Compute Library
 22.11
MaxUnpoolingLayer.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2020-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Types.h"
30 #include "tests/NEON/Accessor.h"
31 #include "tests/datasets/ShapeDatasets.h"
33 #include "tests/framework/Macros.h"
36 #include "tests/validation/fixtures/MaxUnpoolingLayerFixture.h"
37 namespace arm_compute
38 {
39 namespace test
40 {
41 namespace validation
42 {
43 TEST_SUITE(NEON)
44 TEST_SUITE(PoolingLayer)
45 
46 template <typename T>
47 using NEMaxUnpoolingLayerFixture = MaxUnpoolingLayerValidationFixture<Tensor, Accessor, NEPoolingLayer, NEMaxUnpoolingLayer, T>;
48 
50  framework::dataset::make("PadStride", { PadStrideInfo(2, 2, 0, 0), PadStrideInfo(2, 1, 0, 0) }));
51 
52 TEST_SUITE(Float)
53 TEST_SUITE(FP32)
54 FIXTURE_DATA_TEST_CASE(MaxUnpooling, NEMaxUnpoolingLayerFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallNoneUnitShapes(), combine(PoolingLayerIndicesDatasetFPSmall,
55  framework::dataset::make("DataType", DataType::F32))),
56  framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })
57 
58  ))
59 {
60  // Validate output
61  validate(Accessor(_target), _reference);
62 }
63 TEST_SUITE_END() // FP32
64 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
65 TEST_SUITE(FP16)
69 
70  ))
71 {
72  // Validate output
73  validate(Accessor(_target), _reference);
74 }
75 TEST_SUITE_END() // FP16
76 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
77 
78 TEST_SUITE_END() // Float
79 
80 TEST_SUITE(KernelSelection)
81 
83  combine(framework::dataset::make("CpuExt", std::string("NEON")),
88  })),
90 {
91  using namespace cpu::kernels;
92 
94  cpu_isa.neon = (cpu_ext == "NEON");
95  cpu_isa.sve = (cpu_ext == "SVE");
97 
98  const auto *selected_impl = CpuMaxUnpoolingLayerKernel::get_implementation(DataTypeISASelectorData{ data_type, cpu_isa }, cpu::KernelSelectionType::Preferred);
99 
101 
102  std::string expected = lower_string(cpu_ext) + "_" + cpu_impl_dt(data_type) + "_maxunpooling";
103  std::string actual = selected_impl->name;
104 
106 }
107 TEST_SUITE_END() // KernelSelection
108 TEST_SUITE_END() // PoolingLayer
109 TEST_SUITE_END() // Neon
110 } // namespace validation
111 } // namespace test
112 } // namespace arm_compute
Retrieve the best implementation available for the given Cpu ISA, ignoring the build flags...
MaxUnpoolingLayerValidationFixture< Tensor, Accessor, NEPoolingLayer, NEMaxUnpoolingLayer, T > NEMaxUnpoolingLayerFixture
const CpuCastKernel::CastKernel * selected_impl
Definition: Cast.cpp:205
1 channel, 1 F32 per channel
std::enable_if< is_container< T >::value, ContainerDataset< T > >::type make(std::string name, T &&values)
Helper function to create a ContainerDataset.
std::string lower_string(const std::string &val)
Lower a given string.
Definition: Utils.cpp:353
Copyright (c) 2017-2022 Arm Limited.
cpuinfo::CpuIsaInfo cpu_isa
Definition: Cast.cpp:207
std::string cpu_impl_dt(const DataType &data_type)
Returns the suffix string of CPU kernel implementation names based on the given data type...
Definition: Utils.h:1245
1 channel, 1 F16 per channel
CPU ISA (Instruction Set Architecture) information.
Definition: CpuIsaInfo.h:37
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), }), framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F16), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(30U, 11U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), })), framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::SQRT), })), framework::dataset::make("Expected", { false, true, true, true, false, false, true, true, false })), input_info, output_info, act_info, expected)
Accessor implementation for Tensor objects.
Definition: Accessor.h:35
DatasetMode
Possible dataset modes.
Definition: DatasetModes.h:40
TEST_SUITE_END() FIXTURE_DATA_TEST_CASE(RunSmall
[CLActivationLayer Test snippet]
quantized, asymmetric fixed-point 8-bit number unsigned
Padding and stride information class.
Definition: Types.h:669
validate(CLAccessor(output_state), expected_output)
Num samples, channels, height, width.
FIXTURE_DATA_TEST_CASE(RunSmall, CLAbsLayerFixture< half >, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F16)))
Definition: AbsLayer.cpp:50
Class for specifying the size of an image or rectangle.
Definition: Size2D.h:34
ARM_COMPUTE_ERROR_ON_NULLPTR(selected_impl)
Num samples, height, width, channels.
ARM_COMPUTE_EXPECT_EQUAL(expected, actual, framework::LogLevel::ERRORS)
quantized, asymmetric fixed-point 8-bit number signed
TEST_SUITE(QASYMM8_to_F32) FIXTURE_DATA_TEST_CASE(RunSmall
DataType
Available data types.
Definition: Types.h:79
DataLayout
[DataLayout enum definition]
Definition: Types.h:113
combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F32)))
Definition: AbsLayer.cpp:65