Compute Library
 23.05
FFT.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2019-2020 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/core/Types.h"
29 #include "tests/CL/CLAccessor.h"
30 #include "tests/datasets/SmallConvolutionLayerDataset.h"
32 #include "tests/framework/Macros.h"
35 #include "tests/validation/fixtures/FFTFixture.h"
36 
37 namespace arm_compute
38 {
39 namespace test
40 {
41 namespace validation
42 {
43 namespace
44 {
45 const auto data_types = framework::dataset::make("DataType", { DataType::F32 });
46 const auto shapes_1d = framework::dataset::make("TensorShape", { TensorShape(2U, 2U, 3U), TensorShape(3U, 2U, 3U),
47  TensorShape(4U, 2U, 3U), TensorShape(5U, 2U, 3U),
48  TensorShape(7U, 2U, 3U), TensorShape(8U, 2U, 3U),
49  TensorShape(9U, 2U, 3U), TensorShape(25U, 2U, 3U),
50  TensorShape(49U, 2U, 3U), TensorShape(64U, 2U, 3U),
51  TensorShape(16U, 2U, 3U), TensorShape(32U, 2U, 3U),
52  TensorShape(96U, 2U, 2U)
53  });
54 const auto shapes_2d = framework::dataset::make("TensorShape", { TensorShape(2U, 2U, 3U), TensorShape(3U, 6U, 3U),
55  TensorShape(4U, 5U, 3U), TensorShape(5U, 7U, 3U),
56  TensorShape(7U, 25U, 3U), TensorShape(8U, 2U, 3U),
57  TensorShape(9U, 16U, 3U), TensorShape(25U, 32U, 3U),
58  TensorShape(192U, 128U, 2U)
59  });
60 
61 const auto ActivationFunctionsSmallDataset = framework::dataset::make("ActivationInfo",
62 {
63  ActivationLayerInfo(),
65 });
66 
67 RelativeTolerance<float> tolerance_f32(0.1f); /**< Relative tolerance value for FP32 */
68 RelativeTolerance<half> tolerance_f16(half(0.1f)); /**< Relative tolerance value for FP16 */
69 constexpr float tolerance_num_f32 = 0.07f; /**< Tolerance number for FP32*/
70 constexpr float tolerance_num_f16 = 0.15f; /**< Tolerance number for FP32*/
71 
72 } // namespace
73 TEST_SUITE(CL)
74 TEST_SUITE(FFT1D)
75 
76 // *INDENT-OFF*
77 // clang-format off
78 DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(
79  framework::dataset::make("InputInfo", { TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F32), // Mismatching data types
80  TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F32), // Mismatching shapes
81  TensorInfo(TensorShape(32U, 13U, 2U), 3, DataType::F32), // Invalid channels
82  TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F32), // Unsupported axis
83  TensorInfo(TensorShape(11U, 13U, 2U), 2, DataType::F32), // Undecomposable FFT
84  TensorInfo(TensorShape(25U, 13U, 2U), 2, DataType::F32),
85  }),
86  framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F16),
87  TensorInfo(TensorShape(16U, 13U, 2U), 2, DataType::F32),
88  TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F32),
89  TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F32),
90  TensorInfo(TensorShape(11U, 13U, 2U), 2, DataType::F32),
91  TensorInfo(TensorShape(25U, 13U, 2U), 2, DataType::F32),
92  })),
93  framework::dataset::make("Axis", { 0, 0, 0, 2, 0, 0 })),
94  framework::dataset::make("Expected", { false, false, false, false, false, true })),
96 {
97  FFT1DInfo desc;
98  desc.axis = axis;
99  const Status s = CLFFT1D::validate(&input_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), desc);
101 }
102 // clang-format on
103 // *INDENT-ON*
104 
105 template <typename T>
106 using CLFFT1DFixture = FFTValidationFixture<CLTensor, CLAccessor, CLFFT1D, FFT1DInfo, T>;
107 
108 TEST_SUITE(Float)
109 TEST_SUITE(FP32)
110 FIXTURE_DATA_TEST_CASE(RunSmall, CLFFT1DFixture<float>, framework::DatasetMode::ALL, combine(shapes_1d, framework::dataset::make("DataType", DataType::F32)))
111 {
112  // Validate output
113  validate(CLAccessor(_target), _reference, tolerance_f32, tolerance_num_f32);
114 }
115 TEST_SUITE_END() // FP32
116 TEST_SUITE(FP16)
117 FIXTURE_DATA_TEST_CASE(RunSmall, CLFFT1DFixture<half>, framework::DatasetMode::ALL, combine(shapes_1d, framework::dataset::make("DataType", DataType::F16)))
118 {
119  // Validate output
120  validate(CLAccessor(_target), _reference, tolerance_f16, tolerance_num_f16);
121 }
122 TEST_SUITE_END() // FP16
123 TEST_SUITE_END() // Float
124 
125 TEST_SUITE_END() // FFT1D
126 
127 TEST_SUITE(FFT2D)
128 
129 // *INDENT-OFF*
130 // clang-format off
132  framework::dataset::make("InputInfo", { TensorInfo(TensorShape(32U, 25U, 2U), 2, DataType::F32), // Mismatching data types
133  TensorInfo(TensorShape(32U, 25U, 2U), 2, DataType::F32), // Mismatching shapes
134  TensorInfo(TensorShape(32U, 25U, 2U), 3, DataType::F32), // Invalid channels
135  TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F32), // Undecomposable FFT
136  TensorInfo(TensorShape(32U, 25U, 2U), 2, DataType::F32),
137  }),
138  framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(32U, 25U, 2U), 2, DataType::F16),
139  TensorInfo(TensorShape(16U, 25U, 2U), 2, DataType::F32),
140  TensorInfo(TensorShape(32U, 25U, 2U), 1, DataType::F32),
141  TensorInfo(TensorShape(32U, 13U, 2U), 2, DataType::F32),
142  TensorInfo(TensorShape(32U, 25U, 2U), 2, DataType::F32),
143  })),
144  framework::dataset::make("Expected", { false, false, false, false, true })),
146 {
147  const Status s = CLFFT2D::validate(&input_info.clone()->set_is_resizable(false), &output_info.clone()->set_is_resizable(false), FFT2DInfo());
149 }
150 // clang-format on
151 // *INDENT-ON*
152 
153 template <typename T>
154 using CLFFT2DFixture = FFTValidationFixture<CLTensor, CLAccessor, CLFFT2D, FFT2DInfo, T>;
155 
156 TEST_SUITE(Float)
157 TEST_SUITE(FP32)
158 FIXTURE_DATA_TEST_CASE(RunSmall, CLFFT2DFixture<float>, framework::DatasetMode::ALL, combine(shapes_2d, framework::dataset::make("DataType", DataType::F32)))
159 {
160  // Validate output
161  validate(CLAccessor(_target), _reference, tolerance_f32, tolerance_num_f32);
162 }
163 TEST_SUITE_END() // FP32
164 TEST_SUITE(FP16)
165 FIXTURE_DATA_TEST_CASE(RunSmall, CLFFT2DFixture<half>, framework::DatasetMode::ALL, combine(shapes_2d, framework::dataset::make("DataType", DataType::F16)))
166 {
167  // Validate output
168  validate(CLAccessor(_target), _reference, tolerance_f16, tolerance_num_f16);
169 }
170 TEST_SUITE_END() // FP16
171 TEST_SUITE_END() // Float
172 TEST_SUITE_END() // FFT2D
173 
174 TEST_SUITE(FFTConvolutionLayer)
175 
176 template <typename T>
177 using CLFFTConvolutionLayerFixture = FFTConvolutionValidationFixture<CLTensor, CLAccessor, CLFFTConvolutionLayer, T>;
178 template <typename T>
179 using CLFFTConvolutionLayerMixedDataLayoutFixture = FFTConvolutionValidationFixture<CLTensor, CLAccessor, CLFFTConvolutionLayer, T, true>;
180 
181 TEST_SUITE(Float)
182 TEST_SUITE(FP32)
183 FIXTURE_DATA_TEST_CASE(RunSmall, CLFFTConvolutionLayerFixture<float>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(datasets::SmallFFTConvolutionLayerDataset(),
184  framework::dataset::make("DataType", DataType::F32)),
185  framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
186  ActivationFunctionsSmallDataset))
187 {
188  // Validate output
189  validate(CLAccessor(_target), _reference, tolerance_f32, tolerance_num_f32);
190 }
194  ActivationFunctionsSmallDataset))
195 {
196  // Validate output
197  validate(CLAccessor(_target), _reference, tolerance_f32, tolerance_num_f32);
198 }
199 TEST_SUITE_END() // FP32
200 TEST_SUITE(FP16)
201 FIXTURE_DATA_TEST_CASE(RunSmall, CLFFTConvolutionLayerFixture<half>, framework::DatasetMode::PRECOMMIT, combine(combine(combine(datasets::SmallFFTConvolutionLayerDataset(),
202  framework::dataset::make("DataType", DataType::F16)),
203  framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
204  ActivationFunctionsSmallDataset))
205 {
206  // Validate output
207  validate(CLAccessor(_target), _reference, tolerance_f16, tolerance_num_f16);
208 }
209 TEST_SUITE_END() // FP16
210 TEST_SUITE_END() // Float
211 TEST_SUITE_END() // FFTConvolutionLayer
212 
213 TEST_SUITE_END() // CL
214 } // namespace validation
215 } // namespace test
216 } // namespace arm_compute
unsigned int axis
Axis to run the FFT on.
Shape of a tensor.
Definition: TensorShape.h:39
constexpr float tolerance_num_f16
F16 Tolerance number.
Definition: cl_gemm.cpp:75
TEST_SUITE(QASYMM8_to_F32) FIXTURE_DATA_TEST_CASE(RunSmall
Descriptor used by the FFT1D function.
Descriptor used by the FFT2D function.
static Status validate(const ITensorInfo *input, const ITensorInfo *output, const FFT1DInfo &config)
Static function to check if given info will lead to a valid configuration of CLFFT1D.
Definition: CLFFT1D.cpp:121
half_float::half half
16-bit floating point type
Definition: Types.h:48
1 channel, 1 F32 per channel
ARM_COMPUTE_EXPECT(has_error==expected, framework::LogLevel::ERRORS)
std::enable_if< is_container< T >::value, ContainerDataset< T > >::type make(std::string name, T &&values)
Helper function to create a ContainerDataset.
Status class.
Definition: Error.h:52
Copyright (c) 2017-2023 Arm Limited.
1 channel, 1 F16 per channel
DATA_TEST_CASE(Validate, framework::DatasetMode::ALL, zip(zip(zip(framework::dataset::make("InputInfo", { TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16), }), framework::dataset::make("OutputInfo",{ TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F16), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(27U, 13U, 2U), 1, DataType::QASYMM8), TensorInfo(TensorShape(30U, 11U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), TensorInfo(TensorShape(32U, 13U, 2U), 1, DataType::QSYMM16, QuantizationInfo(1.f/32768.f, 0)), })), framework::dataset::make("ActivationInfo", { ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC), ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::SQRT), })), framework::dataset::make("Expected", { false, true, true, true, false, false, true, true, false })), input_info, output_info, act_info, expected)
DatasetMode
Possible dataset modes.
Definition: DatasetModes.h:40
RelativeTolerance< float > tolerance_f32(0.01f)
Tolerance value for comparing reference&#39;s output against implementation&#39;s output for DataType::F32...
TEST_SUITE_END() FIXTURE_DATA_TEST_CASE(RunSmall
[CLActivationLayer Test snippet]
Accessor implementation for CLTensor objects.
Definition: CLAccessor.h:36
FFTConvolutionValidationFixture< CLTensor, CLAccessor, CLFFTConvolutionLayer, T, true > CLFFTConvolutionLayerMixedDataLayoutFixture
Definition: FFT.cpp:179
validate(CLAccessor(output_state), expected_output)
RelativeTolerance< half_float::half > tolerance_f16(half_float::half(0.1))
Tolerance value for comparing reference&#39;s output against implementation&#39;s output for DataType::F16...
Num samples, channels, height, width.
FFTValidationFixture< CLTensor, CLAccessor, CLFFT2D, FFT2DInfo, T > CLFFT2DFixture
Definition: FFT.cpp:154
FIXTURE_DATA_TEST_CASE(RunSmall, CLAbsLayerFixture< half >, framework::DatasetMode::PRECOMMIT, combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F16)))
Definition: AbsLayer.cpp:50
FFTValidationFixture< CLTensor, CLAccessor, CLFFT1D, FFT1DInfo, T > CLFFT1DFixture
Definition: FFT.cpp:106
Num samples, height, width, channels.
Store the tensor&#39;s metadata.
Definition: TensorInfo.h:43
zip(zip(framework::dataset::make("Weights", { TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 2U), 1, DataType::F32), TensorInfo(TensorShape(32U, 13U, 2U, 1U), 1, DataType::F32), }), framework::dataset::make("MVBGInfo",{ TensorInfo(TensorShape(2U), 1, DataType::F32), TensorInfo(TensorShape(2U), 1, DataType::F16), TensorInfo(TensorShape(5U), 1, DataType::F32), })), framework::dataset::make("Expected", { true, false, false}))
DataType
Available data types.
Definition: Types.h:79
DataLayout
[DataLayout enum definition]
Definition: Types.h:113
combine(datasets::SmallShapes(), framework::dataset::make("DataType", DataType::F32)))
Definition: AbsLayer.cpp:65
static Status validate(const ITensorInfo *input, const ITensorInfo *output, const FFT2DInfo &config)
Static function to check if given info will lead to a valid configuration of CLFFT2D.
Definition: CLFFT2D.cpp:70