Compute Library
 19.08
CLLogits1DNormKernel Class Reference

Interface for calculating the final step of the Softmax Layer where each logit value is multiplied by the inverse of the sum of the logits. More...

#include <CLSoftmaxLayerKernel.h>

Collaboration diagram for CLLogits1DNormKernel:
[legend]

Public Member Functions

 CLLogits1DNormKernel ()
 Default constructor. More...
 
 CLLogits1DNormKernel (const CLLogits1DNormKernel &)=delete
 Prevent instances of this class from being copied (As this class contains pointers) More...
 
CLLogits1DNormKerneloperator= (const CLLogits1DNormKernel &)=delete
 Prevent instances of this class from being copied (As this class contains pointers) More...
 
 CLLogits1DNormKernel (CLLogits1DNormKernel &&)=default
 Allow instances of this class to be moved. More...
 
CLLogits1DNormKerneloperator= (CLLogits1DNormKernel &&)=default
 Allow instances of this class to be moved. More...
 
void configure (const ICLTensor *input, const ICLTensor *sum, ICLTensor *output, float beta=1.0f)
 Set the input and output tensors. More...
 
void run (const Window &window, cl::CommandQueue &queue) override
 Enqueue the OpenCL kernel to process the given window on the passed OpenCL command queue. More...
 
- Public Member Functions inherited from ICLKernel
 ICLKernel ()
 Constructor. More...
 
cl::Kernel & kernel ()
 Returns a reference to the OpenCL kernel of this object. More...
 
template<typename T >
void add_1D_array_argument (unsigned int &idx, const ICLArray< T > *array, const Strides &strides, unsigned int num_dimensions, const Window &window)
 Add the passed 1D array's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_1D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 1D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_1D_tensor_argument_if (bool cond, unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 1D tensor's parameters to the object's kernel's arguments starting from the index idx if the condition is true. More...
 
void add_2D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 2D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_2D_tensor_argument_if (bool cond, unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 2D tensor's parameters to the object's kernel's arguments starting from the index idx if the condition is true. More...
 
void add_3D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 3D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_4D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 4D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
template<typename T >
void add_argument (unsigned int &idx, T value)
 Add the passed parameters to the object's kernel's arguments starting from the index idx. More...
 
void set_lws_hint (const cl::NDRange &lws_hint)
 Set the Local-Workgroup-Size hint. More...
 
cl::NDRange lws_hint () const
 Return the Local-Workgroup-Size hint. More...
 
const std::string & config_id () const
 Get the configuration ID. More...
 
void set_target (GPUTarget target)
 Set the targeted GPU architecture. More...
 
void set_target (cl::Device &device)
 Set the targeted GPU architecture according to the CL device. More...
 
GPUTarget get_target () const
 Get the targeted GPU architecture. More...
 
size_t get_max_workgroup_size ()
 Get the maximum workgroup size for the device the CLKernelLibrary uses. More...
 
template<typename T , unsigned int dimension_size>
void add_array_argument (unsigned &idx, const ICLArray< T > *array, const Strides &strides, unsigned int num_dimensions, const Window &window)
 Add the passed array's parameters to the object's kernel's arguments starting from the index idx. More...
 
template<unsigned int dimension_size>
void add_tensor_argument (unsigned &idx, const ICLTensor *tensor, const Window &window)
 
- Public Member Functions inherited from IKernel
 IKernel ()
 Constructor. More...
 
virtual ~IKernel ()=default
 Destructor. More...
 
virtual bool is_parallelisable () const
 Indicates whether or not the kernel is parallelisable. More...
 
virtual BorderSize border_size () const
 The size of the border for that kernel. More...
 
const Windowwindow () const
 The maximum window the kernel can be executed on. More...
 

Static Public Member Functions

static Status validate (const ITensorInfo *input, const ITensorInfo *sum, const ITensorInfo *output)
 Static function to check if given info will lead to a valid configuration of CLLogits1DNormKernel. More...
 
- Static Public Member Functions inherited from ICLKernel
static constexpr unsigned int num_arguments_per_1D_array ()
 Returns the number of arguments enqueued per 1D array object. More...
 
static constexpr unsigned int num_arguments_per_1D_tensor ()
 Returns the number of arguments enqueued per 1D tensor object. More...
 
static constexpr unsigned int num_arguments_per_2D_tensor ()
 Returns the number of arguments enqueued per 2D tensor object. More...
 
static constexpr unsigned int num_arguments_per_3D_tensor ()
 Returns the number of arguments enqueued per 3D tensor object. More...
 
static constexpr unsigned int num_arguments_per_4D_tensor ()
 Returns the number of arguments enqueued per 4D tensor object. More...
 
static cl::NDRange gws_from_window (const Window &window)
 Get the global work size given an execution window. More...
 

Detailed Description

Interface for calculating the final step of the Softmax Layer where each logit value is multiplied by the inverse of the sum of the logits.

Definition at line 163 of file CLSoftmaxLayerKernel.h.

Constructor & Destructor Documentation

◆ CLLogits1DNormKernel() [1/3]

Default constructor.

Definition at line 332 of file CLSoftmaxLayerKernel.cpp.

333  : _input(nullptr), _sum(nullptr), _output(nullptr)
334 {
335 }

◆ CLLogits1DNormKernel() [2/3]

Prevent instances of this class from being copied (As this class contains pointers)

◆ CLLogits1DNormKernel() [3/3]

Allow instances of this class to be moved.

Member Function Documentation

◆ configure()

void configure ( const ICLTensor input,
const ICLTensor sum,
ICLTensor output,
float  beta = 1.0f 
)

Set the input and output tensors.

Parameters
[in]inputSource tensor. Data types supported: S32/F16/F32
[in]sumSum tensor. Dimensions should be dim(input)-1. Data types supported: same as input
[out]outputDestination tensor. Data types supported: QASYMM8 for S32 input, or same as input
[in]beta(Optional) A scaling factor for the exponent. (Default = 1.0)

Definition at line 337 of file CLSoftmaxLayerKernel.cpp.

338 {
339  ARM_COMPUTE_ERROR_ON_NULLPTR(input, sum, output);
340 
341  // Note: output should always have a scale of 1/256 and offset 0
342  const QuantizationInfo allowed_quantization_info = QuantizationInfo(1.F / 256, 0);
343  const bool is_quantized_asymmetric = (input->info()->data_type() == DataType::S32);
344  const DataType output_data_type = is_quantized_asymmetric ? DataType::QASYMM8 : input->info()->data_type();
346 
347  // Output auto initialization if not yet initialized
348  auto_init_if_empty(*output->info(),
349  input->info()->clone()->set_data_type(output_data_type).set_quantization_info(allowed_quantization_info));
350 
351  // Perform validation step
352  ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DNorm(input->info(), sum->info(), output->info()));
353 
354  _input = input;
355  _sum = sum;
356  _output = output;
357 
358  // Set build options
359  CLBuildOptions build_opts;
360  build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
361  build_opts.add_options_if(is_quantized_asymmetric,
362  prepare_quantized_softmax_build_options(qinfo.scale, beta).options());
363 
364  // Create kernel
365  std::string kernel_name = is_quantized_asymmetric ? "softmax_layer_norm_quantized" : "softmax_layer_norm";
366  _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
367 
368  // Configure window
369  auto win_config = validate_and_configure_window_1DNorm(input->info(), output->info(), sum->info());
370  ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
371  ICLKernel::configure_internal(win_config.second);
372 }
const StringSet & options() const
Gets the current options list set.
DATA_TYPE sum(__global const DATA_TYPE *input)
Calculate sum of a vector.
virtual DataType data_type() const =0
Data type used for each element of the tensor.
static CLKernelLibrary & get()
Access the KernelLibrary singleton.
#define ARM_COMPUTE_ERROR_THROW_ON(status)
Definition: Error.h:327
Quantization info when assuming per layer quantization.
bool auto_init_if_empty(ITensorInfo &info, const TensorShape &shape, int num_channels, DataType data_type, QuantizationInfo quantization_info=QuantizationInfo())
Auto initialize the tensor info (shape, number of channels and data type) if the current assignment i...
Definition: Helpers.inl:201
1 channel, 1 S32 per channel
void add_option(std::string option)
Adds option to the existing build option list.
Quantization information.
quantized, asymmetric fixed-point 8-bit number
UniformQuantizationInfo uniform() const
Return per layer quantization info.
std::string get_cl_type_from_data_type(const DataType &dt)
Translates a tensor data type to the appropriate OpenCL type.
Definition: CLHelpers.cpp:35
virtual std::unique_ptr< T > clone() const =0
Provide a clone of the current object of class T.
virtual ITensorInfo * info() const =0
Interface to be implemented by the child class to return the tensor's metadata.
const std::vector< float > & scale() const
Scale vector accessor.
std::unique_ptr< Kernel > create_kernel()
Helper function to create and return a unique_ptr pointed to a CL/GLES kernel object.
Definition: Helpers.h:86
virtual QuantizationInfo quantization_info() const =0
Get the quantization settings (scale and offset) of the tensor.
#define ARM_COMPUTE_ERROR_ON_NULLPTR(...)
Definition: Validate.h:161
const QuantizationInfo qinfo
Definition: Im2Col.cpp:150
DataType
Available data types.
Definition: Types.h:74
void add_options_if(bool cond, const StringSet &options)
Appends given build options to the current's objects options if a given condition is true.

References CLBuildOptions::add_option(), CLBuildOptions::add_options_if(), ARM_COMPUTE_ERROR_ON_NULLPTR, ARM_COMPUTE_ERROR_THROW_ON, arm_compute::auto_init_if_empty(), ICloneable< T >::clone(), arm_compute::create_kernel(), ITensorInfo::data_type(), CLKernelLibrary::get(), arm_compute::get_cl_type_from_data_type(), ITensor::info(), CLBuildOptions::options(), arm_compute::test::validation::output_data_type, arm_compute::QASYMM8, arm_compute::test::validation::qinfo, ITensorInfo::quantization_info(), arm_compute::S32, QuantizationInfo::scale(), sum(), and QuantizationInfo::uniform().

Referenced by CLSoftmaxLayer::configure().

◆ operator=() [1/2]

CLLogits1DNormKernel& operator= ( const CLLogits1DNormKernel )
delete

Prevent instances of this class from being copied (As this class contains pointers)

◆ operator=() [2/2]

CLLogits1DNormKernel& operator= ( CLLogits1DNormKernel &&  )
default

Allow instances of this class to be moved.

◆ run()

void run ( const Window window,
cl::CommandQueue &  queue 
)
overridevirtual

Enqueue the OpenCL kernel to process the given window on the passed OpenCL command queue.

Note
The queue is not flushed by this method, and therefore the kernel will not have been executed by the time this method returns.
Parameters
[in]windowRegion on which to execute the kernel. (Must be a valid region of the window returned by window()).
[in,out]queueCommand queue on which to enqueue the kernel.

Implements ICLKernel.

Definition at line 382 of file CLSoftmaxLayerKernel.cpp.

383 {
386 
388  Window slice = window_collapsed.first_slice_window_3D();
389 
390  do
391  {
392  Window sum_slice = slice;
393  sum_slice.set(Window::DimX, Window::Dimension(0, 1, 1));
394 
395  unsigned int idx = 0;
396  // Set inputs
397  add_3D_tensor_argument(idx, _input, slice);
398  add_3D_tensor_argument(idx, _sum, sum_slice);
399  add_3D_tensor_argument(idx, _output, slice);
400  enqueue(queue, *this, slice, lws_hint());
401  }
402  while(window_collapsed.slide_window_slice_3D(slice));
403 }
const Window & window() const
The maximum window the kernel can be executed on.
Definition: IKernel.cpp:28
void enqueue(cl::CommandQueue &queue, ICLKernel &kernel, const Window &window, const cl::NDRange &lws_hint=CLKernelLibrary::get().default_ndrange(), bool use_dummy_work_items=false)
Add the kernel to the command queue with the given window.
Definition: ICLKernel.cpp:39
cl::NDRange lws_hint() const
Return the Local-Workgroup-Size hint.
Definition: ICLKernel.h:247
Describe one of the image's dimensions with a start, end and step.
Definition: Window.h:75
void add_3D_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window)
Add the passed 3D tensor's parameters to the object's kernel's arguments starting from the index idx.
Definition: ICLKernel.h:158
static constexpr size_t DimX
Alias for dimension 0 also known as X dimension.
Definition: Window.h:43
Window collapse_if_possible(const Window &full_window, size_t first, size_t last, bool *has_collapsed=nullptr) const
Collapse the dimensions between first and last if possible.
Definition: Window.inl:54
void set(size_t dimension, const Dimension &dim)
Set the values of a given dimension.
Definition: Window.inl:48
bool slide_window_slice_3D(Window &slice) const
Slide the passed 3D window slice.
Definition: Window.h:319
static constexpr size_t DimZ
Alias for dimension 2 also known as Z dimension.
Definition: Window.h:47
Window first_slice_window_3D() const
First 3D slice of the window.
Definition: Window.h:275
#define ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(f, s)
Definition: Validate.h:205
Describe a multidimensional execution window.
Definition: Window.h:39
#define ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(k)
Definition: Validate.h:940
SimpleTensor< T > slice(const SimpleTensor< T > &src, Coordinates starts, Coordinates ends)

References ICLKernel::add_3D_tensor_argument(), ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW, ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL, Window::collapse_if_possible(), Window::DimX, Window::DimZ, arm_compute::enqueue(), Window::first_slice_window_3D(), ICLKernel::lws_hint(), Window::set(), arm_compute::test::validation::reference::slice(), Window::slide_window_slice_3D(), and IKernel::window().

◆ validate()

Status validate ( const ITensorInfo input,
const ITensorInfo sum,
const ITensorInfo output 
)
static

Static function to check if given info will lead to a valid configuration of CLLogits1DNormKernel.

Parameters
[in]inputSource tensor. Data types supported: S32/F16/F32
[in]sumSum tensor. Dimensions should be dim(input)-1. Data types supported: same as input
[in]outputDestination tensor. Data types supported: QASYMM8 for S32 input, or same as input
Returns
a status

Definition at line 374 of file CLSoftmaxLayerKernel.cpp.

375 {
376  ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DNorm(input, sum, output));
377  ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_1DNorm(input->clone().get(), output->clone().get(), sum->clone().get()).first);
378 
379  return Status{};
380 }
DATA_TYPE sum(__global const DATA_TYPE *input)
Calculate sum of a vector.
#define ARM_COMPUTE_RETURN_ON_ERROR(status)
Checks if a status contains an error and returns it.
Definition: Error.h:193
Status class.
Definition: Error.h:52
virtual std::unique_ptr< T > clone() const =0
Provide a clone of the current object of class T.

References ARM_COMPUTE_RETURN_ON_ERROR, ICloneable< T >::clone(), and sum().

Referenced by CLSoftmaxLayer::validate().


The documentation for this class was generated from the following files: