Compute Library
 23.08
winograd_output_transform.cl
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
25 #include "helpers.h"
26 #include "tile_helpers.h"
27 
28 #if defined(NUM_TILES_X) && defined(OUTPUT_TILE_W) && defined(OUTPUT_TILE_H)
29 #if defined(VEC_SIZE) && VEC_SIZE == 2
30 /** This OpenCL kernel performs Winograd output transform when the output tile is 2x2/2x1 or 1x2, the filter size 3x3/3x1 or 1x3 and the data layout is NCHW
31  *
32  * @note The number of tiles along the X direction must be passed at compile time using -DNUM_TILES_X: e.g. -DNUM_TILES_X=16
33  * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2
34  * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2
35  * @note If this kernel is used to perform Winograd output transform 3x1, -DWINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
36  * @note If this kernel is used to perform Winograd output transform 1x3, -DWINOGRAD_OUTPUT_TRANSFORM_VERTICAL has to be passed at compile time
37  * @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types: float/half.
38  * @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
39  * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively.
40  * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size. Accepted values are -DVEC_SIZE=2 (for output_tile_size 2x2, 2x1, 1x2) and -DVEC_SIZE=4 (for output_tile_size 4x4, 4x1, 1x4)
41  *
42  * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32/F16
43  * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
44  * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
45  * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
46  * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
47  * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
48  * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
49  * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
50  * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
51  * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
52  * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
53  * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
54  * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
55  * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
56  * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
57  * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
58  * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
59  * @param[in] dst_stride_w Stride of the source tensor in W dimension (in bytes)
60  * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
61  * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
62  */
63 __kernel void winograd_output_transform_2x2_3x3_nchw(
66 #if defined(HAS_BIAS)
67  ,
69 #endif // defined(HAS_BIAS)
70 )
71 {
72  // Each thread stores a 2x2/2x1 or 1x2 tile accordingly with the filter size
73 #if defined(SRC_DEPTH)
75  const __global uchar *src_addr = tensor4D_offset(&src, 0, 0, 0, 0);
76 #else /* defined(SRC_DEPTH) */
78  const __global uchar *src_addr = tensor3D_offset(&src, 0, 0, 0);
79 #endif /* defined(SRC_DEPTH) */
80 
81  // Load the values across the 16 or 4 channels to compose the 4x4 or 4x1 tile
82  DATA_TYPE d00 = *((__global DATA_TYPE *)(src_addr + 0 * src_stride_z));
83  DATA_TYPE d01 = *((__global DATA_TYPE *)(src_addr + 1 * src_stride_z));
84  DATA_TYPE d02 = *((__global DATA_TYPE *)(src_addr + 2 * src_stride_z));
85  DATA_TYPE d03 = *((__global DATA_TYPE *)(src_addr + 3 * src_stride_z));
86 
87 #if defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL) || defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
88  // Compute the 2x1 or 1x2 output tile
89  // out00 = d00 + d01 + d02
90  // out01 = d01 - d02 - d03
91 
92  float out00 = d00 + d01 + d02;
93  float out01 = d01 - d02 - d03;
94 #else // defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL) || defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
95 
96  DATA_TYPE d10 = *((__global DATA_TYPE *)(src_addr + 4 * src_stride_z));
97  DATA_TYPE d11 = *((__global DATA_TYPE *)(src_addr + 5 * src_stride_z));
98  DATA_TYPE d12 = *((__global DATA_TYPE *)(src_addr + 6 * src_stride_z));
99  DATA_TYPE d13 = *((__global DATA_TYPE *)(src_addr + 7 * src_stride_z));
100 
101  DATA_TYPE d20 = *((__global DATA_TYPE *)(src_addr + 8 * src_stride_z));
102  DATA_TYPE d21 = *((__global DATA_TYPE *)(src_addr + 9 * src_stride_z));
103  DATA_TYPE d22 = *((__global DATA_TYPE *)(src_addr + 10 * src_stride_z));
104  DATA_TYPE d23 = *((__global DATA_TYPE *)(src_addr + 11 * src_stride_z));
105 
106  DATA_TYPE d30 = *((__global DATA_TYPE *)(src_addr + 12 * src_stride_z));
107  DATA_TYPE d31 = *((__global DATA_TYPE *)(src_addr + 13 * src_stride_z));
108  DATA_TYPE d32 = *((__global DATA_TYPE *)(src_addr + 14 * src_stride_z));
109  DATA_TYPE d33 = *((__global DATA_TYPE *)(src_addr + 15 * src_stride_z));
110 
111  // Compute the 2x2 output tile
112  float k0 = d01 + d11 + d21;
113  float k1 = d02 + d12 + d22;
114  float k2 = d11 - d21 - d31;
115  float k3 = d12 - d22 - d32;
116 
117  // out00 = d00 + d10 + d20 + d01 + d11 + d21 + d02 + d12 + d22
118  // out01 = d01 + d11 + d21 - (d02 + d12 + d22) - (d03 + d13 + d23)
119  // out10 = d10 - d20 - d30 + (d11 - d21 - d31) + (d12 - d22 - d32)
120  // out11 = d11 - d21 - d31 - (d12 - d22 - d32) - (d13 - d23 - d33)
121 
122  float out00 = d10;
123  float out01 = -d13;
124  float out10 = d10;
125  float out11 = -d13;
126 
127  out00 += d00 + d20 + k0 + k1;
128  out01 += k0 - k1 - (d03 + d23);
129  out10 += -d20 - d30 + k2 + k3;
130  out11 += k2 - k3 + d23 + d33;
131 #endif // defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL) || defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
132 
133  int y_in = get_global_id(1);
134  int x_out = (y_in % NUM_TILES_X) * OUTPUT_TILE_W;
135  int y_out = (y_in / NUM_TILES_X) * OUTPUT_TILE_H;
136  int z_out = get_global_id(0);
137 #if defined(SRC_DEPTH)
138  int batch = get_global_id(2) / SRC_DEPTH;
139 #endif /* defined(SRC_DEPTH) */
140 
141 #if defined(HAS_BIAS)
142  // Add bias
144 
145  float b = (float) * ((__global DATA_TYPE *)(vector_offset(&bias, z_out)));
146 
147  out00 += (float)b;
148  out01 += (float)b;
149 #endif // defined(HAS_BIAS)
150 
151  // Get output address
152 #if defined(SRC_DEPTH)
153  __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_out * sizeof(DATA_TYPE) + y_out * dst_stride_y + z_out * dst_stride_z + batch * dst_stride_w;
154 #else /* defined(SRC_DEPTH) */
155  __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_out * sizeof(DATA_TYPE) + y_out * dst_stride_y + z_out * dst_stride_z;
156 #endif /* defined(SRC_DEPTH) */
157 
158  // Store the output tile
159 #if defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
160  const VEC_DATA_TYPE(DATA_TYPE, 2)
161  out0_dt = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, CONVERT((VEC_DATA_TYPE(float, 2))(out00, out01), VEC_DATA_TYPE(DATA_TYPE, 2)), A_VAL, B_VAL);
162  *((__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y)) = out0_dt.s0;
163  *((__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y)) = out0_dt.s1;
164 #else // defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
165  vstore2(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, CONVERT((VEC_DATA_TYPE(float, 2))(out00, out01), VEC_DATA_TYPE(DATA_TYPE, 2)), A_VAL, B_VAL), 0,
166  (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y));
167 #endif // defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
168 
169 #if !defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
170 #if defined(HAS_BIAS)
171  // Add bias
172  out10 += (DATA_TYPE)b;
173  out11 += (DATA_TYPE)b;
174 #endif // defined(HAS_BIAS)
175  vstore2(ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, CONVERT((VEC_DATA_TYPE(float, 2))(out10, out11), VEC_DATA_TYPE(DATA_TYPE, 2)), A_VAL, B_VAL), 0,
176  (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y));
177 #endif // !defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
178 }
179 #endif // defined(VEC_SIZE) && VEC_SIZE == 2
180 
181 #if defined(VEC_SIZE) && VEC_SIZE == 4
182 /** This OpenCL kernel performs Winograd output transform when the output tile is 4x4, the filter size 3x3 and the data layout is NCHW
183  *
184  * @note The number of tiles along the X direction must be passed at compile time using -DNUM_TILES_X: e.g. -DNUM_TILES_X=16
185  * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=4
186  * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=4
187  * @note If this kernel is used to perform Winograd output transform 3x1, -DWINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
188  * @note If this kernel is used to perform Winograd output transform 1x3, -DWINOGRAD_OUTPUT_TRANSFORM_VERTICAL has to be passed at compile time
189  * @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types: float/half.
190  *
191  * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32/F16
192  * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
193  * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
194  * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
195  * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
196  * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
197  * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
198  * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
199  * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
200  * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
201  * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
202  * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
203  * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
204  * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
205  * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
206  * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
207  * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
208  * @param[in] dst_stride_w Stride of the source tensor in W dimension (in bytes)
209  * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
210  * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
211  */
212 __kernel void winograd_output_transform_4x4_3x3_nchw(
215 #if defined(HAS_BIAS)
216  ,
218 #endif // defined(HAS_BIAS)
219 )
220 {
221  // Each thread stores a 4x4/4x1 or 1x4 tile
222 #if defined(SRC_DEPTH)
224  const __global uchar *src_addr = tensor4D_offset(&src, 0, 0, 0, 0);
225 #else /* defined(SRC_DEPTH) */
227  const __global uchar *src_addr = tensor3D_offset(&src, 0, 0, 0);
228 #endif /* defined(SRC_DEPTH) */
229 
230  // Load the values across the channels to compose the 6x6 or 6x1 tile
231  DATA_TYPE d00 = *((__global DATA_TYPE *)(src_addr + 0 * src_stride_z));
232  DATA_TYPE d01 = *((__global DATA_TYPE *)(src_addr + 1 * src_stride_z));
233  DATA_TYPE d02 = *((__global DATA_TYPE *)(src_addr + 2 * src_stride_z));
234  DATA_TYPE d03 = *((__global DATA_TYPE *)(src_addr + 3 * src_stride_z));
235  DATA_TYPE d04 = *((__global DATA_TYPE *)(src_addr + 4 * src_stride_z));
236  DATA_TYPE d05 = *((__global DATA_TYPE *)(src_addr + 5 * src_stride_z));
237 
238 #if defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL) || defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
239  // Compute out00, out01, out02 and out03
240  float out00 = d00 + d01 + d02 + d03 + d04;
241  float out01 = d01 - d02 + 2.0f * d03 - 2.0f * d04;
242  float out02 = d01 + d02 + 4.0f * d03 + 4.0f * d04;
243  float out03 = d01 - d02 + 8.0f * d03 - 8.0f * d04 + d05;
244 #else // defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL) || defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
245 
246  DATA_TYPE d10 = *((__global DATA_TYPE *)(src_addr + 6 * src_stride_z));
247  DATA_TYPE d11 = *((__global DATA_TYPE *)(src_addr + 7 * src_stride_z));
248  DATA_TYPE d12 = *((__global DATA_TYPE *)(src_addr + 8 * src_stride_z));
249  DATA_TYPE d13 = *((__global DATA_TYPE *)(src_addr + 9 * src_stride_z));
250  DATA_TYPE d14 = *((__global DATA_TYPE *)(src_addr + 10 * src_stride_z));
251  DATA_TYPE d15 = *((__global DATA_TYPE *)(src_addr + 11 * src_stride_z));
252 
253  DATA_TYPE d20 = *((__global DATA_TYPE *)(src_addr + 12 * src_stride_z));
254  DATA_TYPE d21 = *((__global DATA_TYPE *)(src_addr + 13 * src_stride_z));
255  DATA_TYPE d22 = *((__global DATA_TYPE *)(src_addr + 14 * src_stride_z));
256  DATA_TYPE d23 = *((__global DATA_TYPE *)(src_addr + 15 * src_stride_z));
257  DATA_TYPE d24 = *((__global DATA_TYPE *)(src_addr + 16 * src_stride_z));
258  DATA_TYPE d25 = *((__global DATA_TYPE *)(src_addr + 17 * src_stride_z));
259 
260  DATA_TYPE d30 = *((__global DATA_TYPE *)(src_addr + 18 * src_stride_z));
261  DATA_TYPE d31 = *((__global DATA_TYPE *)(src_addr + 19 * src_stride_z));
262  DATA_TYPE d32 = *((__global DATA_TYPE *)(src_addr + 20 * src_stride_z));
263  DATA_TYPE d33 = *((__global DATA_TYPE *)(src_addr + 21 * src_stride_z));
264  DATA_TYPE d34 = *((__global DATA_TYPE *)(src_addr + 22 * src_stride_z));
265  DATA_TYPE d35 = *((__global DATA_TYPE *)(src_addr + 23 * src_stride_z));
266 
267  DATA_TYPE d40 = *((__global DATA_TYPE *)(src_addr + 24 * src_stride_z));
268  DATA_TYPE d41 = *((__global DATA_TYPE *)(src_addr + 25 * src_stride_z));
269  DATA_TYPE d42 = *((__global DATA_TYPE *)(src_addr + 26 * src_stride_z));
270  DATA_TYPE d43 = *((__global DATA_TYPE *)(src_addr + 27 * src_stride_z));
271  DATA_TYPE d44 = *((__global DATA_TYPE *)(src_addr + 28 * src_stride_z));
272  DATA_TYPE d45 = *((__global DATA_TYPE *)(src_addr + 29 * src_stride_z));
273 
274  DATA_TYPE d50 = *((__global DATA_TYPE *)(src_addr + 30 * src_stride_z));
275  DATA_TYPE d51 = *((__global DATA_TYPE *)(src_addr + 31 * src_stride_z));
276  DATA_TYPE d52 = *((__global DATA_TYPE *)(src_addr + 32 * src_stride_z));
277  DATA_TYPE d53 = *((__global DATA_TYPE *)(src_addr + 33 * src_stride_z));
278  DATA_TYPE d54 = *((__global DATA_TYPE *)(src_addr + 34 * src_stride_z));
279  DATA_TYPE d55 = *((__global DATA_TYPE *)(src_addr + 35 * src_stride_z));
280 
281  // Compute out00, out01, out02 and out03
282  float out00 = (float)d01 + (float)d21 + (float)d41 + (float)d11 + (float)d31;
283  float out01 = (float)d01 + (float)d21 + (float)d41 + (float)d11 + (float)d31;
284  float out02 = (float)d01 + (float)d21 + (float)d41 + (float)d11 + (float)d31;
285  float out03 = (float)d01 + d21 + (float)d41 + (float)d11 + (float)d31;
286 
287  float k0 = d03 + d04 + d13 + d14 + d23 + d24 + d33 + d34 + d43 + d44;
288  float k1 = 2.0f * d03 - 2.0f * d04 + 2.0f * d13 - 2.0f * d14 + 2.0f * d23 - 2.0f * d24 + 2.0f * d33 - 2.0f * d34 + 2.0f * d43 - 2.0f * d44;
289 
290  out00 += k0 + d00 + d02 + d10 + d12 + d20 + d22 + d30 + d32 + d40 + d42;
291  out01 += k1 - d02 - d12 - d22 - d32 - d42;
292  out02 += 4.0f * k0 + d02 + d12 + d22 + d32 + d42;
293  out03 += 4.0f * k1 - d02 - d12 - d22 - d32 - d42 + d05 + d15 + d25 + d35 + d45;
294 
295  // Compute out10, out11, out12 and out13
296  float out10 = d11 - d21 + 2.0f * d31 - 2.0f * d41;
297  float out11 = d11 - d21 + 2.0f * d31 - 2.0f * d41;
298  float out12 = d11 - d21 + 2.0f * d31 - 2.0f * d41;
299  float out13 = d11 - d21 + 2.0f * d31 - 2.0f * d41;
300 
301  k0 = d13 + d14 - d23 - d24 + 2.0f * d33 + 2.0f * d34 - 2.0f * d43 - 2.0f * d44;
302  k1 = 2.0f * d13 - 2.0f * d14 - 2.0f * d23 + 2.0f * d24 + 4.0f * d33 - 4.0f * d34 - 4.0f * d43 + 4.0f * d44;
303 
304  out10 += k0 + d10 + d12 - d20 - d22 + 2.0f * d30 + 2.0f * d32 - 2.0f * d40 - 2.0f * d42;
305  out11 += k1 - d12 + d22 - 2.0f * d32 + 2.0f * d42;
306  out12 += 4.0f * k0 + d12 - d22 + 2.0f * d32 - 2.0f * d42;
307  out13 += 4.0f * k1 - d12 + d15 + d22 - d25 - 2.0f * d32 + 2.0f * d35 + 2.0f * d42 - 2.0f * d45;
308 
309  // Compute out20, out21, out22 and out23
310  float out20 = d11 + d21 + 4.0f * d31 + 4.0f * d41;
311  float out21 = d11 + d21 + 4.0f * d31 + 4.0f * d41;
312  float out22 = d11 + d21 + 4.0f * d31 + 4.0f * d41;
313  float out23 = d11 + d21 + 4.0f * d31 + 4.0f * d41;
314 
315  k0 = d13 + d14 + d23 + d24 + 4.0f * d33 + 4.0f * d34 + 4.0f * d43 + 4.0f * d44;
316  k1 = 2.0f * d13 - 2.0f * d14 + 2.0f * d23 - 2.0f * d24 + 8.0f * d33 - 8.0f * d34 + 8.0f * d43 - 8.0f * d44;
317 
318  out20 += k0 + d10 + d12 + d20 + d22 + 4.0f * d30 + 4.0f * d32 + 4.0f * d40 + 4.0f * d42;
319  out21 += k1 - d12 - d22 - 4.0f * d32 - 4.0f * d42;
320  out22 += 4.0f * k0 + d12 + d22 + 4.0f * d32 + 4.0f * d42;
321  out23 += 4.0f * k1 - d12 + d15 - d22 + d25 - 4.0f * d32 + 4.0f * d35 - 4.0f * d42 + 4.0f * d45;
322 
323  // Compute out30, out31, out32 and out33
324  float out30 = d11 - d21 + 8.0f * d31 - 8.0f * d41 + d51;
325  float out31 = d11 - d21 + 8.0f * d31 - 8.0f * d41 + d51;
326  float out32 = d11 - d21 + 8.0f * d31 - 8.0f * d41 + d51;
327  float out33 = d11 - d21 + 8.0f * d31 - 8.0f * d41 + d51;
328 
329  k0 = d13 + d14 - d23 - d24 + 8.0f * d33 + 8.0f * d34 - 8.0f * d43 - 8.0f * d44 + d53 + d54;
330  k1 = 2.0f * d13 - 2.0f * d14 - 2.0f * d23 + 2.0f * d24 + 16.0f * d33 - 16.0f * d34 - 16.0f * d43 + 16.0f * d44 + 2.0f * d53 - 2.0f * d54;
331 
332  out30 += k0 + d10 + d12 - d20 - d22 + 8.0f * d30 + 8.0f * d32 - 8.0f * d40 - 8.0f * d42 + d50 + d52;
333  out31 += k1 - d12 + d22 - 8.0f * d32 + 8.0f * d42 - d52;
334  out32 += 4.0f * k0 + d12 - d22 + 8.0f * d32 - 8.0f * d42 + d52;
335  out33 += 4.0f * k1 - d12 + d15 + d22 - d25 - 8.0f * d32 + 8.0f * d35 + 8.0f * d42 - 8.0f * d45 - d52 + d55;
336 #endif // defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL) || defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
337 
338  int y_in = get_global_id(1);
339  int x_out = (y_in % NUM_TILES_X) * OUTPUT_TILE_W;
340  int y_out = (y_in / NUM_TILES_X) * OUTPUT_TILE_H;
341  int z_out = get_global_id(0);
342 #if defined(SRC_DEPTH)
343  int batch = get_global_id(2) / SRC_DEPTH;
344 #endif /* defined(SRC_DEPTH) */
345 
346 #if defined(HAS_BIAS)
347  // Add bias
349 
350  float b = (float) * ((__global DATA_TYPE *)(vector_offset(&bias, z_out)));
351 
352  out00 += (float)b;
353  out01 += (float)b;
354  out02 += (float)b;
355  out03 += (float)b;
356 #endif // defined(HAS_BIAS)
357 
358  // Get output address
359 #if defined(SRC_DEPTH)
360  __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_out * sizeof(DATA_TYPE) + y_out * dst_stride_y + z_out * dst_stride_z + batch * dst_stride_w;
361 #else /* defined(SRC_DEPTH) */
362  __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_out * sizeof(DATA_TYPE) + y_out * dst_stride_y + z_out * dst_stride_z;
363 #endif /* defined(SRC_DEPTH) */
364 
365  // Store the output tile
366  const VEC_DATA_TYPE(DATA_TYPE, 4)
367  out0_dt = CONVERT(ACTIVATION(ACTIVATION_TYPE, float, VEC_SIZE, (VEC_DATA_TYPE(float, 4))(out00, out01, out02, out03), A_VAL, B_VAL), VEC_DATA_TYPE(DATA_TYPE, 4));
368 
369 #if defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
370  *((__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y)) = out0_dt.s0;
371  *((__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y)) = out0_dt.s1;
372  *((__global DATA_TYPE *)(dst_addr + 2 * dst_stride_y)) = out0_dt.s2;
373  *((__global DATA_TYPE *)(dst_addr + 3 * dst_stride_y)) = out0_dt.s3;
374 #else // defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
375  vstore4(out0_dt, 0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y));
376 #endif // defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
377 
378 #if !defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
379 #if defined(HAS_BIAS)
380  // Add bias
381  out10 += (float)b;
382  out11 += (float)b;
383  out12 += (float)b;
384  out13 += (float)b;
385 
386  out20 += (float)b;
387  out21 += (float)b;
388  out22 += (float)b;
389  out23 += (float)b;
390 
391  out30 += (float)b;
392  out31 += (float)b;
393  out32 += (float)b;
394  out33 += (float)b;
395 #endif // defined(HAS_BIAS)
396  vstore4(CONVERT(ACTIVATION(ACTIVATION_TYPE, float, VEC_SIZE, (VEC_DATA_TYPE(float, 4))(out10, out11, out12, out13), A_VAL, B_VAL), VEC_DATA_TYPE(DATA_TYPE, 4)), 0,
397  (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y));
398  vstore4(CONVERT(ACTIVATION(ACTIVATION_TYPE, float, VEC_SIZE, (VEC_DATA_TYPE(float, 4))(out20, out21, out22, out23), A_VAL, B_VAL), VEC_DATA_TYPE(DATA_TYPE, 4)), 0,
399  (__global DATA_TYPE *)(dst_addr + 2 * dst_stride_y));
400  vstore4(CONVERT(ACTIVATION(ACTIVATION_TYPE, float, VEC_SIZE, (VEC_DATA_TYPE(float, 4))(out30, out31, out32, out33), A_VAL, B_VAL), VEC_DATA_TYPE(DATA_TYPE, 4)), 0,
401  (__global DATA_TYPE *)(dst_addr + 3 * dst_stride_y));
402 #endif // !defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
403 }
404 
405 #define COMPUTE_TMP_COL(col, d0, d1, d2, d3, d4, d5, d6, d7, comm_fact) \
406  ({ \
407  comm_fact.s0 = d1 + d2; \
408  comm_fact.s1 = d3 + d4; \
409  comm_fact.s2 = d5 + d6; \
410  \
411  col.s0 = comm_fact.s0 + comm_fact.s1 + 8.f * comm_fact.s2 + d0; \
412  col.s2 = comm_fact.s0 + 4.f * comm_fact.s1 + 2.f * comm_fact.s2; \
413  \
414  comm_fact.s0 = d1 - d2; \
415  comm_fact.s1 = d3 - d4; \
416  comm_fact.s2 = d5 - d6; \
417  \
418  col.s1 = comm_fact.s0 + 2.f * comm_fact.s1 + 4.f * comm_fact.s2; \
419  col.s3 = comm_fact.s0 + 8.f * comm_fact.s1 + comm_fact.s2 + d7; \
420  })
421 
422 /** This OpenCL kernel performs Winograd output transform when the output tile is 4x4/4x1 or 1x4, the filter size 5x5/5x1 or 1x5 and the data layout is NCHW
423  *
424  * @note The number of tiles along the X direction must be passed at compile time using -DNUM_TILES_X: e.g. -DNUM_TILES_X=16
425  * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=4
426  * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=4
427  * @note If this kernel is used to perform Winograd output transform 3x1, -DWINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
428  * @note If this kernel is used to perform Winograd output transform 1x3, -DWINOGRAD_OUTPUT_TRANSFORM_VERTICAL has to be passed at compile time
429  * @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types: float/half.
430  *
431  * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32/F16
432  * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
433  * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
434  * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
435  * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
436  * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
437  * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
438  * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
439  * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
440  * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
441  * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
442  * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
443  * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
444  * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
445  * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
446  * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
447  * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
448  * @param[in] dst_stride_w Stride of the source tensor in W dimension (in bytes)
449  * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
450  * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
451  */
452 __kernel void winograd_output_transform_4x4_5x5_nchw(
455 #if defined(HAS_BIAS)
456  ,
458 #endif // defined(HAS_BIAS)
459 )
460 {
461  // Each thread stores a 4x4/4x1 or 1x4 tile
462 #if defined(SRC_DEPTH)
464  const __global uchar *src_addr = tensor4D_offset(&src, 0, 0, 0, 0);
465 #else /* defined(SRC_DEPTH) */
466 
468  const __global uchar *src_addr = tensor3D_offset(&src, 0, 0, 0);
469 #endif /* defined(SRC_DEPTH) */
470 
471  // Compute output address
472  int y_in = get_global_id(1);
473  int x_out = (y_in % NUM_TILES_X) * OUTPUT_TILE_W;
474  int y_out = (y_in / NUM_TILES_X) * OUTPUT_TILE_H;
475  int z_out = get_global_id(0);
476 #if defined(SRC_DEPTH)
477  int batch = get_global_id(2) / SRC_DEPTH;
478 #endif /* defined(SRC_DEPTH) */
479 
480 #if defined(SRC_DEPTH)
481  __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_out * sizeof(DATA_TYPE) + y_out * dst_stride_y + z_out * dst_stride_z + batch * dst_stride_w;
482 #else /* defined(SRC_DEPTH) */
483 
484  __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_out * sizeof(DATA_TYPE) + y_out * dst_stride_y + z_out * dst_stride_z;
485 #endif /* defined(SRC_DEPTH) */
486 
487  // Load the values across the channels to compose the input tile
488  DATA_TYPE d00 = *((__global DATA_TYPE *)(src_addr + 0 * src_stride_z));
489  DATA_TYPE d01 = *((__global DATA_TYPE *)(src_addr + 1 * src_stride_z));
490  DATA_TYPE d02 = *((__global DATA_TYPE *)(src_addr + 2 * src_stride_z));
491  DATA_TYPE d03 = *((__global DATA_TYPE *)(src_addr + 3 * src_stride_z));
492  DATA_TYPE d04 = *((__global DATA_TYPE *)(src_addr + 4 * src_stride_z));
493  DATA_TYPE d05 = *((__global DATA_TYPE *)(src_addr + 5 * src_stride_z));
494  DATA_TYPE d06 = *((__global DATA_TYPE *)(src_addr + 6 * src_stride_z));
495  DATA_TYPE d07 = *((__global DATA_TYPE *)(src_addr + 7 * src_stride_z));
496 
497 #if defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL) || defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
498  // Compute out00, out01, out02 and out03
499  float out00 = d00 + d01 + d02 + d03 + d04 + 8.0f * d05 + 8.0f * d06;
500  float out01 = d01 - d02 + 2.0f * d03 - 2.0f * d04 + 4.0f * d05 - 4.0f * d06;
501  float out02 = d01 + d02 + 4.0f * d03 + 4.0f * d04 + 2.0f * d05 + 2.0f * d06;
502  float out03 = d01 - d02 + 8.0f * d03 - 8.0f * d04 + d05 - d06 + d07;
503 
504 #if defined(HAS_BIAS)
505  // Add bias
507 
508  float b = (float) * ((__global DATA_TYPE *)(vector_offset(&bias, z_out)));
509 
510  out00 += (DATA_TYPE)b;
511  out01 += (DATA_TYPE)b;
512  out02 += (DATA_TYPE)b;
513  out03 += (DATA_TYPE)b;
514 #endif // defined(HAS_BIAS)
515 
516  // Store the output tile
517 #if defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
518  VEC_DATA_TYPE(DATA_TYPE, 4)
519  out0_dt = CONVERT(ACTIVATION(ACTIVATION_TYPE, float, VEC_SIZE, (VEC_DATA_TYPE(float, 4))(out00, out01, out02, out03), A_VAL,
520  B_VAL),
521  VEC_DATA_TYPE(DATA_TYPE, 4));
522  *((__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y)) = out0_dt.s0;
523  *((__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y)) = out0_dt.s1;
524  *((__global DATA_TYPE *)(dst_addr + 2 * dst_stride_y)) = out0_dt.s2;
525  *((__global DATA_TYPE *)(dst_addr + 3 * dst_stride_y)) = out0_dt.s3;
526 #else // defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
527  vstore4(CONVERT(ACTIVATION(ACTIVATION_TYPE, float, VEC_SIZE, (VEC_DATA_TYPE(float, 4))(out00, out01, out02, out03), A_VAL, B_VAL), VEC_DATA_TYPE(DATA_TYPE, 4)),
528  0, (__global DATA_TYPE *)(dst_addr));
529 #endif // defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
530 
531 #else // defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL) || defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
532 
533  DATA_TYPE d10 = *((__global DATA_TYPE *)(src_addr + 8 * src_stride_z));
534  DATA_TYPE d11 = *((__global DATA_TYPE *)(src_addr + 9 * src_stride_z));
535  DATA_TYPE d12 = *((__global DATA_TYPE *)(src_addr + 10 * src_stride_z));
536  DATA_TYPE d13 = *((__global DATA_TYPE *)(src_addr + 11 * src_stride_z));
537  DATA_TYPE d14 = *((__global DATA_TYPE *)(src_addr + 12 * src_stride_z));
538  DATA_TYPE d15 = *((__global DATA_TYPE *)(src_addr + 13 * src_stride_z));
539  DATA_TYPE d16 = *((__global DATA_TYPE *)(src_addr + 14 * src_stride_z));
540  DATA_TYPE d17 = *((__global DATA_TYPE *)(src_addr + 15 * src_stride_z));
541 
542  DATA_TYPE d20 = *((__global DATA_TYPE *)(src_addr + 16 * src_stride_z));
543  DATA_TYPE d21 = *((__global DATA_TYPE *)(src_addr + 17 * src_stride_z));
544  DATA_TYPE d22 = *((__global DATA_TYPE *)(src_addr + 18 * src_stride_z));
545  DATA_TYPE d23 = *((__global DATA_TYPE *)(src_addr + 19 * src_stride_z));
546  DATA_TYPE d24 = *((__global DATA_TYPE *)(src_addr + 20 * src_stride_z));
547  DATA_TYPE d25 = *((__global DATA_TYPE *)(src_addr + 21 * src_stride_z));
548  DATA_TYPE d26 = *((__global DATA_TYPE *)(src_addr + 22 * src_stride_z));
549  DATA_TYPE d27 = *((__global DATA_TYPE *)(src_addr + 23 * src_stride_z));
550 
551  DATA_TYPE d30 = *((__global DATA_TYPE *)(src_addr + 24 * src_stride_z));
552  DATA_TYPE d31 = *((__global DATA_TYPE *)(src_addr + 25 * src_stride_z));
553  DATA_TYPE d32 = *((__global DATA_TYPE *)(src_addr + 26 * src_stride_z));
554  DATA_TYPE d33 = *((__global DATA_TYPE *)(src_addr + 27 * src_stride_z));
555  DATA_TYPE d34 = *((__global DATA_TYPE *)(src_addr + 28 * src_stride_z));
556  DATA_TYPE d35 = *((__global DATA_TYPE *)(src_addr + 29 * src_stride_z));
557  DATA_TYPE d36 = *((__global DATA_TYPE *)(src_addr + 30 * src_stride_z));
558  DATA_TYPE d37 = *((__global DATA_TYPE *)(src_addr + 31 * src_stride_z));
559 
560  DATA_TYPE d40 = *((__global DATA_TYPE *)(src_addr + 32 * src_stride_z));
561  DATA_TYPE d41 = *((__global DATA_TYPE *)(src_addr + 33 * src_stride_z));
562  DATA_TYPE d42 = *((__global DATA_TYPE *)(src_addr + 34 * src_stride_z));
563  DATA_TYPE d43 = *((__global DATA_TYPE *)(src_addr + 35 * src_stride_z));
564  DATA_TYPE d44 = *((__global DATA_TYPE *)(src_addr + 36 * src_stride_z));
565  DATA_TYPE d45 = *((__global DATA_TYPE *)(src_addr + 37 * src_stride_z));
566  DATA_TYPE d46 = *((__global DATA_TYPE *)(src_addr + 38 * src_stride_z));
567  DATA_TYPE d47 = *((__global DATA_TYPE *)(src_addr + 39 * src_stride_z));
568 
569  DATA_TYPE d50 = *((__global DATA_TYPE *)(src_addr + 40 * src_stride_z));
570  DATA_TYPE d51 = *((__global DATA_TYPE *)(src_addr + 41 * src_stride_z));
571  DATA_TYPE d52 = *((__global DATA_TYPE *)(src_addr + 42 * src_stride_z));
572  DATA_TYPE d53 = *((__global DATA_TYPE *)(src_addr + 43 * src_stride_z));
573  DATA_TYPE d54 = *((__global DATA_TYPE *)(src_addr + 44 * src_stride_z));
574  DATA_TYPE d55 = *((__global DATA_TYPE *)(src_addr + 45 * src_stride_z));
575  DATA_TYPE d56 = *((__global DATA_TYPE *)(src_addr + 46 * src_stride_z));
576  DATA_TYPE d57 = *((__global DATA_TYPE *)(src_addr + 47 * src_stride_z));
577 
578  DATA_TYPE d60 = *((__global DATA_TYPE *)(src_addr + 48 * src_stride_z));
579  DATA_TYPE d61 = *((__global DATA_TYPE *)(src_addr + 49 * src_stride_z));
580  DATA_TYPE d62 = *((__global DATA_TYPE *)(src_addr + 50 * src_stride_z));
581  DATA_TYPE d63 = *((__global DATA_TYPE *)(src_addr + 51 * src_stride_z));
582  DATA_TYPE d64 = *((__global DATA_TYPE *)(src_addr + 52 * src_stride_z));
583  DATA_TYPE d65 = *((__global DATA_TYPE *)(src_addr + 53 * src_stride_z));
584  DATA_TYPE d66 = *((__global DATA_TYPE *)(src_addr + 54 * src_stride_z));
585  DATA_TYPE d67 = *((__global DATA_TYPE *)(src_addr + 55 * src_stride_z));
586 
587  DATA_TYPE d70 = *((__global DATA_TYPE *)(src_addr + 56 * src_stride_z));
588  DATA_TYPE d71 = *((__global DATA_TYPE *)(src_addr + 57 * src_stride_z));
589  DATA_TYPE d72 = *((__global DATA_TYPE *)(src_addr + 58 * src_stride_z));
590  DATA_TYPE d73 = *((__global DATA_TYPE *)(src_addr + 59 * src_stride_z));
591  DATA_TYPE d74 = *((__global DATA_TYPE *)(src_addr + 60 * src_stride_z));
592  DATA_TYPE d75 = *((__global DATA_TYPE *)(src_addr + 61 * src_stride_z));
593  DATA_TYPE d76 = *((__global DATA_TYPE *)(src_addr + 62 * src_stride_z));
594  DATA_TYPE d77 = *((__global DATA_TYPE *)(src_addr + 63 * src_stride_z));
595 
596  // Compute the 8x4 intermediate tensor
597  VEC_DATA_TYPE(float, 4)
598  comm_fact0, comm_fact1, comm_fact2;
599  VEC_DATA_TYPE(float, 4)
600  tmp_col0, tmp_col1, tmp_col2, tmp_col3, tmp_col4, tmp_col5, tmp_col6, tmp_col7;
601 
602  COMPUTE_TMP_COL(tmp_col0, d00, d10, d20, d30, d40, d50, d60, d70, comm_fact0);
603  COMPUTE_TMP_COL(tmp_col1, d01, d11, d21, d31, d41, d51, d61, d71, comm_fact0);
604  COMPUTE_TMP_COL(tmp_col2, d02, d12, d22, d32, d42, d52, d62, d72, comm_fact0);
605  COMPUTE_TMP_COL(tmp_col3, d03, d13, d23, d33, d43, d53, d63, d73, comm_fact0);
606  COMPUTE_TMP_COL(tmp_col4, d04, d14, d24, d34, d44, d54, d64, d74, comm_fact0);
607  COMPUTE_TMP_COL(tmp_col5, d05, d15, d25, d35, d45, d55, d65, d75, comm_fact0);
608  COMPUTE_TMP_COL(tmp_col6, d06, d16, d26, d36, d46, d56, d66, d76, comm_fact0);
609  COMPUTE_TMP_COL(tmp_col7, d07, d17, d27, d37, d47, d57, d67, d77, comm_fact0);
610 
611  // Compute the 4x4 output tile
612  comm_fact0 = tmp_col1 + tmp_col2;
613  comm_fact1 = tmp_col3 + tmp_col4;
614  comm_fact2 = tmp_col5 + tmp_col6;
615 
616  VEC_DATA_TYPE(float, 4)
617  out_col0 = comm_fact0 + comm_fact1 + (float)8.f * comm_fact2 + tmp_col0;
618  VEC_DATA_TYPE(float, 4)
619  out_col2 = comm_fact0 + (float)4.f * comm_fact1 + (float)2.f * comm_fact2;
620 
621  comm_fact0 = tmp_col1 - tmp_col2;
622  comm_fact1 = tmp_col3 - tmp_col4;
623  comm_fact2 = tmp_col5 - tmp_col6;
624 
625  VEC_DATA_TYPE(float, 4)
626  out_col1 = comm_fact0 + (float)2.f * comm_fact1 + (float)4.f * comm_fact2;
627  VEC_DATA_TYPE(float, 4)
628  out_col3 = comm_fact0 + (float)8.f * comm_fact1 + comm_fact2 + tmp_col7;
629 
630 #if defined(HAS_BIAS)
631  // Add bias
633 
634  float b = (float) * ((__global DATA_TYPE *)(vector_offset(&bias, z_out)));
635 
636  out_col0 += (VEC_DATA_TYPE(float, 4))b;
637  out_col1 += (VEC_DATA_TYPE(float, 4))b;
638  out_col2 += (VEC_DATA_TYPE(float, 4))b;
639  out_col3 += (VEC_DATA_TYPE(float, 4))b;
640 #endif // defined(HAS_BIAS)
641 
642  // Store the output tile
643  vstore4(CONVERT(ACTIVATION(ACTIVATION_TYPE, float, VEC_SIZE, (VEC_DATA_TYPE(float, 4))(out_col0.s0, out_col1.s0, out_col2.s0, out_col3.s0), A_VAL, B_VAL),
644  VEC_DATA_TYPE(DATA_TYPE, 4)),
645  0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y));
646  vstore4(CONVERT(ACTIVATION(ACTIVATION_TYPE, float, VEC_SIZE, (VEC_DATA_TYPE(float, 4))(out_col0.s1, out_col1.s1, out_col2.s1, out_col3.s1), A_VAL, B_VAL),
647  VEC_DATA_TYPE(DATA_TYPE, 4)),
648  0, (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y));
649  vstore4(CONVERT(ACTIVATION(ACTIVATION_TYPE, float, VEC_SIZE, (VEC_DATA_TYPE(float, 4))(out_col0.s2, out_col1.s2, out_col2.s2, out_col3.s2), A_VAL, B_VAL),
650  VEC_DATA_TYPE(DATA_TYPE, 4)),
651  0, (__global DATA_TYPE *)(dst_addr + 2 * dst_stride_y));
652  vstore4(CONVERT(ACTIVATION(ACTIVATION_TYPE, float, VEC_SIZE, (VEC_DATA_TYPE(float, 4))(out_col0.s3, out_col1.s3, out_col2.s3, out_col3.s3), A_VAL, B_VAL),
653  VEC_DATA_TYPE(DATA_TYPE, 4)),
654  0, (__global DATA_TYPE *)(dst_addr + 3 * dst_stride_y));
655 #endif // !defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL) && !defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
656 }
657 #endif // defined(VEC_SIZE) && VEC_SIZE == 4
658 
659 #if defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL)
660 #if defined(VEC_SIZE) && VEC_SIZE == 2
661 /** This OpenCL kernel performs Winograd output transform when the output tile is 2x1, the filter size 3x1 and the data layout is NCHW
662  *
663  * @note The number of tiles along the X direction must be passed at compile time using -DNUM_TILES_X: e.g. -DNUM_TILES_X=16
664  * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=2
665  * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1
666  * @note -DWINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
667  * @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types: float/half.
668  *
669  * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32/F16
670  * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
671  * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
672  * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
673  * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
674  * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
675  * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
676  * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
677  * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
678  * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
679  * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
680  * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
681  * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
682  * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
683  * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
684  * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
685  * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
686  * @param[in] dst_stride_w Stride of the source tensor in W dimension (in bytes)
687  * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
688  * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
689  */
690 __kernel void winograd_output_transform_2x1_3x1_nchw(
693 #if defined(HAS_BIAS)
694  ,
696 #endif // defined(HAS_BIAS)
697 )
698 {
699  winograd_output_transform_2x2_3x3_nchw(src_ptr,
700  src_stride_x,
701  src_step_x,
702  src_stride_y,
703  src_step_y,
704  src_stride_z,
705  src_step_z,
706  src_stride_w,
707  src_step_w,
708  src_offset_first_element_in_bytes,
709  dst_ptr,
710  dst_stride_x,
711  dst_step_x,
712  dst_stride_y,
713  dst_step_y,
714  dst_stride_z,
715  dst_step_z,
716  dst_stride_w,
717  dst_step_w,
718  dst_offset_first_element_in_bytes
719 #if defined(HAS_BIAS)
720  ,
721  bias_ptr,
722  bias_stride_x,
723  bias_step_x,
724  bias_offset_first_element_in_bytes
725 #endif // defined(HAS_BIAS)
726  );
727 }
728 
729 #endif // defined(VEC_SIZE) && VEC_SIZE == 2
730 
731 #if defined(VEC_SIZE) && VEC_SIZE == 4
732 /** This OpenCL kernel performs Winograd output transform when the output tile is 4x1, the filter size 3x1 and the data layout is NCHW
733  *
734  * @note The number of tiles along the X direction must be passed at compile time using -DNUM_TILES_X: e.g. -DNUM_TILES_X=16
735  * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=4
736  * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1
737  * @note -DWINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
738  * @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types: float/half.
739  *
740  * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32/F16
741  * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
742  * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
743  * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
744  * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
745  * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
746  * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
747  * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
748  * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
749  * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
750  * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
751  * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
752  * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
753  * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
754  * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
755  * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
756  * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
757  * @param[in] dst_stride_w Stride of the source tensor in W dimension (in bytes)
758  * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
759  * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
760  */
761 __kernel void winograd_output_transform_4x1_3x1_nchw(
764 #if defined(HAS_BIAS)
765  ,
767 #endif // defined(HAS_BIAS)
768 )
769 {
770  winograd_output_transform_4x4_3x3_nchw(src_ptr,
771  src_stride_x,
772  src_step_x,
773  src_stride_y,
774  src_step_y,
775  src_stride_z,
776  src_step_z,
777  src_stride_w,
778  src_step_w,
779  src_offset_first_element_in_bytes,
780  dst_ptr,
781  dst_stride_x,
782  dst_step_x,
783  dst_stride_y,
784  dst_step_y,
785  dst_stride_z,
786  dst_step_z,
787  dst_stride_w,
788  dst_step_w,
789  dst_offset_first_element_in_bytes
790 #if defined(HAS_BIAS)
791  ,
792  bias_ptr,
793  bias_stride_x,
794  bias_step_x,
795  bias_offset_first_element_in_bytes
796 #endif // defined(HAS_BIAS)
797  );
798 }
799 
800 /** This OpenCL kernel performs Winograd output transform when the output tile is 4x1, the filter size 5x1 and the data layout is NCHW
801  *
802  * @note The number of tiles along the X direction must be passed at compile time using -DNUM_TILES_X: e.g. -DNUM_TILES_X=16
803  * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=4
804  * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=1
805  * @note -DWINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL has to be passed at compile time
806  * @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types: float/half.
807  *
808  * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32/F16
809  * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
810  * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
811  * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
812  * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
813  * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
814  * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
815  * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
816  * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
817  * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
818  * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
819  * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
820  * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
821  * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
822  * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
823  * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
824  * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
825  * @param[in] dst_stride_w Stride of the source tensor in W dimension (in bytes)
826  * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
827  * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
828  */
829 __kernel void winograd_output_transform_4x1_5x1_nchw(
832 #if defined(HAS_BIAS)
833  ,
835 #endif // defined(HAS_BIAS)
836 )
837 {
838  winograd_output_transform_4x4_5x5_nchw(src_ptr,
839  src_stride_x,
840  src_step_x,
841  src_stride_y,
842  src_step_y,
843  src_stride_z,
844  src_step_z,
845  src_stride_w,
846  src_step_w,
847  src_offset_first_element_in_bytes,
848  dst_ptr,
849  dst_stride_x,
850  dst_step_x,
851  dst_stride_y,
852  dst_step_y,
853  dst_stride_z,
854  dst_step_z,
855  dst_stride_w,
856  dst_step_w,
857  dst_offset_first_element_in_bytes
858 #if defined(HAS_BIAS)
859  ,
860  bias_ptr,
861  bias_stride_x,
862  bias_step_x,
863  bias_offset_first_element_in_bytes
864 #endif // defined(HAS_BIAS)
865  );
866 }
867 
868 #endif // defined(VEC_SIZE) && VEC_SIZE == 4
869 #endif // defined(WINOGRAD_OUTPUT_TRANSFORM_HORIZONTAL)
870 
871 #if defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
872 #if defined(VEC_SIZE) && VEC_SIZE == 2
873 /** This OpenCL kernel performs Winograd output transform when the output tile is 1x2, the filter size 1x3 and the data layout is NCHW
874  *
875  * @note The number of tiles along the X direction must be passed at compile time using -DNUM_TILES_X: e.g. -DNUM_TILES_X=16
876  * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1
877  * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=2
878  * @note -DWINOGRAD_OUTPUT_TRANSFORM_VERTICAL has to be passed at compile time
879  * @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types: float/half.
880  *
881  * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32/F16
882  * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
883  * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
884  * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
885  * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
886  * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
887  * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
888  * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
889  * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
890  * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
891  * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
892  * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
893  * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
894  * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
895  * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
896  * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
897  * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
898  * @param[in] dst_stride_w Stride of the source tensor in W dimension (in bytes)
899  * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
900  * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
901  */
902 __kernel void winograd_output_transform_1x2_1x3_nchw(
905 #if defined(HAS_BIAS)
906  ,
908 #endif // defined(HAS_BIAS)
909 )
910 {
911  winograd_output_transform_2x2_3x3_nchw(src_ptr,
912  src_stride_x,
913  src_step_x,
914  src_stride_y,
915  src_step_y,
916  src_stride_z,
917  src_step_z,
918  src_stride_w,
919  src_step_w,
920  src_offset_first_element_in_bytes,
921  dst_ptr,
922  dst_stride_x,
923  dst_step_x,
924  dst_stride_y,
925  dst_step_y,
926  dst_stride_z,
927  dst_step_z,
928  dst_stride_w,
929  dst_step_w,
930  dst_offset_first_element_in_bytes
931 #if defined(HAS_BIAS)
932  ,
933  bias_ptr,
934  bias_stride_x,
935  bias_step_x,
936  bias_offset_first_element_in_bytes
937 #endif // defined(HAS_BIAS)
938  );
939 }
940 
941 #endif // defined(VEC_SIZE) && VEC_SIZE == 2
942 
943 #if defined(VEC_SIZE) && VEC_SIZE == 4
944 /** This OpenCL kernel performs Winograd output transform when the output tile is 1x4, the filter size 1x3 and the data layout is NCHW
945  *
946  * @note The number of tiles along the X direction must be passed at compile time using -DNUM_TILES_X: e.g. -DNUM_TILES_X=16
947  * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1
948  * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=4
949  * @note -DWINOGRAD_OUTPUT_TRANSFORM_VERTICAL has to be passed at compile time
950  * @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types: float/half.
951  *
952  * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32/F16
953  * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
954  * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
955  * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
956  * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
957  * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
958  * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
959  * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
960  * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
961  * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
962  * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
963  * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
964  * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
965  * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
966  * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
967  * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
968  * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
969  * @param[in] dst_stride_w Stride of the source tensor in W dimension (in bytes)
970  * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
971  * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
972  */
973 __kernel void winograd_output_transform_1x4_1x3_nchw(
976 #if defined(HAS_BIAS)
977  ,
979 #endif // defined(HAS_BIAS)
980 )
981 {
982  winograd_output_transform_4x4_3x3_nchw(src_ptr,
983  src_stride_x,
984  src_step_x,
985  src_stride_y,
986  src_step_y,
987  src_stride_z,
988  src_step_z,
989  src_stride_w,
990  src_step_w,
991  src_offset_first_element_in_bytes,
992  dst_ptr,
993  dst_stride_x,
994  dst_step_x,
995  dst_stride_y,
996  dst_step_y,
997  dst_stride_z,
998  dst_step_z,
999  dst_stride_w,
1000  dst_step_w,
1001  dst_offset_first_element_in_bytes
1002 #if defined(HAS_BIAS)
1003  ,
1004  bias_ptr,
1005  bias_stride_x,
1006  bias_step_x,
1007  bias_offset_first_element_in_bytes
1008 #endif // defined(HAS_BIAS)
1009  );
1010 }
1011 
1012 /** This OpenCL kernel performs Winograd output transform when the output tile is 1x4, the filter size 1x5 and the data layout is NCHW
1013  *
1014  * @note The number of tiles along the X direction must be passed at compile time using -DNUM_TILES_X: e.g. -DNUM_TILES_X=16
1015  * @note The width of the output tile must be passed at compile time using -DOUTPUT_TILE_W: e.g. -DOUTPUT_TILE_W=1
1016  * @note The height of the output tile must be passed at compile time using -DOUTPUT_TILE_H: e.g. -DOUTPUT_TILE_H=4
1017  * @note -DWINOGRAD_OUTPUT_TRANSFORM_VERTICAL has to be passed at compile time
1018  * @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types: float/half.
1019  *
1020  * @param[in] src_ptr Pointer to the source tensor. Supported data types: F32/F16
1021  * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
1022  * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
1023  * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
1024  * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
1025  * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
1026  * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
1027  * @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
1028  * @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
1029  * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
1030  * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
1031  * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
1032  * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
1033  * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
1034  * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
1035  * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
1036  * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
1037  * @param[in] dst_stride_w Stride of the source tensor in W dimension (in bytes)
1038  * @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
1039  * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
1040  */
1041 __kernel void winograd_output_transform_1x4_1x5_nchw(
1044 #if defined(HAS_BIAS)
1045  ,
1047 #endif // defined(HAS_BIAS)
1048 )
1049 {
1050  winograd_output_transform_4x4_5x5_nchw(src_ptr,
1051  src_stride_x,
1052  src_step_x,
1053  src_stride_y,
1054  src_step_y,
1055  src_stride_z,
1056  src_step_z,
1057  src_stride_w,
1058  src_step_w,
1059  src_offset_first_element_in_bytes,
1060  dst_ptr,
1061  dst_stride_x,
1062  dst_step_x,
1063  dst_stride_y,
1064  dst_step_y,
1065  dst_stride_z,
1066  dst_step_z,
1067  dst_stride_w,
1068  dst_step_w,
1069  dst_offset_first_element_in_bytes
1070 #if defined(HAS_BIAS)
1071  ,
1072  bias_ptr,
1073  bias_stride_x,
1074  bias_step_x,
1075  bias_offset_first_element_in_bytes
1076 #endif // defined(HAS_BIAS)
1077  );
1078 }
1079 
1080 #endif // defined(VEC_SIZE) && VEC_SIZE == 4
1081 #endif // defined(WINOGRAD_OUTPUT_TRANSFORM_VERTICAL)
1082 #endif // defined(NUM_TILES_X) && defined(OUTPUT_TILE_W) && defined(OUTPUT_TILE_H)
Vector
Structure to hold Vector information.
Definition: helpers.h:917
arm_compute::test::validation::src
SimpleTensor< float > src
Definition: DFT.cpp:155
arm_compute::test::validation::dst
auto dst
Definition: DFT.cpp:170
VEC_SIZE
#define VEC_SIZE
Definition: qlstm_layer_normalization.cl:54
CONVERT_TO_TENSOR3D_STRUCT
#define CONVERT_TO_TENSOR3D_STRUCT(name)
Definition: helpers.h:898
VEC_DATA_TYPE
#define VEC_DATA_TYPE(type, size)
Definition: helpers.h:756
Tensor3D
Structure to hold 3D tensor information.
Definition: helpers.h:934
CONVERT_TO_VECTOR_STRUCT_NO_STEP
#define CONVERT_TO_VECTOR_STRUCT_NO_STEP(name)
Definition: helpers.h:880
VECTOR_DECLARATION
#define VECTOR_DECLARATION(name)
Definition: helpers.h:827
Tensor4D
Structure to hold 4D tensor information.
Definition: helpers.h:944
ACTIVATION
#define ACTIVATION(op, DATA_TYPE, VEC_SIZE, x, A_VAL, B_VAL)
Definition: activation_float_helpers.h:80
bias
const int32_t * bias
Definition: working_space.hpp:322
arm_compute::test::validation::batch
const unsigned int batch
Definition: GEMMMatrixMultiplyNative.cpp:362
tensor4D_offset
const __global uchar * tensor4D_offset(const Tensor4D *tensor, int x, int y, int z, int w)
Get the pointer position of a Tensor4D.
Definition: helpers.h:1137
tile_helpers.h
arm_compute::test::validation::b
SimpleTensor< float > b
Definition: DFT.cpp:157
CONVERT
#define CONVERT(x, type)
Definition: helpers.h:759
vector_offset
const __global uchar * vector_offset(const Vector *vec, int x)
Get the pointer position of a Vector.
Definition: helpers.h:1101
activation_float_helpers.h
CONVERT_TO_TENSOR4D_STRUCT
#define CONVERT_TO_TENSOR4D_STRUCT(name, mod_size)
Definition: helpers.h:905
TENSOR4D_DECLARATION
#define TENSOR4D_DECLARATION(name)
Definition: helpers.h:851
tensor3D_offset
const __global uchar * tensor3D_offset(const Tensor3D *tensor, int x, int y, int z)
Get the pointer position of a Tensor3D.
Definition: helpers.h:1124
helpers.h