Compute Library
 22.05
SpaceToBatchLayer.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2019-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Types.h"
28 #include "tests/NEON/Accessor.h"
30 #include "tests/datasets/ShapeDatasets.h"
31 #include "tests/datasets/SpaceToBatchDataset.h"
33 #include "tests/framework/Macros.h"
36 #include "tests/validation/fixtures/SpaceToBatchFixture.h"
37 
38 namespace arm_compute
39 {
40 namespace test
41 {
42 namespace validation
43 {
44 TEST_SUITE(NEON)
45 TEST_SUITE(SpaceToBatchLayer)
46 
47 template <typename T>
48 using NESpaceToBatchLayerFixture = SpaceToBatchLayerValidationFixture<Tensor, Accessor, NESpaceToBatchLayer, T>;
49 
50 // *INDENT-OFF*
51 // clang-format off
53  framework::dataset::make("InputInfo", { TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32),
54  TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), // Mismatching data types
55  TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), // Wrong data type block shape
56  TensorInfo(TensorShape(32U, 13U, 2U, 2U, 4U), 1, DataType::F32), // Wrong tensor shape
57  }),
62  })),
63  framework::dataset::make("PaddingsShapeInfo",{ TensorInfo(TensorShape(2U, 2U), 1, DataType::S32),
67  })),
68  framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32),
69  TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F16),
70  TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32),
71  TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32),
72  })),
73  framework::dataset::make("Expected", { true, false, false, false})),
74  input_info, block_shape_info, paddings_info, output_info, expected)
75 {
76  bool has_error = bool(NESpaceToBatchLayer::validate(&input_info.clone()->set_is_resizable(false), &block_shape_info.clone()->set_is_resizable(false), &paddings_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false)));
78 }
80  framework::dataset::make("InputInfo", { TensorInfo(TensorShape(32U, 16U, 2U, 1U), 1, DataType::F32),
81  TensorInfo(TensorShape(32U, 16U, 2U, 1U), 1, DataType::F32), // Mismatching data types
82  TensorInfo(TensorShape(32U, 16U, 2U, 1U), 1, DataType::F32), // Negative block shapes
83  TensorInfo(TensorShape(32U, 16U, 2U, 1U, 4U), 1, DataType::F32), // Wrong tensor shape
84  TensorInfo(TensorShape(32U, 16U, 2U, 1U, 4U), 1, DataType::F32), // Wrong paddings
85  }),
86  framework::dataset::make("BlockShapeX", { 2, 2, 2, 2, 2 })),
87  framework::dataset::make("BlockShapeY", { 2, 2, -2, 2, 2 })),
88  framework::dataset::make("PadLeft", { Size2D(0, 0), Size2D(0, 0), Size2D(0, 0), Size2D(0, 0), Size2D(3, 11) })),
89  framework::dataset::make("PadRight", { Size2D(0, 0), Size2D(0, 0), Size2D(0, 0), Size2D(0, 0), Size2D(3, 11) })),
90  framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(16U, 8U, 2U, 4U), 1, DataType::F32),
91  TensorInfo(TensorShape(32U, 8U, 2U, 4U), 1, DataType::F16),
92  TensorInfo(TensorShape(32U, 8U, 2U, 4U), 1, DataType::F32),
93  TensorInfo(TensorShape(32U, 8U, 2U, 4U), 1, DataType::F32),
94  TensorInfo(TensorShape(32U, 8U, 2U, 4U), 1, DataType::F32),
95  })),
96  framework::dataset::make("Expected", { true, false, false, false, false})),
97  input_info, block_shape_x, block_shape_y, padding_left, padding_right, output_info, expected)
98 {
99  bool has_error = bool(NESpaceToBatchLayer::validate(&input_info.clone()->set_is_resizable(false), block_shape_x, block_shape_y, padding_left, padding_right, &output_info.clone()->set_is_resizable(false)));
101 }
102 // clang-format on
103 // *INDENT-ON*
104 
105 TEST_SUITE(Float)
106 TEST_SUITE(FP32)
107 FIXTURE_DATA_TEST_CASE(Small, NESpaceToBatchLayerFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallSpaceToBatchLayerDataset(), framework::dataset::make("DataType",
108  DataType::F32)),
109  framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
110 {
111  // Validate output
112  validate(Accessor(_target), _reference);
113 }
115  DataType::F32)),
117 {
118  // Validate output
119  validate(Accessor(_target), _reference);
120 }
121 TEST_SUITE_END() // FP32
122 
123 TEST_SUITE(FP16)
124 FIXTURE_DATA_TEST_CASE(Small, NESpaceToBatchLayerFixture<half>, framework::DatasetMode::PRECOMMIT, combine(combine(datasets::SmallSpaceToBatchLayerDataset(),
125  framework::dataset::make("DataType", DataType::F16)),
126  framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
127 {
128  // Validate output
129  validate(Accessor(_target), _reference);
130 }
134 {
135  // Validate output
136  validate(Accessor(_target), _reference);
137 }
138 TEST_SUITE_END() // FP16
139 TEST_SUITE_END() // Float
140 
141 template <typename T>
142 using NESpaceToBatchLayerQuantizedFixture = SpaceToBatchLayerValidationQuantizedFixture<Tensor, Accessor, NESpaceToBatchLayer, T>;
143 
144 TEST_SUITE(Quantized)
146 FIXTURE_DATA_TEST_CASE(Small, NESpaceToBatchLayerQuantizedFixture<uint8_t>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(datasets::SmallSpaceToBatchLayerDataset(),
147  framework::dataset::make("DataType", DataType::QASYMM8)),
148  framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
149  framework::dataset::make("QuantizationInfo", { 1.f / 255.f, 9.f })))
150 {
151  // Validate output
152  validate(Accessor(_target), _reference);
153 }
154 FIXTURE_DATA_TEST_CASE(Large, NESpaceToBatchLayerQuantizedFixture<uint8_t>, framework::DatasetMode::NIGHTLY, combine(combine(combine(datasets::LargeSpaceToBatchLayerDataset(),
157  framework::dataset::make("QuantizationInfo", { 1.f / 255.f, 9.f })))
158 {
159  // Validate output
160  validate(Accessor(_target), _reference);
161 }
162 TEST_SUITE_END() // QASYMM8
163 TEST_SUITE_END() // Quantized
164 TEST_SUITE_END() // SpaceToBatch
165 TEST_SUITE_END() // Neon
166 } // namespace validation
167 } // namespace test
168 } // namespace arm_compute
Shape of a tensor.
Definition: TensorShape.h:39
static Status validate(const ITensorInfo *input, const ITensorInfo *block_shape, const ITensorInfo *paddings, const ITensorInfo *output)
Static function to check if given info will lead to a valid configuration of NESpaceToBatchLayer.
half_float::half half
16-bit floating point type
Definition: Types.h:48
1 channel, 1 F32 per channel
ARM_COMPUTE_EXPECT(has_error==expected, framework::LogLevel::ERRORS)
std::enable_if< is_container< T >::value, ContainerDataset< T > >::type make(std::string name, T &&values)
Helper function to create a ContainerDataset.
Copyright (c) 2017-2022 Arm Limited.
1 channel, 1 F16 per channel
1 channel, 1 S32 per channel
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), }), framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F16), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(30U, 11U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), })), framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::SQRT), })), framework::dataset::make("Expected", { false, true, true, true, false, false, true, true, false })), input_info, output_info, act_info, expected)
Accessor implementation for Tensor objects.
Definition: Accessor.h:35
DatasetMode
Possible dataset modes.
Definition: DatasetModes.h:40
TEST_SUITE_END() FIXTURE_DATA_TEST_CASE(RunSmall
[CLActivationLayer Test snippet]
quantized, asymmetric fixed-point 8-bit number unsigned
validate(CLAccessor(output_state), expected_output)
Num samples, channels, height, width.
FIXTURE_DATA_TEST_CASE(RunSmall, CLAbsLayerFixture< half >, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F16)))
Definition: AbsLayer.cpp:50
SpaceToBatchLayerValidationFixture< Tensor, Accessor, NESpaceToBatchLayer, T > NESpaceToBatchLayerFixture
Class for specifying the size of an image or rectangle.
Definition: Size2D.h:34
Num samples, height, width, channels.
Store the tensor&#39;s metadata.
Definition: TensorInfo.h:43
zip(zip(framework::dataset::make("Weights", { TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 1U), 1, DataType::F32), }), framework::dataset::make("MVBGInfo",{ TensorInfo(TensorShape(2U), 1, DataType::F32), TensorInfo(TensorShape(2U), 1, DataType::F16), TensorInfo(TensorShape(5U), 1, DataType::F32), })), framework::dataset::make("Expected", { true, false, false}))
TEST_SUITE(QASYMM8_to_F32) FIXTURE_DATA_TEST_CASE(RunSmall
DataType
Available data types.
Definition: Types.h:79
DataLayout
[DataLayout enum definition]
Definition: Types.h:113
combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F32)))
Definition: AbsLayer.cpp:65