Compute Library
 19.11
CLQuantizationLayerKernel Class Reference

Interface for the quantization layer kernel. More...

#include <CLQuantizationLayerKernel.h>

Collaboration diagram for CLQuantizationLayerKernel:
[legend]

Public Member Functions

 CLQuantizationLayerKernel ()
 Default constructor. More...
 
 CLQuantizationLayerKernel (const CLQuantizationLayerKernel &)=delete
 Prevent instances of this class from being copied (As this class contains pointers) More...
 
CLQuantizationLayerKerneloperator= (const CLQuantizationLayerKernel &)=delete
 Prevent instances of this class from being copied (As this class contains pointers) More...
 
 CLQuantizationLayerKernel (CLQuantizationLayerKernel &&)=default
 Default Move Constructor. More...
 
CLQuantizationLayerKerneloperator= (CLQuantizationLayerKernel &&)=default
 Default move assignment operator. More...
 
 ~CLQuantizationLayerKernel ()=default
 Default destructor. More...
 
void configure (const ICLTensor *input, ICLTensor *output)
 Set the input, output. More...
 
void run (const Window &window, cl::CommandQueue &queue) override
 Enqueue the OpenCL kernel to process the given window on the passed OpenCL command queue. More...
 
- Public Member Functions inherited from ICLKernel
 ICLKernel ()
 Constructor. More...
 
cl::Kernel & kernel ()
 Returns a reference to the OpenCL kernel of this object. More...
 
template<typename T >
void add_1D_array_argument (unsigned int &idx, const ICLArray< T > *array, const Strides &strides, unsigned int num_dimensions, const Window &window)
 Add the passed 1D array's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_1D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 1D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_1D_tensor_argument_if (bool cond, unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 1D tensor's parameters to the object's kernel's arguments starting from the index idx if the condition is true. More...
 
void add_2D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 2D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_2D_tensor_argument_if (bool cond, unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 2D tensor's parameters to the object's kernel's arguments starting from the index idx if the condition is true. More...
 
void add_3D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 3D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
void add_4D_tensor_argument (unsigned int &idx, const ICLTensor *tensor, const Window &window)
 Add the passed 4D tensor's parameters to the object's kernel's arguments starting from the index idx. More...
 
template<typename T >
void add_argument (unsigned int &idx, T value)
 Add the passed parameters to the object's kernel's arguments starting from the index idx. More...
 
void set_lws_hint (const cl::NDRange &lws_hint)
 Set the Local-Workgroup-Size hint. More...
 
cl::NDRange lws_hint () const
 Return the Local-Workgroup-Size hint. More...
 
const std::string & config_id () const
 Get the configuration ID. More...
 
void set_target (GPUTarget target)
 Set the targeted GPU architecture. More...
 
void set_target (cl::Device &device)
 Set the targeted GPU architecture according to the CL device. More...
 
GPUTarget get_target () const
 Get the targeted GPU architecture. More...
 
size_t get_max_workgroup_size ()
 Get the maximum workgroup size for the device the CLKernelLibrary uses. More...
 
template<typename T , unsigned int dimension_size>
void add_array_argument (unsigned &idx, const ICLArray< T > *array, const Strides &strides, unsigned int num_dimensions, const Window &window)
 Add the passed array's parameters to the object's kernel's arguments starting from the index idx. More...
 
template<unsigned int dimension_size>
void add_tensor_argument (unsigned &idx, const ICLTensor *tensor, const Window &window)
 
- Public Member Functions inherited from IKernel
 IKernel ()
 Constructor. More...
 
virtual ~IKernel ()=default
 Destructor. More...
 
virtual bool is_parallelisable () const
 Indicates whether or not the kernel is parallelisable. More...
 
virtual BorderSize border_size () const
 The size of the border for that kernel. More...
 
const Windowwindow () const
 The maximum window the kernel can be executed on. More...
 

Static Public Member Functions

static Status validate (const ITensorInfo *input, const ITensorInfo *output)
 Static function to check if given info will lead to a valid configuration of CLQuantizationLayerKernel. More...
 
- Static Public Member Functions inherited from ICLKernel
static constexpr unsigned int num_arguments_per_1D_array ()
 Returns the number of arguments enqueued per 1D array object. More...
 
static constexpr unsigned int num_arguments_per_1D_tensor ()
 Returns the number of arguments enqueued per 1D tensor object. More...
 
static constexpr unsigned int num_arguments_per_2D_tensor ()
 Returns the number of arguments enqueued per 2D tensor object. More...
 
static constexpr unsigned int num_arguments_per_3D_tensor ()
 Returns the number of arguments enqueued per 3D tensor object. More...
 
static constexpr unsigned int num_arguments_per_4D_tensor ()
 Returns the number of arguments enqueued per 4D tensor object. More...
 
static cl::NDRange gws_from_window (const Window &window)
 Get the global work size given an execution window. More...
 

Detailed Description

Interface for the quantization layer kernel.

Note
The implementation supports only 3D input tensors.

Definition at line 37 of file CLQuantizationLayerKernel.h.

Constructor & Destructor Documentation

◆ CLQuantizationLayerKernel() [1/3]

Default constructor.

Definition at line 77 of file CLQuantizationLayerKernel.cpp.

78  : _input(nullptr), _output(nullptr)
79 {
80 }

◆ CLQuantizationLayerKernel() [2/3]

Prevent instances of this class from being copied (As this class contains pointers)

◆ CLQuantizationLayerKernel() [3/3]

Default Move Constructor.

◆ ~CLQuantizationLayerKernel()

Default destructor.

Member Function Documentation

◆ configure()

void configure ( const ICLTensor input,
ICLTensor output 
)

Set the input, output.

Parameters
[in]inputSource tensor. Data types supported: F32/F16.
[out]outputDestination tensor with the same dimensions of input. Data types supported: QASYMM8/QASYMM16.
Note
Output auto initialization is not supported by this kernel

Definition at line 82 of file CLQuantizationLayerKernel.cpp.

83 {
85  ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info()));
86 
87  _input = input;
88  _output = output;
89 
90  const int vec_size_x = 16 / input->info()->element_size();
91  const int input_width_x = input->info()->tensor_shape().x();
92  const bool multi_access_x = (input_width_x / vec_size_x > 0);
93 
94  // Configure kernel window
95  auto win_config = validate_and_configure_window(input->info(), output->info());
96  ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
97  ICLKernel::configure_internal(win_config.second);
98 
99  const UniformQuantizationInfo qinfo = output->info()->quantization_info().uniform();
100  const DataType output_data_type = output->info()->data_type();
101 
102  // Create kernel
103  CLBuildOptions build_opts;
104  build_opts.add_option("-DSCALE=" + float_to_string_with_full_precision(qinfo.scale));
105  build_opts.add_option("-DOFFSET=" + support::cpp11::to_string(qinfo.offset));
106  build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(vec_size_x));
107  build_opts.add_option("-DDATA_TYPE_IN=" + get_cl_type_from_data_type(input->info()->data_type()));
108  build_opts.add_option("-DDATA_TYPE_OUT=" + get_cl_type_from_data_type(output_data_type));
109  build_opts.add_option_if(multi_access_x, "-DLAST_ACCESSED_X=" + support::cpp11::to_string(std::max<int>(input_width_x - vec_size_x, 0)));
110  std::pair<int, int> min_max_quant_values = quantization::get_min_max_values_from_quantized_data_type(output_data_type);
111  build_opts.add_option("-DMIN_QUANT_VAL=" + support::cpp11::to_string(min_max_quant_values.first));
112  build_opts.add_option("-DMAX_QUANT_VAL=" + support::cpp11::to_string(min_max_quant_values.second));
113 
114  _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel("quantization_layer", build_opts.options()));
115 }
const std::vector< int32_t > & offset() const
Offset vector accessor.
std::string to_string(T &&value)
Convert integer and float values to string.
static CLKernelLibrary & get()
Access the KernelLibrary singleton.
#define ARM_COMPUTE_ERROR_THROW_ON(status)
Definition: Error.h:455
std::pair< int, int > get_min_max_values_from_quantized_data_type(DataType data_type)
Get minimum and maximum values for the input quantized data type.
std::string float_to_string_with_full_precision(float val)
Create a string with the float in full precision.
Definition: Utils.h:1099
UniformQuantizationInfo uniform() const
Return per layer quantization info.
std::string get_cl_type_from_data_type(const DataType &dt)
Translates a tensor data type to the appropriate OpenCL type.
Definition: CLHelpers.cpp:37
const std::vector< float > & scale() const
Scale vector accessor.
std::unique_ptr< Kernel > create_kernel()
Helper function to create and return a unique_ptr pointed to a CL/GLES kernel object.
Definition: Helpers.h:86
#define ARM_COMPUTE_ERROR_ON_NULLPTR(...)
Definition: Validate.h:161
const QuantizationInfo qinfo
Definition: Im2Col.cpp:150
DataType
Available data types.
Definition: Types.h:74

References CLBuildOptions::add_option(), CLBuildOptions::add_option_if(), ARM_COMPUTE_ERROR_ON_NULLPTR, ARM_COMPUTE_ERROR_THROW_ON, arm_compute::create_kernel(), ITensorInfo::data_type(), arm_compute::float_to_string_with_full_precision(), CLKernelLibrary::get(), arm_compute::get_cl_type_from_data_type(), arm_compute::quantization::get_min_max_values_from_quantized_data_type(), ITensor::info(), arm_compute::test::validation::input, QuantizationInfo::offset(), CLBuildOptions::options(), arm_compute::test::validation::output_data_type, arm_compute::test::validation::qinfo, ITensorInfo::quantization_info(), QuantizationInfo::scale(), arm_compute::support::cpp11::to_string(), and QuantizationInfo::uniform().

Referenced by CLGenerateProposalsLayer::configure().

◆ operator=() [1/2]

CLQuantizationLayerKernel& operator= ( const CLQuantizationLayerKernel )
delete

Prevent instances of this class from being copied (As this class contains pointers)

◆ operator=() [2/2]

Default move assignment operator.

◆ run()

void run ( const Window window,
cl::CommandQueue &  queue 
)
overridevirtual

Enqueue the OpenCL kernel to process the given window on the passed OpenCL command queue.

Note
The queue is not flushed by this method, and therefore the kernel will not have been executed by the time this method returns.
Parameters
[in]windowRegion on which to execute the kernel. (Must be a valid region of the window returned by window()).
[in,out]queueCommand queue on which to enqueue the kernel.

Implements ICLKernel.

Definition at line 125 of file CLQuantizationLayerKernel.cpp.

126 {
129 
130  Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), 3);
131  Window slice = window_collapsed.first_slice_window_3D();
132 
133  do
134  {
135  unsigned int idx = 0;
136  add_3D_tensor_argument(idx, _input, slice);
137  add_3D_tensor_argument(idx, _output, slice);
138  enqueue(queue, *this, slice, lws_hint());
139  }
140  while(window_collapsed.slide_window_slice_3D(slice));
141 }
const Window & window() const
The maximum window the kernel can be executed on.
Definition: IKernel.cpp:28
void enqueue(cl::CommandQueue &queue, ICLKernel &kernel, const Window &window, const cl::NDRange &lws_hint=CLKernelLibrary::get().default_ndrange(), bool use_dummy_work_items=false)
Add the kernel to the command queue with the given window.
Definition: ICLKernel.cpp:39
cl::NDRange lws_hint() const
Return the Local-Workgroup-Size hint.
Definition: ICLKernel.h:247
void add_3D_tensor_argument(unsigned int &idx, const ICLTensor *tensor, const Window &window)
Add the passed 3D tensor's parameters to the object's kernel's arguments starting from the index idx.
Definition: ICLKernel.h:158
Window collapse_if_possible(const Window &full_window, size_t first, size_t last, bool *has_collapsed=nullptr) const
Collapse the dimensions between first and last if possible.
Definition: Window.inl:68
#define ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(f, s)
Definition: Validate.h:205
#define ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(k)
Definition: Validate.h:941
SimpleTensor< T > slice(const SimpleTensor< T > &src, Coordinates starts, Coordinates ends)

References ICLKernel::add_3D_tensor_argument(), ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW, ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL, Window::collapse_if_possible(), arm_compute::enqueue(), Window::first_slice_window_3D(), ICLKernel::lws_hint(), arm_compute::test::validation::reference::slice(), Window::slide_window_slice_3D(), and IKernel::window().

◆ validate()

Status validate ( const ITensorInfo input,
const ITensorInfo output 
)
static

Static function to check if given info will lead to a valid configuration of CLQuantizationLayerKernel.

Parameters
[in]inputInput tensor info. Data types supported: F32/F16.
[in]outputDestination tensor info with the same dimensions of input. Data types supported: QASYMM8/QASYMM16.
Returns
a status

Definition at line 117 of file CLQuantizationLayerKernel.cpp.

118 {
119  ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output));
120  ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get()).first);
121 
122  return Status{};
123 }
#define ARM_COMPUTE_RETURN_ON_ERROR(status)
Checks if a status contains an error and returns it.
Definition: Error.h:204

References ARM_COMPUTE_RETURN_ON_ERROR, ICloneable< T >::clone(), and arm_compute::test::validation::input.

Referenced by CLQuantizationLayer::validate(), and CLGenerateProposalsLayer::validate().


The documentation for this class was generated from the following files: