Compute Library
 23.11
CLQLSTMLayerNormalizationKernel Class Reference

Interface for the kernel to do layer normalization. More...

#include <CLQLSTMLayerNormalizationKernel.h>

Collaboration diagram for CLQLSTMLayerNormalizationKernel:
[legend]

Public Member Functions

 CLQLSTMLayerNormalizationKernel ()
 Default constructor. More...
 
 CLQLSTMLayerNormalizationKernel (const CLQLSTMLayerNormalizationKernel &)=delete
 Prevent instances of this class from being copied (As this class contains pointers) More...
 
CLQLSTMLayerNormalizationKerneloperator= (const CLQLSTMLayerNormalizationKernel &)=delete
 Prevent instances of this class from being copied (As this class contains pointers) More...
 
 CLQLSTMLayerNormalizationKernel (CLQLSTMLayerNormalizationKernel &&)=default
 Allow instances of this class to be moved. More...
 
CLQLSTMLayerNormalizationKerneloperator= (CLQLSTMLayerNormalizationKernel &&)=default
 Allow instances of this class to be moved. More...
 
 ~CLQLSTMLayerNormalizationKernel ()=default
 Default destructor. More...
 
void configure (const ICLTensor *input, ICLTensor *output, const ICLTensor *weight, const ICLTensor *bias)
 Initialise the kernel's input and outputs. More...
 
void configure (const CLCompileContext &compile_context, const ICLTensor *input, ICLTensor *output, const ICLTensor *weight, const ICLTensor *bias)
 Initialise the kernel's input and outputs. More...
 
void run (const Window &window, cl::CommandQueue &queue) override
 Enqueue the OpenCL kernel to process the given window on the passed OpenCL command queue. More...
 
- Public Member Functions inherited from ICLKernel
 ICLKernel ()
 Constructor. More...
 
cl::Kernel & kernel ()
 Returns a reference to the OpenCL kernel of this object. More...
 
CLKernelType type () const
 Returns the CL kernel type. More...
 
template<typename T >
void add_1D_array_argument (unsigned int &idx, const ICLArray< T > *array, const Strides &strides, unsigned int num_dimensions, const Window &window)
 Add the passed 1D array's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_1D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 1D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_1D_tensor_argument_if (bool cond, unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 1D tensor's parameters to the object's kernel's arguments starting from the index idx if the condition is true. More...
 
void add_2D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 2D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_2D_tensor_argument_if (bool cond, unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 2D tensor's parameters to the object's kernel's arguments starting from the index idx if the condition is true. More...
 
void add_3D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 3D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_4D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 4D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_5D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 5D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_3d_tensor_nhw_argument (unsigned int &idx, const ICLTensor *tensor)
 Add the passed NHW 3D tensor's parameters to the object's kernel's arguments by passing strides, dimensions and the offset to the first valid element in bytes. More...
 
void add_4d_tensor_nhwc_argument (unsigned int &idx, const ICLTensor *tensor)
 Add the passed NHWC 4D tensor's parameters to the object's kernel's arguments by passing strides, dimensions and the offset to the first valid element in bytes. More...
 
virtual void run_op (ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
 Enqueue the OpenCL kernel to process the given window on the passed OpenCL command queue. More...
 
template<typename T >
void add_argument (unsigned int &idx, T value)
 Add the passed parameters to the object's kernel's arguments starting from the index idx. More...
 
void set_lws_hint (const cl::NDRange &lws_hint)
 Set the Local-Workgroup-Size hint. More...
 
cl::NDRange lws_hint () const
 Return the Local-Workgroup-Size hint. More...
 
void set_wbsm_hint (const cl_int &wbsm_hint)
 Set the workgroup batch size modifier hint. More...
 
cl_int wbsm_hint () const
 Return the workgroup batch size modifier hint. More...
 
const std::string & config_id () const
 Get the configuration ID. More...
 
void set_target (GPUTarget target)
 Set the targeted GPU architecture. More...
 
void set_target (cl::Device &device)
 Set the targeted GPU architecture according to the CL device. More...
 
GPUTarget get_target () const
 Get the targeted GPU architecture. More...
 
size_t get_max_workgroup_size ()
 Get the maximum workgroup size for the device the CLKernelLibrary uses. More...
 
cl::NDRange get_cached_gws () const
 Get the cached gws used to enqueue this kernel. More...
 
void cache_gws (const cl::NDRange &gws)
 Cache the latest gws used to enqueue this kernel. More...
 
template<unsigned int dimension_size>
void add_tensor_argument (unsigned &idx, const ICLTensor *tensor, const Window &window)
 
template<typename T , unsigned int dimension_size>
void add_array_argument (unsigned &idx, const ICLArray< T > *array, const Strides &strides, unsigned int num_dimensions, const Window &window)
 Add the passed array's parameters to the object's kernel's arguments starting from the index idx. More...
 
- Public Member Functions inherited from IKernel
 IKernel ()
 Constructor. More...
 
virtual ~IKernel ()=default
 Destructor. More...
 
virtual bool is_parallelisable () const
 Indicates whether or not the kernel is parallelisable. More...
 
virtual BorderSize border_size () const
 The size of the border for that kernel. More...
 
const Windowwindow () const
 The maximum window the kernel can be executed on. More...
 
bool is_window_configured () const
 Function to check if the embedded window of this kernel has been configured. More...
 

Static Public Member Functions

static Status validate (const ITensorInfo *input, const ITensorInfo *output, const ITensorInfo *weight, const ITensorInfo *bias)
 Static function to check if given info will lead to a valid configuration of CLQLSTMLayerNormalizationKernel. More...
 
- Static Public Member Functions inherited from ICLKernel
constexpr static unsigned int num_arguments_per_3d_tensor_nhw ()
 Returns the number of arguments enqueued per NHW 3D Tensor object. More...
 
constexpr static unsigned int num_arguments_per_4d_tensor_nhwc ()
 Returns the number of arguments enqueued per NHWC 4D Tensor object. More...
 
constexpr static unsigned int num_arguments_per_1D_array ()
 Returns the number of arguments enqueued per 1D array object. More...
 
constexpr static unsigned int num_arguments_per_1D_tensor ()
 Returns the number of arguments enqueued per 1D tensor object. More...
 
constexpr static unsigned int num_arguments_per_2D_tensor ()
 Returns the number of arguments enqueued per 2D tensor object. More...
 
constexpr static unsigned int num_arguments_per_3D_tensor ()
 Returns the number of arguments enqueued per 3D tensor object. More...
 
constexpr static unsigned int num_arguments_per_4D_tensor ()
 Returns the number of arguments enqueued per 4D tensor object. More...
 
static cl::NDRange gws_from_window (const Window &window, bool use_dummy_work_items)
 Get the global work size given an execution window. More...
 

Detailed Description

Interface for the kernel to do layer normalization.

Definition at line 34 of file CLQLSTMLayerNormalizationKernel.h.

Constructor & Destructor Documentation

◆ CLQLSTMLayerNormalizationKernel() [1/3]

Default constructor.

Definition at line 91 of file CLQLSTMLayerNormalizationKernel.cpp.

92  : _input(nullptr), _weight(nullptr), _bias(nullptr), _output(nullptr)
93 {
95 }

References arm_compute::ELEMENTWISE.

◆ CLQLSTMLayerNormalizationKernel() [2/3]

Prevent instances of this class from being copied (As this class contains pointers)

◆ CLQLSTMLayerNormalizationKernel() [3/3]

Allow instances of this class to be moved.

◆ ~CLQLSTMLayerNormalizationKernel()

Default destructor.

Member Function Documentation

◆ configure() [1/2]

void configure ( const CLCompileContext compile_context,
const ICLTensor input,
ICLTensor output,
const ICLTensor weight,
const ICLTensor bias 
)

Initialise the kernel's input and outputs.

Parameters
[in]compile_contextThe compile context to be used.
[in]inputSource tensor with 2 dimensions. Data types supported: QSYMM16.
[out]outputDestination tensor. Data type supported: same as input
[in]weightWeight tensor. Data types supported: Same as input.
[in]biasBias tensor. Data types supported: S32.

Definition at line 97 of file CLQLSTMLayerNormalizationKernel.cpp.

102 {
103  ARM_COMPUTE_ERROR_ON_NULLPTR(input, weight, bias, output);
104  auto padding_info = get_padding_info({input, weight, bias, output});
105 
106  ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), weight->info(), bias->info()));
107 
108  _input = input;
109  _weight = weight;
110  _bias = bias;
111  _output = output;
112 
113  const uint32_t num_elems_processed_per_iteration = max_cl_vector_width / input->info()->element_size();
114 
115  int32_t output_multiplier{};
116  int32_t output_shift{};
117  const UniformQuantizationInfo quan_info = _weight->info()->quantization_info().uniform();
118  const Status status =
119  quantization::calculate_quantized_multiplier(quan_info.scale, &output_multiplier, &output_shift);
120  output_shift *= -1;
121 
122  // Set build options
123  CLBuildOptions build_opts;
124  build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
125  build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration));
126  build_opts.add_option("-DWIDTH=" + support::cpp11::to_string(input->info()->dimension(0)));
127  build_opts.add_option("-DOUTPUT_MULTIPLIER=" + support::cpp11::to_string(output_multiplier));
128  build_opts.add_option("-DOUTPUT_SHIFT=" + support::cpp11::to_string(output_shift));
129  build_opts.add_option("-DMIN_BOUND=" +
130  support::cpp11::to_string(std::get<0>(
132  build_opts.add_option("-DMAX_BOUND=" +
133  support::cpp11::to_string(std::get<1>(
135 
136  // Create kernel
137  _kernel = create_kernel(compile_context, "qlstm_layer_normalization", build_opts.options());
138 
139  // Configure kernel window
140  auto win_config = validate_and_configure_window(input->info(), output->info());
141  ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
142  ICLKernel::configure_internal(win_config.second);
143 
144  // Set config_id for enabling LWS tuning
145  _config_id = "qlstm_layer_normalization_";
146  _config_id += lower_string(string_from_data_type(input->info()->data_type()));
147  _config_id += "_";
148  _config_id += support::cpp11::to_string(input->info()->dimension(0));
149  _config_id += "_";
150  _config_id += support::cpp11::to_string(input->info()->dimension(1));
152 }

References CLBuildOptions::add_option(), ARM_COMPUTE_ERROR_ON, ARM_COMPUTE_ERROR_ON_NULLPTR, ARM_COMPUTE_ERROR_THROW_ON, bias, arm_compute::quantization::calculate_quantized_multiplier(), arm_compute::create_kernel(), arm_compute::get_cl_type_from_data_type(), arm_compute::quantization::get_min_max_values_from_quantized_data_type(), arm_compute::get_padding_info(), arm_compute::has_padding_changed(), ITensor::info(), arm_compute::test::validation::input, arm_compute::lower_string(), num_elems_processed_per_iteration, CLBuildOptions::options(), ITensorInfo::quantization_info(), UniformQuantizationInfo::scale, arm_compute::string_from_data_type(), arm_compute::support::cpp11::to_string(), QuantizationInfo::uniform(), arm_compute::cpu::kernels::validate_and_configure_window(), and arm_compute::cpu::kernels::validate_arguments().

◆ configure() [2/2]

void configure ( const ICLTensor input,
ICLTensor output,
const ICLTensor weight,
const ICLTensor bias 
)

Initialise the kernel's input and outputs.

Parameters
[in]inputSource tensor with 2 dimensions. Data types supported: QSYMM16.
[out]outputDestination tensor. Data type supported: same as input
[in]weightWeight tensor. Data types supported: Same as input.
[in]biasBias tensor. Data types supported: S32.

Definition at line 154 of file CLQLSTMLayerNormalizationKernel.cpp.

158 {
159  configure(CLKernelLibrary::get().get_compile_context(), input, output, weight, bias);
160 }

References bias, CLKernelLibrary::get(), and arm_compute::test::validation::input.

◆ operator=() [1/2]

Allow instances of this class to be moved.

◆ operator=() [2/2]

Prevent instances of this class from being copied (As this class contains pointers)

◆ run()

void run ( const Window window,
cl::CommandQueue &  queue 
)
overridevirtual

Enqueue the OpenCL kernel to process the given window on the passed OpenCL command queue.

Note
The queue is not flushed by this method, and therefore the kernel will not have been executed by the time this method returns.
Parameters
[in]windowRegion on which to execute the kernel. (Must be a valid region of the window returned by window()).
[in,out]queueCommand queue on which to enqueue the kernel.

Reimplemented from ICLKernel.

Definition at line 172 of file CLQLSTMLayerNormalizationKernel.cpp.

173 {
176 
178  // Set slice step equal to width to force gws[0] to 1, as each thread normalizes across all rows
179  slice.set_dimension_step(Window::DimX, _input->info()->dimension(0));
180 
181  Window weight_window;
182  Window weight_slice;
183 
184  weight_window.use_tensor_dimensions(_weight->info()->tensor_shape());
185  weight_slice = weight_window.first_slice_window_1D();
186 
187  do
188  {
189  unsigned int idx = 0;
190  add_2D_tensor_argument(idx, _input, slice);
191  add_1D_tensor_argument(idx, _weight, weight_slice);
192  add_1D_tensor_argument(idx, _bias, weight_slice);
193  add_2D_tensor_argument(idx, _output, slice);
194 
195  enqueue(queue, *this, slice, lws_hint());
197 }

References ICLKernel::add_1D_tensor_argument(), ICLKernel::add_2D_tensor_argument(), ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW, ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL, ITensorInfo::dimension(), Window::DimX, arm_compute::enqueue(), Window::first_slice_window_1D(), Window::first_slice_window_2D(), ITensor::info(), ICLKernel::lws_hint(), arm_compute::test::validation::reference::slice(), Window::slide_window_slice_2D(), ITensorInfo::tensor_shape(), Window::use_tensor_dimensions(), and IKernel::window().

◆ validate()

Status validate ( const ITensorInfo input,
const ITensorInfo output,
const ITensorInfo weight,
const ITensorInfo bias 
)
static

Static function to check if given info will lead to a valid configuration of CLQLSTMLayerNormalizationKernel.

Parameters
[in]inputSource tensor info with 2 dimensions. Data types supported: QSYMM16.
[in]outputDestination info tensor. Data type supported: same as input
[in]weightWeight info tensor. Data types supported: Same as input.
[in]biasBias tensor info. Data types supported: S32.
Returns
a status

Definition at line 162 of file CLQLSTMLayerNormalizationKernel.cpp.

166 {
168  ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get()).first);
169  return Status{};
170 }

References ARM_COMPUTE_RETURN_ON_ERROR, bias, ICloneable< T >::clone(), arm_compute::test::validation::input, arm_compute::cpu::kernels::validate_and_configure_window(), and arm_compute::cpu::kernels::validate_arguments().


The documentation for this class was generated from the following files:
arm_compute::support::cpp11::to_string
std::string to_string(T &&value)
Convert integer and float values to string.
Definition: StringSupport.h:168
arm_compute::CLQLSTMLayerNormalizationKernel::configure
void configure(const ICLTensor *input, ICLTensor *output, const ICLTensor *weight, const ICLTensor *bias)
Initialise the kernel's input and outputs.
Definition: CLQLSTMLayerNormalizationKernel.cpp:154
arm_compute::ICLKernel::add_1D_tensor_argument
void add_1D_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window)
Add the passed 1D tensor's parameters to the object's kernel's arguments starting from the index idx.
Definition: ICLKernel.h:186
arm_compute::ITensorInfo::tensor_shape
virtual const TensorShape & tensor_shape() const =0
Size for each dimension of the tensor.
arm_compute::lower_string
std::string lower_string(const std::string &val)
Lower a given string.
Definition: StringUtils.cpp:38
arm_compute::cpu::kernels::validate_arguments
Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const PadStrideInfo &conv_info)
Definition: CpuDirectConv2dKernel.cpp:57
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL
#define ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(k)
Definition: Validate.h:1079
arm_compute::Window::DimX
static constexpr size_t DimX
Alias for dimension 0 also known as X dimension.
Definition: Window.h:43
arm_compute::string_from_data_type
const std::string & string_from_data_type(DataType dt)
Convert a data type identity into a string.
Definition: DataTypeUtils.cpp:31
arm_compute::Window::slide_window_slice_2D
bool slide_window_slice_2D(Window &slice) const
Slide the passed 2D window slice.
Definition: Window.h:338
arm_compute::CLKernelLibrary::get
static CLKernelLibrary & get()
Access the KernelLibrary singleton.
Definition: CLKernelLibrary.cpp:41
arm_compute::ICLKernel::add_2D_tensor_argument
void add_2D_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window)
Add the passed 2D tensor's parameters to the object's kernel's arguments starting from the index idx.
Definition: ICLKernel.h:210
ARM_COMPUTE_RETURN_ON_ERROR
#define ARM_COMPUTE_RETURN_ON_ERROR(status)
Checks if a status contains an error and returns it.
Definition: Error.h:205
arm_compute::ITensorInfo::dimension
virtual size_t dimension(size_t index) const =0
Return the size of the requested dimension.
ARM_COMPUTE_ERROR_ON_NULLPTR
#define ARM_COMPUTE_ERROR_ON_NULLPTR(...)
Definition: Validate.h:159
arm_compute::ITensor::info
virtual ITensorInfo * info() const =0
Interface to be implemented by the child class to return the tensor's metadata.
ARM_COMPUTE_ERROR_ON
#define ARM_COMPUTE_ERROR_ON(cond)
If the condition is true then an error message is printed and an exception thrown.
Definition: Error.h:466
ARM_COMPUTE_ERROR_THROW_ON
#define ARM_COMPUTE_ERROR_THROW_ON(status)
Definition: Error.h:455
arm_compute::quantization::get_min_max_values_from_quantized_data_type
std::pair< int, int > get_min_max_values_from_quantized_data_type(DataType data_type)
Get minimum and maximum values for the input quantized data type.
Definition: AsymmHelpers.cpp:154
arm_compute::create_kernel
cl::Kernel create_kernel(const CLCompileContext &ctx, const std::string &kernel_name, const std::set< std::string > &build_opts=std::set< std::string >())
Creates an opencl kernel using a compile context.
Definition: CLHelpers.cpp:409
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW
#define ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(f, s)
Definition: Validate.h:203
bias
const int32_t * bias
Definition: working_space.hpp:322
arm_compute::cpu::kernels::validate_and_configure_window
std::pair< Status, Window > validate_and_configure_window(ITensorInfo *src, ITensorInfo *dst)
Definition: CpuDirectConv2dKernel.cpp:92
arm_compute::QuantizationInfo::uniform
UniformQuantizationInfo uniform() const
Return per layer quantization info.
Definition: QuantizationInfo.h:140
arm_compute::ITensorInfo::quantization_info
virtual QuantizationInfo quantization_info() const =0
Get the quantization settings (scale and offset) of the tensor.
arm_compute::IKernel::window
const Window & window() const
The maximum window the kernel can be executed on.
Definition: IKernel.cpp:28
arm_compute::get_cl_type_from_data_type
std::string get_cl_type_from_data_type(const DataType &dt)
Translates a tensor data type to the appropriate OpenCL type.
Definition: CLHelpers.cpp:41
arm_compute::ELEMENTWISE
@ ELEMENTWISE
Elementwise CL kernel type.
Definition: CLTypes.h:83
arm_compute::has_padding_changed
bool has_padding_changed(const std::unordered_map< const ITensorInfo *, PaddingSize > &padding_map)
Check if the previously stored padding info has changed after configuring a kernel.
Definition: Utils.cpp:491
arm_compute::ICLKernel::lws_hint
cl::NDRange lws_hint() const
Return the Local-Workgroup-Size hint.
Definition: ICLKernel.h:383
arm_compute::quantization::calculate_quantized_multiplier
Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon=false)
Calculate quantized representation of multiplier.
Definition: AsymmHelpers.cpp:43
num_elems_processed_per_iteration
unsigned int num_elems_processed_per_iteration
Definition: ClIm2ColKernel.cpp:60
arm_compute::get_padding_info
std::unordered_map< const ITensorInfo *, PaddingSize > get_padding_info(std::initializer_list< const ITensorInfo * > infos)
Stores padding information before configuring a kernel.
Definition: Utils.cpp:476
arm_compute::test::validation::reference::slice
SimpleTensor< T > slice(const SimpleTensor< T > &src, Coordinates starts, Coordinates ends)
Definition: SliceOperations.cpp:38
arm_compute::Window::first_slice_window_2D
Window first_slice_window_2D() const
First 2D slice of the window.
Definition: Window.h:298
arm_compute::test::validation::input
auto input
Definition: LSTMLayerQuantized.cpp:486
arm_compute::enqueue
void enqueue(cl::CommandQueue &queue, ICLKernel &kernel, const Window &window, const cl::NDRange &lws_hint=CLKernelLibrary::get().default_ndrange(), bool use_dummy_work_items=false)
Add the kernel to the command queue with the given window.
Definition: ICLKernel.cpp:33