Compute Library
 21.02
helpers_asymm.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef ARM_COMPUTE_HELPERS_ASYMM_H
25 #define ARM_COMPUTE_HELPERS_ASYMM_H
26 
27 #include "helpers.h"
28 
29 /** Convert the given vector with round to nearest even rounding mode
30  *
31  * @param[in] x The target to be converted
32  * @param[in] type The target type
33  *
34  * @return The converted vector
35  */
36 #define CONVERT_DOWN_RTE_STR(x, type) (convert_##type##_rte((x)))
37 #define CONVERT_DOWN_RTE(x, type) CONVERT_DOWN_RTE_STR(x, type)
38 
39 /** Quantize a floating-point scalar value to 8-bit asymmetric
40  *
41  * @param[in] input Input value to quantize
42  * @param[in] offset Quantization offset
43  * @param[in] scale Quantization scale
44  *
45  * @return quantized value
46  */
47 inline uchar quantize_qasymm8(float input, float offset, float scale)
48 {
49  float out_f32 = input / scale + offset;
50  uchar res_u8 = CONVERT_SAT(CONVERT_DOWN_RTE(out_f32, int), uchar);
51  return res_u8;
52 }
53 
54 /** Dequantize a scalar value from 8-bit asymmetric to floating-point
55  *
56  * @param[in] input Input value to quantize
57  * @param[in] offset Quantization offset
58  * @param[in] scale Quantization scale
59  *
60  * @return quantized value
61  */
62 inline float dequantize_qasymm8(uchar input, float offset, float scale)
63 {
64  return ((float)input - offset) * scale;
65 }
66 
67 /** Dequantize a scalar value from signed 8-bit asymmetric to floating-point
68  *
69  * @param[in] input Input value to quantize
70  * @param[in] offset Quantization offset
71  * @param[in] scale Quantization scale
72  *
73  * @return quantized value
74  */
75 inline float dequantize_qasymm8_signed(char input, float offset, float scale)
76 {
77  return ((float)input - offset) * scale;
78 }
79 
80 /** Quantize a vector of values from floating-point
81  *
82  * @param[in] type Output data type.
83  * @param[in] size Size of vector.
84  *
85  * @return quantized values
86  */
87 #define QUANTIZE_IMPL(type, size) \
88  inline VEC_DATA_TYPE(type, size) quantize_##type##size(VEC_DATA_TYPE(float, size) input, float offset, float scale) \
89  { \
90  VEC_DATA_TYPE(float, size) \
91  out_f32 = input / (VEC_DATA_TYPE(float, size))(scale) + (VEC_DATA_TYPE(float, size))(offset); \
92  VEC_DATA_TYPE(type, size) \
93  res = CONVERT_SAT(CONVERT_DOWN_RTE(out_f32, VEC_DATA_TYPE(int, size)), VEC_DATA_TYPE(type, size)); \
94  return res; \
95  }
96 
97 /** Dequantize a vector of values to floating-point
98  *
99  * @param[in] type Input data type.
100  * @param[in] size Size of vector.
101  *
102  * @return dequantized values in floating point
103  */
104 #define DEQUANTIZE_IMPL(type, size) \
105  inline VEC_DATA_TYPE(float, size) dequantize_##type##size(VEC_DATA_TYPE(type, size) input, float offset, float scale) \
106  { \
107  return (CONVERT(input, VEC_DATA_TYPE(float, size)) - offset) * scale; \
108  }
109 
110 /** Correctly-rounded-to-nearest division by a power-of-two.
111  *
112  * @param[in] size Size of vector.
113  *
114  * @return Correctly-rounded-to-nearest division by a power-of-two.
115  */
116 #define ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(size) \
117  inline VEC_DATA_TYPE(int, size) asymm_rounding_divide_by_POW2_##size(VEC_DATA_TYPE(int, size) x, VEC_DATA_TYPE(int, size) exponent) \
118  { \
119  const VEC_DATA_TYPE(int, size) \
120  zero = (VEC_DATA_TYPE(int, size))0; \
121  const VEC_DATA_TYPE(int, size) \
122  one = (VEC_DATA_TYPE(int, size))1; \
123  VEC_DATA_TYPE(int, size) \
124  mask = (one << exponent) - one; \
125  VEC_DATA_TYPE(int, size) \
126  threshold = (mask >> 1) + select(zero, one, (SELECT_VEC_DATA_TYPE(int, size))(x < 0)); \
127  return (x >> exponent) + select(zero, one, (SELECT_VEC_DATA_TYPE(int, size))((x & mask) > threshold)); \
128  }
129 
130 /** Product of two numbers, interpreting them as fixed-point values in the interval [-1, 1),
131  * rounding to the nearest value, and saturating -1 * -1 to the maximum value.
132  *
133  * @param[in] size Size of vector.
134  *
135  * @return Product of two fixed-point numbers.
136  */
137 #define ASYMM_MULT_IMPL(size) \
138  inline VEC_DATA_TYPE(int, size) asymm_mult##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \
139  { \
140  VEC_DATA_TYPE(int, size) \
141  overflow = a == b && a == INT_MIN; \
142  VEC_DATA_TYPE(long, size) \
143  a_64 = convert_long##size(a); \
144  VEC_DATA_TYPE(long, size) \
145  b_64 = convert_long##size(b); \
146  VEC_DATA_TYPE(long, size) \
147  ab_64 = a_64 * b_64; \
148  /* Revert COMPMID-907 */ \
149  VEC_DATA_TYPE(long, size) \
150  mask1 = 1 << 30; \
151  VEC_DATA_TYPE(long, size) \
152  mask2 = 1 - (1 << 30); \
153  VEC_DATA_TYPE(long, size) \
154  is_positive_or_zero = ab_64 >= 0; \
155  VEC_DATA_TYPE(long, size) \
156  nudge = select(mask2, mask1, (SELECT_VEC_DATA_TYPE(long, size))(is_positive_or_zero)); \
157  VEC_DATA_TYPE(long, size) \
158  mask = 1ll << 31; \
159  VEC_DATA_TYPE(int, size) \
160  ab_x2_high32 = convert_int##size((ab_64 + nudge) / mask); \
161  return select(ab_x2_high32, INT_MAX, (SELECT_VEC_DATA_TYPE(int, size))(overflow)); \
162  }
163 
164 /** Calculates \f$ exp(x) \f$ for x in [-1/4, 0).
165  *
166  * @param[in] size Size of vector.
167  *
168  * @return Result in fixed-point format Q0.
169  */
170 #define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(size) \
171  inline VEC_DATA_TYPE(int, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(VEC_DATA_TYPE(int, size) a) \
172  { \
173  const VEC_DATA_TYPE(int, size) constant_term = 1895147668; \
174  const VEC_DATA_TYPE(int, size) constant_1_over_3 = 715827883; \
175  const int k_fractional_bits = 31; \
176  VEC_DATA_TYPE(int, size) \
177  x = a + (1 << (k_fractional_bits - 3)); \
178  VEC_DATA_TYPE(int, size) \
179  x2 = ASYMM_MULT(x, x, size); \
180  VEC_DATA_TYPE(int, size) \
181  x3 = ASYMM_MULT(x2, x, size); \
182  VEC_DATA_TYPE(int, size) \
183  x4 = ASYMM_MULT(x2, x2, size); \
184  VEC_DATA_TYPE(int, size) \
185  x4_over_4 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4, 2, size); \
186  VEC_DATA_TYPE(int, size) \
187  x4_over_24_plus_x3_over_6_plus_x2 = ASYMM_MULT((x4_over_4 + x3), constant_1_over_3, size) + x2; \
188  VEC_DATA_TYPE(int, size) \
189  x4_over_24_plus_x3_over_6_plus_x2_over_2 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4_over_24_plus_x3_over_6_plus_x2, 1, size); \
190  return constant_term + ASYMM_MULT(constant_term, x + x4_over_24_plus_x3_over_6_plus_x2_over_2, size); \
191  }
192 
193 /** Each bit of the result is set to the corresponding bit of either then_val or
194  * else_val depending on whether the corresponding bit of if_mask is set.
195  * Equivalent to the VBSL instruction in Arm Neon.
196  *
197  * @param[in] size Size of vector.
198  *
199  * @returns Result contaning bits from @p then_val or from @p else_val depending on corresponding bit in @p if_mask is set or not.
200  */
201 #define ASYMM_SELECT_USING_MASK_IMPL(size) \
202  inline VEC_DATA_TYPE(int, size) asymm_select_using_mask##size(VEC_DATA_TYPE(int, size) if_mask, VEC_DATA_TYPE(int, size) then_val, VEC_DATA_TYPE(int, size) else_val) \
203  { \
204  return (if_mask & then_val) ^ (~if_mask & else_val); \
205  }
206 
207 /** For each element of input vector, the corresponding bits of the result item are set
208  * if the input item is zero.
209  *
210  * @param[in] size Size of vector.
211  *
212  * @returns Output vector with bits set when corresponding bit in @p a is zero.
213  */
214 #define ASYMM_MASK_IF_ZERO_IMPL(size) \
215  inline VEC_DATA_TYPE(int, size) asymm_mask_if_zero##size(VEC_DATA_TYPE(int, size) a) \
216  { \
217  const VEC_DATA_TYPE(int, size) all_zeros = 0; \
218  const VEC_DATA_TYPE(int, size) all_ones = ~0; \
219  return select(all_zeros, all_ones, (SELECT_VEC_DATA_TYPE(int, size))(a == 0)); \
220  }
221 
222 /** For each element of input vector, the corresponding bits of the result item are set
223  * if the input item is non-zero.
224  *
225  * @param[in] size Size of vector.
226  *
227  * @returns Output vector with bits set when corresponding bit in @p a is non zero.
228  */
229 #define ASYMM_MASK_IF_NON_ZERO_IMPL(size) \
230  inline VEC_DATA_TYPE(int, size) asymm_mask_if_non_zero##size(VEC_DATA_TYPE(int, size) a) \
231  { \
232  const VEC_DATA_TYPE(int, size) all_zeros = 0; \
233  const VEC_DATA_TYPE(int, size) all_ones = ~0; \
234  return select(all_zeros, all_ones, (SELECT_VEC_DATA_TYPE(int, size))(a != 0)); \
235  }
236 
237 #define EXP_BARREL_SHIFTER_IMPL(size) \
238  inline VEC_DATA_TYPE(int, size) exp_barrel_shifter##size(VEC_DATA_TYPE(int, size) result, int exponent, int fp_multiplier, int k_integer_bits, int k_fractional_bits, VEC_DATA_TYPE(int, size) remainder) \
239  { \
240  if(k_integer_bits > exponent) \
241  { \
242  const int k_shift_amount = k_integer_bits > exponent ? k_fractional_bits + exponent : 0; \
243  return ASYMM_SELECT_USING_MASK( \
244  ASYMM_MASK_IF_NON_ZERO(remainder & (1 << k_shift_amount), size), \
245  ASYMM_MULT(result, fp_multiplier, size), result, size); \
246  } \
247  \
248  return result; \
249  }
250 
251 /** Calculates \f$ exp(x) \f$ for x < 0.
252  *
253  * @param[in] size Size of vector.
254  *
255  * @return Result in fixed-point format Q0.
256  */
257 #define ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(size) \
258  inline VEC_DATA_TYPE(int, size) asymm_exp_on_negative_values##size(VEC_DATA_TYPE(int, size) a, int k_integer_bits) \
259  { \
260  const int k_fractional_bits = 31 - k_integer_bits; \
261  VEC_DATA_TYPE(int, size) \
262  k_one_quarter = 1 << (k_fractional_bits - 2); \
263  VEC_DATA_TYPE(int, size) \
264  mask = k_one_quarter - 1; \
265  VEC_DATA_TYPE(int, size) \
266  a_mod_quarter_minus_one_quarter = (a & mask) - k_one_quarter; \
267  VEC_DATA_TYPE(int, size) \
268  a_mod_quarter_minus_one_quarter_scaled = a_mod_quarter_minus_one_quarter << k_integer_bits; \
269  VEC_DATA_TYPE(int, size) \
270  result = ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a_mod_quarter_minus_one_quarter_scaled, size); \
271  VEC_DATA_TYPE(int, size) \
272  remainder = a_mod_quarter_minus_one_quarter - a; \
273  \
274  result = EXP_BARREL_SHIFTER(result, -2, 1672461947, k_integer_bits, k_fractional_bits, remainder, size); \
275  result = EXP_BARREL_SHIFTER(result, -1, 1302514674, k_integer_bits, k_fractional_bits, remainder, size); \
276  result = EXP_BARREL_SHIFTER(result, +0, 790015084, k_integer_bits, k_fractional_bits, remainder, size); \
277  result = EXP_BARREL_SHIFTER(result, +1, 290630308, k_integer_bits, k_fractional_bits, remainder, size); \
278  result = EXP_BARREL_SHIFTER(result, +2, 39332535, k_integer_bits, k_fractional_bits, remainder, size); \
279  result = EXP_BARREL_SHIFTER(result, +3, 720401, k_integer_bits, k_fractional_bits, remainder, size); \
280  result = EXP_BARREL_SHIFTER(result, +4, 242, k_integer_bits, k_fractional_bits, remainder, size); \
281  \
282  if(k_integer_bits > 5) \
283  { \
284  const VEC_DATA_TYPE(int, size) clamp = -(1 << (k_fractional_bits + 5)); \
285  result = ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_NON_ZERO(a < clamp, size), 0, result, size); \
286  } \
287  \
288  const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX; \
289  return ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_ZERO(a, size), Q0_one, result, size); \
290  }
291 
292 /** Calculates the product of a integer value by a power of two, with either a positive exponent
293  * (equivalent to an arithmetic left shift, saturating) or a negative exponent
294  * (equivalent to an arithmetic right shift, rounding to nearest).
295  *
296  * @param[in] size Size of vector.
297  *
298  * @return Arithmetic left or right shift.
299  */
300 #define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(size) \
301  inline VEC_DATA_TYPE(int, size) asymm_saturating_rounding_mult_by_pow2##size(VEC_DATA_TYPE(int, size) x, int exponent) \
302  { \
303  if(exponent < 0) \
304  { \
305  return ASYMM_ROUNDING_DIVIDE_BY_POW2(x, -exponent, size); \
306  } \
307  \
308  const VEC_DATA_TYPE(int, size) min = INT_MIN; \
309  const VEC_DATA_TYPE(int, size) max = INT_MAX; \
310  int threshold = ((1 << (31 - exponent)) - 1); \
311  VEC_DATA_TYPE(int, size) \
312  positive_mask = ASYMM_MASK_IF_NON_ZERO(x > threshold, size); \
313  VEC_DATA_TYPE(int, size) \
314  negative_mask = ASYMM_MASK_IF_NON_ZERO(x < -threshold, size); \
315  VEC_DATA_TYPE(int, size) \
316  result = x << exponent; \
317  result = ASYMM_SELECT_USING_MASK(positive_mask, max, result, size); \
318  result = ASYMM_SELECT_USING_MASK(negative_mask, min, result, size); \
319  return result; \
320  }
321 
322 /** Calculates (a+b)/2, rounded to the nearest integer.
323  * Equivalent to VRHADD in the Arm Neon instruction set.
324  *
325  * @param[in] size Size of vector.
326  *
327  * @return (a+b)/2, rounded to the nearest integer.
328  */
329 #define ASYMM_ROUNDING_HALF_SUM_IMPL(size) \
330  inline VEC_DATA_TYPE(int, size) asymm_rounding_half_sum##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \
331  { \
332  VEC_DATA_TYPE(long, size) \
333  a64 = convert_long##size(a); \
334  VEC_DATA_TYPE(long, size) \
335  b64 = convert_long##size(b); \
336  VEC_DATA_TYPE(long, size) \
337  sum = a64 + b64; \
338  const VEC_DATA_TYPE(long, size) one = 1; \
339  const VEC_DATA_TYPE(long, size) minus_one = -1; \
340  VEC_DATA_TYPE(long, size) \
341  sign = select(minus_one, one, (SELECT_VEC_DATA_TYPE(long, size))(sum >= 0)); \
342  return convert_int##size((sum + sign) / 2); \
343  }
344 
345 /** Calculates \f$ 1 / (1 + x) \f$ for x in (0, 1).
346  *
347  * @param[in] size Size of vector.
348  *
349  * @return Result in fixed-point format Q0.
350  */
351 #define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(size) \
352  inline VEC_DATA_TYPE(int, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(VEC_DATA_TYPE(int, size) a) \
353  { \
354  const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX; \
355  const VEC_DATA_TYPE(int, size) Q2_one = 1 << (31 - 2); \
356  VEC_DATA_TYPE(int, size) \
357  half_denominator = ASYMM_ROUNDING_HALF_SUM(a, Q0_one, size); \
358  const VEC_DATA_TYPE(int, size) Q2_48_over_17 = 1515870810; \
359  const VEC_DATA_TYPE(int, size) Q2_neg_32_over_17 = -1010580540; \
360  VEC_DATA_TYPE(int, size) \
361  x = Q2_48_over_17 + ASYMM_MULT(half_denominator, Q2_neg_32_over_17, size); \
362  for(int i = 0; i < 3; i++) \
363  { \
364  VEC_DATA_TYPE(int, size) \
365  half_denominator_times_x = ASYMM_MULT(half_denominator, x, size); \
366  VEC_DATA_TYPE(int, size) \
367  one_minus_half_denominator_times_x = Q2_one - half_denominator_times_x; \
368  VEC_DATA_TYPE(int, size) \
369  tmp = ASYMM_MULT(x, one_minus_half_denominator_times_x, size); \
370  x = x + ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(tmp, 2, size); \
371  } \
372  return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, 1, size); \
373  }
374 
375 /** Considering the integer value as fixed-point, change the number of integer bits and update value accordingly.
376  *
377  * @param[in] size Size of vector.
378  *
379  * @return Rescaled value.
380  */
381 #define ASYMM_RESCALE_IMPL(size) \
382  inline VEC_DATA_TYPE(int, size) asymm_rescale##size(VEC_DATA_TYPE(int, size) value, int src_integer_bits, int dst_integer_bits) \
383  { \
384  int exponent = src_integer_bits - dst_integer_bits; \
385  return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(value, exponent, size); \
386  }
387 
388 #define QUANTIZE_STR(input, offset, scale, type, size) quantize_##type##size(input, offset, scale)
389 #define QUANTIZE(input, offset, scale, type, size) QUANTIZE_STR(input, offset, scale, type, size)
390 #define DEQUANTIZE_STR(input, offset, scale, type, size) dequantize_##type##size(input, offset, scale)
391 #define DEQUANTIZE(input, offset, scale, type, size) DEQUANTIZE_STR(input, offset, scale, type, size)
392 
393 #define ASYMM_ROUNDING_DIVIDE_BY_POW2_STR(x, exponent, size) asymm_rounding_divide_by_POW2_##size(x, exponent)
394 #define ASYMM_ROUNDING_DIVIDE_BY_POW2(x, exponent, size) ASYMM_ROUNDING_DIVIDE_BY_POW2_STR(x, exponent, size)
395 #define ASYMM_MULT_STR(a, b, size) asymm_mult##size(a, b)
396 #define ASYMM_MULT(a, b, size) ASYMM_MULT_STR(a, b, size)
397 #define ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(x, quantized_multiplier, left_shift, size) \
398  ASYMM_MULT(x *((VEC_DATA_TYPE(int, size))(1) << (-left_shift)), quantized_multiplier, size)
399 #define ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(x, quantized_multiplier, right_shift, size) \
400  ASYMM_ROUNDING_DIVIDE_BY_POW2(ASYMM_MULT(x, quantized_multiplier, size), right_shift, size)
401 #define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(a)
402 #define ASYMM_SELECT_USING_MASK(if_mask, then_val, else_val, size) asymm_select_using_mask##size(if_mask, then_val, else_val)
403 #define ASYMM_MASK_IF_ZERO(a, size) asymm_mask_if_zero##size(a)
404 #define ASYMM_MASK_IF_NON_ZERO(a, size) asymm_mask_if_non_zero##size(a)
405 #define EXP_BARREL_SHIFTER(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder, size) exp_barrel_shifter##size(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder)
406 #define ASYMM_EXP_ON_NEGATIVE_VALUES_STR(a, k_integer_bits, size) asymm_exp_on_negative_values##size(a, k_integer_bits)
407 #define ASYMM_EXP_ON_NEGATIVE_VALUES(a, k_integer_bits, size) ASYMM_EXP_ON_NEGATIVE_VALUES_STR(a, k_integer_bits, size)
408 #define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_STR(a, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(a)
409 #define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1(a, size) ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_STR(a, size)
410 #define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, exponent, size) asymm_saturating_rounding_mult_by_pow2##size(x, exponent)
411 #define ASYMM_ROUNDING_HALF_SUM(a, b, size) asymm_rounding_half_sum##size(a, b)
412 #define ASYMM_RESCALE_STR(value, src_integer_bits, dst_integer_bits, size) asymm_rescale##size(value, src_integer_bits, dst_integer_bits)
413 #define ASYMM_RESCALE(value, src_integer_bits, dst_integer_bits, size) ASYMM_RESCALE_STR(value, src_integer_bits, dst_integer_bits, size)
414 
415 #define MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(size) \
416  inline VEC_DATA_TYPE(int, size) multiply_by_quantized_multiplier##size(VEC_DATA_TYPE(int, size) input, int qmul, int shift) \
417  { \
418  const int left_shift = shift > 0 ? shift : 0; \
419  const int right_shift = shift > 0 ? 0 : -shift; \
420  return ASYMM_ROUNDING_DIVIDE_BY_POW2(ASYMM_MULT(input * (1 << left_shift), qmul, size), right_shift, size); \
421  }
422 #define MULTIPLY_BY_QUANTIZED_MULTIPLIER(input, qmul, shift, size) multiply_by_quantized_multiplier##size(input, qmul, shift)
423 
424 QUANTIZE_IMPL(uchar, 1)
428 QUANTIZE_IMPL(uchar, 4)
429 QUANTIZE_IMPL(ushort, 4)
430 QUANTIZE_IMPL(short, 4)
431 QUANTIZE_IMPL(uchar, 16)
432 QUANTIZE_IMPL(char, 16)
433 QUANTIZE_IMPL(ushort, 16)
434 QUANTIZE_IMPL(short, 16)
435 QUANTIZE_IMPL(uint, 16)
437 
443 DEQUANTIZE_IMPL(ushort, 4)
445 DEQUANTIZE_IMPL(uchar, 16)
447 DEQUANTIZE_IMPL(ushort, 16)
448 DEQUANTIZE_IMPL(short, 16)
451 
458 
465 
472 
479 
486 
493 
500 
507 
514 
521 
528 
535 
542 
543 #endif // ARM_COMPUTE_HELPERS_ASYMM_H
__global uchar * offset(const Image *img, int x, int y)
Get the pointer position of a Image.
Definition: helpers.h:846
#define ASYMM_ROUNDING_HALF_SUM_IMPL(size)
Calculates (a+b)/2, rounded to the nearest integer.
#define DEQUANTIZE_IMPL(type, size)
Dequantize a vector of values to floating-point.
#define ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(size)
Calculates for x < 0.
#define EXP_BARREL_SHIFTER_IMPL(size)
#define ASYMM_SELECT_USING_MASK_IMPL(size)
Each bit of the result is set to the corresponding bit of either then_val or else_val depending on wh...
#define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(size)
Calculates for x in [-1/4, 0).
#define CONVERT_SAT(a, b)
#define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(size)
Calculates for x in (0, 1).
#define ASYMM_MASK_IF_ZERO_IMPL(size)
For each element of input vector, the corresponding bits of the result item are set if the input item...
#define ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(size)
Correctly-rounded-to-nearest division by a power-of-two.
float dequantize_qasymm8(uchar input, float offset, float scale)
Dequantize a scalar value from 8-bit asymmetric to floating-point.
Definition: helpers_asymm.h:62
#define ASYMM_RESCALE_IMPL(size)
Considering the integer value as fixed-point, change the number of integer bits and update value acco...
#define QUANTIZE_IMPL(type, size)
Quantize a vector of values from floating-point.
Definition: helpers_asymm.h:87
uchar quantize_qasymm8(float input, float offset, float scale)
Quantize a floating-point scalar value to 8-bit asymmetric.
Definition: helpers_asymm.h:47
#define CONVERT_DOWN_RTE(x, type)
Definition: helpers_asymm.h:37
float dequantize_qasymm8_signed(char input, float offset, float scale)
Dequantize a scalar value from signed 8-bit asymmetric to floating-point.
Definition: helpers_asymm.h:75
#define ASYMM_MASK_IF_NON_ZERO_IMPL(size)
For each element of input vector, the corresponding bits of the result item are set if the input item...
#define ASYMM_MULT_IMPL(size)
Product of two numbers, interpreting them as fixed-point values in the interval [-1, 1), rounding to the nearest value, and saturating -1 * -1 to the maximum value.
#define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(size)
Calculates the product of a integer value by a power of two, with either a positive exponent (equival...
#define MULTIPLY_BY_QUANTIZED_MULTIPLIER_IMPL(size)