  })),
80  framework::dataset::make("Axis", {
81  0,
82  1,
83  -2,
84  0,
85  1,
86  0,
87  1,
88  2,
89  -3,
90  })),
91  framework::dataset::make("Expected", { true, true, false, false, false, false, false, false })),
92  input_info, indices_info, output_info, axis, expected)
93 {
94  const Status status = NEGather::validate(&input_info.clone()->set_is_resizable(true), &indices_info.clone()->set_is_resizable(true), &output_info.clone()->set_is_resizable(true), axis);
96 }
97 // clang-format on
98 // *INDENT-ON*
99 
100 template <typename T>
101 using NEGatherFixture = GatherFixture<Tensor, Accessor, NEGather, T>;
102 
103 TEST_SUITE(Float)
104 TEST_SUITE(FP16)
107  framework::DatasetMode::PRECOMMIT,
108  combine(datasets::SmallGatherDataset(), framework::dataset::make("DataType", DataType::F16)))
109 {
110  // Validate output
111  validate(Accessor(_target), _reference);
112 }
113 
117  combine(datasets::LargeGatherDataset(), framework::dataset::make("DataType", DataType::F16)))
118 {
119  // Validate output
120  validate(Accessor(_target), _reference);
121 }
122 TEST_SUITE_END() // FP16
123 
124 TEST_SUITE(FP32)
125 FIXTURE_DATA_TEST_CASE(RunSmall,
128  combine(datasets::SmallGatherDataset(), framework::dataset::make("DataType", DataType::F32)))
129 {
130  // Validate output
131  validate(Accessor(_target), _reference);
132 }
133 
137  combine(datasets::LargeGatherDataset(), framework::dataset::make("DataType", DataType::F32)))
138 {
139  // Validate output
140  validate(Accessor(_target), _reference);
141 }
142 TEST_SUITE_END() // FP32
143 TEST_SUITE_END() // Float
144 
145 TEST_SUITE(U8)
146 FIXTURE_DATA_TEST_CASE(RunSmall,
149  combine(datasets::SmallGatherDataset(), framework::dataset::make("DataType", DataType::U8)))
150 {
151  // Validate output
152  validate(Accessor(_target), _reference);
153 }
154 
158  combine(datasets::LargeGatherDataset(), framework::dataset::make("DataType", DataType::U8)))
159 {
160  // Validate output
161  validate(Accessor(_target), _reference);
162 }
163 TEST_SUITE_END() // U8
164 
166 FIXTURE_DATA_TEST_CASE(RunSmall,
169  combine(datasets::SmallGatherDataset(), framework::dataset::make("DataType", DataType::U16)))
170 {
171  // Validate output
172  validate(Accessor(_target), _reference);
173 }
174 
178  combine(datasets::LargeGatherDataset(), framework::dataset::make("DataType", DataType::U16)))
179 {
180  // Validate output
181  validate(Accessor(_target), _reference);
182 }
183 TEST_SUITE_END() // U16
184 
185 TEST_SUITE_END() // Gather
186 TEST_SUITE_END() // Neon
187 } // namespace validation
188 } // namespace test
189 } // namespace arm_compute
Shape of a tensor.
Definition: TensorShape.h:39
static Status validate(const ITensorInfo *input, const ITensorInfo *indices, const ITensorInfo *output, int axis)
Static function to check if given info will lead to a valid configuration of NEGatherKernel.
Definition: NEGather.cpp:42
1 channel, 1 U8 per channel
half_float::half half
16-bit floating point type
Definition: Types.h:48
1 channel, 1 F32 per channel
ARM_COMPUTE_EXPECT(has_error==expected, framework::LogLevel::ERRORS)
1 channel, 1 U16 per channel
std::enable_if< is_container< T >::value, ContainerDataset< T > >::type make(std::string name, T &&values)
Helper function to create a ContainerDataset.
Status class.
Definition: Error.h:52
Copyright (c) 2017-2022 Arm Limited.
1 channel, 1 F16 per channel
GatherFixture< Tensor, Accessor, NEGather, T > NEGatherFixture
Definition: Gather.cpp:101
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), }), framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F16), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(30U, 11U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), })), framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::SQRT), })), framework::dataset::make("Expected", { false, true, true, true, false, false, true, true, false })), input_info, output_info, act_info, expected)
Accessor implementation for Tensor objects.
Definition: Accessor.h:35
DatasetMode
Possible dataset modes.
Definition: DatasetModes.h:40
1 channel, 1 U32 per channel
TEST_SUITE_END() FIXTURE_DATA_TEST_CASE(RunSmall
[CLActivationLayer Test snippet]
validate(CLAccessor(output_state), expected_output)
FIXTURE_DATA_TEST_CASE(RunSmall, CLAbsLayerFixture< half >, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F16)))
Definition: AbsLayer.cpp:50
Store the tensor&#39;s metadata.
Definition: TensorInfo.h:43
zip(zip(framework::dataset::make("Weights", { TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 1U), 1, DataType::F32), }), framework::dataset::make("MVBGInfo",{ TensorInfo(TensorShape(2U), 1, DataType::F32), TensorInfo(TensorShape(2U), 1, DataType::F16), TensorInfo(TensorShape(5U), 1, DataType::F32), })), framework::dataset::make("Expected", { true, false, false}))
TEST_SUITE(QASYMM8_to_F32) FIXTURE_DATA_TEST_CASE(RunSmall
DataType
Available data types.
Definition: Types.h:79
combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F32)))
Definition: AbsLayer.cpp:65