Compute Library
 22.02
Helper.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_TEST_NEON_HELPER_H
25 #define ARM_COMPUTE_TEST_NEON_HELPER_H
26 
32 #include "src/cpu/ICpuOperator.h"
33 #include "tests/Globals.h"
34 
35 #include <algorithm>
36 #include <array>
37 #include <memory>
38 #include <vector>
39 
40 namespace arm_compute
41 {
42 namespace test
43 {
44 template <typename D, typename T, typename... Ts>
45 void fill_tensors(D &&dist, std::initializer_list<int> seeds, T &&tensor, Ts &&... other_tensors)
46 {
47  const std::array < T, 1 + sizeof...(Ts) > tensors{ { std::forward<T>(tensor), std::forward<Ts>(other_tensors)... } };
48  std::vector<int> vs(seeds);
49  ARM_COMPUTE_ERROR_ON(vs.size() != tensors.size());
50  int k = 0;
51  for(auto tp : tensors)
52  {
53  library->fill(Accessor(*tp), std::forward<D>(dist), vs[k++]);
54  }
55 }
56 
57 /** This template synthetizes an INESimpleFunction which runs the given kernel K */
58 template <typename K>
60 {
61 public:
62  /** Configure the kernel.
63  *
64  * @param[in] args Configuration arguments.
65  */
66  template <typename... Args>
67  void configure(Args &&... args)
68  {
69  auto k = std::make_unique<K>();
70  k->configure(std::forward<Args>(args)...);
71  _kernel = std::move(k);
72  }
73  /** Validate input arguments
74  *
75  * @param[in] args Configuration arguments.
76  */
77  template <typename... Args>
78  static Status validate(Args &&... args)
79  {
80  return K::validate(std::forward<Args>(args)...);
81  }
82 };
83 
84 /** As above but this also setups a Zero border on the input tensor of the specified bordersize */
85 template <typename K, int bordersize>
87 {
88 public:
89  /** Configure the kernel.
90  *
91  * @param[in] first First configuration argument.
92  * @param[in] args Rest of the configuration arguments.
93  */
94  template <typename T, typename... Args>
95  void configure(T first, Args &&... args)
96  {
97  auto k = std::make_unique<K>();
98  k->configure(first, std::forward<Args>(args)...);
99  _kernel = std::move(k);
100 
101  auto b = std::make_unique<NEFillBorderKernel>();
102  b->configure(first, BorderSize(bordersize), BorderMode::CONSTANT, PixelValue());
103  _border_handler = std::move(b);
104  }
105 };
106 
107 /** As above but this also setups a Zero border on the input tensor of the kernel's bordersize */
108 template <typename K>
110 {
111 public:
112  /** Configure the kernel.
113  *
114  * @param[in] first First configuration argument.
115  * @param[in] args Rest of the configuration arguments.
116  */
117  template <typename T, typename... Args>
118  void configure(T first, Args &&... args)
119  {
120  auto k = std::make_unique<K>();
121  k->configure(first, std::forward<Args>(args)...);
122  _kernel = std::move(k);
123 
124  auto b = std::make_unique<NEFillBorderKernel>();
125  b->configure(first, BorderSize(_kernel->border_size()), BorderMode::CONSTANT, PixelValue());
126  _border_handler = std::move(b);
127  }
128 
129  void run(ITensorPack &tensors)
130  {
131  NEScheduler::get().schedule(_border_handler.get(), Window::DimZ);
132  NEScheduler::get().schedule_op(_kernel.get(), Window::DimY, _kernel->window(), tensors);
133  }
134 
135 private:
136  std::unique_ptr<INEKernel> _border_handler{ nullptr };
137 };
138 
139 } // namespace test
140 } // namespace arm_compute
141 #endif /* ARM_COMPUTE_TEST_NEON_HELPER_H */
As above but this also setups a Zero border on the input tensor of the specified bordersize.
Definition: Helper.h:86
Class describing the value of a pixel for any image format.
Definition: PixelValue.h:34
void configure(Args &&... args)
Configure the kernel.
Definition: Helper.h:67
Basic interface for functions which have a single async CPU kernel.
Definition: INEOperator.h:43
SimpleTensor< float > b
Definition: DFT.cpp:157
Container for 2D border size.
Definition: Types.h:269
virtual void schedule_op(ICPPKernel *kernel, const Hints &hints, const Window &window, ITensorPack &tensors)=0
Runs the kernel in the same thread as the caller synchronously.
static Status validate(Args &&... args)
Validate input arguments.
Definition: Helper.h:78
#define ARM_COMPUTE_ERROR_ON(cond)
If the condition is true then an error message is printed and an exception thrown.
Definition: Error.h:466
As above but this also setups a Zero border on the input tensor of the kernel&#39;s bordersize.
Definition: Helper.h:109
Status class.
Definition: Error.h:52
Copyright (c) 2017-2021 Arm Limited.
void configure(T first, Args &&... args)
Configure the kernel.
Definition: Helper.h:118
Accessor implementation for Tensor objects.
Definition: Accessor.h:35
Basic interface for functions which have a single CPU kernel and no border.
std::unique_ptr< AssetsLibrary > library
Definition: main.cpp:76
static constexpr size_t DimY
Alias for dimension 1 also known as Y dimension.
Definition: Window.h:45
This template synthetizes an INESimpleFunction which runs the given kernel K.
Definition: Helper.h:59
virtual void schedule(ICPPKernel *kernel, const Hints &hints)=0
Runs the kernel in the same thread as the caller synchronously.
static constexpr size_t DimZ
Alias for dimension 2 also known as Z dimension.
Definition: Window.h:47
void fill_tensors(D &&dist, std::initializer_list< int > seeds, T &&tensor, Ts &&... other_tensors)
Definition: Helper.h:45
void run(ITensorPack &tensors)
Run the kernels contained in the function.
Definition: Helper.h:129
Tensor packing service.
Definition: ITensorPack.h:39
Basic interface for functions which have a single CPU kernel.
void configure(T first, Args &&... args)
Configure the kernel.
Definition: Helper.h:95
Status validate(const ITensorInfo *scores_in, const ITensorInfo *boxes_in, const ITensorInfo *batch_splits_in, const ITensorInfo *scores_out, const ITensorInfo *boxes_out, const ITensorInfo *classes, const ITensorInfo *batch_splits_out, const ITensorInfo *keeps, const ITensorInfo *keeps_size, const BoxNMSLimitInfo info)
static IScheduler & get()
Access the scheduler singleton.
Definition: Scheduler.cpp:94