Compute Library
 22.05
Select.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Types.h"
28 #include "tests/NEON/Accessor.h"
29 #include "tests/datasets/ShapeDatasets.h"
31 #include "tests/framework/Macros.h"
34 #include "tests/validation/fixtures/SelectFixture.h"
35 
36 namespace arm_compute
37 {
38 namespace test
39 {
40 namespace validation
41 {
42 namespace
43 {
44 auto run_small_dataset = combine(datasets::SmallShapes(), framework::dataset::make("has_same_rank", { false, true }));
45 auto run_large_dataset = combine(datasets::LargeShapes(), framework::dataset::make("has_same_rank", { false, true }));
46 } // namespace
47 
48 TEST_SUITE(NEON)
49 TEST_SUITE(Select)
50 
51 // *INDENT-OFF*
52 // clang-format off
54  framework::dataset::make("CInfo", { TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S8), // Invalid condition datatype
55  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8), // Invalid output datatype
56  TensorInfo(TensorShape(13U), 1, DataType::U8), // Invalid c shape
57  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8), // Mismatching shapes
58  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
59  TensorInfo(TensorShape(2U), 1, DataType::U8),
60  }),
61  framework::dataset::make("XInfo",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
62  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
63  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
64  TensorInfo(TensorShape(32U, 10U, 2U), 1, DataType::F32),
65  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
66  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
67  })),
68  framework::dataset::make("YInfo",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
69  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
70  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
71  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
72  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
73  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
74  })),
75  framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
76  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::S8),
77  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::U8),
78  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
79  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
80  TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32),
81  })),
82  framework::dataset::make("Expected", { false, false, false, false, true, true})),
83  c_info, x_info, y_info, output_info, expected)
84 {
85  Status s = NESelect::validate(&c_info.clone()->set_is_resizable(false),
86  &x_info.clone()->set_is_resizable(false),
87  &y_info.clone()->set_is_resizable(false),
88  &output_info.clone()->set_is_resizable(false));
90 }
91 // clang-format on
92 // *INDENT-ON*
93 
94 template <typename T>
95 using NESelectFixture = SelectValidationFixture<Tensor, Accessor, NESelect, T>;
96 
97 TEST_SUITE(Float)
98 
99 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
100 TEST_SUITE(F16)
101 FIXTURE_DATA_TEST_CASE(RunSmall,
104  combine(run_small_dataset, framework::dataset::make("DataType", DataType::F16)))
105 {
106  // Validate output
107  validate(Accessor(_target), _reference);
108 }
109 
110 FIXTURE_DATA_TEST_CASE(RunLarge,
113  combine(run_large_dataset, framework::dataset::make("DataType", DataType::F16)))
114 {
115  // Validate output
116  validate(Accessor(_target), _reference);
117 }
118 TEST_SUITE_END() // F16
119 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
120 
121 TEST_SUITE(FP32)
123  NESelectFixture<float>,
124  framework::DatasetMode::PRECOMMIT,
125  combine(run_small_dataset, framework::dataset::make("DataType", DataType::F32)))
126 {
127  // Validate output
128  validate(Accessor(_target), _reference);
129 }
130 
134  combine(run_large_dataset, framework::dataset::make("DataType", DataType::F32)))
135 {
136  // Validate output
137  validate(Accessor(_target), _reference);
138 }
139 TEST_SUITE_END() // FP32
140 TEST_SUITE_END() // Float
141 
142 TEST_SUITE_END() // Select
143 TEST_SUITE_END() // Neon
144 } // namespace validation
145 } // namespace test
146 } // namespace arm_compute
1 channel, 1 U8 per channel
1 channel, 1 F32 per channel
ARM_COMPUTE_EXPECT(has_error==expected, framework::LogLevel::ERRORS)
static Status validate(const ITensorInfo *c, const ITensorInfo *x, const ITensorInfo *y, const ITensorInfo *output)
Static function to check if given info will lead to a valid configuration of NESelect.
Definition: NESelect.cpp:41
std::enable_if< is_container< T >::value, ContainerDataset< T > >::type make(std::string name, T &&values)
Helper function to create a ContainerDataset.
Copyright (c) 2017-2022 Arm Limited.
1 channel, 1 F16 per channel
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), }), framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F16), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(30U, 11U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), })), framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::SQRT), })), framework::dataset::make("Expected", { false, true, true, true, false, false, true, true, false })), input_info, output_info, act_info, expected)
Accessor implementation for Tensor objects.
Definition: Accessor.h:35
DatasetMode
Possible dataset modes.
Definition: DatasetModes.h:40
TEST_SUITE_END() FIXTURE_DATA_TEST_CASE(RunSmall
[CLActivationLayer Test snippet]
SelectValidationFixture< Tensor, Accessor, NESelect, T > NESelectFixture
Definition: Select.cpp:95
validate(CLAccessor(output_state), expected_output)
FIXTURE_DATA_TEST_CASE(RunSmall, CLAbsLayerFixture< half >, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F16)))
Definition: AbsLayer.cpp:50
zip(zip(framework::dataset::make("Weights", { TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 1U), 1, DataType::F32), }), framework::dataset::make("MVBGInfo",{ TensorInfo(TensorShape(2U), 1, DataType::F32), TensorInfo(TensorShape(2U), 1, DataType::F16), TensorInfo(TensorShape(5U), 1, DataType::F32), })), framework::dataset::make("Expected", { true, false, false}))
TEST_SUITE(QASYMM8_to_F32) FIXTURE_DATA_TEST_CASE(RunSmall
DataType
Available data types.
Definition: Types.h:79
signed 8-bit number
combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F32)))
Definition: AbsLayer.cpp:65