Compute Library
 20.08
NEWeightsReshapeKernel.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_NEWEIGHTSRESHAPEKERNEL_H
25 #define ARM_COMPUTE_NEWEIGHTSRESHAPEKERNEL_H
26 
28 
29 namespace arm_compute
30 {
31 class ITensor;
32 
33 /** NEON kernel to perform reshaping on the weights used by convolution and locally connected layer
34  *
35  * Rearranges each 3-dimensional kernel to a single row leading to a matrix with linearized kernels.
36  * In combination with the @ref NEIm2ColKernel can transform a convolution to a matrix multiplication.
37  *
38  * For example assuming a 3D weight kernel of 3x3 dimensions and depth of 2 we have:
39  * @f[
40  * \left( \begin{array}{ccc}
41  * a000 & a001 & a002 \\
42  * a010 & a011 & a012 \\
43  * a020 & a021 & a022 \\
44  * \end{array} \right)
45  * \left( \begin{array}{ccc}
46  * a100 & a101 & a102 \\
47  * a110 & a111 & a112 \\
48  * a120 & a121 & a122 \\
49  * \end{array} \right)
50  * \rightarrow
51  * \left( \begin{array}{ccccccccc}
52  * a000 & a001 & a002 & a010 & a011 & a012 & a020 & a021 & a022 & a100 & a101 & a102 & a110 & a111 & a112 & a120 & a121 & a122 \\
53  * \end{array} \right)
54  * @f]
55  */
57 {
58 public:
59  const char *name() const override
60  {
61  return "NEWeightsReshapeKernel";
62  }
63  /** Constructor.*/
65  /** Prevent instances of this class from being copied (As this class contains pointers) */
67  /** Prevent instances of this class from being copied (As this class contains pointers) */
69  /** Allow instances of this class to be moved */
71  /** Allow instances of this class to be moved */
73  /** Default destructor */
74  ~NEWeightsReshapeKernel() = default;
75  /** Set the input and output of the kernel.
76  *
77  * @param[in] input The input tensor to convert. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM] if shared,
78  * and 5D tensor with dimensions [kernel_x, kernel_y, IFM, OFM, num_patches] if unshared.
79  * Data types supported: All
80  * @param[in] bias The shared biases tensor to append. Bias is 1D tensor with dimensions [OFM] if shared and 2D tensor with
81  * dimensions [OFM, num_patches] if unshared. Data types supported: Same as @p input
82  * @warning Appending biases to weights reshaped matrix is not supported for quantized asymmetric types.
83  * @param[out] output The output tensor. Data types supported: Same as @p input
84  */
85  void configure(const ITensor *input, const ITensor *bias, ITensor *output);
86  /** Static function to check if given info will lead to a valid configuration of @ref NEWeightsReshapeKernel
87  *
88  * @param[in] input The input tensor to convert. Weights are 4D tensor with dimensions [kernel_x, kernel_y, IFM, OFM] if shared,
89  * and 5D tensor with dimensions [kernel_x, kernel_y, IFM, OFM, num_patches] if unshared.
90  * Data types supported: All
91  * @param[in] biases The shared biases tensor to append. Bias is 1D tensor with dimensions [OFM] if shared and 2D tensor with
92  * dimensions [OFM, num_patches] if unshared. Data types supported: Same as @p input
93  * @warning Appending biases to weights reshaped matrix is not supported for quantized asymmetric types.
94  * @param[in] output The output tensor. Should be a 2D Tensor. Data types supported: Same as @p input
95  *
96  * @return a status
97  */
98  static Status validate(const ITensorInfo *input, const ITensorInfo *biases, const ITensorInfo *output);
99 
100  // Inherited methods overridden:
101  void run(const Window &window, const ThreadInfo &info) override;
102 
103 private:
104  const ITensor *_input;
105  const ITensor *_bias;
106  ITensor *_output;
107 };
108 } // namespace arm_compute
109 #endif /*ARM_COMPUTE_NEWEIGHTSRESHAPEKERNEL_H */
void configure(const ITensor *input, const ITensor *bias, ITensor *output)
Set the input and output of the kernel.
const Window & window() const
The maximum window the kernel can be executed on.
Definition: IKernel.cpp:28
const char * name() const override
Name of the kernel.
Common interface for all kernels implemented in C++.
Definition: ICPPKernel.h:38
Store the tensor's metadata.
Definition: ITensorInfo.h:40
Status class.
Definition: Error.h:52
void run(const Window &window, const ThreadInfo &info) override
Execute the kernel on the passed window.
Interface for NEON tensor.
Definition: ITensor.h:36
~NEWeightsReshapeKernel()=default
Default destructor.
Copyright (c) 2017-2020 Arm Limited.
NEON kernel to perform reshaping on the weights used by convolution and locally connected layer.
static Status validate(const ITensorInfo *input, const ITensorInfo *biases, const ITensorInfo *output)
Static function to check if given info will lead to a valid configuration of NEWeightsReshapeKernel.
NEWeightsReshapeKernel & operator=(const NEWeightsReshapeKernel &)=delete
Prevent instances of this class from being copied (As this class contains pointers)
Information about executing thread and CPU.
Definition: CPPTypes.h:235
Describe a multidimensional execution window.
Definition: Window.h:39