Compute Library
 21.02
NEQLSTMLayerNormalizationKernel.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2020-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_NEQLSTMLAYERNORMALIZATIONKERNEL_H
25 #define ARM_COMPUTE_NEQLSTMLAYERNORMALIZATIONKERNEL_H
26 
28 #include <functional>
29 
30 namespace arm_compute
31 {
32 class ITensor;
33 
34 /** Neon kernel to perform layer normalization */
36 {
37 public:
38  const char *name() const override
39  {
40  return "NEQLSTMLayerNormalizationKernel";
41  }
42  /** Default constructor */
44  /** Prevent instances of this class from being copied (As this class contains pointers) */
46  /** Prevent instances of this class from being copied (As this class contains pointers) */
48  /** Default Move Constructor. */
50  /** Default move assignment operator */
52  /** Default destructor */
54 
55  /** Set the input and output tensors.
56  *
57  * @param[in] input Source tensor. Data types supported: QSYMM16.
58  * @param[out] output Destination tensor. Data types supported: Same as @p input.
59  * @param[in] weight Weight tensor. Data types supported: Same as @p input.
60  * @param[in] bias Bias tensor. Data types supported: S32
61  */
62  void configure(const ITensor *input, ITensor *output, const ITensor *weight, const ITensor *bias);
63  /** Static function to check if given info will lead to a valid configuration of @ref NEQLSTMLayerNormalizationKernel
64  *
65  * @param[in] input Source tensor info. Data types supported: QSYMM16.
66  * @param[in] output Destination tensor info. Data types supported: Same as @p input.
67  * @param[in] weight Weight tensor info. Data types supported: Same as @p input.
68  * @param[in] bias Bias tensor info. Data types supported: S32
69  *
70  * @return a status
71  */
72  static Status validate(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *weight, const ITensorInfo *bias);
73  // Inherited methods overridden:
74  void run(const Window &window, const ThreadInfo &info) override;
75 
76 private:
77  // constants
78  static constexpr uint32_t max_input_dimension{ 2 }; /**< The maximum input dimension supported */
79  static constexpr uint32_t max_weight_dimension{ 1 }; /**< The maximum weight dimension supported */
80  static constexpr uint32_t max_bias_dimension{ 1 }; /**< The maximum bias dimension supported */
81  static constexpr uint32_t vector_size_byte{ 16 }; /**< Computation vector size in byte */
82 
83  using ComputeFuncType = std::function<void(NEQLSTMLayerNormalizationKernel &)>;
84 
85  ComputeFuncType _fn{}; /**< Function pointer to computation function */
86 
87  const ITensor *_input
88  {
89  nullptr
90  }; /**< Input tensor */
91  const ITensor *_weight
92  {
93  nullptr
94  }; /**< Weight tensor */
95  const ITensor *_bias
96  {
97  nullptr
98  }; /**< Bias tensor */
99  ITensor *_output{ nullptr }; /**< Output tensor */
100 
101  int32_t _output_multiplier{}; /**< Multiplier for output values */
102  int32_t _output_shift{}; /**< Shift value for output values */
103 
104  int32_t _window_start_x{}; /**< The beginning of x-axis iteration */
105  int32_t _window_end_x{}; /**< The end of x-axis iteration */
106  int32_t _window_step_x{}; /**< The size of x-axis iteration's step */
107 
108  Window _inout_window{}; /**< Window for input and output tensor */
109  Window _weight_window{}; /**< Window for weight and bias tensor */
110 
111  /** Function to configure initial windows for destination of computation
112  *
113  * @param[in] Target destination tensor to use for output window
114  *
115  * @return configured window
116  */
117  Window configure_window(ITensor *target);
118  // Function to compute for data type QSYMM16
119  void compute_qsymm16();
120  /** Function to compute summation and summation of squared input of the given input pointer
121  *
122  * @param[in] Input_ptr pointer to input array
123  *
124  */
125  std::pair<int64_t, int64_t> sum_qsymm16(const int16_t *input_ptr);
126  /** Function to normalize values using computed mean and standard deviation
127  *
128  * @param[in] input_ptr Pointer to input array
129  * @param[in] output_ptr Pointer to output array
130  * @param[in] weight_ptr Pointer to weight array
131  * @param[in] bias_ptr Pointer to bias array
132  * @param[in] mean Mean value
133  * @param[in] inv_std_mul Quantized multiplier for standard deviation
134  * @param[in] inv_std_shift Shift for standard deviation
135  *
136  */
137  void normalize_qasymm16(const int16_t *input_ptr,
138  int16_t *output_ptr,
139  const int16_t *weight_ptr,
140  const int32_t *bias_ptr,
141  int32_t mean, int32_t inv_std_mul, int32_t inv_std_shift);
142  /** Function to compute output quantization information */
143  QuantizationInfo compute_output_qinfo();
144 };
145 } // namespace arm_compute
146 #endif /* ARM_COMPUTE_NEQLSTMLAYERNORMALIZATIONKERNEL_H */
static Status validate(const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *weight, const ITensorInfo *bias)
Static function to check if given info will lead to a valid configuration of NEQLSTMLayerNormalizatio...
const Window & window() const
The maximum window the kernel can be executed on.
Definition: IKernel.cpp:28
Common interface for all kernels implemented in C++.
Definition: ICPPKernel.h:38
Store the tensor&#39;s metadata.
Definition: ITensorInfo.h:40
Status class.
Definition: Error.h:52
Interface for Neon tensor.
Definition: ITensor.h:36
Copyright (c) 2017-2021 Arm Limited.
Quantization information.
NEQLSTMLayerNormalizationKernel & operator=(const NEQLSTMLayerNormalizationKernel &)=delete
Prevent instances of this class from being copied (As this class contains pointers) ...
Neon kernel to perform layer normalization.
NEQLSTMLayerNormalizationKernel()=default
Default constructor.
ScaleKernelInfo info(interpolation_policy, default_border_mode, PixelValue(), sampling_policy, false)
Information about executing thread and CPU.
Definition: CPPTypes.h:235
void configure(const ITensor *input, ITensor *output, const ITensor *weight, const ITensor *bias)
Set the input and output tensors.
void run(const Window &window, const ThreadInfo &info) override
Execute the kernel on the passed window.
const char * name() const override
Name of the kernel.
Describe a multidimensional execution window.
Definition: Window.h:39
~NEQLSTMLayerNormalizationKernel()=default
Default destructor.