Compute Library
 22.05
CpuPool2dAssemblyWrapperKernel.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2021-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
25 #include "arm_compute/core/Utils.h"
29 #include "src/core/CPP/Validate.h"
33 
34 #include <arm_neon.h>
35 
36 namespace arm_compute
37 {
38 namespace cpu
39 {
40 namespace kernels
41 {
43 
45 {
46  ARM_COMPUTE_UNUSED(cpu_info);
48 
49  // dst initialization if not yet initialized
50  auto_init_if_empty(*dst, src->clone()->set_tensor_shape(compute_pool_shape(*src, info)));
51 
52 #if defined(__aarch64__)
53  const bool requantize = src->quantization_info() != dst->quantization_info();
54 
55  switch(src->data_type())
56  {
57  case DataType::QASYMM8:
58  if(requantize)
59  {
60  create_arm_pooling_requant<uint8_t, uint8_t>(src, dst, info, cpu_info);
61  }
62  else
63  {
64  create_arm_pooling<uint8_t, uint8_t>(src, dst, info, cpu_info);
65  }
66  break;
68  if(requantize)
69  {
70  create_arm_pooling_requant<int8_t, int8_t>(src, dst, info, cpu_info);
71  }
72  else
73  {
74  create_arm_pooling<int8_t, int8_t>(src, dst, info, cpu_info);
75  }
76  break;
77 #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
78  case DataType::F16:
79  create_arm_pooling<float16_t, float16_t>(src, dst, info, cpu_info);
80  break;
81 #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
82  case DataType::F32:
83  create_arm_pooling<float, float>(src, dst, info, cpu_info);
84  break;
85  default:
86  break;
87  }
88 #endif // defined(__aarch64__)
89 
90  Window win = calculate_max_window(*dst, Steps());
91  INEKernel::configure(win);
92 }
93 
95 {
97 
98 #ifndef __aarch64__
99  ARM_COMPUTE_RETURN_ERROR_MSG("32-bit is not supported by assembly kernels");
100 #endif /* __aarch64__ */
103  ARM_COMPUTE_RETURN_ERROR_ON_MSG((src->data_layout() != DataLayout::NHWC) || (info.data_layout != DataLayout::NHWC), "Only NHWC is supported by assembly kernels");
105  "Only AVG and MAX pooling are supported by assembly kernels");
106 
107  ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_pool_region_entirely_outside_input(info), "Pooling region that is entirely outside input tensor is unsupported by assembly kernels");
108 
109  if(dst->total_size() > 0)
110  {
112 
113  const auto src_qinfo = src->quantization_info().uniform();
114  const auto dst_qinfo = dst->quantization_info().uniform();
115 
116  if(src_qinfo != dst_qinfo)
117  {
118  const float multiplier = src_qinfo.scale / dst_qinfo.scale;
119  int32_t dst_multiplier{};
120  int32_t dst_shift{};
121  ARM_COMPUTE_RETURN_ERROR_ON(quantization::calculate_quantized_multiplier(multiplier, &dst_multiplier, &dst_shift));
122  }
123  else
124  {
125  if(src->data_type() == DataType::QASYMM8)
126  {
127  const bool has_padding = info.pad_stride_info.has_padding();
128  ARM_COMPUTE_RETURN_ERROR_ON_MSG(!info.exclude_padding && has_padding, "Assembly kernels do not support padding for QASYMM8 with same src/dst quantization info");
129  }
130  }
131  }
132  else
133  {
134  if(src->data_type() == DataType::QASYMM8)
135  {
136  // If dst is not configured, the quantization info are the same
137  const bool has_padding = info.pad_stride_info.has_padding();
138  ARM_COMPUTE_RETURN_ERROR_ON_MSG(!info.exclude_padding && has_padding, "Assembly kernels do not support padding for QASYMM8 with same src/dst quantization info");
139  }
140  }
141  return Status{};
142 }
143 
145 {
146  ARM_COMPUTE_ERROR_ON_NULLPTR(_kernel_asm.get());
148  ARM_COMPUTE_UNUSED(window);
149  ARM_COMPUTE_UNUSED(info);
150 
151  ARM_COMPUTE_ERROR_ON(tensors.empty());
152 
155  ITensor *workspace = tensors.get_tensor(TensorType::ACL_INT_0);
156 
157  const auto in_ptr = src->buffer() + src->info()->offset_first_element_in_bytes();
158  auto out_ptr = dst->buffer() + dst->info()->offset_first_element_in_bytes();
159  auto working_space = (workspace == nullptr) ? nullptr : workspace->buffer() + workspace->info()->offset_first_element_in_bytes();
160 
161  const auto src_shape = src->info()->tensor_shape();
162  const auto dst_shape = dst->info()->tensor_shape();
163  const auto src_padding = src->info()->padding();
164  const auto dst_padding = dst->info()->padding();
165 
166  const size_t ld_src_col = src_shape[0] + src_padding.left + src_padding.right;
167  const size_t ld_src_row = ld_src_col * (src_shape[1] + src_padding.top + src_padding.bottom);
168  const size_t ld_src_batch = ld_src_row * src_shape[2];
169  const size_t ld_dst_col = dst_shape[0] + dst_padding.left + dst_padding.right;
170  const size_t ld_dst_row = ld_dst_col * (dst_shape[1] + dst_padding.top + dst_padding.bottom);
171  const size_t ld_dst_batch = ld_dst_row * dst_shape[2];
172 
173  _kernel_asm->execute(in_ptr, ld_src_col, ld_src_row, ld_src_batch,
174  out_ptr, ld_dst_col, ld_dst_row, ld_dst_batch,
175  working_space, info.thread_id, info.num_threads);
176 }
177 
178 size_t CpuPool2dAssemblyWrapperKernel::get_working_size(unsigned int num_threads) const
179 {
180  return _kernel_asm->get_working_size(num_threads);
181 }
182 
184 {
185  return _kernel_asm != nullptr;
186 }
187 
188 template <typename Typesrc, typename Typedst>
189 void CpuPool2dAssemblyWrapperKernel::create_arm_pooling(const ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
190 {
191  const arm_conv::pooling::PoolingType pool_type = (info.pool_type == PoolingType::AVG) ? arm_conv::pooling::PoolingType::AVERAGE : arm_conv::pooling::PoolingType::MAX;
192 
193  arm_conv::pooling::PoolingWindow window{};
194  window.cols = static_cast<unsigned int>(info.pool_size.x());
195  window.rows = static_cast<unsigned int>(info.pool_size.y());
196 
197  arm_conv::pooling::PoolingStride stride{};
198  std::tie(stride.cols, stride.rows) = info.pad_stride_info.stride();
199 
200  const arm_conv::pooling::PaddingValues padding{ info.pad_stride_info.pad_left(), info.pad_stride_info.pad_top(), info.pad_stride_info.pad_right(), info.pad_stride_info.pad_bottom() };
201 
202  constexpr unsigned int idx_width = 1;
203  constexpr unsigned int idx_height = 2;
204  constexpr unsigned int idx_channels = 0;
205  constexpr unsigned int idx_batches = 3;
206 
207  const unsigned int n_batches = src->dimension(idx_batches);
208  const unsigned int src_rows = src->dimension(idx_height);
209  const unsigned int src_cols = src->dimension(idx_width);
210  const unsigned int n_channels = src->dimension(idx_channels);
211  const unsigned int dst_rows = dst->dimension(idx_height);
212  const unsigned int dst_cols = dst->dimension(idx_width);
213 
214  arm_conv::pooling::PoolingArgs args(&cpu_info, pool_type, window, stride, info.exclude_padding, n_batches, src_rows, src_cols, n_channels, dst_rows, dst_cols, padding, nullptr);
215 
216  // Configure assembly pooling kernel
217  auto pooling_kernel_asm = arm_conv::pooling::pooling<Typesrc, Typedst>(args);
218  if(pooling_kernel_asm == nullptr)
219  {
220  // Configuration not supported: Leave function unconfigured:
221  return;
222  }
223 
224  _kernel_asm = std::move(pooling_kernel_asm);
225 }
226 
227 template <typename Typesrc, typename Typedst>
228 void CpuPool2dAssemblyWrapperKernel::create_arm_pooling_requant(const ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
229 {
230  const arm_conv::pooling::PoolingType pool_type = (info.pool_type == PoolingType::AVG) ? arm_conv::pooling::PoolingType::AVERAGE : arm_conv::pooling::PoolingType::MAX;
231 
232  arm_conv::pooling::PoolingWindow window{};
233  window.cols = static_cast<unsigned int>(info.pool_size.x());
234  window.rows = static_cast<unsigned int>(info.pool_size.y());
235 
236  arm_conv::pooling::PoolingStride stride{};
237  std::tie(stride.cols, stride.rows) = info.pad_stride_info.stride();
238 
239  const arm_conv::pooling::PaddingValues padding{ info.pad_stride_info.pad_left(), info.pad_stride_info.pad_top(), info.pad_stride_info.pad_right(), info.pad_stride_info.pad_bottom() };
240 
241  constexpr unsigned int idx_width = 1;
242  constexpr unsigned int idx_height = 2;
243  constexpr unsigned int idx_channels = 0;
244  constexpr unsigned int idx_batches = 3;
245 
246  const unsigned int n_batches = src->dimension(idx_batches);
247  const unsigned int src_rows = src->dimension(idx_height);
248  const unsigned int src_cols = src->dimension(idx_width);
249  const unsigned int n_channels = src->dimension(idx_channels);
250  const unsigned int dst_rows = dst->dimension(idx_height);
251  const unsigned int dst_cols = dst->dimension(idx_width);
252 
253  arm_conv::pooling::PoolingArgs args(&cpu_info, pool_type, window, stride, info.exclude_padding, n_batches, src_rows, src_cols, n_channels, dst_rows, dst_cols, padding, nullptr);
254 
255  const auto src_qinfo = src->quantization_info().uniform();
256  const auto dst_qinfo = dst->quantization_info().uniform();
257 
258  const float multiplier = src_qinfo.scale / dst_qinfo.scale;
259  int32_t dst_multiplier{};
260  int32_t dst_shift{};
261  quantization::calculate_quantized_multiplier(multiplier, &dst_multiplier, &dst_shift);
262 
263  const arm_conv::pooling::Requantize32 requant_args(src_qinfo.offset,
264  dst_qinfo.offset,
265  dst_shift, // left shift
266  0, // right shift
267  dst_multiplier);
268 
269  // Configure assembly pooling kernel with requantization
270  auto pooling_kernel_asm = arm_conv::pooling::pooling<Typesrc, Typedst, arm_conv::pooling::Requantize32>(args, requant_args);
271  if(pooling_kernel_asm == nullptr)
272  {
273  // Configuration not supported: Leave function unconfigured:
274  return;
275  }
276 
277  _kernel_asm = std::move(pooling_kernel_asm);
278 }
279 
280 size_t CpuPool2dAssemblyWrapperKernel::get_mws(const CPUInfo &platform, size_t thread_count) const
281 {
282  ARM_COMPUTE_UNUSED(thread_count);
283  ARM_COMPUTE_UNUSED(platform);
284 
286 }
287 } // namespace kernels
288 } // namespace cpu
289 } // namespace arm_compute
Window calculate_max_window(const ValidRegion &valid_region, const Steps &steps, bool skip_border, BorderSize border_size)
#define ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(tensor)
Definition: Validate.h:115
virtual size_t dimension(size_t index) const =0
Return the size of the requested dimension.
bool empty() const
Checks if pack is empty.
Definition: ITensorPack.cpp:80
virtual DataType data_type() const =0
Data type used for each element of the tensor.
1 channel, 1 F32 per channel
#define MAX(x, y)
#define ARM_COMPUTE_ERROR_ON(cond)
If the condition is true then an error message is printed and an exception thrown.
Definition: Error.h:466
Store the tensor&#39;s metadata.
Definition: ITensorInfo.h:40
size_t x() const
Semantic accessor for width as x.
Definition: Size2D.h:75
unsigned int pad_top() const
Get the top padding.
Definition: Types.h:753
Status calculate_quantized_multiplier(float multiplier, int32_t *quant_multiplier, int32_t *shift, bool ignore_epsilon=false)
Calculate quantized representation of multiplier.
Status class.
Definition: Error.h:52
#define ARM_COMPUTE_RETURN_ERROR_ON(cond)
If the condition is true, an error is returned.
Definition: Error.h:296
Interface for CPU tensor.
Definition: ITensor.h:36
SimpleTensor< float > src
Definition: DFT.cpp:155
Copyright (c) 2017-2022 Arm Limited.
1 channel, 1 F16 per channel
#define ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(...)
Definition: Validate.h:159
TensorShape compute_pool_shape(const ITensorInfo &input, PoolingLayerInfo pool_info)
Calculate the output pool shape of a tensor.
const ITensor * get_const_tensor(int id) const
Get constant tensor of a given id.
Definition: ITensorPack.cpp:54
void run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info) override
Execute the kernel on the passed window.
bool is_configured() const
Was the asm kernel successfully configured?
#define ARM_COMPUTE_UNUSED(...)
To avoid unused variables warnings.
Definition: Error.h:152
virtual const TensorShape & tensor_shape() const =0
Size for each dimension of the tensor.
quantized, asymmetric fixed-point 8-bit number unsigned
Class to describe a number of elements in each dimension.
Definition: Steps.h:40
virtual uint8_t * buffer() const =0
Interface to be implemented by the child class to return a pointer to CPU memory. ...
std::pair< unsigned int, unsigned int > stride() const
Get the stride.
Definition: Types.h:717
Pooling Layer Information struct.
Definition: Types.h:1186
UniformQuantizationInfo uniform() const
Return per layer quantization info.
bool auto_init_if_empty(ITensorInfo &info, const TensorShape &shape, int num_channels, DataType data_type, QuantizationInfo quantization_info=QuantizationInfo())
Auto initialize the tensor info (shape, number of channels and data type) if the current assignment i...
virtual std::unique_ptr< T > clone() const =0
Provide a clone of the current object of class T.
virtual ITensorInfo * info() const =0
Interface to be implemented by the child class to return the tensor&#39;s metadata.
unsigned int pad_right() const
Get the right padding.
Definition: Types.h:748
virtual PaddingSize padding() const =0
Padding of tensor.
unsigned int left
left of the border
Definition: Types.h:393
virtual QuantizationInfo quantization_info() const =0
Get the quantization settings (scale and offset) of the tensor.
#define ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(k)
Definition: Validate.h:915
size_t y() const
Semantic accessor for height as y.
Definition: Size2D.h:84
virtual size_t offset_first_element_in_bytes() const =0
The offset from the beginning of the memory allocation to the first element of the tensor...
PoolingType
Available pooling types.
Definition: Types.h:557
ScaleKernelInfo info(interpolation_policy, default_border_mode, PixelValue(), sampling_policy, false)
ITensor * get_tensor(int id)
Get tensor of a given id from the pac.
Definition: ITensorPack.cpp:64
size_t get_working_size(unsigned int num_threads) const
Get size of the workspace needed by the assembly kernel.
#define ARM_COMPUTE_RETURN_ERROR_MSG(...)
An error is returned with the given description.
Definition: Error.h:194
PadStrideInfo pad_stride_info
Definition: Types.h:1274
Information about executing thread and CPU.
Definition: CPPTypes.h:169
virtual size_t total_size() const =0
Returns the total size of the tensor in bytes.
#define ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(...)
Definition: Validate.h:541
Num samples, height, width, channels.
#define ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(t, c,...)
Definition: Validate.h:788
#define ARM_COMPUTE_RETURN_ERROR_ON_MSG(cond, msg)
If the condition is true, an error is returned.
Definition: Error.h:244
bool is_pool_region_entirely_outside_input(const PoolingLayerInfo &info)
Check if the pool region is entirely outside the input tensor.
Definition: Utils.cpp:235
Tensor packing service.
Definition: ITensorPack.h:39
#define ARM_COMPUTE_ERROR_ON_NULLPTR(...)
Definition: Validate.h:157
quantized, asymmetric fixed-point 8-bit number signed
static Status validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &info)
Static function to check if given info will lead to a valid configuration.
unsigned int pad_bottom() const
Get the bottom padding.
Definition: Types.h:758
void configure(const ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &info, const CPUInfo &cpu_info)
Initialise the kernel&#39;s src and dst.
unsigned int pad_left() const
Get the left padding.
Definition: Types.h:743
Describe a multidimensional execution window.
Definition: Window.h:39
static constexpr size_t default_mws
Definition: ICPPKernel.h:41
virtual DataLayout data_layout() const =0
Get the data layout of the tensor.
bool has_padding() const
Check whether this has any padding.
Definition: Types.h:770