Compute Library
 23.08
ReductionOperation.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Types.h"
28 #include "tests/NEON/Accessor.h"
30 #include "tests/datasets/ShapeDatasets.h"
32 #include "tests/framework/Macros.h"
35 #include "tests/validation/fixtures/ReductionOperationFixture.h"
36 
37 namespace arm_compute
38 {
39 namespace test
40 {
41 namespace validation
42 {
43 namespace
44 {
45 /** Tolerance for float operations */
46 AbsoluteTolerance<float> tolerance_f32(0.0001f);
47 RelativeTolerance<float> rel_tolerance_f32(0.0001f);
48 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
49 AbsoluteTolerance<float> tolerance_f16(0.2f);
50 RelativeTolerance<float> rel_tolerance_f16(0.1f);
51 #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
52 /** Tolerance for quantized operations */
53 RelativeTolerance<float> tolerance_quantized(1.f);
54 
55 const auto ReductionOperations = framework::dataset::make("ReductionOperation",
56 {
61 });
62 
63 const auto QuantizationInfos = framework::dataset::make("QuantizationInfo",
64 {
65  QuantizationInfo(1.f / 117, 10), // Numbers chosen so that the quantized values are in range of qasymm8_signed data type
66  QuantizationInfo(1.f / 64, 5),
67  QuantizationInfo(1.f / 32, 2)
68 });
69 
70 const auto Axises = framework::dataset::make("Axis",
71 { 0, 1, 2, 3 });
72 
73 const auto KeepDims = framework::dataset::make("KeepDims", { true, false });
74 
75 } // namespace
76 
77 TEST_SUITE(NEON)
79 
80 // *INDENT-OFF*
81 // clang-format off
82 DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(zip(
83  framework::dataset::make("InputInfo", { TensorInfo(TensorShape(128U, 64U), 1, DataType::F32), // Mismatching data type input/output
84  TensorInfo(TensorShape(128U, 64U), 2, DataType::F32), // Number of Input channels != 1
85  TensorInfo(TensorShape(128U, 64U), 1, DataType::S16), // DataType != F32
86  TensorInfo(TensorShape(128U, 64U), 1, DataType::F32), // Axis >= num_max_dimensions
88  TensorInfo(TensorShape(128U, 64U), 1, DataType::F32) // Kept dimension when keep_dims = false
89  }),
90  framework::dataset::make("OutputInfo", { TensorInfo(TensorShape(1U, 64U), 1, DataType::F16),
91  TensorInfo(TensorShape(1U, 64U), 1, DataType::F32),
92  TensorInfo(TensorShape(1U, 64U), 1, DataType::S16),
93  TensorInfo(TensorShape(1U, 64U), 1, DataType::F32),
94  TensorInfo(TensorShape(1U, 64U), 1, DataType::F32),
96  })),
97  framework::dataset::make("Axis", { 0U, 0U, 0U, static_cast<unsigned int>(TensorShape::num_max_dimensions), 0U, 0U })),
98  framework::dataset::make("KeepDims", { true, true, true, true, true, false})),
99  framework::dataset::make("Expected", { false, false, false, false, true, false })),
100  input_info, output_info, axis, keep_dims, expected)
101 {
102  bool is_valid = bool(NEReductionOperation::validate(&input_info.clone()->set_is_resizable(false),
103  &output_info.clone()->set_is_resizable(true),
104  axis,
106  keep_dims));
108 }
109 
111 { 0, 1 })), framework::dataset::make("ReductionOperation", {ReductionOperation::SUM,})), KeepDims),
112  shape, data_type, axis, op, keep_dims)
113 {
116  const bool is_arg_min_max = (op == ReductionOperation::ARG_IDX_MAX) || (op == ReductionOperation::ARG_IDX_MIN);
117  const bool _keep_dims = keep_dims && !is_arg_min_max;
119 
120  // Create tensors
121  Tensor src = create_tensor<Tensor>(input_shape, data_type, 1, QuantizationInfo());
122  Tensor dst = create_tensor<Tensor>(output_shape, data_type, 1, QuantizationInfo());
123 
124  // Create and configure function
125  NEReductionOperation reduction;
126  reduction.configure(&src, &dst, axis, op, _keep_dims);
127 
128  validate(src.info()->padding(), PaddingSize(0, 0, 0, 0));
129  validate(dst.info()->padding(), PaddingSize(0, 0, 0, 0));
130 }
131 // clang-format on
132 // *INDENT-ON*
133 
134 template <typename T>
135 using NEReductionOperationFixture = ReductionOperationFixture<Tensor, Accessor, NEReductionOperation, T>;
136 
137 TEST_SUITE(FP32)
138 FIXTURE_DATA_TEST_CASE(RunSmall, NEReductionOperationFixture<float>, framework::DatasetMode::PRECOMMIT,
139  combine(combine(combine(combine(datasets::Small4DShapes(), framework::dataset::make("DataType", DataType::F32)), Axises), ReductionOperations), KeepDims))
140 {
141  // Validate output
142  validate(Accessor(_target), _reference, tolerance_f32);
143 }
145  combine(combine(combine(combine(datasets::Large4DShapes(), framework::dataset::make("DataType", DataType::F32)), Axises), ReductionOperations), KeepDims))
146 {
147  // Validate output
148  validate(Accessor(_target), _reference, rel_tolerance_f32, 0, tolerance_f32);
149 }
150 TEST_SUITE_END() // FP32
151 
152 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
153 TEST_SUITE(FP16)
154 FIXTURE_DATA_TEST_CASE(RunSmall, NEReductionOperationFixture<half>, framework::DatasetMode::PRECOMMIT,
155  combine(combine(combine(combine(datasets::Small4DShapes(), framework::dataset::make("DataType", DataType::F16)), Axises), ReductionOperations), KeepDims))
156 {
157  // Validate output
158  validate(Accessor(_target), _reference, tolerance_f16);
159 }
160 FIXTURE_DATA_TEST_CASE(RunLarge, NEReductionOperationFixture<half>, framework::DatasetMode::NIGHTLY,
161  combine(combine(combine(combine(datasets::Large4DShapes(), framework::dataset::make("DataType", DataType::F16)), Axises), ReductionOperations), KeepDims))
162 {
163  // Validate output
164  validate(Accessor(_target), _reference, rel_tolerance_f16, 0, tolerance_f16);
165 }
166 TEST_SUITE_END() // FP16
167 #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
168 
169 template <typename T>
170 using NEReductionOperationQuantizedFixture = ReductionOperationQuantizedFixture<Tensor, Accessor, NEReductionOperation, T>;
171 
172 TEST_SUITE(QASYMM8)
173 FIXTURE_DATA_TEST_CASE(RunSmall, NEReductionOperationQuantizedFixture<uint8_t>, framework::DatasetMode::ALL,
174  combine(combine(combine(combine(combine(datasets::Small4DShapes(), framework::dataset::make("DataType", DataType::QASYMM8)), Axises),
175  ReductionOperations),
176  QuantizationInfos),
177  KeepDims))
178 {
179  // Validate output
180  validate(Accessor(_target), _reference, tolerance_quantized);
181 }
182 TEST_SUITE_END() // QASYMM8
183 
184 TEST_SUITE(QASYMM8_SIGNED)
185 FIXTURE_DATA_TEST_CASE(RunSmall, NEReductionOperationQuantizedFixture<int8_t>, framework::DatasetMode::ALL,
186  combine(combine(combine(combine(combine(datasets::Small4DShapes(), framework::dataset::make("DataType", DataType::QASYMM8_SIGNED)), Axises),
187  ReductionOperations),
188  QuantizationInfos),
189  KeepDims))
190 {
191  // Validate output
192  validate(Accessor(_target), _reference, tolerance_quantized);
193 }
194 TEST_SUITE_END() // QASYMM8_SIGNED
195 
196 TEST_SUITE_END() // ReductionOperation
197 TEST_SUITE_END() // Neon
198 } // namespace validation
199 } // namespace test
200 } // namespace arm_compute
Datasets.h
arm_compute::test::validation::TEST_SUITE_END
TEST_SUITE_END() FIXTURE_DATA_TEST_CASE(RunSmall
[CLActivationLayer Test snippet]
Definition: DequantizationLayer.cpp:111
PaddingCalculator.h
arm_compute::test::validation::input_info
input_info
Definition: DirectConvolutionLayer.cpp:547
arm_compute::test::validation::src
SimpleTensor< float > src
Definition: DFT.cpp:155
arm_compute::test::validation::FIXTURE_DATA_TEST_CASE
FIXTURE_DATA_TEST_CASE(RunSmall, CLAbsLayerFixture< half >, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F16)))
Definition: AbsLayer.cpp:50
arm_compute::ReductionOperation::PROD
@ PROD
Product.
arm_compute::ReductionOperation::MIN
@ MIN
Min.
arm_compute::test::validation::DATA_TEST_CASE
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), }), framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F16), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(30U, 11U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), })), framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::SQRT), })), framework::dataset::make("Expected", { false, true, true, true, false, false, true, true, false })), input_info, output_info, act_info, expected)
Definition: ActivationLayer.cpp:100
arm_compute::QuantizationInfo
Quantization information.
Definition: QuantizationInfo.h:68
arm_compute::test::validation::combine
combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F32)))
Definition: AbsLayer.cpp:65
arm_compute::test::validation::output_shape
const auto output_shape
Definition: ConvolutionLayer.cpp:411
arm_compute::BorderSize
Container for 2D border size.
Definition: Types.h:242
arm_compute::TensorShape
Shape of a tensor.
Definition: TensorShape.h:39
arm_compute::test::validation::dst
auto dst
Definition: DFT.cpp:170
arm_compute::test::validation::tolerance_f16
RelativeTolerance< half_float::half > tolerance_f16(half_float::half(0.1))
Tolerance value for comparing reference's output against implementation's output for DataType::F16.
Types.h
arm_compute::ReductionOperation::MAX
@ MAX
Max.
arm_compute::NEReductionOperation
Basic function to simulate a reduction operation.
Definition: NEReductionOperation.h:44
arm_compute::test::Accessor
Accessor implementation for Tensor objects.
Definition: Accessor.h:35
arm_compute::ReductionOperation
ReductionOperation
Available reduction operations.
Definition: Types.h:419
arm_compute::test::validation::is_valid
bool is_valid
Definition: DirectConv2d.cpp:166
arm_compute::test::validation::validate
validate(CLAccessor(output_state), expected_output)
arm_compute::utils::cast::U
U
Definition: SaturateCast.h:64
arm_compute::test::validation::shape
shape
Definition: DFT.cpp:115
TensorAllocator.h
arm_compute::test::validation::output_info
output_info
Definition: DirectConvolutionLayer.cpp:547
arm_compute::test::framework::DatasetMode::ALL
@ ALL
arm_compute::ReductionOperation::SUM_SQUARE
@ SUM_SQUARE
Sum of squares.
arm_compute::test::validation::ARM_COMPUTE_EXPECT
ARM_COMPUTE_EXPECT(has_error==expected, framework::LogLevel::ERRORS)
arm_compute::test::framework::DatasetMode::NIGHTLY
@ NIGHTLY
Asserts.h
Accessor.h
arm_compute::DataType::S16
@ S16
signed 16-bit number
Macros.h
arm_compute::NEReductionOperation::validate
static Status validate(const ITensorInfo *input, const ITensorInfo *output, unsigned int axis, ReductionOperation op, bool keep_dims=true)
Static function to check if given info will lead to a valid configuration of NEReductionOperation.
Definition: NEReductionOperation.cpp:66
arm_compute::misc::shape_calculator::compute_reduced_shape
TensorShape compute_reduced_shape(const TensorShape &input, unsigned int axis, bool keep_dims=true)
Calculate the reduced shape of a tensor given an axis.
Definition: ShapeCalculator.h:1313
arm_compute::test::framework::DatasetMode::PRECOMMIT
@ PRECOMMIT
arm_compute::ReductionOperation::ARG_IDX_MAX
@ ARG_IDX_MAX
Index of the max value.
Tensor.h
arm_compute::test::framework::dataset::make
std::enable_if< is_container< T >::value, ContainerDataset< T > >::type make(std::string name, T &&values)
Helper function to create a ContainerDataset.
Definition: ContainerDataset.h:160
arm_compute::test::validation::data_type
data_type
Definition: Cast.cpp:223
Validation.h
arm_compute::test::validation::input_shape
const auto input_shape
Validate test suite is to test ARM_COMPUTE_RETURN_ON_* macros we use to check the validity of given a...
Definition: ConvolutionLayer.cpp:408
arm_compute::test::validation::tolerance_f32
RelativeTolerance< float > tolerance_f32(0.01f)
Tolerance value for comparing reference's output against implementation's output for DataType::F32.
arm_compute::TensorInfo
Store the tensor's metadata.
Definition: TensorInfo.h:42
arm_compute::ReductionOperation::ARG_IDX_MIN
@ ARG_IDX_MIN
Index of the min value.
arm_compute::test::validation::zip
zip(zip(framework::dataset::make("Weights", { TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 1U), 1, DataType::F32), }), framework::dataset::make("MVBGInfo",{ TensorInfo(TensorShape(2U), 1, DataType::F32), TensorInfo(TensorShape(2U), 1, DataType::F16), TensorInfo(TensorShape(5U), 1, DataType::F32), })), framework::dataset::make("Expected", { true, false, false}))
arm_compute
Copyright (c) 2017-2023 Arm Limited.
Definition: introduction.dox:24
arm_compute::test::validation::TEST_SUITE
TEST_SUITE(QASYMM8_to_F32) FIXTURE_DATA_TEST_CASE(RunSmall
arm_compute::DataType::F16
@ F16
16-bit floating-point number
NEReductionOperation.h
arm_compute::test::validation::expected
expected
Definition: BatchNormalizationLayer.cpp:166
arm_compute::DataType::F32
@ F32
32-bit floating-point number
arm_compute::NEReductionOperation::configure
void configure(ITensor *input, ITensor *output, unsigned int axis, ReductionOperation op, bool keep_dims=true)
Set the input and output tensors.
Definition: NEReductionOperation.cpp:105
arm_compute::Tensor
Basic implementation of the tensor interface.
Definition: Tensor.h:37
arm_compute::test::validation::NEReductionOperationFixture
ReductionOperationFixture< Tensor, Accessor, NEReductionOperation, T > NEReductionOperationFixture
Definition: ReductionOperation.cpp:135
arm_compute::test::framework::DatasetMode
DatasetMode
Possible dataset modes.
Definition: DatasetModes.h:40
arm_compute::DataType
DataType
Available data types.
Definition: CoreTypes.h:82
arm_compute::Dimensions< size_t >::num_max_dimensions
static constexpr size_t num_max_dimensions
Number of dimensions the tensor has.
Definition: Dimensions.h:46
arm_compute::ReductionOperation::SUM
@ SUM
Sum.
arm_compute::test::framework::LogLevel::ERRORS
@ ERRORS