Compute Library
 23.11
CLL2NormalizeLayerKernel Class Reference

Interface for performing a L2 normalize on a given axis given the square sum of it in this axis. More...

#include <CLL2NormalizeLayerKernel.h>

Collaboration diagram for CLL2NormalizeLayerKernel:
[legend]

Public Member Functions

 CLL2NormalizeLayerKernel ()
 Default constructor. More...
 
 CLL2NormalizeLayerKernel (const CLL2NormalizeLayerKernel &)=delete
 Prevent instances of this class from being copied (As this class contains pointers) More...
 
CLL2NormalizeLayerKerneloperator= (const CLL2NormalizeLayerKernel &)=delete
 Prevent instances of this class from being copied (As this class contains pointers) More...
 
 CLL2NormalizeLayerKernel (CLL2NormalizeLayerKernel &&)=default
 Allow instances of this class to be moved. More...
 
CLL2NormalizeLayerKerneloperator= (CLL2NormalizeLayerKernel &&)=default
 Allow instances of this class to be moved. More...
 
 ~CLL2NormalizeLayerKernel ()=default
 Default destructor. More...
 
void configure (const ICLTensor *input, const ICLTensor *sum, ICLTensor *output, int axis, float epsilon)
 Set the input and output tensors. More...
 
void configure (const CLCompileContext &compile_context, const ICLTensor *input, const ICLTensor *sum, ICLTensor *output, int axis, float epsilon)
 Set the input and output tensors. More...
 
void run (const Window &window, cl::CommandQueue &queue) override
 Enqueue the OpenCL kernel to process the given window on the passed OpenCL command queue. More...
 
- Public Member Functions inherited from ICLKernel
 ICLKernel ()
 Constructor. More...
 
cl::Kernel & kernel ()
 Returns a reference to the OpenCL kernel of this object. More...
 
CLKernelType type () const
 Returns the CL kernel type. More...
 
template<typename T >
void add_1D_array_argument (unsigned int &idx, const ICLArray< T > *array, const Strides &strides, unsigned int num_dimensions, const Window &window)
 Add the passed 1D array's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_1D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 1D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_1D_tensor_argument_if (bool cond, unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 1D tensor's parameters to the object's kernel's arguments starting from the index idx if the condition is true. More...
 
void add_2D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 2D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_2D_tensor_argument_if (bool cond, unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 2D tensor's parameters to the object's kernel's arguments starting from the index idx if the condition is true. More...
 
void add_3D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 3D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_4D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 4D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_5D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 5D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_3d_tensor_nhw_argument (unsigned int &idx, const ICLTensor *tensor)
 Add the passed NHW 3D tensor's parameters to the object's kernel's arguments by passing strides, dimensions and the offset to the first valid element in bytes. More...
 
void add_4d_tensor_nhwc_argument (unsigned int &idx, const ICLTensor *tensor)
 Add the passed NHWC 4D tensor's parameters to the object's kernel's arguments by passing strides, dimensions and the offset to the first valid element in bytes. More...
 
virtual void run_op (ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
 Enqueue the OpenCL kernel to process the given window on the passed OpenCL command queue. More...
 
template<typename T >
void add_argument (unsigned int &idx, T value)
 Add the passed parameters to the object's kernel's arguments starting from the index idx. More...
 
void set_lws_hint (const cl::NDRange &lws_hint)
 Set the Local-Workgroup-Size hint. More...
 
cl::NDRange lws_hint () const
 Return the Local-Workgroup-Size hint. More...
 
void set_wbsm_hint (const cl_int &wbsm_hint)
 Set the workgroup batch size modifier hint. More...
 
cl_int wbsm_hint () const
 Return the workgroup batch size modifier hint. More...
 
const std::string & config_id () const
 Get the configuration ID. More...
 
void set_target (GPUTarget target)
 Set the targeted GPU architecture. More...
 
void set_target (cl::Device &device)
 Set the targeted GPU architecture according to the CL device. More...
 
GPUTarget get_target () const
 Get the targeted GPU architecture. More...
 
size_t get_max_workgroup_size ()
 Get the maximum workgroup size for the device the CLKernelLibrary uses. More...
 
cl::NDRange get_cached_gws () const
 Get the cached gws used to enqueue this kernel. More...
 
void cache_gws (const cl::NDRange &gws)
 Cache the latest gws used to enqueue this kernel. More...
 
template<unsigned int dimension_size>
void add_tensor_argument (unsigned &idx, const ICLTensor *tensor, const Window &window)
 
template<typename T , unsigned int dimension_size>
void add_array_argument (unsigned &idx, const ICLArray< T > *array, const Strides &strides, unsigned int num_dimensions, const Window &window)
 Add the passed array's parameters to the object's kernel's arguments starting from the index idx. More...
 
- Public Member Functions inherited from IKernel
 IKernel ()
 Constructor. More...
 
virtual ~IKernel ()=default
 Destructor. More...
 
virtual bool is_parallelisable () const
 Indicates whether or not the kernel is parallelisable. More...
 
virtual BorderSize border_size () const
 The size of the border for that kernel. More...
 
const Windowwindow () const
 The maximum window the kernel can be executed on. More...
 
bool is_window_configured () const
 Function to check if the embedded window of this kernel has been configured. More...
 

Static Public Member Functions

static Status validate (const ITensorInfo *input, const ITensorInfo *sum, const ITensorInfo *output, int axis, float epsilon)
 Static function to check if given info will lead to a valid configuration of CLL2NormalizeLayerKernel. More...
 
- Static Public Member Functions inherited from ICLKernel
constexpr static unsigned int num_arguments_per_3d_tensor_nhw ()
 Returns the number of arguments enqueued per NHW 3D Tensor object. More...
 
constexpr static unsigned int num_arguments_per_4d_tensor_nhwc ()
 Returns the number of arguments enqueued per NHWC 4D Tensor object. More...
 
constexpr static unsigned int num_arguments_per_1D_array ()
 Returns the number of arguments enqueued per 1D array object. More...
 
constexpr static unsigned int num_arguments_per_1D_tensor ()
 Returns the number of arguments enqueued per 1D tensor object. More...
 
constexpr static unsigned int num_arguments_per_2D_tensor ()
 Returns the number of arguments enqueued per 2D tensor object. More...
 
constexpr static unsigned int num_arguments_per_3D_tensor ()
 Returns the number of arguments enqueued per 3D tensor object. More...
 
constexpr static unsigned int num_arguments_per_4D_tensor ()
 Returns the number of arguments enqueued per 4D tensor object. More...
 
static cl::NDRange gws_from_window (const Window &window, bool use_dummy_work_items)
 Get the global work size given an execution window. More...
 

Detailed Description

Interface for performing a L2 normalize on a given axis given the square sum of it in this axis.

Definition at line 36 of file CLL2NormalizeLayerKernel.h.

Constructor & Destructor Documentation

◆ CLL2NormalizeLayerKernel() [1/3]

Default constructor.

Definition at line 77 of file CLL2NormalizeLayerKernel.cpp.

78  : _input(nullptr), _sum(nullptr), _output(nullptr), _actual_axis(0), _epsilon(1e-12)
79 {
81 }

References arm_compute::ELEMENTWISE.

◆ CLL2NormalizeLayerKernel() [2/3]

Prevent instances of this class from being copied (As this class contains pointers)

◆ CLL2NormalizeLayerKernel() [3/3]

Allow instances of this class to be moved.

◆ ~CLL2NormalizeLayerKernel()

Default destructor.

Member Function Documentation

◆ configure() [1/2]

void configure ( const CLCompileContext compile_context,
const ICLTensor input,
const ICLTensor sum,
ICLTensor output,
int  axis,
float  epsilon 
)

Set the input and output tensors.

Parameters
[in]compile_contextThe compile context to be used.
[in]inputSource tensor. Data types supported: F16/F32. Data layouts supported: NCHW/NHWC.
[in]sumSum values tensor. Data types supported: same as input. Sum will have the same number of dimensions as input.
[out]outputDestination tensor. Data types and data layouts supported: Same as input. Output will have the same number of dimensions as input.
[in]axisAxis along which to reduce. Negative values wrap around. Maximum supported actual reduction axis : 2
[in]epsilonLower bound value for the normalization.

Definition at line 89 of file CLL2NormalizeLayerKernel.cpp.

95 {
96  ARM_COMPUTE_ERROR_ON_NULLPTR(input, sum, output);
97  ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), sum->info(), output->info(), axis, epsilon));
98  auto padding_info = get_padding_info({input, sum, output});
99 
100  _input = input;
101  _sum = sum;
102  _output = output;
103  _actual_axis = wrap_around(axis, max_input_tensor_dim);
104  _epsilon = epsilon;
105 
106  const unsigned int vec_size_x =
107  adjust_vec_size(max_cl_vector_width / input->info()->element_size(), input->info()->dimension(0));
108  const int vec_size_x_leftovers = input->info()->dimension(0) % vec_size_x;
109 
110  // Set build options
111  CLBuildOptions build_opts;
112  build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
113  build_opts.add_option("-DVEC_SIZE_X=" + support::cpp11::to_string(vec_size_x));
114  build_opts.add_option("-DVEC_SIZE_LEFTOVER_X=" + support::cpp11::to_string(vec_size_x_leftovers));
115 
116  // Create kernel
117  std::string kernel_name;
118  unsigned int idx = 0;
119  switch (_actual_axis)
120  {
121  case 0:
122  kernel_name = "l2_normalize_x";
123  idx = num_arguments_per_2D_tensor() * 3;
124  break;
125  case 1:
126  kernel_name = "l2_normalize_y";
127  idx = num_arguments_per_2D_tensor() * 3;
128  break;
129  case 2:
130  kernel_name = "l2_normalize_z";
131  idx = num_arguments_per_3D_tensor() * 3;
132  break;
133  default:
134  ARM_COMPUTE_ERROR("Axis not supported");
135  }
136  _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
137 
138  // Set epsilon argument
139  if (input->info()->data_type() == DataType::F32)
140  {
141  _kernel.setArg<cl_float>(idx, _epsilon);
142  }
143  else
144  {
145  _kernel.setArg<cl_half>(idx, _epsilon);
146  }
147 
148  // Configure kernel window
149  Window win = calculate_max_window(*input->info(), Steps(vec_size_x));
150 
151  // Output tensor auto initialization if not yet initialized
152  auto_init_if_empty(*output->info(), input->info()->tensor_shape(), 1, input->info()->data_type());
153 
154  ICLKernel::configure_internal(win);
156 }

References CLBuildOptions::add_option(), arm_compute::adjust_vec_size(), ARM_COMPUTE_ERROR, ARM_COMPUTE_ERROR_ON, ARM_COMPUTE_ERROR_ON_NULLPTR, ARM_COMPUTE_ERROR_THROW_ON, arm_compute::auto_init_if_empty(), arm_compute::calculate_max_window(), arm_compute::create_kernel(), arm_compute::quantization::epsilon, arm_compute::F32, arm_compute::get_cl_type_from_data_type(), arm_compute::get_padding_info(), arm_compute::has_padding_changed(), ITensor::info(), arm_compute::test::validation::input, kernel_name, ICLKernel::num_arguments_per_2D_tensor(), ICLKernel::num_arguments_per_3D_tensor(), CLBuildOptions::options(), arm_compute::support::cpp11::to_string(), arm_compute::cpu::kernels::validate_arguments(), and arm_compute::wrap_around().

◆ configure() [2/2]

void configure ( const ICLTensor input,
const ICLTensor sum,
ICLTensor output,
int  axis,
float  epsilon 
)

Set the input and output tensors.

Parameters
[in]inputSource tensor. Data types supported: F16/F32. Data layouts supported: NCHW/NHWC.
[in]sumSum values tensor. Data types supported: same as input. Sum will have the same number of dimensions as input.
[out]outputDestination tensor. Data types and data layouts supported: Same as input. Output will have the same number of dimensions as input.
[in]axisAxis along which to reduce. Negative values wrap around. Maximum supported actual reduction axis : 2
[in]epsilonLower bound value for the normalization.

Definition at line 83 of file CLL2NormalizeLayerKernel.cpp.

85 {
86  configure(CLKernelLibrary::get().get_compile_context(), input, sum, output, axis, epsilon);
87 }

References arm_compute::quantization::epsilon, CLKernelLibrary::get(), and arm_compute::test::validation::input.

◆ operator=() [1/2]

Allow instances of this class to be moved.

◆ operator=() [2/2]

CLL2NormalizeLayerKernel& operator= ( const CLL2NormalizeLayerKernel )
delete

Prevent instances of this class from being copied (As this class contains pointers)

◆ run()

void run ( const Window window,
cl::CommandQueue &  queue 
)
overridevirtual

Enqueue the OpenCL kernel to process the given window on the passed OpenCL command queue.

Note
The queue is not flushed by this method, and therefore the kernel will not have been executed by the time this method returns.
Parameters
[in]windowRegion on which to execute the kernel. (Must be a valid region of the window returned by window()).
[in,out]queueCommand queue on which to enqueue the kernel.

Reimplemented from ICLKernel.

Definition at line 165 of file CLL2NormalizeLayerKernel.cpp.

166 {
169 
170  Window window_sum(window);
171 
172  switch (_actual_axis)
173  {
174  case 0:
175  {
176  window_sum.set(Window::DimX, Window::Dimension(0, 0, 0));
177  Window in_slice = window.first_slice_window_2D();
178  Window sum_slice = window_sum.first_slice_window_2D();
179  do
180  {
181  unsigned int idx = 0;
182  add_2D_tensor_argument(idx, _input, in_slice);
183  add_2D_tensor_argument(idx, _sum, sum_slice);
184  add_2D_tensor_argument(idx, _output, in_slice);
185  enqueue(queue, *this, in_slice, lws_hint());
186  } while (window.slide_window_slice_2D(in_slice) && window.slide_window_slice_2D(sum_slice));
187  }
188  break;
189  case 1:
190  {
191  window_sum.set(Window::DimY, Window::Dimension(0, 0, 0));
192  Window in_slice = window.first_slice_window_2D();
193  Window sum_slice = window_sum.first_slice_window_2D();
194  do
195  {
196  unsigned int idx = 0;
197  add_2D_tensor_argument(idx, _input, in_slice);
198  add_2D_tensor_argument(idx, _sum, sum_slice);
199  add_2D_tensor_argument(idx, _output, in_slice);
200  enqueue(queue, *this, in_slice, lws_hint());
201  } while (window.slide_window_slice_2D(in_slice) && window.slide_window_slice_2D(sum_slice));
202  }
203  break;
204  case 2:
205  {
206  window_sum.set(Window::DimZ, Window::Dimension(0, 0, 0));
207  Window in_slice = window.first_slice_window_3D();
208  Window sum_slice = window_sum.first_slice_window_3D();
209  do
210  {
211  unsigned int idx = 0;
212  add_3D_tensor_argument(idx, _input, in_slice);
213  add_3D_tensor_argument(idx, _sum, sum_slice);
214  add_3D_tensor_argument(idx, _output, in_slice);
215  enqueue(queue, *this, in_slice, lws_hint());
216  } while (window.slide_window_slice_3D(in_slice) && window.slide_window_slice_3D(sum_slice));
217  }
218  break;
219  default:
220  ARM_COMPUTE_ERROR("Not supported");
221  }
222 }

References ICLKernel::add_2D_tensor_argument(), ICLKernel::add_3D_tensor_argument(), ARM_COMPUTE_ERROR, ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW, ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL, Window::DimX, Window::DimY, Window::DimZ, arm_compute::enqueue(), Window::first_slice_window_2D(), Window::first_slice_window_3D(), ICLKernel::lws_hint(), Window::set(), Window::slide_window_slice_2D(), Window::slide_window_slice_3D(), and IKernel::window().

◆ validate()

Status validate ( const ITensorInfo input,
const ITensorInfo sum,
const ITensorInfo output,
int  axis,
float  epsilon 
)
static

Static function to check if given info will lead to a valid configuration of CLL2NormalizeLayerKernel.

Parameters
[in]inputSource tensor info. Data types supported: F16/F32. Data layouts supported: NCHW/NHWC.
[in]sumSum values tensor info. Data types supported: same as input. Sum will have the same number of dimensions as input.
[in]outputDestination tensor info. Data types and data layouts supported: Same as input. Output will have the same number of dimensions as input.
[in]axisAxis along which to reduce. Negative values wrap around. Maximum supported actual reduction axis : 2
[in]epsilonLower bound value for the normalization.
Returns
a status

Definition at line 158 of file CLL2NormalizeLayerKernel.cpp.

160 {
162  return Status{};
163 }

References ARM_COMPUTE_RETURN_ON_ERROR, arm_compute::quantization::epsilon, arm_compute::test::validation::input, and arm_compute::cpu::kernels::validate_arguments().

Referenced by CLL2NormalizeLayer::validate().


The documentation for this class was generated from the following files:
arm_compute::support::cpp11::to_string
std::string to_string(T &&value)
Convert integer and float values to string.
Definition: StringSupport.h:168
arm_compute::calculate_max_window
Window calculate_max_window(const ValidRegion &valid_region, const Steps &steps, bool skip_border, BorderSize border_size)
Definition: WindowHelpers.cpp:29
arm_compute::cpu::kernels::validate_arguments
Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const PadStrideInfo &conv_info)
Definition: CpuDirectConv2dKernel.cpp:57
arm_compute::ICLKernel::num_arguments_per_2D_tensor
constexpr static unsigned int num_arguments_per_2D_tensor()
Returns the number of arguments enqueued per 2D tensor object.
Definition: ICLKernel.h:313
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL
#define ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(k)
Definition: Validate.h:1079
arm_compute::Window::DimX
static constexpr size_t DimX
Alias for dimension 0 also known as X dimension.
Definition: Window.h:43
ARM_COMPUTE_ERROR
#define ARM_COMPUTE_ERROR(msg)
Print the given message then throw an std::runtime_error.
Definition: Error.h:354
arm_compute::CLL2NormalizeLayerKernel::configure
void configure(const ICLTensor *input, const ICLTensor *sum, ICLTensor *output, int axis, float epsilon)
Set the input and output tensors.
Definition: CLL2NormalizeLayerKernel.cpp:83
arm_compute::wrap_around
T wrap_around(T x, T m)
Wrap-around a number within the range 0 <= x < m.
Definition: Helpers.h:277
arm_compute::Window::slide_window_slice_2D
bool slide_window_slice_2D(Window &slice) const
Slide the passed 2D window slice.
Definition: Window.h:338
arm_compute::CLKernelLibrary::get
static CLKernelLibrary & get()
Access the KernelLibrary singleton.
Definition: CLKernelLibrary.cpp:41
arm_compute::ICLKernel::add_2D_tensor_argument
void add_2D_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window)
Add the passed 2D tensor's parameters to the object's kernel's arguments starting from the index idx.
Definition: ICLKernel.h:210
ARM_COMPUTE_RETURN_ON_ERROR
#define ARM_COMPUTE_RETURN_ON_ERROR(status)
Checks if a status contains an error and returns it.
Definition: Error.h:205
ARM_COMPUTE_ERROR_ON_NULLPTR
#define ARM_COMPUTE_ERROR_ON_NULLPTR(...)
Definition: Validate.h:159
ARM_COMPUTE_ERROR_ON
#define ARM_COMPUTE_ERROR_ON(cond)
If the condition is true then an error message is printed and an exception thrown.
Definition: Error.h:466
ARM_COMPUTE_ERROR_THROW_ON
#define ARM_COMPUTE_ERROR_THROW_ON(status)
Definition: Error.h:455
arm_compute::auto_init_if_empty
bool auto_init_if_empty(ITensorInfo &info, const TensorShape &shape, int num_channels, DataType data_type, QuantizationInfo quantization_info=QuantizationInfo())
Auto initialize the tensor info (shape, number of channels and data type) if the current assignment i...
Definition: AutoConfiguration.h:43
arm_compute::create_kernel
cl::Kernel create_kernel(const CLCompileContext &ctx, const std::string &kernel_name, const std::set< std::string > &build_opts=std::set< std::string >())
Creates an opencl kernel using a compile context.
Definition: CLHelpers.cpp:409
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW
#define ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(f, s)
Definition: Validate.h:203
arm_compute::Window::slide_window_slice_3D
bool slide_window_slice_3D(Window &slice) const
Slide the passed 3D window slice.
Definition: Window.h:350
arm_compute::Window::DimY
static constexpr size_t DimY
Alias for dimension 1 also known as Y dimension.
Definition: Window.h:45
arm_compute::Window::first_slice_window_3D
Window first_slice_window_3D() const
First 3D slice of the window.
Definition: Window.h:306
arm_compute::IKernel::window
const Window & window() const
The maximum window the kernel can be executed on.
Definition: IKernel.cpp:28
arm_compute::get_cl_type_from_data_type
std::string get_cl_type_from_data_type(const DataType &dt)
Translates a tensor data type to the appropriate OpenCL type.
Definition: CLHelpers.cpp:41
arm_compute::ICLKernel::add_3D_tensor_argument
void add_3D_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window)
Add the passed 3D tensor's parameters to the object's kernel's arguments starting from the index idx.
Definition: ICLKernel.h:234
arm_compute::ELEMENTWISE
@ ELEMENTWISE
Elementwise CL kernel type.
Definition: CLTypes.h:83
arm_compute::ICLKernel::num_arguments_per_3D_tensor
constexpr static unsigned int num_arguments_per_3D_tensor()
Returns the number of arguments enqueued per 3D tensor object.
Definition: ICLKernel.h:321
arm_compute::adjust_vec_size
unsigned int adjust_vec_size(unsigned int vec_size, size_t dim0)
Returns the adjusted vector size in case it is less than the input's first dimension,...
Definition: AdjustVecSize.h:38
arm_compute::has_padding_changed
bool has_padding_changed(const std::unordered_map< const ITensorInfo *, PaddingSize > &padding_map)
Check if the previously stored padding info has changed after configuring a kernel.
Definition: Utils.cpp:491
arm_compute::Window::DimZ
static constexpr size_t DimZ
Alias for dimension 2 also known as Z dimension.
Definition: Window.h:47
arm_compute::ICLKernel::lws_hint
cl::NDRange lws_hint() const
Return the Local-Workgroup-Size hint.
Definition: ICLKernel.h:383
arm_compute::DataType::F32
@ F32
32-bit floating-point number
arm_compute::get_padding_info
std::unordered_map< const ITensorInfo *, PaddingSize > get_padding_info(std::initializer_list< const ITensorInfo * > infos)
Stores padding information before configuring a kernel.
Definition: Utils.cpp:476
arm_compute::Window::first_slice_window_2D
Window first_slice_window_2D() const
First 2D slice of the window.
Definition: Window.h:298
arm_compute::test::validation::input
auto input
Definition: LSTMLayerQuantized.cpp:486
kernel_name
std::string kernel_name
Definition: ClIm2ColKernel.cpp:58
arm_compute::quantization::epsilon
constexpr float epsilon
Definition: AsymmHelpers.cpp:41
arm_compute::enqueue
void enqueue(cl::CommandQueue &queue, ICLKernel &kernel, const Window &window, const cl::NDRange &lws_hint=CLKernelLibrary::get().default_ndrange(), bool use_dummy_work_items=false)
Add the kernel to the command queue with the given window.
Definition: ICLKernel.cpp:33