
Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2

Arm®v8-M Security ExtensionsRequirements on Development Tools
Release Date: 06 April 2022
Version: 1.2
Copyright 2019, 2021-2022 Arm Limited and/or its affiliatesopen-source-office@arm.com.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 1 of 42

mailto:open-source-office@arm.com
mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2Contents

Contents
1 Preface 41.1 Abstract . 41.2 Keywords . 41.3 Latest release and defects report . 41.4 License . 41.4.1 About the license . 41.5 Contributions . 51.6 Trademark notice . 51.7 Copyright . 5
2 ABOUT THIS DOCUMENT 62.1 Change control . 62.1.1 Current status and anticipated changes . 62.1.2 Change history . 62.1.2.1 Changes for version 1.2 . 62.2 References . 62.3 Terms and abbreviations . 7
3 SCOPE 93.1 Scope . 93.2 Conventions . 9
4 OVERVIEW OF CMSE 104.1 Introduction . 104.1.1 Security state changes . 104.2 The TT instruction . 124.3 Secure code requirements . 124.3.1 Information leakage . 124.3.2 Non-secure memory access . 124.3.3 Volatility of non-secure memory . 134.3.4 Inadvertent secure gateway . 134.4 Development tools . 144.4.1 Source level security state changes . 144.4.2 Executable files . 144.4.3 Secure gateway veneers . 164.4.4 Example C level development flow of secure code . 174.4.5 Reserved names . 19
5 TT INSTRUCTION SUPPORT 205.1 Feature macro . 205.2 TT intrinsics . 205.3 Address range check intrinsic . 22
6 CMSE SUPPORT 246.1 Non-secure memory usage . 246.2 TT intrinsics for CMSE . 256.3 Address range check intrinsic for CMSE . 266.4 Entry functions . 27

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 2 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2Contents

6.4.1 Arguments and return value . 276.4.2 Return from an entry function . 286.4.3 Security state of the caller . 296.5 Non-secure function call . 296.5.1 Performing a call . 306.5.2 Arguments and return value . 316.6 Non-secure function pointer . 32
7 FUTURE EXTENSIONS 347.1 Non-secure callable function . 347.2 Non-secure returning function . 34
8 APPENDIX: EXAMPLE SOURCE 358.1 Address range checking intrinsic . 358.2 Non-trivial macros . 368.3 Example non-secure function call . 368.3.1 Simple case . 368.3.2 Hard-float ABI . 378.3.3 Arguments and return value on the stack . 388.4 Example entry functions . 398.4.1 Simple case . 398.4.2 Arguments on the stack and floating point handling . 408.4.3 Return value on the stack . 42

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 3 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2Preface

1. Preface
1.1 Abstract
This document describes the requirements on Development Tools in order to support Armv8-M and Armv8.1-MSecurity Extensions or the new TT instruction of Armv8-M.

1.2 Keywords
ACLE, ABI, CMSE, Armv8-M, Armv8.1-M, Security, Extensions, toolchain, requirements, compiler, linkerarm.

1.3 Latest release and defects report
For the latest release of this document, see the ACLE project on GitHub.
Please report defects in this specification to the issue tracker page on GitHub.

1.4 License
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copyof this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box1866, Mountain View, CA 94042, USA.
Grant of Patent License. Subject to the terms and conditions of this license (both the Public License and this PatentLicense), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irre-vocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, andotherwise transfer the Licensed Material, where such license applies only to those patent claims licensable by suchLicensor that are necessarily infringed by their contribution(s) alone or by combination of their contribution(s) withthe Licensed Material to which such contribution(s) was submitted. If You institute patent litigation against anyentity (including a cross-claim or counterclaim in a lawsuit) alleging that the Licensed Material or a contributionincorporated within the Licensed Material constitutes direct or contributory patent infringement, then any licensesgranted to You under this license for that Licensed Material shall terminate as of the date such litigation is filed.
1.4.1 About the license
As identified more fully in the License section, this project is licensed under CC-BY-SA-4.0 along with an additionalpatent license. The language in the additional patent license is largely identical to that in Apache-2.0 (specifically,Section 3 of Apache-2.0 as reflected at https://www.apache.org/licenses/LICENSE-2.0) with two exceptions.
First, several changes were made related to the defined terms so as to reflect the fact that such defined termsneed to align with the terminology in CC-BY-SA-4.0 rather than Apache-2.0 (e.g., changing “Work” to “LicensedMaterial”).
Second, the defensive termination clause was changed such that the scope of defensive termination applies to “anylicenses granted to You” (rather than “any patent licenses granted to You”). This change is intended to help maintaina healthy ecosystem by providing additional protection to the community against patent litigation claims.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 4 of 42

https://github.com/ARM-software/acle
https://github.com/ARM-software/acle/issues
http://creativecommons.org/licenses/by-sa/4.0/
https://www.apache.org/licenses/LICENSE-2.0
mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2Preface

1.5 Contributions
Contributions to this project are licensed under an inbound=outbound model such that any such contributions arelicensed by the contributor under the same terms as those in the LICENSE file.
We do not require copyright assignment. The original contributor will retain the copyright.

1.6 Trademark notice
The text of and illustrations in this document are licensed by Arm under a Creative Commons Attribution–ShareAlike 4.0 International license (“CC-BY-SA-4.0”), with an additional clause on patents. The Arm trademarks featuredhere are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. Allrights reserved. Please visit https://www.arm.com/company/policies/trademarks for more information about Arm’strademarks.

1.7 Copyright
Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 5 of 42

https://www.arm.com/company/policies/trademarks
mailto:open-source-office@arm.com
mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2ABOUT THIS DOCUMENT

2. ABOUT THIS DOCUMENT
2.1 Change control
2.1.1 Current status and anticipated changes
This document is a development version based on release 1.1.
Anticipated changes to this document include:

• Typographical corrections.• Clarifications.• Compatible extensions.
2.1.2 Change history

Issue Date By Change
1.0 23/10/2015 Arm First release
1.1 01/11/2019 Arm Second release
1.2 06 April 2022 Arm See Changes for version 1.2

2.1.2.1 Changes for version 1.2
• Publication of the specifications in open source format.• Internal references to sections and figures use section title and figure caption instead of reference numbers.• Section numbering has changed because of the introduction of the Preface chapter.• Fixed the definition of macro cmse check pointed object in Non-trivial macros, as specified in requirement30.• Fixed the example of a non-secure function call in figure Caller’s stack frame of a non-secure function callfrom struct s NS nsfunc(struct s); to struct s NS (*nsfunc)(struct s);. Non-secure functionshave to be function pointers.

2.2 References
This document refers to the following documents.

Ref Doc No Author(s) Title

[AAELF] ARM IHI 0044E ELF for the Arm®Architecture
[AAPCS] ARM IHI 0042E Procedure Call Standardfor the Arm®Architecture

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 6 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2ABOUT THIS DOCUMENT

Ref Doc No Author(s) Title

[ACLE] ARM IHI 0053C Arm® C LanguageExtensions Release 2.0
[BSABI] ARM IHI 0036B Application BinaryInterface for the Arm®Architecture (BaseStandard)
[ISOC] ISO/IEC 9899:2011 ISO/IEC Programming LanguageC
[ARMV8M] ARM DDI 0553aArmv8-M ArchitectureReference Manual[]

2.3 Terms and abbreviations
This document uses the following terms and abbreviations.

Term Meaning
CMSE Armv8-M Security Extensions.
SAU Security Attribute Unit. Controls the separation of secure and non-secure memory regions.
IDAU Implementation Defined Attribute Unit. Enables system logic outside the processor toseparate secure and non-secure memory regions, similar to the SAU.
MPU Memory Protection Unit. Controls the permissions that privileged and unprivilegedexecution modes have, memory region by memory region.
NSC region Non-Secure Callable memory region. Secure memory that is callable by code executing innon-secure state.
SG Secure Gateway Instruction. Switches to secure state.
TT Test Target Instruction. Used to inspect MPU, SAU, and IDAU configurations.
Entry function A function in secure memory that can be called from secure and non-secure state.
Non-securefunction call A function call in secure memory that switches to non-secure state.

Secure gateway Occurrence of an SG instruction in a NSC region.
Secure gatewayveneer A code sequence that provides a secure gateway to an entry function.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 7 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2ABOUT THIS DOCUMENT

Term Meaning
LSB Least Significant Bit.
A32 Instruction set previously known as Arm®.
T32 Instruction set previously known as Thumb®.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 8 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2SCOPE

3. SCOPE
3.1 Scope
Armv8-M Security Extensions is in some contexts known as Cortex®-M Security Extensions and is referred to asCMSE throughout this document. The Armv8.1-M Mainline architecture continues support for Armv8-M SecurityExtensions and this document refers to both by Armv8-M unless otherwise specified.
This document states the requirements that development tools must satisfy in order to develop software in C thatuses the feature defined by CMSE. This document describes a machine-level standard that can be mapped directlyby functions written in C and assembly language.
This document also describes the support for the new TT instruction introduced in Armv8-M. This instruction is notpart of CMSE, but is closely related.
Some of the requirements defined by this document will be included in future [ACLE] and [BSABI] documents.

3.2 Conventions
This document consists of informative text and requirements.

Requirement 0
Requirements are numbered in the left margin and highlighted as shown here.

A permanent unique reference consists of the document number, document version, and requirement number.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 9 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2OVERVIEW OF CMSE

4. OVERVIEW OF CMSE
4.1 Introduction
CMSE is an optional part of the Armv8-M baseline and mainline architecture defined by [ARMV8M]. CMSE isdesigned to combine code from multiple vendors without requiring trust between them. CMSE gives vendors theability to protect their software assets (code and data) by restricting access to the memory where their softwareassets reside, except for a set of explicitly exported entry points that are defined by the vendor. This supportsthe creation of a trusted software stack that provides features such as secure remote firmware updates, whilesignificantly reducing the attack surface of such code. This is an important feature for any network-connecteddevice that can be updated after deployment, including any IoT device.
CMSE defines a system-wide division of physical memory into secure regions and non-secure regions and two system-wide security states that are enforced by hardware. There is a direct relation between the memory regions and thesecurity states:

• Code executed from a non-secure region (non-secure code) is executed in non-secure state and can only accessmemory in non-secure regions.• Code executed from a secure region (secure code) is executed in secure state and can access memory in bothsecure and non-secure regions.[]
Attempts to access secure regions from non-secure code or a mismatch between the (secure or non-secure) codethat executes and the security state of the system, results in a SecureFault.
The security states are orthogonal to the exception level, as shown in figure Diagrammatic representation of securestates.
Memory regions can be defined by the system through the IDAU or can be controlled in software through thememory mapped SAU registers.
Parts of the system are banked between the security states. The stack pointer is banked, resulting in a stack pointerfor each combination of security state and exception level. All parts of the system accessible in non-secure statecan be accessed in secure state as well, including the banked parts.
4.1.1 Security state changes
The system boots in secure state and can change security states using branches as shown in figure Security statetransitions.
Transitions from secure to non-secure state can be initiated by software through the use of the BXNS and BLXNSinstructions that have the Least Significant Bit (LSB) of the target address unset.
Note: The M profile architecture does not support the A32 instruction set. This allows the LSB of an address todenote the security state.
Transitions from non-secure to secure state can be initiated by software in two ways:

• A branch to a secure gateway.• A branch to the reserved value FNC RETURN.
A secure gateway is an occurrence of the Secure Gateway instruction (SG) in a special type of secure region, nameda Non-Secure Callable (NSC) region. When branching to a secure gateway from non-secure state, the SG instructionswitches to the secure state and clears the LSB of the return address in lr. In any other situation the SG instructiondoes not change the security state or modify the return address.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 10 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2OVERVIEW OF CMSE

Figure 4.1: Diagrammatic representation of secure states

Figure 4.2: Security state transitions

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 11 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2OVERVIEW OF CMSE

A branch to the reserved value FNC RETURN causes the hardware to switch to secure state, read an address from thetop of the secure stack, and branch to that address. The reserved value FNC RETURN is written to lr when executingthe BLXNS instruction.
Security state transitions can be caused by hardware through the handling of interrupts. Those transitions aretransparent to software and are ignored in the remainder of this document.

4.2 The TT instruction
The Armv8-M architecture introduces the Test Target instruction (TT). The TT instruction takes a memory addressand returns the configuration of the Memory Protection Unit (MPU) at that address. An optional T flag controlswhether the permissions for the privileged or the unprivileged execution mode are returned.
When executed in the secure state the result of this instruction is extended to return the SAU and IDAU configu-rations at the specific address.
The MPU is banked between the two security states. The optional A flag makes the TT instruction read the MPU ofthe non-secure state when the TT instruction is executed from the secure state.
The TT instruction is used to check the access permissions that different security states and privilege levels haveon memory at a specified address.

4.3 Secure code requirements
To prevent secure code and data from being accessed from non-secure state, secure code must meet at least therequirements listed in this section. The responsibility for meeting these security requirements is shared betweenhardware, toolchain and software developer. The remainder of this document specifies requirements a toolchainmust meet to enable C programmers to meet these security requirements.
4.3.1 Information leakage
Information leakage from the secure state to the non-secure state might occur through parts of the system that arenot banked between the security states. The unbanked registers that are accessible by software are:

• General purpose registers except for the stack pointer (r0-r12, r14-r15).• Floating point registers (S0-S31, D0-D15).• The N, Z, C, V, Q, and GE bits of the APSR register.• The FPSCR register.
Requirement 1
Secure code must clear secret information from unbanked registers before it initiate a transition from secureto non-secure state.

4.3.2 Non-secure memory access
When secure code needs to access non-secure memory using an address calculated by the non-secure state, itcannot trust that the address lies in a non-secure memory region. Furthermore, the MPU is banked between thesecurity states. Therefore secure and non-secure code might have different access rights to non-secure memory.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 12 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2OVERVIEW OF CMSE

Requirement 2
Secure code that accesses non-secure memory on behalf of the non-secure state must only do so if thenon-secure state has permission to perform the same access itself.

The secure code can use the TT instruction to check non-secure memory permissions.
Requirement 3
Secure code must not access non-secure memory unless it does so on behalf of the non-secure state.

Data belonging to secure code must reside in secure memory.
4.3.3 Volatility of non-secure memory
Non-secure memory can be changed asynchronously to the execution of secure code. There are two causes:

• Interrupts handled in non-secure state can change non-secure memory.• The debug interface can be used to change non-secure memory.
There can be unexpected consequences when secure code accesses non-secure memory:
int array[N]
void foo(int *p) {

if (*p >= 0 && *p < N) {
// non-secure memory (*p) is changed at this point
array[*p] = 0;

}
}

When the pointer p points to non-secure memory, it is possible for its value to change after the memory accessesused to perform the array bounds check, but before the memory access used to index the array. This asynchronouschange to non-secure memory would render this array bounds check useless.
Requirement 4
Secure code must handle non-secure memory as volatile.

The introductory example of the section Volatility of non-secure memory shows a case that you can handle asfollows:
int array[N]
void foo(volatile int *p) {

int i = *p;
if (i >= 0 && i < N) {

array[i] = 0;
}

}

Situations that the toolchain must handle are described in Non-secure memory usage.
4.3.4 Inadvertent secure gateway
An SG instruction can occur inadvertently. This can happen in the following cases:

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 13 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2OVERVIEW OF CMSE

• Uninitialized memory.• General data in executable memory, for example jump tables.• A 32-bit wide instruction that contains the bit pattern 1110 1001 0111 1111 in its first half-word that followsan SG instruction, for example two successive SG instructions.• A 32-bit wide instruction that contains the bit pattern 1110 1001 0111 1111 in its last half-word that isfollowed by an SG instruction, for example an SG instruction that follows an LDR (immediate) instruction.
If an inadvertent SG instruction occurs in an NSC region, the result is an inadvertent secure gateway.

Requirement 5
Memory in an NSC region must not contain an inadvertent SG instruction.

The secure gateway veneers introduced in Secure gateway veneers limit the instructions that need to be placed inNSC regions. If the NSC regions contain only these veneers, an inadvertent secure gateway cannot occur.

4.4 Development tools
4.4.1 Source level security state changes
Development tools are expected to provide C and assembly language support for interacting between the securitystates. Code written in C++ must use extern “C” linkage for any inter-state interaction.

Requirement 6
Security state changes must be expressed through function calls and returns.

This provides an interface that fits naturally with the C language. A function in secure code that can be called fromthe non-secure state through its secure gateway is called an entry function. A function call from secure state to thenon-secure state is called a non-secure function call. This is shown in Security state transitions.
4.4.2 Executable files
There are two different types of executable files, one for each security state. The secure state executes secure codefrom a secure executable file. The non-secure state executes non-secure code from a non-secure executable file. Thesecure and non-secure executable files are developed independently of each other.

Requirement 7
A non-secure executable is unaware of security states.

From the point of view of the non-secure state, a call to a secure gateway is a regular function call, as is the returnfrom a non-secure function call. It is therefore required that a non-secure executable file can be developed using atoolchain that is not aware of CMSE.
Developing a secure executable file requires toolchain support whenever a function is called from, calls, or returnsto non-secure state and whenever memory is accessed through an address provided by the non-secure state. Thesecure code ABI is otherwise identical to the non-secure code ABI.
For Armv8-M Mainline there are occasions where there is no possible code-generation that abides the VFP ABI rulethat mandates that exception-control bits of the FPSCR may only be modified by specific support functions. Afterreturning from an entry call or when performing a nonsecure-call using the hard-float ABI the FPSCR will have been

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 14 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2OVERVIEW OF CMSE

Figure 4.3: Files shared between parties
initialized with the secure world’s default FPSCR, the FPDSCR S. For the soft-float ABI this is not the case as theVLSTM and VLDM instructions may be used. Armv8.1-M Mainline introduces instructions that enable the savingand restoring of the FP context. These are the VMSR, VMRS, VSTR and VLDR to system registers FPCXTNS andFPCXTS.
The interaction between developers of secure code, non-secure code, and (optional) security agnostic library codeis shown in Files shared between parties.
The secure gateway import library, shortened to import library, contains the addresses of the secure gateways ofthe secure code. This import library consists of or contains a relocatable file that defines symbols for all the securegateways. The non-secure code links against this import library to use the functionality provided by the securecode.

Requirement 8
A relocatable file containing only copies of the (absolute) symbols of the secure gateways in the secureexecutable must be available to link non-secure code against.

Linking against this import library is the only requirement on the toolchain used to develop the non-secure code.This functionality is very similar to calling ROM functions, and is expected to be available in existing toolchains.
Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 15 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2OVERVIEW OF CMSE

4.4.3 Secure gateway veneers
Requirement 9
A toolchain must support generating a secure gateway veneer for each entry function with external linkage.It consists of an SG instruction followed by a B.W instruction that targets the entry function it veneers.

Secure gateway veneers decouple the addresses of secure gateways (in NSC regions) from the rest of the securecode. By maintaining a vector of secure gateway veneers at a forever-fixed address, the rest of the secure code canbe updated independently of non-secure code. This also limits the amount of code in NSC regions that potentiallycan be called by the non-secure state.
Requirement 10
A secure gateway veneer must be labelled by an ELF symbol that has the same binding, type, and name asthe function it veneers, following the rules for C entities as defined by [AAELF].

To prevent duplicate symbol names, an entry function will “lose” its standard symbol when its secure gateway veneeris created. For instance, the compiler could use weak symbols for entry functions.
Requirement 11
A toolchain must support creating a vector of secure gateway veneers consisting of one or more veneersplaced consecutively in memory.

Vectors of secure gateway veneers are expected to be placed in NSC memory. All other code in the secure exe-cutable is expected to be placed in secure memory regions. This placement is under your control.
Preventing inadvertent secure gateways as described in Inadvertent secure gateway is a responsibility shared be-tween you and the toolchain in use. A toolchain must make it possible for you to avoid creating inadvertent securegateways.

Requirement 12
Excluding the first instruction of a secure gateway veneer, a veneer must not contain the bit pattern of theSG instruction on a 2-byte boundary.
Requirement 13
A vector of secure gateway veneers must be aligned to a 32-byte boundary, and must be zero padded to a32-byte boundary.

You should take care that the code or data before the vector of secure gateway veneers does not create an inad-vertent secure gateway with the first secure gateway veneer in the vector. Arm recommends placing the vector ofsecure gateway veneers at the start of a NSC region.
Requirement 14
You must have granted control of the position of secure gateway veneers in a vector.

This last requirement gives you complete control over the address of a secure gateway veneer. It allows you to fix
Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 16 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2OVERVIEW OF CMSE

Figure 4.4: Secure executable memory layout

the addresses of the secure gateway veneers such that secure code can be updated independently of non-securecode.
Secure executable memory layout shows the memory layout of a secure executable.
4.4.4 Example C level development flow of secure code
The example in this section shows the creation of a secure executable and its corresponding import library startingfrom C sources. The example uses some features that are described later in this document.
The interface visible to non-secure code is defined in the header file myinterface.h as follows:
int entry1(int x);
int entry2(int x);

The implementation of this interface is given by the following C code:
#include <arm_cmse.h>
#include \myinterface.h"
int func1(int x) { return x; }
int __attribute__((cmse_nonsecure_entry)) entry1(int x) { return func1(x) ; }
int __attribute__((cmse_nonsecure_entry)) entry2(int x) { return entry1(x); }

In addition to the implementation of the two entry functions, the code defines the function func1() which can onlybe called by secure code. The example C source is not a complete application in itself. The main entry point functionis very platform dependent so is not included in this example.
When a compiler translates the above C code, it might produce the following assembly:

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 17 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2OVERVIEW OF CMSE

func1:
BX lr
entry1:
__acle_se_entry1:
PUSH {r11, lr}
BL func1
POP {r11, lr}
BXNS lr
entry2:
__acle_se_entry2:
PUSH {r11, lr}
BL entry1
POP {r11, lr}
BXNS lr
.weak entry1, entry2

An entry function starts with two symbols labelling its start; it does not start with an SG instruction. This indicatesan entry function to the linker. Note: alternatively, the compiler can use the acle se entry1 symbol rather thanthe entry1 symbol in function entry2. This would make the function call skip the secure gateway veneer.
When the relocatable file corresponding to this assembly code is linked into an executable file, the linker createsthe following veneers in a section containing only entry veneers:
entry1:
SG
B.W __acle_se_entry1
entry2:
SG
B.W __acle_se_entry2

Note: the section with the veneers is aligned on a 32-byte boundary and padded to a 32-byte boundary. Placementof the section with the veneers is under your control, but must be in an NSC region.
In addition to the final executable, our example linker also produces the import library for non-secure code. As-suming the section with veneers is placed at address 0x100, the import library consists of a relocatable file whichcontains only a symbol table with the following entries:

Symbol type Name Address
STB GLOBAL, SHN ABS, STT FUNC entry1 0x101
STB GLOBAL, SHN ABS, STT FUNC entry2 0x109

Finally, the secure executable file can be pre-loaded on the device. The device with pre-loaded executable, theimport library, and the header file can be delivered to a party who develops non-secure code for this device.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 18 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2OVERVIEW OF CMSE

4.4.5 Reserved names
Requirement 15
This specification reserves the usage of:• Identifiers starting with cmse , case insensitive, when the arm cmse.h header is included.• Attribute names starting with cmse .

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 19 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2TT INSTRUCTION SUPPORT

5. TT INSTRUCTION SUPPORT
This chapter defines the language extension that provides C applications access to the TT instruction. Support forthe TT instruction described here is generic to the Armv8-M architecture, and is not part of CMSE, but is closelyrelated.

Requirement 16
The <arm cmse.h> header must be included before using the TT instruction support.

5.1 Feature macro
The feature macro ARM FEATURE CMSE describes the availability of CMSE related extensions. The macro defines aset of flags encoded as bits.

Requirement 17
Bit 0 of macro ARM FEATURE CMSE is set if the TT instruction support is available.
Requirement 18
All undefined bits of macro ARM FEATURE CMSE are reserved for future use and must be unset.

The flags defined by ARM FEATURE CMSE as described here and in 9 result in the following values for this macro:

Value Meaning
0 or (undefined) Absence of TT instruction support
1 TT instruction support is available
3 Toolchain targets the secure state of CMSE (implies the availability of the TT instruction)

5.2 TT intrinsics
The result of the TT instruction is described by a C type containing bit-fields. This type is used as the return typeof the TT intrinsics.
As specified by [AAPCS], the endianness of a system affects the bit-offsets of bit-fields, but the result of the TTinstruction is not influenced by endianness.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 20 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2TT INSTRUCTION SUPPORT

Requirement 19
If ARM BIG ENDIAN is unset and bit 0 of macro ARM FEATURE CMSE is set, the following type must bedeclared:

typedef union {
struct cmse_address_info {
unsigned mpu_region:8;
unsigned :8;
unsigned mpu_region_valid:1;
unsigned :1;
unsigned read_ok:1;
unsigned readwrite_ok:1;
unsigned :12;
} flags;
unsigned value;
} cmse_address_info_t;

Requirement 20
If ARM BIG ENDIAN is set, the bit-fields in the type defined by requirement 19 are reversed such that theyhave the same bit-offset as on little-endian systems following the rules specified by [AAPCS].

The size of this type is 4 bytes.
Requirement 21
The unnamed bit-fields of cmse address info t are reserved.
Requirement 22
The following intrinsics must be provided if bit 0 of macro ARM FEATURE CMSE is set:

Intrinsic Semantics
cmse address info t cmse TT(void *p) Generates a TT instruction.
cmse address info t cmse TT fptr(p) Generates a TT instruction. The argument p can beany function pointer type.
cmse address info t cmse TTT(void *p) Generates a TT instruction with the T flag.
cmse address info t cmse TTT fptr(p) Generates a TT instruction with the T flag. Theargument p can be any function pointer type.

Arm recommends that a toolchain behaves as if these intrinsics would write the pointed-to memory. That preventssubsequent accesses to this memory being scheduled before this intrinsic.
The exact type signatures for cmse TT fptr() and cmse TTT fptr() are implementation-defined because there isno type defined by [ISOC] that can hold all function pointers. Arm recommends implementing these intrinsics as

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 21 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2TT INSTRUCTION SUPPORT

macros.

5.3 Address range check intrinsic
Checking the result of the TT instruction on an address range is essential for programming in C. It is needed to checkpermissions on objects larger than a byte. The address range check intrinsic defined in this section can be used toperform permission checks on C objects.

Requirement 23
The address range check intrinsic must be available if bit 0 of macro ARM FEATURE CMSE is set. It hasthe following type signature: void *cmse check address range(void *p, size t size, int flags)

Requirement 24
The address range check intrinsic checks the address range from p to p + size { 1.

An implementation must be aware that wraparound of an address range can occur.
Requirement 25
The address range check fails if p + size - 1 < p.

Some SAU, IDAU and MPU configurations block the efficient implementation of an address range check. Thisintrinsic operates under the assumption that the configuration of the SAU, IDAU, and MPU is constrained as follows:
• An object is allocated in a single region.• A stack is allocated in a single region.

These points imply that a region does not overlap other regions.
An SAU, IDAU and MPU region number is returned by the TT instruction. When the region numbers of the startand end of the address range match, the complete range is contained in one SAU, IDAU, and MPU region. In thiscase two TT instructions are executed to check the address range.
Regions are aligned at 32-byte boundaries. If the address range fits in one 32-byte address line, a single TT instruc-tion suffices. This is the case when the following constraint holds:

(p mod 32) + size <= 32

Requirement 26
The address range check intrinsic fails if the range crosses any MPU region boundary.

The SAU and IDAU support for this intrinsic is defined in Address range check intrinsics for CMSE.
The rest of the semantics of the address range check intrinsic depend on its flags parameter. This parameter canbe constructed using a bitwise OR operator.

Requirement 27
The flags parameter of the address range check consists of a set of values. Each value must have a macrodefined for it, with the name and semantic effects as defined in the following table:

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 22 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2TT INSTRUCTION SUPPORT

Macro Value Semantic effects
0 The TT instruction without anyflag is used to retrieve thepermissions of an address,returned in a

cmse address info tstructure.
CMSE MPU UNPRIV 4 Sets the T flag on the TTinstruction used to retrieve thepermissions of an address.Retrieves the unprivilegedmode access permissions.
CMSE MPU READWRITE 1 Checks if the permissions havethe readwrite ok field set.
CMSE MPU READ 8 Checks if the permissions havethe read ok field set.

Requirement 28
The address range check must fail if the flags parameter contains a value that cannot be constructed usinga bitwise OR operator on the values defined by requirement 27.
Requirement 29
The address range check intrinsic returns NULL on a failed check, and p on a successful check.

Arm recommends that you to use the returned pointer to access the checked memory range. This generates a datadependency between the checked memory and all its subsequent accesses and prevents these accesses from beingscheduled before the check.
Requirement 30
The following intrinsic must be defined if bit 0 of macro ARM FEATURE CMSE is set:

Intrinsic Semantics
cmse check pointed object(p, f) Returns the same value as cmse check address range(p,

sizeof(*p), f).

The cmse check pointed object() intrinsic can be implemented as a macro. An example implementation is listedin Non-trivial macros. This intrinsic is a convenience wrapper for the cmse check address range() intrinsic thatmatches the most common usage pattern in C. Arm recommends that the return type of this intrinsic is identical tothe type of parameter p.
Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 23 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2CMSE SUPPORT

6. CMSE SUPPORT
This chapter defines the language extension that provides support for secure executable files written in the Clanguage. Non-secure executable files do not require any additional toolchain support.

Requirement 31
The <arm cmse.h> header must be included before using CMSE support, except for using the
ARM FEATURE CMSE macro.

Requirement 32
Bits 0 and 1 of feature macro ARM FEATURE CMSE are set if CMSE support for secure executable files isavailable.

Availability of CMSE implies availability of the TT instruction.
A compiler might provide a switch to enable support for creating CMSE secure executable files. Arm recommendssuch a switch to be named -mcmse.

6.1 Non-secure memory usage
Secure code should only use secure memory except when communicating with the non-secure state. The italicizedterms in this section are terms defined by [ISOC].

Requirement 33
The storage of any object declared in a translation unit must be a register or secure memory.

The security implications of accessing non-secure memory through a pointer are your responsibility. Any otheraccess to non-secure memory by secure code is called a “generated non-secure memory access” and is the respon-sibility of the C language translation system.
Requirement 34
A generated non-secure memory read (or write) must check that the non-secure state can read (or write)this memory before accessing it.
Requirement 35
Any attempted generated non-secure memory read (or write) to memory that is not readable (or writable)by the non-secure state must result in a call to the cmse abort() function. The programmer handles thecase where a generated non-secure memory access fails the compiler-generated check, by defining the
cmse abort() function. This function should never return.

The following pseudocode describes the general code sequence for a generated non-secure memory write accessat address nsaddr and of size SIZE. An implementation is not required to use this particular code sequence.
addr = cmse_check_address_range(nsaddr, SIZE, CMSE_MPU_READWRITE | CMSE_NONSECURE)
if addr == 0 then

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 24 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2CMSE SUPPORT

cmse_abort()
//access to [addr, addr+SIZE-1] is now permitted

The macros CMSE MPU READWRITE and CMSE NONSECURE are defined in Address range check intrinsics for CMSE. The
cmse check address range intrinsic is defined in Address range check intrinsics and extended in Address rangecheck intrinsics for CMSE.
As mentioned in Address range check intrinsics, the address range check can be done efficiently if the non-securestack does not cross the boundary of any memory region defined by the MPU, SAU, and IDAU.

Requirement 36
A C language translation system must generate code to handle a generated non-secure memory access ineach of the following situations:• An entry function called from non-secure state assigns an argument written to memory by the non-secure state to its corresponding parameter (as defined by §6.5.2.2 paragraph 4 of [ISOC]);• An entry function returns control to its non-secure caller and writes its return value to memory (asdefined by §6.8.6.4 paragraph 3 of [ISOC]);• A function call that targets the non-secure state assigns an argument to the corresponding parameter(as defined by §6.5.2.2 paragraph 4 of [ISOC]);• A return value of a function call that targets the non-secure state is read from memory (as defined by§6.8.6.4 paragraph 3 of [ISOC]).

This is explained in more detail in 9.4 Entry functions, and 9.5 Non-secure function call.

6.2 TT intrinsics for CMSE
In the secure state, the TT instruction returns the SAU and IDAU configuration and recognizes the A flag. This re-quires the type defined in TT intrinsics to be extended. The additional fields are emphasized with double asterisk(**).The size of this type is still 4 bytes.

Requirement 37
If ARM BIG ENDIAN is unset and bit 1 of macro ARM FEATURE CMSE is set, the following type must bedeclared:

typedef union {
struct cmse_address_info {
unsigned mpu_region:8;
unsigned sau_region:8;
unsigned mpu_region_valid:1;
unsigned sau_region_valid:1;
unsigned read_ok:1;
unsigned readwrite_ok:1;
unsigned nonsecure_read_ok:1;
unsigned nonsecure_readwrite_ok:1;
unsigned secure:1;
unsigned idau_region_valid:1;
unsigned idau_region:8;
} flags;
unsigned value;
} cmse_address_info_t;

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 25 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2CMSE SUPPORT

Requirement 38
If ARM BIG ENDIAN is set the bit-fields in the type defined by requirement 37 must be reversed such thatthey have the same bit-offset as on little-endian systems following the rules specified by [AAPCS].
Requirement 39
The following intrinsics must be provided if bit 1 of macro ARM FEATURE CMSE is set:

Intrinsic Semantics
cmse address info t cmse TTA(void *p) Generates a TT instruction with the A flag.
cmse address info t cmse TTA fptr(p) Generates a TT instruction with the A flag. Theargument p can be any function pointer type.
cmse address info t cmse TTAT(void *p) Generates a TT instruction with the T and A flag.
cmse address info t cmse TTAT fptr(p) Generates a TT instruction with the T and A flag. Theargument p can be any function pointer type.

Note: the TT intrinsics defined by requirement 22 must also be provided for the CMSE support. Implementationrecommendations can be found there.

6.3 Address range check intrinsic for CMSE
The semantics of the intrinsic cmse check address range() defined in Address range check intrinsic are extendedto handle the extra flag and fields introduced by CMSE.

Requirement 40
The address range check must fail if the range crosses any SAU or IDAU region boundary.
Requirement 41
If bit 1 of macro ARM FEATURE CMSE is set, the values accepted by the flags parameter, as defined byrequirement 27, must be extended with the values defined in the following table:

Macro Value Semantic effects
CMSE AU NONSECURE 2 Checks if the permissions have the secure field unset.
CMSE MPU NONSECURE 16 Sets the A flag on the TT instruction used to retrieve the permissions of anaddress.
CMSE NONSECURE 18 Semantics of CMSE AU NONSECURE and CMSE MPU NONSECURE combined.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 26 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2CMSE SUPPORT

6.4 Entry functions
An entry function can be called from non-secure state or secure state.

Requirement 42
A compiler must support declaring an entry function by using the attribute
attribute ((cmse nonsecure entry)) on its declaration.

Arm recommends generating a diagnostic for an entry function with static linkage.
Requirement 43
An entry function has two ELF function (STT FUNC) symbols labelling it:• A symbol that follows the standard naming for C entities as defined by [AAELF] labels the function’sinline secure gateway if it has one, otherwise the function’s first instruction.• A special symbol that prefixes the standard function name with acle se labels the function’s firstnon-SG instruction.

The special symbol acts as an entry function attribute in the relocatable file. Tools that operate on relocatable filescan use this symbol to detect the need to generate a secure gateway veneer (see Secure gateway veneers) and asymbol in the import library (see Executable files).
Requirement 44
A toolchain must generate a secure gateway veneer for an entry function that has both its symbols labellingthe same address. Otherwise a secure gateway is assumed to be present.

To summarize, for a function symbol foo:
• A secure gateway veneer for foo is only generated if foo == acle se foo.• The symbol foo is copied to the import library if acle se foo is present and foo != acle se foo.
Requirement 45
The address of an entry function must be the address labelled by its standard symbol.

This must be the address of its associated SG instruction, usually the first instruction of its secure gateway veneer.This veneer is labelled by the function’s standard symbol name.
6.4.1 Arguments and return value
A caller from the non-secure state is not aware it is calling an entry function. If it must use the stack to writearguments or read a result value [AAPCS], it will use the non-secure stack.

Requirement 46
A compiler compiling an entry function must do either of the following:• Generate code to read arguments from and write results to the non-secure stack.• Constrain the number of parameters to the entry function, their types, and the type of the returnvalue, to avoid using the non-secure stack. An entry function that would break the constraint mustbe diagnosed.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 27 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2CMSE SUPPORT

Non-sec ure c aller

Figure 6.1: Entry function’s caller stack frame

If a toolchain supports stack-based arguments, it must be aware of the volatile behavior of non-secure memory(Volatility of non-secure memory) and the requirements of using non-secure memory (Non-secure memory usage),in particular requirement 36.
In practice, a compiler might generate code that:

• Copies stack-based arguments from the non-secure stack to the parameter on the secure stack in the prologueof the entry function.• Copies the stack-based return value from the secure stack to the non-secure stack in the epilogue.
Code that performs this copying must check the accessibility of the non-secure memory as described by the pseu-docode in Non-secure memory usage. An example entry function epilogue and prologue can be found in Exampleentry function.
A possible optimization would be to access the non-secure stack directly for arguments that read at most once, butaccessibility checks are still required.
The stack usage of an entry function is shown in Entry function’s caller stack frame.
6.4.2 Return from an entry function

Requirement 47
An entry function must use the BXNS instruction to return to its non-secure caller.

This instruction switches to non-secure state if the target address has its LSB unset. The LSB of the return addressin lr is automatically cleared by the SG instruction when it switches the state from non-secure to secure.
Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 28 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2CMSE SUPPORT

To prevent information leakage when an entry function returns, you must clear the registers that contain secretinformation (Information leakage).
Requirement 48
The code sequence directly preceding the BXNS instruction that transitions to non-secure code must:• Clear all caller-saved registers except:– Registers that hold the result value and the return address of the entry function.– Registers that do not contain secret information.• Clear all registers and flags that have undefined values at the return of a procedure, according to[AAPCS].• Restore all callee-saved registers as mandated by [AAPCS].• Restore bits [27:0] of FPSCR (Armv8.1-M Mainline only).

You can clear the floating-point registers conditionally by checking the SFPA bit of the special-purpose CONTROLregister.
A toolchain could provide you with the means to specify that some types of variables never hold secret informa-tion. For example, by setting the TS bit of FPCCR, CMSE assumes that floating point registers never hold secretinformation.
An example entry function epilogue can be found in Example entry functions.
Because of these requirements, performing tail-calls from an entry function is difficult.
6.4.3 Security state of the caller
An entry function can be called from secure or non-secure state. Software needs to distinguish between thesecases.

Requirement 49
The following intrinsic function must be provided if bit 1 of macro ARM FEATURE CMSE is set:

Intrinsic Semantics
int cmse nonsecure caller(void) Returns non-zero if entry function is called fromnon-secure state and zero otherwise.

Calling an entry function from the non-secure state results in a return address with its LSB unset. This can be usedto implement the intrinsic. Note: this type of implementation requires a stable location for the return address.
As a consequence of the semantics of cmse nonsecure caller(), it always returns zero when used outside anentry function. A toolchain is not required to diagnose the usage of cmse nonsecure caller() outside an entryfunction, although this might become a requirement in the future.

6.5 Non-secure function call
A call to a function that switches state from secure to non-secure is called a non-secure function call. A non-securefunction call can only happen via function pointers. This is a consequence of separating secure and non-secure

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 29 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2CMSE SUPPORT

code into separate executable files as described in Executable files.
Requirement 50
A non-secure function type must be declared using the function attribute
attribute ((cmse nonsecure call)).

Requirement 51
A non-secure function type must only be used as a base type of a pointer.

This disallows function definitions with this attribute and ensures a secure executable file only contains securefunction definitions.
6.5.1 Performing a call

Requirement 52
A function call through a pointer with a non-secure function type as its base type must switch to the non-secure state.

To create a function call that switches to the non-secure state, an implementation must emit code that clears theLSB of the function address and branches using the BLXNS instruction.
Note: a non-secure function call to an entry function is possible. This behaves like any other non-secure functioncall.
All registers that contain secret information must be cleared to prevent information leakage when performing anon-secure function call as described in Information leakage. Registers that contain values that are used after thenon-secure function call must be restored after the call returns. Secure code cannot depend on the non-securestate to restore these registers.

Requirement 53
The code sequence directly preceding the BLXNS instruction that transitions to non-secure code must:• Save all callee- and live caller-saved registers by copying them to secure memory.• Clear all callee- and caller-saved registers except:• The lr.• The registers that hold the arguments of the call.• Registers that do not hold secret information.• Clear all registers and flags that have undefined values at the entry to a procedure according to the[AAPCS].• Save and clear bits [27:0] of FPSCR (Armv8.1-M Mainline only).

A toolchain could provide you with the means to specify that some types of variables never hold secret information.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 30 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2CMSE SUPPORT

Requirement 54
When the non-secure function call returns, caller- and callee-saved registers saved before the call must berestored. This includes bits [27:0] of FPSCR (Armv8.1-M Mainline only). An implementation need not saveand restore a register if its value is not live across the call. Note: callee-saved registers are live across thecall in almost all situations. These requirements specify behaviour that is similar to a regular function call,except that:• Callee-saved registers must be saved as if they were caller-saved registers.• Registers that are not banked and potentially contain secret information must be cleared.

The floating point registers can very efficiently be saved and cleared using the VLSTM, and restored using VLLDMinstructions.
An example instruction sequence for a non-secure call is listed in Example non-secure function call.
6.5.2 Arguments and return value
The callee of a non-secure function call is called in non-secure state. If stack usage is required according to [AAPCS],the non-secure state expects the arguments on the non-secure stack and writes the return value to non-securememory.

Requirement 55
To avoid using the non-secure stack, a toolchain may constrain the following, for a non-secure function type:• The number of parameters.• The type of each parameter.• The return type.
Requirement 56
A compiler compiling a call to a non-secure function must do either of the following:• Generate code to write arguments to and read results from the non-secure stack.• Constrain the number of parameters to the function, their types, and the type of the return value toavoid needing to use the non-secure stack. A call that would break the constraint must be diagnosed.

If a compiler supports stack-based arguments and results, it must be aware of the volatile behavior of non-securememory (Volatility of non-secure memory) and the requirements of using non-secure memory (Non-secure memoryusage), in particular requirement 36.
In practice, a toolchain might generate code that:

• Creates the caller’s stack argument area on the non-secure stack and uses this space for no other purpose.• Copies the callee’s return value from the non-secure stack to the secure stack after the non-secure functioncall returns.
Code that performs these tasks must check the non-secure memory as described by the pseudocode in Non-securememory usage.
If the return value is read once, a possible optimization would be to read the return value directly from the non-secure stack at the point of use. In this case, access checks are still required.
The stack usage during a non-secure function call is shown in figure Caller’s stack frame of a non-secure functioncall.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 31 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2CMSE SUPPORT

Non-sec ure stac k

Non-sec ure stac k

Non-sec ure stac k

T
im

e

Figure 6.2: Caller’s stack frame of a non-secure function call

6.6 Non-secure function pointer
A function pointer that has its LSB unset is a non-secure function pointer (nsfptr). An nsfptr provides a way to testat run-time the security state that will be targeted when performing a call through this pointer. An nsfptr is not atype and must not be confused with the non-secure function type (Non-secure function call).
Most use cases do not require an nsfptr and should use a non-secure function call (Non-secure function call). Anexample of where an nfsptr is needed is to share a single variable for secure function pointers and non-securefunction pointers:
#include <arm_cmse.h>
typedef void __attribute__((cmse_nonsecure_call)) nsfunc(void);
void default_callback(void) { . . . }
// fp can point to a secure function or a non-secure function
nsfunc *fp = (nsfunc *) default_callback; **// secure function pointer**

void __attribute__((cmse_nonsecure_entry)) entry(nsfunc *callback) {
fp = cmse_nsfptr_create(callback); **// non-secure function pointer**

}

void call_callback(void) {
if (cmse_is_nsfptr(fp)) fp(); **// non-secure function call**
else ((void (*)(void)) fp)(); **// normal function call**

}

The global variable fp is a non-secure function type but can hold the address of a secure or non-secure function.By using the nsfptr related intrinsics it is possible to check at runtime which function call to perform.
Arm recommends that you do not share this variable.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 32 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2CMSE SUPPORT

Requirement 57
The following intrinsics are defined if bit 1 of macro ARM FEATURE CMSE is set:

Intrinsic Semantics
cmse nsfptr create(p) Returns the value of p with its LSB cleared. Theargument p can be any function pointer type.
cmse is nsfptr(p) Returns non-zero if p has LSB unset, zero otherwise.The argument p can be any function pointer type.

Note: the exact type signatures of these intrinsics are implementation-defined because there is no type definedby [ISOC] that can hold all function pointers. Arm recommends implementing these intrinsics as macros and rec-ommends that the return type of cmse nsfptr create() is identical to the type of its argument. An exampleimplementation is listed in Non-trivial macros.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 33 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2FUTURE EXTENSIONS

7. FUTURE EXTENSIONS
This chapter lists possible features of a future version of this specification. It does not imply any commitment.

7.1 Non-secure callable function
A non-secure callable function is a function that is expected to be placed in an NSC region. Its functionality isidentical to an entry function, but instead of a secure gateway veneer the function starts with the SG instruction.

Requirement 58
A non-secure callable function must be declared by using the attribute
attribute ((cmse nonsecure callable)) on a function declaration.

Requirement 59
A non-secure callable function is identical to an entry function except that:• The first instruction is an SG instruction.• The function’s special symbol labels the address following the SG instruction.

No veneer is generated as defined in Secure gatewayy veneers because the special symbol’s value is different tothe normal symbol’s value.
Toolchain support is needed to prevent inadvertent secure gateways from occurring (Inadverted secure gataway).

Requirement 60
A toolchain must provide a way for the programmer to guarantee that a non-secure callable function doesnot contain an inadvertent SG instruction in code or data.

Arm recommends that toolchains provide a way to scan NSC regions for inadvertent SG instructions in an executableimage.

7.2 Non-secure returning function
A non-secure returning function is a function that can return to the non-secure state, but cannot be called by thenon-secure state. An example use would be to provide tail-calls from an entry function to non-secure returningfunctions.

Requirement 61
A non-secure returning function must be declared by using the attribute
attribute ((cmse nonsecure return)) on a function declaration.

A non-secure returning function has a special epilogue, identical to that of an entry function.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 34 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2APPENDIX: EXAMPLE SOURCE

8. APPENDIX: EXAMPLE SOURCE
The examples in this chapter are written for clarity and are not guaranteed to be efficient or compact.

8.1 Address range checking intrinsic
An example definition of the address range checking intrinsic with support for CMSE is provided below. Notethat this example assumes the macros CMSE MPU NONSECURE and CMSE AU NONSECURE are available even when nottargeting the secure state.
static inline void *
cmse_check_address_range(void *p, size_t s, int flags)
{

// check if the range wraps around
if (UINTPTR_MAX - (uintptr_t) p < s) return NULL;

cmse_address_info_t permb, perme;
char *pb = (char *) p;
char *pe = pb + s { 1;

// execute the right variant of the TT instructions
const int singleCheck = (((uintptr_t) pb ˆ (uintptr_t) pe) < 0x20u);
switch (flags & (CMSE_MPU_UNPRIV|CMSE_MPU_NONSECURE)) {
case 0:

permb = cmse_TT(pb);
perme = singleCheck ? permb : cmse_TT(pe);
break;

case CMSE_MPU_UNPRIV:
permb = cmse_TTT(pb);
perme = singleCheck ? permb : cmse_TTT(pe);
break;

#if __ARM_FEATURE_CMSE & 0x2
case CMSE_MPU_NONSECURE:

permb = cmse_TTA(pb);
perme = singleCheck ? permb : cmse_TTA(pe);
break;

case CMSE_MPU_UNPRIV|CMSE_MPU_NONSECURE:
permb = cmse_TTAT(pb);
perme = singleCheck ? permb : cmse_TTAT(pe);
break;

#endif // __ARM_FEATURE_CMSE & 0x2
default:

// CMSE_MPU_NONSECURE is only supported when __ARM_FEATURE_CMSE & 0x2
return NULL;

}

// check that the range does not cross MPU, SAU, or IDAU region boundaries
if (permb.value != perme.value) return NULL;

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 35 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2APPENDIX: EXAMPLE SOURCE

#if ! (__ARM_FEATURE_CMSE & 0x2)
// CMSE_AU_NONSECURE is only supported when __ARM_FEATURE_CMSE & 0x2
if (flags & CMSE_AU_NONSECURE) return NULL;

#endif // !(__ARM_FEATURE_CMSE & 0x2)

// check the permission on the range
switch (flags & ˜(CMSE_MPU_UNPRIV|CMSE_MPU_NONSECURE)) {
case CMSE_MPU_READ|CMSE_MPU_READWRITE|CMSE_AU_NONSECURE:
case CMSE_MPU_READWRITE|CMSE_AU_NONSECURE:

return permb.flags.nonsecure_readwrite_ok ? p : NULL;
case CMSE_MPU_READ|CMSE_AU_NONSECURE:

return permb.flags.nonsecure_read_ok ? p : NULL;
case CMSE_AU_NONSECURE:

return permb.flags.secure ? NULL : p;
case CMSE_MPU_READ|CMSE_MPU_READWRITE:
case CMSE_MPU_READWRITE:

return permb.flags.readwrite_ok ? p : NULL;
case CMSE_MPU_READ:

return permb.flags.read_ok ? p : NULL;
default:

return NULL;
}

}

8.2 Non-trivial macros
The following example macro definitions assume the following C language extensions:

• A function pointer can be cast to and from intptr t.• A type can be constructed from an expression using the typeof keyword.
#define cmse_check_pointed_object(p, f) \

((tyepof(p)) cmse_check_address_range((p), sizeof(*p), f))
#define cmse_nsfptr_create(p) ((typeof(p)) ((intptr_t) (p) & ˜1))
#define cmse_is_nsfptr(p) (!((intptr_t) (p) & 1))

8.3 Example non-secure function call
8.3.1 Simple case
Consider the following example:
#include <arm_cmse.h>
int __attribute__((cmse_nonsecure_call)) (*foo)(int);
int bar(int a) {

return foo(a) + 1;
}

The following T32 instruction sequence is an implementation of this function:
bar:

ldr r1, =foo

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 36 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2APPENDIX: EXAMPLE SOURCE

@ protect the FP context if used by secure state
sub sp, sp, #0x88
vlstm sp
@ save callee-saved integer registers
push {r4-r12, lr}
@ clear all integer registers (except for function pointer and arguments)
mov r2, #0
mov r3, #0
. . .
mov r12, #0
@ clear the integer status flags
msr APSR_nzcvqg, r2
@ perform the call to the non-secure function
bic r1, r1, #1
blxns r1
@ restore the callee-saved registers
pop {r4-r12, lr}
@ unprotect the FP context and restore it if it was pushed
vlldm sp
add sp, sp, #0x88
@ the rest of the function body
add r0, r0, #1
bx lr

8.3.2 Hard-float ABI
Consider the following example:
#include <arm_cmse.h>
float __attribute__((cmse_nonsecure_call)) (*foo)(float);
float bar(float a) {

return foo(a);
}

The following T32 instruction sequence is an implementation of this function using the hard-float ABI:
bar:

ldr r0, =foo
@ save callee-saved integer registers
push {r4-r12, lr}
@ save the floating point arguments of the call
vmov r1, s0
@ protect the FP context if used by secure state
sub sp, sp, #0x88
vlstm sp
@ setup floating point arguments of the call
vmov s0, r1
@ clear all integer registers (except for function pointer and arguments)
mov r2, #0
mov r3, #0
. . .
mov r12, #0
@ clear the integer status flags

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 37 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2APPENDIX: EXAMPLE SOURCE

msr APSR_nzcvqg, r2
@ perform the call to the non-secure function
bic r0, r0, #1
blxns r0
@ save the floating point result of the call
vmov r1, s0
@ unprotect the FP context and restore it if it was pushed
vlldm sp
add sp, sp, #0x88
@ restore the floating point result value
vmov s0, r1
@ restore the callee-saved registers and return
pop {r4-r12, pc}

The register r1 contains the floating point argument for the non-secure function call. This is not secret informationand does not need to be cleared.
The floating point argument to the non-secure function needs to be saved to and restored from an integer registerbecause the vlstm instruction saves and clears all floating point registers. The same holds for the return value fromthe non-secure function because the vlldm instruction restores all floating point registers.
8.3.3 Arguments and return value on the stack
Consider the following example:
#include <arm_cmse.h>
struct s { int a, int b, int c, int d };
struct s __attribute__((cmse_nonsecure_call)) (*foo)(int, struct s);
struct s bar(void) {

return foo(0, (struct s) {1,2,3,4});
}

The following T32 instruction sequence is an implementation of this function:
bar:

@ get the non-secure stack pointer
mrs r1, SP_NS
@ calculate required space for arguments (8 bytes) and return value (16 bytes)
subs r2, r1, #24
@ take permissions at begin and end of range
tta r3, r2
subs r1, r1, #1
tta r1, r1
@ check if range is in one region (this means identical permissions)
cmp r2, r3
it ne
blne cmse_abort
@ check bit 21 of the TT result (non-secure readwrite flag)
tst r2, #0x200000
it eq
bleq cmse_abort
@ reserve the non-secure stack space
mrs SP_NS, r2
@ save callee-saved and live caller-saved integer registers

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 38 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2APPENDIX: EXAMPLE SOURCE

push {r0,r2,r4-r12, lr}
@ protect the FP context if used by secure state
sub sp, sp, #0x88
vlstm sp
@ setup the arguments
mov r5, #4
mov r4, #3
str r5, [r2, #20]
str r4, [r2 #16]
mov r3, #2
mov r2, #1
add r0, r1, #8
mov r1, #0
@ load the function pointer
ldr r4, =foo
@ clear all integer registers (except for function pointer and arguments)
mov r6, #0
mov r7, #0
. . .
mov r12, #0
@ clear the integer status flags
msr APSR_nzcvqg, r6
@ perform the call to the non-secure function
bic r4, r4, #1
blxns r4
@ unprotect the FP context and restore it if it was pushed
vlldm sp
add sp, sp, #0x88
@ restore the callee-saved registers
pop {r0,r2,r4-r12, lr}
@ copy the result value from the non-secure stack to the secure stack
ldr r1, [r2, #12]
str r1, [r0, #12]
ldr r1, [r2, #8]
str r1, [r0, #8]
ldr r1, [r2, #4]
str r1, [r0, #4]
ldr r1, [r2,]
str r1, [r0,]
@ free non-secure stack space
adds r2, r2, #24
msr SP_NS, r2
@ the function body after the call
bx lr

8.4 Example entry functions
8.4.1 Simple case
Consider the following example:

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 39 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2APPENDIX: EXAMPLE SOURCE

#include <arm_cmse.h>
int __attribute__((cmse_nonsecure_entry)) foo(int a) {

return a + 1;
}

In this example the compiler has complete knowledge of the registers used. No floating point registers are usedand there is no non-secure stack usage. This case results in a very compact instruction sequence:
.global foo
.global __acle_se_foo
foo:
__acle_se_foo:

add r0, #1
bxns lr

Since this is a leaf function, the compiler can determine that all the values in both integer and floating point registersdo not contain secure values that need to be cleared. The same reasoning holds for the status flags.
8.4.2 Arguments on the stack and floating point handling
Consider the following example:
#include <arm_cmse.h>
extern int bar(int);
int __attribute__((cmse_nonsecure_entry)) foo(int a, int b, int c, int d, int e, int f) {

return bar(e);
}

The function foo() uses the stack to pass the last two arguments. It is unknown if the function bar() uses floatingpoint registers to store secret information.
The following T32 instruction sequence is an implementation of this function using the soft-float ABI:
.global foo
.global __acle_se_foo
foo:
__acle_se_foo:

@ 1: if called from non-secure reserve secure stack space for the arguments
tst lr, #1
it eq
subeq sp, sp, #8
@ 2: push used callee-saved register onto the stack
push {r4-r6, lr}
@ 3: if called from secure the arguments are already in the correct place
tst lr, #1
bne .LdoneARGS
@ 4: get the non-secure stack pointer
mrs r4, SP_NS
@ 5: calculate end of range
adds r6, r4, #7
@ 6: take permissions at begin and end of range
tta r5, r4
tta r6, r6
@ 7: check if range is in one region (this means identical permissions)
cmp r5, r6

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 40 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2APPENDIX: EXAMPLE SOURCE

it ne
blne cmse_abort
@ 8: check bit 20 of the TT result (non-secure read flag)
tst r5, #0x100000
it eq
bleq cmse_abort
@ 9: copy arguments from non-secure stack to secure stack
ldr r5, [r4]
ldr r6, [r4, #4]
str r5, [sp, #16]
str r6, [sp, #20]

.LdoneARGS:
@10: function body
ldr r0, [sp, #16]
ldr r1, [sp, #20]
bl bar
@11: restore used callee-saved registers
pop {r4-r6, lr}
@12: if called from secure, we are done
tst lr, #1
it ne
bxne lr
@13: pop secure stack space
add sp, sp, #8
@14: check SFPA bit to see if FP is used
mrs r1, control
tst r1, #8
bne .LdoneFP
@15: clear floating point caller-saved registers (soft ABI)
mov r1, #0
vmov s0, s1, r1, r1
vmov s2, s3, r1, r1
...
vmov s30, s31, r1, r1
@16: clear floating point flags
vmsr fpscr, r1

.LdoneFP:
@17: clear integer caller-saved registers except for return value
mov r1, #0
mov r2, #0
mov r3, #0
@18: clear other registers and the integer status flags
mov r12, #0
msr APSR_nzcvqg, r3
@19: return to non-secure state
bxns lr

The instruction sequence between comment 14 and 15 is an optimization to skip clearing floating point registersif they are not used by the secure state. Removing these instructions is functionally equivalent but might create anunnecessary floating point context.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 41 of 42

mailto:open-source-office@arm.com

Arm®v8-M Security Extensions Requirements on Development Tools Version: 1.2APPENDIX: EXAMPLE SOURCE

8.4.3 Return value on the stack
Consider the following example:
#include <arm_cmse.h>
struct s { int a, int b};
struct s __attribute__((cmse_nonsecure_entry)) foo(void) {

return (struct s) { 4, 2 };
}

The function foo uses the stack to return the structure. The following T32 instruction sequence is an implementa-tion of this function:
.global foo
.global __acle_se_foo
foo:
__acle_se_foo:

@ 1: if called from secure, memory for the result value is assumed correct
tst lr, #1
bne .LdoneRES
@ 2: calculate final address of result value
adds r1, r0, #7
@ 3: take permissions at begin and end of range
tta r2, r0
tta r3, r1
@ 4: check if range is in one region (this means identical permissions)
cmp r2, r3
it ne
blne cmse_abort
@ 5: check bit 21 of the TT result (non-secure readwrite flag)
tst r2, #0x200000
it eq
bleq cmse_abort

.LdoneRES:
@ 6: function body
movs r2, #2
movs r1, #4
str r2, [r0, #4]
str r1, [r0]
@ 7: clear integer caller-saved registers except for return value
movs r3, #0
@ 8: clear integer status flags
msr APSR_nzcvqg, r3
@ 9: return to secure or non-secure state (controlled by the LSB of lr)
bxns lr

All the code executed in secure state by this entry function is known. The clearing sequence can therefore beoptimized. The floating point registers are not cleared and only register r3 holds potentially secret information.

Copyright 2019, 2021-2022 Arm Limited and/or its affiliates open-source-office@arm.com. Page 42 of 42

mailto:open-source-office@arm.com

	Preface
	Abstract
	Keywords
	Latest release and defects report
	License
	About the license

	Contributions
	Trademark notice
	Copyright

	ABOUT THIS DOCUMENT
	Change control
	Current status and anticipated changes
	Change history
	Changes for version 1.2

	References
	Terms and abbreviations

	SCOPE
	Scope
	Conventions

	OVERVIEW OF CMSE
	Introduction
	Security state changes

	The TT instruction
	Secure code requirements
	Information leakage
	Non-secure memory access
	Volatility of non-secure memory
	Inadvertent secure gateway

	Development tools
	Source level security state changes
	Executable files
	Secure gateway veneers
	Example C level development flow of secure code
	Reserved names

	TT INSTRUCTION SUPPORT
	Feature macro
	TT intrinsics
	Address range check intrinsic

	CMSE SUPPORT
	Non-secure memory usage
	TT intrinsics for CMSE
	Address range check intrinsic for CMSE
	Entry functions
	Arguments and return value
	Return from an entry function
	Security state of the caller

	Non-secure function call
	Performing a call
	Arguments and return value

	Non-secure function pointer

	FUTURE EXTENSIONS
	Non-secure callable function
	Non-secure returning function

	APPENDIX: EXAMPLE SOURCE
	Address range checking intrinsic
	Non-trivial macros
	Example non-secure function call
	Simple case
	Hard-float ABI
	Arguments and return value on the stack

	Example entry functions
	Simple case
	Arguments on the stack and floating point handling
	Return value on the stack

