Compute Library
 22.11
PriorBoxLayer.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Types.h"
28 #include "tests/NEON/Accessor.h"
29 #include "tests/datasets/PriorBoxLayerDataset.h"
31 #include "tests/framework/Macros.h"
34 #include "tests/validation/fixtures/PriorBoxLayerFixture.h"
35 
36 namespace arm_compute
37 {
38 namespace test
39 {
40 namespace validation
41 {
42 namespace
43 {
44 constexpr AbsoluteTolerance<float> tolerance_f32(0.00001f); /**< Tolerance value for comparing reference's output against implementation's output for DataType::F32 */
45 } // namespace
46 
47 TEST_SUITE(NEON)
48 TEST_SUITE(PriorBoxLayer)
49 
50 template <typename T>
51 using NEPriorBoxLayerFixture = PriorBoxLayerValidationFixture<Tensor, Accessor, NEPriorBoxLayer, T>;
52 
53 // *INDENT-OFF*
54 // clang-format off
56  framework::dataset::make("Input1Info", { TensorInfo(TensorShape(10U, 10U, 2U), 1, DataType::F32)
57  }),
58  framework::dataset::make("Input2Info", { TensorInfo(TensorShape(10U, 10U, 2U), 1, DataType::F32)
59  })),
61  })),
62  framework::dataset::make("PriorBoxInfo",{ PriorBoxLayerInfo(std::vector<float>(1), std::vector<float>(1), 0, true, true, std::vector<float>(1), std::vector<float>(1), Coordinates2D{8, 8}, std::array<float, 2>())
63  })),
64  framework::dataset::make("Expected", { true})),
66 {
67  bool has_error = bool(NEPriorBoxLayer::validate(&input1_info.clone()->set_is_resizable(false), &input2_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), info));
69 }
70 // clang-format on
71 // *INDENT-ON*
72 
73 TEST_SUITE(Float)
74 TEST_SUITE(FP32)
75 FIXTURE_DATA_TEST_CASE(RunSmall, NEPriorBoxLayerFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallPriorBoxLayerDataset(),
76  framework::dataset::make("DataType", DataType::F32)),
77  framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
78 {
79  // Validate output
80  validate(Accessor(_target), _reference, tolerance_f32, 0);
81 }
85 {
86  // Validate output
87  validate(Accessor(_target), _reference, tolerance_f32, 0);
88 }
89 TEST_SUITE_END() // Float
90 TEST_SUITE_END() // FP32
91 
92 TEST_SUITE_END() // PriorBoxLayer
93 TEST_SUITE_END() // Neon
94 } // namespace validation
95 } // namespace test
96 } // namespace arm_compute
Shape of a tensor.
Definition: TensorShape.h:39
1 channel, 1 F32 per channel
ARM_COMPUTE_EXPECT(has_error==expected, framework::LogLevel::ERRORS)
std::enable_if< is_container< T >::value, ContainerDataset< T > >::type make(std::string name, T &&values)
Helper function to create a ContainerDataset.
PriorBoxLayerValidationFixture< Tensor, Accessor, NEPriorBoxLayer, T > NEPriorBoxLayerFixture
Copyright (c) 2017-2022 Arm Limited.
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), }), framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F16), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(30U, 11U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), })), framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::SQRT), })), framework::dataset::make("Expected", { false, true, true, true, false, false, true, true, false })), input_info, output_info, act_info, expected)
Accessor implementation for Tensor objects.
Definition: Accessor.h:35
DatasetMode
Possible dataset modes.
Definition: DatasetModes.h:40
TEST_SUITE_END() FIXTURE_DATA_TEST_CASE(RunSmall
[CLActivationLayer Test snippet]
PriorBox layer info.
Definition: Types.h:825
RelativeTolerance< float > tolerance_f32(0.01f)
Tolerance value for comparing reference&#39;s output against implementation&#39;s output for DataType::F32...
validate(CLAccessor(output_state), expected_output)
Num samples, channels, height, width.
FIXTURE_DATA_TEST_CASE(RunSmall, CLAbsLayerFixture< half >, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F16)))
Definition: AbsLayer.cpp:50
ScaleKernelInfo info(interpolation_policy, default_border_mode, PixelValue(), sampling_policy, false)
Coordinate type.
Definition: Types.h:435
Num samples, height, width, channels.
Store the tensor&#39;s metadata.
Definition: TensorInfo.h:43
static Status validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, const PriorBoxLayerInfo &info)
Static function to check if given info will lead to a valid configuration of NEPriorBoxLayer.
zip(zip(framework::dataset::make("Weights", { TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 1U), 1, DataType::F32), }), framework::dataset::make("MVBGInfo",{ TensorInfo(TensorShape(2U), 1, DataType::F32), TensorInfo(TensorShape(2U), 1, DataType::F16), TensorInfo(TensorShape(5U), 1, DataType::F32), })), framework::dataset::make("Expected", { true, false, false}))
TEST_SUITE(QASYMM8_to_F32) FIXTURE_DATA_TEST_CASE(RunSmall
DataType
Available data types.
Definition: Types.h:79
DataLayout
[DataLayout enum definition]
Definition: Types.h:113
combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F32)))
Definition: AbsLayer.cpp:65