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1 ABOUT THIS DOCUMENT 

1.1 Change control 

1.1.1 Current status and anticipated changes 
This document is release 1.0. 
Anticipated changes to this document include: 

• Typographical corrections. 
• Clarifications. 
• Compatible extensions. 

1.1.2 Change history 
[Comments] 

Issue Date By Change 

1.0 23/10/2015 CD First release 

 

1.2 References 
This document refers to the following documents. 

Ref  Doc No Author(s) Title 

[AAELF] ARM IHI 0044E  ELF for the ARM® Architecture 

[AAPCS] ARM IHI 0042E  Procedure Call Standard for the ARM® Architecture 

[ACLE] ARM IHI 0053C  ARM® C Language Extensions Release 2.0 

[BSABI] ARM IHI 0036B  Application Binary Interface for the ARM® Architecture (Base 
Standard) 

[ISOC] ISO/IEC 9899:2011 ISO/IEC Programming Language C 

[ARMV8M] ARM DDI 0553a  ARMv8-M Architecture Reference Manual[a] 

1.3 Terms and abbreviations 
This document uses the following terms and abbreviations. 

Term Meaning 

CMSE ARMv8-M Security Extensions. 

SAU Security Attribute Unit. Controls the separation of secure and non-secure memory 
regions. 

IDAU Implementation Defined Attribute Unit.  Enables system logic outside the 

                                                      
[a]As of 22 October 2015, this document is a work in progress. Contact ARM for access to it under a confidentiality 
agreement. 
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processor to separate secure and non-secure memory regions, similar to the SAU. 

MPU Memory Protection Unit. Controls the permissions that privileged and unprivileged 
execution modes have, memory region by memory region. 

NSC region Non-Secure Callable memory region. Secure memory that is callable by code 
executing in non-secure state. 

SG Secure Gateway Instruction. Switches to secure state. 

TT Test Target Instruction. Used to inspect MPU, SAU, and IDAU configurations. 

Entry function A function in secure memory that can be called from secure and non-secure state. 

Non-secure function call A function call in secure memory that switches to non-secure state. 

Secure gateway Occurrence of an SG instruction in a NSC region. 

Secure gateway veneer A code sequence that provides a secure gateway to an entry function. 

LSB Least Significant Bit. 

A32 Instruction set previously known as ARM®. 

T32 Instruction set previously known as Thumb®. 

2 SCOPE 

2.1 Scope 
ARMv8-M Security Extensions is in some contexts known as Cortex®-M Security Extensions and is referred to as 
CMSE throughout this document. 
This document states the requirements that development tools must satisfy in order to develop software in C that 
uses the feature defined by CMSE. This document describes a machine-level standard that can be mapped 
directly by functions written in C and assembly language. 
This document also describes the support for the new TT instruction introduced in ARMv8-M. This instruction is 
not part of CMSE, but is closely related. 
Some of the requirements defined by this document will be included in future [ACLE] and [BSABI] documents. 

2.2 Conventions 
This document consists of informative text and requirements. 

0 Requirements are numbered in the left margin and highlighted as shown here. 
A permanent unique reference consists of the document number, document version, and requirement number. 
 

3 OVERVIEW OF CMSE 

3.1 Introduction 
CMSE is an optional part of the ARMv8-M baseline and mainline architecture defined by [ARMV8M]. CMSE is 
designed to combine code from multiple vendors without requiring trust between them. CMSE gives vendors the 
ability to protect their software assets (code and data) by restricting access to the memory where their software 
assets reside, except for a set of explicitly exported entry points that are defined by the vendor. This supports the 
creation of a trusted software stack that provides features such as secure remote firmware updates, while 
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significantly reducing the attack surface of such code. This is an important feature for any network-connected 
device that can be updated after deployment, including any IoT device. 
CMSE defines a system-wide division of physical memory into secure regions and non-secure regions and two 
system-wide security states that are enforced by hardware. There is a direct relation between the memory regions 
and the security states: 

• Code executed from a non-secure region (non-secure code) is executed in non-secure state and can only 
access memory in non-secure regions. 

• Code executed from a secure region (secure code) is executed in secure state and can access memory in 
both secure and non-secure regions.[a] 

Attempts to access secure regions from non-secure code or a mismatch between the (secure or non-secure) code 
that is executed and the security state of the system results in a SecureFault. 
The security states are orthogonal to the exception level, as shown in Figure 1. 

Non-secure 
thread mode

Non-secure 
handler mode

Secure
thread mode

Secure 
handler mode

Non-secure states Secure states

 
Figure 1 Diagrammatic representation of secure states 

Memory regions can be defined by the system through the IDAU or can be controlled in software through the 
memory mapped SAU registers. 
Parts of the system are banked between the security states. The stack pointer is banked, resulting in a stack 
pointer for each combination of security state and exception level. All parts of the system accessible in non-secure 
state can be accessed in secure state as well, including the banked parts. 

3.1.1 Security state changes 
The system boots in secure state and can change security states using branches as summarized in Figure 2. 

                                                      
[a] The SG instruction in secure memory switches to the secure state during its execution (see §3.1.1). 
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Figure 2 Security state transitions 

Transitions from secure to non-secure state can be initiated by software through the use of the BXNS and BLXNS 
instructions that have the Least Significant Bit (LSB) of the target address unset. 
Note: The M profile architecture does not support the A32 instruction set. This allows the LSB of an address to 

denote the security state. 
Transitions from non-secure to secure state can be initiated by software in two ways: 

• A branch to a secure gateway. 
• A branch to the reserved value FNC_RETURN. 

A secure gateway is an occurrence of the Secure Gateway instruction (SG) in a special type of secure region, 
named a Non-Secure Callable (NSC) region. When branching to a secure gateway from non-secure state, the SG 
instruction switches to the secure state and clears the LSB of the return address in lr. In any other situation the 
SG instruction does not change the security state or modify the return address. 
A branch to the reserved value FNC_RETURN causes the hardware to switch to secure state, read an address from 
the top of the secure stack, and branch to that address. The reserved value FNC_RETURN is written to lr when 
executing the BLXNS instruction. 
Security state transitions can be caused by hardware through the handling of interrupts. Those transitions are 
transparent to software and are ignored in the remainder of this document. 

3.2 The TT instruction 
The ARMv8-M architecture introduces the Test Target instruction (TT). The TT instruction takes a memory address 
and returns the configuration of the Memory Protection Unit (MPU) at that address. An optional T flag controls 
whether the permissions for the privileged or the unprivileged execution mode are returned. 
When executed in the secure state the result of this instruction is extended to return the SAU and IDAU 
configurations at the specific address.  
The MPU is banked between the two security states. The optional A flag makes the TT instruction read the MPU of 
the non-secure state when the TT instruction is executed from the secure state. 
The TT instruction is used to check the access permissions that different security states and privilege levels have 
on memory at a specified address. 

3.3 Secure code requirements 
To prevent secure code and data from being accessed from non-secure state, secure code must meet at least the 
requirements listed in this section. The responsibility for meeting these security requirements is shared between 
hardware, toolchain and software developer. The remainder of this document specifies requirements a toolchain 
must meet to enable C programmers to meet these security requirements. 

Secure 
state 

Non-secure 
state 

BL to SG – call to entry function 

BXNS – return from entry function 
 

BLXNS – call to non-secure function 

BX to FNC_RETURN – return from non-secure function 
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3.3.1 Information leakage 
Information leakage from the secure state to the non-secure state may occur through parts of the system that are 
not banked between the security states. The unbanked registers that are accessible by software are: 

• General purpose registers except for the stack pointer (r0-r12, r14-r15). 

• Floating point registers (S0-S31, D0-D15). 

• The N, Z, C, V, Q, and GE bits of the APSR register. 

• The FPSCR register. 
1 Secure code must clear secret information from unbanked registers before initiating a transition from secure to 

non-secure state. 

3.3.2 Non-secure memory access 
When secure code needs to access non-secure memory using an address calculated by the non-secure state, it 
cannot trust that the address lies in a non-secure memory region. Furthermore, the MPU is banked between the 
security states. Therefore secure and non-secure code might have different access rights to non-secure memory.  

2 Secure code that accesses non-secure memory on behalf of the non-secure state must only do so if the non-
secure state has permission to perform the same access itself. 
The secure code can use the TT instruction to check non-secure memory permissions. 

3 Secure code must not access non-secure memory unless it does so on behalf of the non-secure state. 
Data belonging to secure code must reside in secure memory. 

3.3.3 Volatility of non-secure memory 
Non-secure memory can be changed asynchronously to the execution of secure code. There are two causes: 

• Interrupts handled in non-secure state can change non-secure memory. 
• The debug interface can be used to change non-secure memory. 

There can be unexpected consequences when secure code accesses non-secure memory: 
int array[N] 
void foo(int *p) { 
    if (*p >= 0 && *p < N) { 
        // non-secure memory (*p) is changed at this point 
        array[*p] = 0; 
    } 
} 

When the pointer p points to non-secure memory, it is possible for its value to change after the memory accesses 
used to perform the array bounds check, but before the memory access used to index the array. Such an 
asynchronous change to non-secure memory would render this array bounds check useless. 

4 Secure code must handle non-secure memory as volatile. 
The above example shows a case that can be handled by the developer as follows: 
int array[N] 
void foo(volatile int *p) { 
    int i = *p;     
    if (i >= 0 && i < N) { 
        array[i] = 0; 
    } 
} 

Situations that the toolchain must handle are described in §5.1. 

3.3.4 Inadvertent secure gateway 
An SG instruction can occur inadvertently. This can happen in the following cases: 
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• Uninitialized memory. 
• General data in executable memory, for example jump tables. 
• A 32-bit wide instruction that contains the bit pattern 1110 1001 0111 1111 in its first half-word that 

follows an SG instruction, for example two successive SG instructions. 

• A 32-bit wide instruction that contains the bit pattern 1110 1001 0111 1111 in its last half-word that is 
followed by an SG instruction, for example an SG instruction that follows an LDR (immediate) instruction. 

If an inadvertent SG instruction occurs in an NSC region, the result is an inadvertent secure gateway. 
5 Memory in an NSC region must not contain an inadvertent SG instruction. 

The secure gateway veneers introduced in §3.4.3 limit the instructions that need to be placed in NSC regions. If 
the NSC regions contain only these veneers, an inadvertent secure gateway cannot occur. 

3.4 Development tools 

3.4.1 Source level security state changes 
Development tools are expected to provide C and assembly language support for interacting between the security 
states. Code written in C++ must use extern “C” linkage for any inter-state interaction.  

6 Security state changes must be expressed through function calls and returns. 
This provides an interface that fits naturally with the C language. 
A function in secure code that can be called from the non-secure state through its secure gateway is called an 
entry function. A function call from secure state to the non-secure state is called a non-secure function call. This is 
shown in Figure 2 on page 8. 

3.4.2 Executable files 
There are two different types of executable files, one for each security state. The secure state executes secure 
code from a secure executable file. The non-secure state executes non-secure code from a non-secure 
executable file. The secure and non-secure executable files are developed independently of each other.  

7 A non-secure executable is unaware of security states. 
From the point of view of the non-secure state, a call to a secure gateway is a regular function call, as is the return 
from a non-secure function call. It is therefore required that a non-secure executable file can be developed using a 
toolchain that is not aware of CMSE. 
Developing a secure executable file requires toolchain support whenever a function is called from, calls, or returns 
to non-secure state and whenever memory is accessed through an address provided by the non-secure state. The 
secure code ABI is otherwise identical to the non-secure code ABI. 
The interaction between developers of secure code, non-secure code, and (optional) security agnostic library code 
is shown in Figure 3. 
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Figure 3 Files shared between parties 

The secure gateway import library, shortened to import library, contains the addresses of the secure gateways of 
the secure code. This import library consists of or contains a relocatable file that defines symbols for all the secure 
gateways. The non-secure code links against this import library to use the functionality provided by the secure 
code. 

8 A relocatable file containing only copies of the (absolute) symbols of the secure gateways in the secure 
executable must be available to link non-secure code against. 
Linking against this import library is the only requirement on the toolchain used to develop the non-secure code. 
This functionality is very similar to calling ROM functions, and is expected to be available in existing toolchains. 

3.4.3 Secure gateway veneers 
9 A toolchain must support generating a secure gateway veneer for each entry function with external linkage. It 

consists of an SG instruction followed by a B.W instruction that targets the entry function it veneers. 
Secure gateway veneers decouple the addresses of secure gateways (in NSC regions) from the rest of the secure 
code. By maintaining a vector of secure gateway veneers at a forever-fixed address, the rest of the secure code 
can be updated independently of non-secure code. This also limits the amount of code in NSC regions that 
potentially can be called by the non-secure state. 

10 A secure gateway veneer must be labelled by an ELF symbol that has the same binding, type, and name as the 
function it veneers, following the rules for C entities as defined by [AAELF]. 
To prevent duplicate symbol names, an entry function will “lose” its standard symbol when its secure gateway 
veneer is created. For instance, the compiler could use weak symbols for entry functions. 

11 A toolchain must support creating a vector of secure gateway veneers consisting of one or more veneers placed 
consecutively in memory. 
Vectors of secure gateway veneers are expected to be placed in NSC memory. All other code in the secure 
executable is expected to be placed in secure memory regions. This placement is under the control of the 
developer. 
Preventing inadvertent secure gateways as described in §3.3.4 is a responsibility shared between a developer 
and their toolchain. A toolchain must make it possible for a developer to avoid creating inadvertent secure 
gateways. 
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12 Excluding the first instruction of a secure gateway veneer, a veneer must not contain the bit pattern of the SG 
instruction on a 2-byte boundary. 

13 A vector of secure gateway veneers must be aligned to a 32-byte boundary, and must be zero padded to a 32-
byte boundary. 
The developer should take care that the code or data before the vector of secure gateway veneers does not 
create an inadvertent secure gateway with the first secure gateway veneer in the vector. ARM recommends 
placing the vector of secure gateway veneers at the start of a NSC region. 

14 The position of secure gateway veneers in a vector must be controllable by the developer. 
This last requirement gives the developer complete control over the address of a secure gateway veneer. It allows 
the developer to fix the addresses of the secure gateway veneers such that secure code can be updated 
independently of non-secure code. 
Figure 4 shows the memory layout of a secure executable. 

 
Figure 4 Secure executable memory layout 

 

3.4.4 Example C level development flow of secure code 
The example in this section shows the creation of a secure executable and its corresponding import library starting 
from C sources. The example uses some features that are described later in this document. 
The interface visible to non-secure code is defined in the header file myinterface.h as follows: 
int entry1(int x); 
int entry2(int x); 

The implementation of this interface is given by the following C code: 
#include <arm_cmse.h> 
#include “myinterface.h” 
int func1(int x) { return x; } 
int __attribute__((cmse_nonsecure_entry)) entry1(int x) { return func1(x) ; } 
int __attribute__((cmse_nonsecure_entry)) entry2(int x) { return entry1(x); } 

In addition to the implementation of the two entry functions, the code defines the function func1() which can only 
be called by secure code. The example C source is not a complete application in itself. The main entry point 
function is very platform dependent so is not included in this example. 
When a compiler translates the above C code, it could produce the following assembly: 
func1: 
 BX lr 
entry1: 
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__acle_se_entry1: 
 PUSH {r11, lr} 
 BL func1 
 POP {r11, lr} 
 BXNS lr 
entry2: 
__acle_se_entry2: 
 PUSH {r11, lr} 
 BL entry1 
 POP {r11, lr} 
 BXNS lr 
.weak entry1, entry2 

An entry function does not start with an SG instruction but has two symbols labelling its start. This indicates an 
entry function to the linker. 
Note that the compiler can alternatively use the __acle_se_entry1 symbol rather than the entry1 symbol in 
function entry2. This would make the function call skip the secure gateway veneer. 
When the relocatable file corresponding to this assembly code is linked into an executable file, the linker creates 
the following veneers in a section containing only entry veneers: 
entry1: 
 SG 
 B.W __acle_se_entry1 
entry2: 
 SG 
 B.W __acle_se_entry2 

Note that the section with the veneers is aligned on a 32-byte boundary and padded to a 32-byte boundary. 
Placement of the section with the veneers is under the control of the developer, but must be in an NSC region. 
In addition to the final executable, our example linker also produces the import library for non-secure code. 
Assuming the section with veneers is placed at address 0x100, the import library consists of a relocatable file 
containing only a symbol table with the following entries: 

Symbol type Name Address 

STB_GLOBAL, SHN_ABS, STT_FUNC entry1 0x101 

STB_GLOBAL, SHN_ABS, STT_FUNC entry2 0x109 

Finally, the secure executable file can be pre-loaded on the device. The device with pre-loaded executable, the 
import library, and the header file can be delivered to a party who develops non-secure code for this device. 

3.4.5 Reserved names 
15 This specification reserves the usage of: 

• Identifiers starting with cmse_, case insensitive, when the arm_cmse.h header is included. 

• Attribute names starting with cmse_. 
 

4 TT INSTRUCTION SUPPORT  
This chapter defines the language extension that provides C applications access to the TT instruction. Support for 
the TT instruction described here is generic to the ARMv8-M architecture, and is not part of CMSE, but is closely 
related. 

16 The <arm_cmse.h> header must be included before using the TT instruction support. 
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4.1 Feature macro 
The feature macro __ARM_FEATURE_CMSE describes the availability of CMSE related extensions. The macro 
defines a set of flags encoded as bits. 

17 Bit 0 of macro __ARM_FEATURE_CMSE is set if the TT instruction support is available. 
18 All undefined bits of macro __ARM_FEATURE_CMSE are reserved for future use and must be unset. 

The flags defined by __ARM_FEATURE_CMSE as described here and in §5 result in the following values for this 
macro: 

Value Meaning  

0 or (undefined) Absence of TT instruction support 

1 TT instruction support is available 

3 Toolchain targets the secure state of CMSE (implies the availability of the TT instruction) 

 

4.2 TT intrinsics 
The result of the TT instruction is described by a C type containing bit-fields. This type is used as the return type of 
the TT intrinsics. 
As specified by [AAPCS], the endianness of a system affects the bit-offsets of bit-fields, but the result of the TT 
instruction is not influenced by endianness. 

19 If __ARM_BIG_ENDIAN is unset and bit 0 of macro __ARM_FEATURE_CMSE is set, the following type must be 
declared: 
typedef union { 
 struct cmse_address_info { 
  unsigned mpu_region:8; 
  unsigned :8; 
  unsigned mpu_region_valid:1; 
  unsigned :1; 
  unsigned read_ok:1; 
  unsigned readwrite_ok:1; 
  unsigned :12; 
 } flags; 
 unsigned value; 
} cmse_address_info_t; 

20 If __ARM_BIG_ENDIAN is set, the bit-fields in the type defined by requirement 19 are reversed such that they have 
the same bit-offset as on little-endian systems following the rules specified by [AAPCS]. 
The size of this type is 4 bytes. 

21 The unnamed bit-fields of cmse_address_info_t are reserved. 
22 The following intrinsics must be provided if bit 0 of macro __ARM_FEATURE_CMSE is set: 

Intrinsic Semantics 

cmse_address_info_t cmse_TT(void *p) Generates a TT instruction. 

cmse_address_info_t cmse_TT_fptr(p) Generates a TT instruction. The argument p can be any 
function pointer type. 

cmse_address_info_t cmse_TTT(void *p) Generates a TT instruction with the T flag. 

cmse_address_info_t cmse_TTT_fptr(p) Generates a TT instruction with the T flag. The argument p 
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can be any function pointer type. 

ARM recommends that a toolchain behaves as if these intrinsics would write the pointed-to memory. That 
prevents subsequent accesses to this memory being scheduled before this intrinsic. 
The exact type signatures for cmse_TT_fptr() and cmse_TTT_fptr() are implementation-defined because there 
is no type defined by [ISOC] that can hold all function pointers. ARM recommends implementing these intrinsics 
as macros. 

4.3 Address range check intrinsic 
Checking the result of the TT instruction on an address range is essential for programming in C. It is needed to 
check permissions on objects larger than a byte. The address range check intrinsic defined in this section can be 
used to perform permission checks on C objects. 

23 The address range check intrinsic must be available if bit 0 of macro __ARM_FEATURE_CMSE is set. It has the 
following type signature: 
void *cmse_check_address_range(void *p, size_t size, int flags) 

24 The address range check intrinsic checks the address range from p to p + size – 1.  
An implementation must be aware that wraparound of an address range can occur.  

25 The address range check fails if p + size - 1 < p. 
Some SAU, IDAU and MPU configurations block the efficient implementation of an address range check. This 
intrinsic operates under the assumption that the configuration of the SAU, IDAU, and MPU is constrained as 
follows: 

• An object is allocated in a single region. 
• A stack is allocated in a single region. 

These points imply that a region does not overlap other regions. 
An SAU, IDAU and MPU region number is returned by the TT instruction. When the region numbers of the start 
and end of the address range match, the complete range is contained in one SAU, IDAU, and MPU region. In this 
case two TT instructions are executed to check the address range. 
Regions are aligned at 32-byte boundaries. If the address range fits in one 32-byte address line, a single TT 
instruction suffices. This is the case when the following constraint holds: 

(p mod 32) + size <= 32 

26 The address range check intrinsic fails if the range crosses any MPU region boundary. 
The SAU and IDAU support for this intrinsic is defined in §5.3. 
The rest of the semantics of the address range check intrinsic depend on its flags parameter. This parameter can 
be constructed using a bitwise OR operator. 

27 The flags parameter of the address range check consists of a set of values. Each value must have a macro 
defined for it, with the name and semantic effects as defined in the following table: 

Macro Value Semantic effects 

 0 The TT instruction without any flag is used to retrieve the permissions of an 
address, returned in a cmse_address_info_t structure. 

CMSE_MPU_UNPRIV 4 Sets the T flag on the TT instruction used to retrieve the permissions of an 
address. Retrieves the unprivileged mode access permissions. 

CMSE_MPU_READWRITE 1 Checks if the permissions have the readwrite_ok field set. 

CMSE_MPU_READ 8 Checks if the permissions have the read_ok field set. 
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28 The address range check must fail if the flags parameter contains a value that cannot be constructed using a 
bitwise OR operator on the values defined by requirement 27. 

29 The address range check intrinsic returns NULL on a failed check, and p on a successful check. 
ARM recommends programmers to use the returned pointer to access the checked memory range. This 
generates a data dependency between the checked memory and all its subsequent accesses and prevents these 
accesses from being scheduled before the check. 

30 The following intrinsic must be defined if bit 0 of macro __ARM_FEATURE_CMSE is set: 

Intrinsic Semantics 

cmse_check_pointed_object(p, f) Returns the same value as 
cmse_check_address_range(p, sizeof(*p), f). 

The cmse_check_pointed_object() intrinsic can be implemented as a macro. An example implementation is 
listed in §7.2. This intrinsic is a convenience wrapper for the cmse_check_address_range() intrinsic that matches 
the most common usage pattern in C. ARM recommends that the return type of this intrinsic is identical to the type 
of parameter p. 

5 CMSE SUPPORT 
This chapter defines the language extension that provides support for secure executable files written in the C 
language. Non-secure executable files do not require any additional toolchain support. 

31 The <arm_cmse.h> header must be included before using CMSE support, except for using the 
__ARM_FEATURE_CMSE macro. 

32 Bits 0 and 1 of feature macro __ARM_FEATURE_CMSE are set if CMSE support for secure executable files is 
available. 
Availability of CMSE implies availability of the TT instruction. 
A compiler might provide a switch to enable support for creating CMSE secure executable files. ARM 
recommends such a switch to be named -mcmse. 

5.1 Non-secure memory usage 
Secure code should only use secure memory except when communicating with the non-secure state. The 
italicized terms in this section are terms defined by [ISOC]. 

33 The storage of any object declared in a translation unit must be a register or secure memory. 
The security implications of accessing non-secure memory through a pointer are the responsibility of the 
developer. Any other access to non-secure memory by secure code is called a “generated non-secure memory 
access” and is the responsibility of the C language translation system. 

34 A generated non-secure memory read (or write) must check that the non-secure state can read (or write) this 
memory before accessing it. 

35 Any attempted generated non-secure memory read (or write) to memory that is not readable (or writable) by the 
non-secure state must result in a call to the cmse_abort() function. 
The programmer handles the case where a generated non-secure memory access fails the compiler-generated 
check, by defining the cmse_abort() function. This function should never return. 
The following pseudocode describes the general code sequence for a generated non-secure memory write access 
at address nsaddr and of size SIZE. An implementation is not required to use this particular code sequence. 
addr = cmse_check_address_range(nsaddr, SIZE, CMSE_MPU_READWRITE | CMSE_NONSECURE) 
if addr == 0 then 
 cmse_abort() 
//access to [addr, addr+SIZE-1] is now permitted 
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The macros CMSE_MPU_READWRITE and CMSE_NONSECURE are defined in §5.3. The cmse_check_address_range 
intrinsic is defined in §4.3 and extended in §5.3. 
As mentioned in §4.3, the address range check can be done efficiently if the non-secure stack does not cross the 
boundary of any memory region defined by the MPU, SAU, and IDAU. 

36 A C language translation system must generate code to handle a generated non-secure memory access in each 
of the following situations:  

• An entry function called from non-secure state assigns an argument written to memory by the non-secure 
state to its corresponding parameter (as defined by §6.5.2.2 paragraph 4 of [ISOC]); 

• An entry function returns control to its non-secure caller and writes its return value to memory (as defined 
by §6.8.6.4 paragraph 3 of [ISOC]); 

• A function call that targets the non-secure state assigns an argument to the corresponding parameter (as 
defined by §6.5.2.2 paragraph 4 of [ISOC]); 

• A return value of a function call that targets the non-secure state is read from memory (as defined by 
§6.8.6.4 paragraph 3 of [ISOC]). 

This is explained in more detail in §5.4 Entry functions, and §5.5 Non-secure function call. 

5.2 TT intrinsics for CMSE 
In the secure state, the TT instruction returns the SAU and IDAU configuration and recognizes the A flag. This 
requires the type defined in §4.2 to be extended. The additional fields are emphasized in bold. The size of this 
type is still 4 bytes. 

37 If __ARM_BIG_ENDIAN is unset and bit 1 of macro __ARM_FEATURE_CMSE is set, the following type must be 
declared: 
typedef union { 
 struct cmse_address_info { 
  unsigned mpu_region:8; 
  unsigned sau_region:8; 
  unsigned mpu_region_valid:1; 
  unsigned sau_region_valid:1; 
  unsigned read_ok:1; 
  unsigned readwrite_ok:1; 
  unsigned nonsecure_read_ok:1; 
  unsigned nonsecure_readwrite_ok:1; 
  unsigned secure:1; 
  unsigned idau_region_valid:1; 
  unsigned idau_region:8; 
 } flags; 
 unsigned value; 
} cmse_address_info_t; 

38 If __ARM_BIG_ENDIAN is set the bit-fields in the type defined by requirement 37 must be reversed such that they 
have the same bit-offset as on little-endian systems following the rules specified by [AAPCS]. 

39 The following intrinsics must be provided if bit 1 of macro __ARM_FEATURE_CMSE is set: 

Intrinsic Semantics 

cmse_address_info_t cmse_TTA(void *p) Generates a TT instruction with the A flag. 

cmse_address_info_t cmse_TTA_fptr(p) Generates a TT instruction with the A flag. The argument p 
can be any function pointer type. 

cmse_address_info_t cmse_TTAT(void *p) Generates a TT instruction with the T and A flag. 

cmse_address_info_t cmse_TTAT_fptr(p) Generates a TT instruction with the T and A flag. The 
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argument p can be any function pointer type. 

Note that the TT intrinsics defined by requirement 22 must also be provided for the CMSE support. Implementation 
recommendations can be found there. 

5.3 Address range check intrinsic for CMSE 
The semantics of the intrinsic cmse_check_address_range() defined in §4.3 are extended to handle the extra 
flag and fields introduced by CMSE. 

40 The address range check must fail if the range crosses any SAU or IDAU region boundary. 
41 If bit 1 of macro __ARM_FEATURE_CMSE is set, the values accepted by the flags parameter, as defined by 

requirement 27, must be extended with the values defined in the following table: 

Macro Value Semantic effects 

CMSE_AU_NONSECURE 2 Checks if the permissions have the secure field unset. 

CMSE_MPU_NONSECURE 16 Sets the A flag on the TT instruction used to retrieve the permissions of an 
address. 

CMSE_NONSECURE 18 Semantics of CMSE_AU_NONSECURE and CMSE_MPU_NONSECURE combined. 

5.4 Entry functions 
An entry function can be called from non-secure state or secure state. 

42 A compiler must support declaring an entry function by using the attribute 
__attribute__((cmse_nonsecure_entry)) on its declaration. 
ARM recommends generating a diagnostic for an entry function with static linkage. 

43 An entry function has two ELF function (STT_FUNC) symbols labelling it: 
• A symbol that follows the standard naming for C entities as defined by [AAELF] labels the function’s inline 

secure gateway if it has one, otherwise the function’s first instruction. 
• A special symbol that prefixes the standard function name with __acle_se_ labels the function’s first non-

SG instruction. 
The special symbol acts as an entry function attribute in the relocatable file. Tools that operate on relocatable files 
can use this symbol to detect the need to generate a secure gateway veneer (§3.4.3) and a symbol in the import 
library (§3.4.2). 

44 A toolchain must generate a secure gateway veneer for an entry function that has both its symbols labelling the 
same address. Otherwise a secure gateway is assumed to be present. 
To summarize, for a function symbol foo: 

• A secure gateway veneer for foo is only generated if foo == __acle_se_foo. 

• The symbol foo is copied to the import library if __acle_se_foo is present and foo != __acle_se_foo. 
45 The address of an entry function must be the address labelled by its standard symbol. 

This must be the address of its associated SG instruction, usually the first instruction of its secure gateway veneer. 
This veneer is labelled by the function’s standard symbol name. 

5.4.1 Arguments and return value 
A caller from the non-secure state is not aware it is calling an entry function. If it must use the stack to write 
arguments or read a result value [AAPCS], it will use the non-secure stack. 

46 A compiler compiling an entry function must do either of the following: 
• Generate code to read arguments from and write results to the non-secure stack. 
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• Constrain the number of parameters to the entry function, their types, and the type of the return value, to 
avoid using the non-secure stack. An entry function that would break the constraint must be diagnosed. 

If a toolchain supports stack-based arguments, it must be aware of the volatile behavior of non-secure memory 
(§3.3.3) and the requirements of using non-secure memory (§5.1), in particular requirement 36.   
In practice, a compiler might generate code that: 

• Copies stack-based arguments from the non-secure stack to the parameter on the secure stack in the 
prologue of the entry function. 

• Copies the stack-based return value from the secure stack to the non-secure stack in the epilogue. 
Code that performs this copying must check the accessibility of the non-secure memory as described by the 
pseudocode in §5.1. An example entry function epilogue and prologue can be found in §7.4. 
A possible optimization would be to access the non-secure stack directly for arguments that read at most once, 
but accessibility checks are still required. 
The stack usage of an entry function is shown in Figure 5.  

 
Figure 5 Entry function’s caller stack frame 

5.4.2 Return from an entry function 
47 An entry function must use the BXNS instruction to return to its non-secure caller. 

This instruction switches to non-secure state if the target address has its LSB unset. The LSB of the return 
address in lr is automatically cleared by the SG instruction when it switches the state from non-secure to secure. 
To prevent information leakage when an entry function returns, the registers that contain secret information must 
be cleared (§3.3.1). 

48 The code sequence directly preceding the BXNS instruction that transitions to non-secure code must: 
• Clear all caller-saved registers except: 

o Registers that hold the result value and the return address of the entry function. 
o Registers that do not contain secret information. 

• Clear all registers and flags that have undefined values at the return of a procedure, according to 
[AAPCS]. 

Non-secure caller 
// interface of secure code 
struct s { int a[4]; } g; 
struct s entryfunc(struct s); 

 
//calls the entry function 
void foo(void) { 
    struct s val; 
    val = entryfunc(g); 
    g = s; 
} 

Entry function stack view 

Start of body 

 Start of prologue 

End of body 

End of epilogue 

val 
g.a[3] 

Secure stack 

val 
g.a[3] 

val 
g.a[3] 

val 
g.a[3] g.a[3] 

g.a[3] 

Non-secure stack 

Tim
e 

val 

val 

• A pointer to the result value is 
passed in r0. 

• g.a[0] to g.a[2] are passed in 
registers r1-r3. 

• Uninitialized space is highlighted 
in red. 
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• Restore all callee-saved registers as mandated by [AAPCS]. 
Clearing of floating-point registers can be done conditionally by checking the SFPA bit of the special-purpose 
CONTROL register. 
A toolchain could provide the developer with the means to specify that some types of variables never hold secret 
information. For example, by setting the TS bit of FPCCR, CMSE assumes that floating point registers never hold 
secret information. 
An example entry function epilogue can be found in §7.4. 
Because of these requirements, performing tail-calls from an entry function is difficult. 

5.4.3 Security state of the caller 
An entry function can be called from secure or non-secure state. Software needs to distinguish between these 
cases. 

49 The following intrinsic function must be provided if bit 1 of macro __ARM_FEATURE_CMSE is set: 

Intrinsic Semantics 

int cmse_nonsecure_caller(void) Returns non-zero if entry function is called from non-secure state 
and zero otherwise. 

Calling an entry function from the non-secure state results in a return address with its LSB unset. This can be 
used to implement the intrinsic. Note that such an implementation requires a stable location for the return address. 
As a consequence of the semantics of cmse_nonsecure_caller(), it always return zero when used outside an 
entry function. A toolchain is not required to diagnose the usage of cmse_nonsecure_caller()outside an entry 
function, although this might become a requirement in the future. 

5.5 Non-secure function call 
A call to a function that switches state from secure to non-secure is called a non-secure function call. A non-
secure function call can only happen via function pointers. This is a consequence of separating secure and non-
secure code into separate executable files as described in §3.4.2. 

50 A non-secure function type must be declared using the function attribute 
__attribute__((cmse_nonsecure_call)). 

51 A non-secure function type must only be used as a base type of a pointer. 
This disallows function definitions with this attribute and ensures a secure executable file only contains secure 
function definitions. 

5.5.1 Performing a call 
52 A function call through a pointer with a non-secure function type as its base type must switch to the non-secure 

state. 
To create a function call that switches to the non-secure state, an implementation must emit code that clears the 
LSB of the function address and branches using the BLXNS instruction. 
Note that a non-secure function call to an entry function is possible. This behaves like any other non-secure 
function call. 
All registers that contain secret information must be cleared to prevent information leakage when performing a 
non-secure function call as described in §3.3.1. Registers that contain values that are used after the non-secure 
function call must be restored after the call returns. Secure code cannot depend on the non-secure state to restore 
these registers. 

53 The code sequence directly preceding the BLXNS instruction that transitions to non-secure code must: 
• Save all callee- and live caller-saved registers by copying them to secure memory. 
• Clear all callee- and caller-saved registers except: 
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o The lr. 
o The registers that hold the arguments of the call. 
o Registers that do not hold secret information. 

• Clear all registers and flags that have undefined values at the entry to a procedure according to the 
[AAPCS]. 

A toolchain could provide the developer with the means to specify that some types of variables never hold secret 
information. 

54 When the non-secure function call returns, caller- and callee-saved registers saved before the call must be 
restored. 
An implementation need not save and restore a register if its value is not live across the call. Note that callee-
saved registers are live across the call in almost all situations. These requirements specify behavior that is similar 
to a regular function call, except that: 

• Callee-saved registers must be saved as if they were caller-saved registers. 
• Registers that are not banked and potentially contain secret information must be cleared. 

The floating point registers can very efficiently be saved and cleared using the VLSTM, and restored using VLLDM 
instructions. 
An example instruction sequence for a non-secure call is listed in §7.3. 

5.5.2 Arguments and return value 
The callee of a non-secure function call is called in non-secure state. If stack usage is required according to 
[AAPCS], the non-secure state expects the arguments on the non-secure stack and writes the return value to non-
secure memory. 

55 To avoid using the non-secure stack, a toolchain may constrain the following, for a non-secure function type: 
• The number of parameters. 
• The type of each parameter. 
• The return type. 

56 A compiler compiling a call to a non-secure function must do either of the following: 
• Generate code to write arguments to and read results from the non-secure stack. 
• Constrain the number of parameters to the function, their types, and the type of the return value to avoid 

needing to use the non-secure stack. A call that would break the constraint must be diagnosed. 
If a compiler supports stack-based arguments and results, it must be aware of the volatile behavior of non-secure 
memory (§3.3.3) and the requirements of using non-secure memory (§5.1), in particular requirement 36.  
In practice, a toolchain might generate code that: 

• Creates the caller’s stack argument area on the non-secure stack and uses this space for no other 
purpose. 

• Copies the callee’s return value from the non-secure stack to the secure stack after the non-secure 
function call returns. 

Code that performs these tasks must check the non-secure memory as described by the pseudocode in §5.1. 
If the return value is read once, a possible optimization would be to read the return value directly from the non-
secure stack at the point of use. In this case, access checks are still required. 
The stack usage during a non-secure function call is shown in Figure 6. 
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Figure 6 Caller’s stack frame of a non-secure function call 

5.6 Non-secure function pointer 
A function pointer that has its LSB unset is a non-secure function pointer (nsfptr). An nsfptr provides a way to test 
at run-time the security state that will be targeted when performing a call through this pointer. An nsfptr is not a 
type and must not be confused with the non-secure function type (§5.5). 
Most use cases do not require an nsfptr and should use a non-secure function call (§5.5). An example of where an 
nfsptr is needed is to share a single variable for secure function pointers and non-secure function pointers: 
#include <arm_cmse.h> 
typedef void __attribute__((cmse_nonsecure_call)) nsfunc(void); 
void default_callback(void) { … } 

// fp can point to a secure function or a non-secure function 
nsfunc *fp = (nsfunc *) default_callback;           // secure function pointer 
 
void __attribute__((cmse_nonsecure_entry)) entry(nsfunc *callback) { 
                fp = cmse_nsfptr_create(callback);  // non-secure function pointer 
} 
 
void call_callback(void) { 
                if (cmse_is_nsfptr(fp)) fp();       // non-secure function call 
                else ((void (*)(void)) fp)();       // normal function call 
} 

The global variable fp is a non-secure function type but can hold the address of a secure or non-secure function. 
By using the nsfptr related intrinsics it is possible to check at runtime which function call to perform. 
Such sharing of a variable is not recommended practice. 

57 The following intrinsics are defined if bit 1 of macro __ARM_FEATURE_CMSE is set: 

Intrinsic Semantics 

cmse_nsfptr_create(p) Returns the value of p with its LSB cleared. The argument p can be any function 
pointer type. 

cmse_is_nsfptr(p) Returns non-zero if p has LSB unset, zero otherwise. The argument p can be 

Secure caller 
#include <arm_cmse.h> 
#define CA cmse_nonsecure_call 
#define NS __attribute__((CA)) 
struct s { int a[4]; } g; 
struct s NS nsfunc(struct s); 

 
void foo(void) { 
    struct s val; 
    val = nsfunc(g); 
    g = s; 
} 

Caller stack frame setup 

 Before the call 

Return of call 

After the call 

val 

Secure stack 

val 
g.a[3] 

val 

val 
g.a[3] 

val 
g.a[3] 

Non-secure stack 

Tim
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val 

• A pointer for the (non-secure) result value is 
passed in r0. 

• g.a[0] to g.a[2] are passed in registers r1-r3. 
• Uninitialized space is highlighted in red. 
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any function pointer type. 

Note that the exact type signatures of these intrinsics are implementation-defined because there is no type 
defined by [ISOC] that can hold all function pointers. ARM recommends implementing these intrinsics as macros 
and recommends that the return type of cmse_nsfptr_create() is identical to the type of its argument. An 
example implementation is listed in §7.2. 

6 FUTURE EXTENSIONS 
This chapter lists possible features of a future version of this specification. It does not imply any commitment. 

6.1 Non-secure callable function 
A non-secure callable function is a function that is expected to be placed in a NSC region. Its functionality is 
identical to an entry function, but instead of a secure gateway veneer the function starts with the SG instruction. 

58 A non-secure callable function must be declared by using the attribute 
__attribute__((cmse_nonsecure_callable)) on a function declaration. 

59 A non-secure callable function is identical to an entry function except that: 
• The first instruction is an SG instruction. 

• The function’s special symbol labels the address following the SG instruction.  
No veneer is generated as defined in §3.4.3 because the special symbol’s value is different to the normal symbol’s 
value. 
Toolchain support is needed to prevent inadvertent secure gateways from occurring (§3.3.4). 

60 A toolchain must provide a way for the programmer to guarantee that a non-secure callable function does not 
contain an inadvertent SG instruction in code or data. 
ARM recommends that toolchains provide a way to scan NSC regions for inadvertent SG instructions in an 
executable image. 

6.2 Non-secure returning function 
A non-secure returning function is a function that can return to the non-secure state, but cannot be called by the 
non-secure state. An example use would be to provide tail-calls from an entry function to non-secure returning 
functions. 

61 A non-secure returning function must be declared by using the attribute 
__attribute__((cmse_nonsecure_return)) on a function declaration. 
A non-secure returning function has a special epilogue, identical to that of an entry function. 

7 APPENDIX: EXAMPLE SOURCE 
The examples in this chapter are written for clarity and are not guaranteed to be efficient or compact. 

7.1 Address range checking intrinsic 
An example definition of the address range checking intrinsic with support for CMSE is provided below. Note that 
this example assumes the macros CMSE_MPU_NONSECURE and CMSE_AU_NONSECURE are available even when not 
targeting the secure state. 
static inline void * 
cmse_check_address_range(void *p, size_t s, int flags) 
{ 
    // check if the range wraps around 
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    if (UINTPTR_MAX - (uintptr_t) p < s) return NULL; 
 
    cmse_address_info_t permb, perme; 
    char *pb = (char *) p; 
    char *pe = pb + s – 1; 
 
    // execute the right variant of the TT instructions 
    const int singleCheck = (((uintptr_t) pb ^ (uintptr_t) pe) < 0x20u); 
    switch (flags & (CMSE_MPU_UNPRIV|CMSE_MPU_NONSECURE)) { 
    case 0: 
        permb = cmse_TT(pb); 
        perme = singleCheck ? permb : cmse_TT(pe); 
        break; 
    case CMSE_MPU_UNPRIV: 
        permb = cmse_TTT(pb); 
        perme = singleCheck ? permb : cmse_TTT(pe); 
        break; 
#if __ARM_FEATURE_CMSE & 0x2 
    case CMSE_MPU_NONSECURE: 
        permb = cmse_TTA(pb); 
        perme = singleCheck ? permb : cmse_TTA(pe); 
        break; 
    case CMSE_MPU_UNPRIV|CMSE_MPU_NONSECURE: 
        permb = cmse_TTAT(pb); 
        perme = singleCheck ? permb : cmse_TTAT(pe); 
        break; 
#endif // __ARM_FEATURE_CMSE & 0x2 
    default: 
        // CMSE_MPU_NONSECURE is only supported when __ARM_FEATURE_CMSE & 0x2 
        return NULL; 
    } 
 
    // check that the range does not cross MPU, SAU, or IDAU region boundaries 
    if (permb.value != perme.value) return NULL; 
 
#if ! (__ARM_FEATURE_CMSE & 0x2) 
    // CMSE_AU_NONSECURE is only supported when __ARM_FEATURE_CMSE & 0x2 
    if (flags & CMSE_AU_NONSECURE) return NULL; 
#endif // !(__ARM_FEATURE_CMSE & 0x2) 
 
    // check the permission on the range 
    switch (flags & ~(CMSE_MPU_UNPRIV|CMSE_MPU_NONSECURE)) { 
    case CMSE_MPU_READ|CMSE_MPU_READWRITE|CMSE_AU_NONSECURE: 
    case               CMSE_MPU_READWRITE|CMSE_AU_NONSECURE: 
        return permb.flags.nonsecure_readwrite_ok ? p : NULL; 
    case CMSE_MPU_READ|CMSE_AU_NONSECURE: 
        return permb.flags.nonsecure_read_ok      ? p : NULL; 
    case CMSE_AU_NONSECURE: 
        return permb.flags.secure                 ? NULL : p; 
    case CMSE_MPU_READ|CMSE_MPU_READWRITE: 
    case               CMSE_MPU_READWRITE: 
        return permb.flags.readwrite_ok           ? p : NULL; 
    case CMSE_MPU_READ: 
        return permb.flags.read_ok                ? p : NULL; 
    default: 
       return NULL; 
    } 
} 
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7.2 Non-trivial macros 
The following example macro definitions assume the following C language extensions: 

• A function pointer can be cast to and from intptr_t. 

• A type can be constructed from an expression using the typeof keyword.  
 
#define cmse_check_pointed_object(p, f) \ 
                               ((tyepof(p)) cmse_check_address_range((p), sizeof(p), f)) 

#define cmse_nsfptr_create(p)  ((typeof(p)) ((intptr_t) (p) & ~1)) 

#define cmse_is_nsfptr(p)      (!((intptr_t) (p) & 1)) 

7.3 Example non-secure function call 

7.3.1 Simple case 
Consider the following example: 
#include <arm_cmse.h> 
int __attribute__((cmse_nonsecure_call)) (*foo)(int); 
int bar(int a) { 
    return foo(a) + 1; 
} 

The following T32 instruction sequence is an implementation of this function: 
bar: 
    ldr     r1, =foo 
    @ protect the FP context if used by secure state 
    sub     sp, sp, #0x88 
    vlstm   sp 
    @ save callee-saved integer registers 
    push    {r4-r12, lr} 
    @ clear all integer registers (except for function pointer and arguments) 
    mov     r2,  #0 
    mov     r3,  #0 
    … 
    mov     r12, #0 
    @ clear the integer status flags 
    msr     APSR_nzcvqg, r2 
    @ perform the call to the non-secure function  
    bic     r1, r1, #1 
    blxns   r1 
    @ restore the callee-saved registers  
    pop     {r4-r12, lr} 
    @ unprotect the FP context and restore it if it was pushed 
    vlldm   sp 
    add     sp, sp, #0x88 
    @ the rest of the function body 
    add     r0, r0, #1 
    bx      lr 

7.3.2 Hard-float ABI 
Consider the following example: 
#include <arm_cmse.h> 
float __attribute__((cmse_nonsecure_call)) (*foo)(float); 
float bar(float a) { 
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    return foo(a); 
} 

The following T32 instruction sequence is an implementation of this function using the hard-float ABI: 
bar: 
    ldr     r0, =foo 
    @ save callee-saved integer registers 
    push    {r4-r12, lr} 
    @ save the floating point arguments of the call 
    vmov    r1, s0 
    @ protect the FP context if used by secure state 
    sub     sp, sp, #0x88 
    vlstm   sp 
    @ setup floating point arguments of the call 
    vmov    s0, r1 
    @ clear all integer registers (except for function pointer and arguments) 
    mov     r2,  #0 
    mov     r3,  #0 
    … 
    mov     r12, #0 
    @ clear the integer status flags 
    msr     APSR_nzcvqg, r2 
    @ perform the call to the non-secure function  
    bic     r0, r0, #1 
    blxns   r0 
    @ save the floating point result of the call 
    vmov    r1, s0  
    @ unprotect the FP context and restore it if it was pushed 
    vlldm   sp 
    add     sp, sp, #0x88 
    @ restore the floating point result value 
    vmov    s0, r1 
    @ restore the callee-saved registers and return 
    pop     {r4-r12, pc} 

The register r1 contains the floating point argument for the non-secure function call. This is not secret information 
and does not need to be cleared. 
The floating point argument to the non-secure function needs to be saved to and restored from an integer register 
because the vlstm instruction saves and clears all floating point registers. The same holds for the return value 
from the non-secure function because the vlldm instruction restores all floating point registers. 

7.3.3 Arguments and return value on the stack 
Consider the following example: 
#include <arm_cmse.h> 
struct s { int a, int b, int c, int d }; 
struct s __attribute__((cmse_nonsecure_call)) (*foo)(int, struct s); 
struct s bar(void) { 
    return foo(0, (struct s) {1,2,3,4}); 
} 

The following T32 instruction sequence is an implementation of this function: 
bar: 
    @ get the non-secure stack pointer 
    mrs     r1, SP_NS 
    @ calculate required space for arguments (8 bytes) and return value (16 bytes)  
    subs    r2, r1, #24 
    @ take permissions at begin and end of range 
    tta     r3, r2 
    subs    r1, r1, #1 



 
Document Number: ARM-ECM-0359818 Non-Confidential 
Version: 1.0 Page 27 of 30 

    tta     r1, r1 
    @ check if range is in one region (this means identical permissions) 
    cmp     r2, r3 
    it      ne 
    blne    cmse_abort 
    @ check bit 21 of the TT result (non-secure readwrite flag) 
    tst     r2, #0x200000 
    it      eq 
    bleq    cmse_abort 
    @ reserve the non-secure stack space 
    mrs     SP_NS, r2 
    @ save callee-saved and live caller-saved integer registers 
    push    {r0,r2,r4-r12, lr} 
    @ protect the FP context if used by secure state 
    sub     sp, sp, #0x88 
    vlstm   sp 
    @ setup the arguments 
    mov     r5, #4 
    mov     r4, #3 
    str     r5, [r2, #20] 
    str     r4, [r2  #16] 
    mov     r3, #2 
    mov     r2, #1 
    add     r0, r1, #8 
    mov     r1, #0 
    @ load the function pointer 
    ldr     r4, =foo 
    @ clear all integer registers (except for function pointer and arguments) 
    mov     r6,  #0 
    mov     r7,  #0 
    … 
    mov     r12, #0 
    @ clear the integer status flags 
    msr     APSR_nzcvqg, r6 
    @ perform the call to the non-secure function  
    bic     r4, r4, #1 
    blxns   r4 
    @ unprotect the FP context and restore it if it was pushed 
    vlldm   sp 
    add     sp, sp, #0x88 
    @ restore the callee-saved registers 
    pop     {r0,r2,r4-r12, lr} 
    @ copy the result value from the non-secure stack to the secure stack 
    ldr     r1, [r2, #12] 
    str     r1, [r0, #12] 
    ldr     r1, [r2, #8 ] 
    str     r1, [r0, #8 ] 
    ldr     r1, [r2, #4 ] 
    str     r1, [r0, #4 ] 
    ldr     r1, [r2,    ] 
    str     r1, [r0,    ] 
    @ free non-secure stack space 
    adds    r2, r2, #24 
    msr     SP_NS, r2 
    @ the function body after the call 
    bx      lr 
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7.4 Example entry functions 

7.4.1 Simple case 
Consider the following example: 
#include <arm_cmse.h> 
int __attribute__((cmse_nonsecure_entry)) foo(int a) { 
    return a + 1; 
} 

In this example the compiler has complete knowledge of the registers used. No floating point registers are used 
and there is no non-secure stack usage. This case results in a very compact instruction sequence: 
.global foo 
.global __acle_se_foo 
foo: 
__acle_se_foo: 
    add r0, #1 
    bxns lr 

Since this is a leaf function, the compiler can determine that all the values in both integer and floating point 
registers do not contain secure values that need to be cleared. The same reasoning holds for the status flags. 

7.4.2 Arguments on the stack and floating point handling 
Consider the following example: 
#include <arm_cmse.h> 
extern int bar(int); 
int __attribute__((cmse_nonsecure_entry)) foo(int a, int b, int c, int d, int e, int f) { 
    return bar(e); 
} 

The function foo() uses the stack to pass the last two arguments. It is unknown if the function bar() uses floating 
point registers to store secret information. 
The following T32 instruction sequence is an implementation of this function using the soft-float ABI: 
.global foo 
.global __acle_se_foo 
foo: 
__acle_se_foo: 
    @ 1: if called from non-secure reserve secure stack space for the arguments 
    tst     lr, #1 
    it      eq 
    subeq   sp, sp, #8 
    @ 2: push used callee-saved register onto the stack 
    push    {r4-r6, lr} 
    @ 3: if called from secure the arguments are already in the correct place 
    tst     lr, #1 
    bne     .LdoneARGS 
    @ 4: get the non-secure stack pointer 
    mrs     r4, SP_NS 
    @ 5: calculate end of range 
    adds    r6, r4, #7 
    @ 6: take permissions at begin and end of range 
    tta     r5, r4 
    tta     r6, r6 
    @ 7: check if range is in one region (this means identical permissions) 
    cmp     r5, r6 
    it      ne 
    blne    cmse_abort 
    @ 8: check bit 20 of the TT result (non-secure read flag) 
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    tst     r5, #0x100000 
    it      eq 
    bleq    cmse_abort 
    @ 9: copy arguments from non-secure stack to secure stack 
    ldr     r5, [r4     ] 
    ldr     r6, [r4, #4 ] 
    str     r5, [sp, #16] 
    str     r6, [sp, #20] 
.LdoneARGS: 
    @10: function body 
    ldr     r0, [sp, #16] 
    ldr     r1, [sp, #20] 
    bl      bar 
    @11: restore used callee-saved registers 
    pop     {r4-r6, lr} 
    @12: if called from secure, we are done 
    tst     lr, #1 
    it      ne 
    bxne    lr 
    @13: pop secure stack space 
    add     sp, sp, #8 
    @14: check SFPA bit to see if FP is used 
    mrs     r1, control 
    tst     r1, #8 
    bne     .LdoneFP 
    @15: clear floating point caller-saved registers (soft ABI) 
    mov     r1, #0 
    vmov    s0, s1, r1, r1 
    vmov    s2, s3, r1, r1 
    ... 
    vmov    s30, s31, r1, r1 
    @16: clear floating point flags 
    vmsr    fpscr, r1 
.LdoneFP: 
    @17: clear integer caller-saved registers except for return value 
    mov     r1, #0 
    mov     r2, #0 
    mov     r3, #0 
    @18: clear other registers and the integer status flags 
    mov     r12, #0 
    msr     APSR_nzcvqg, r3 
    @19: return to non-secure state 
    bxns    lr 

The instruction sequence between comment 14 and 15 is an optimization to skip clearing floating point registers if 
they are not used by the secure state. Removing these instructions is functionally equivalent but might create an 
unnecessary floating point context. 

7.4.3 Return value on the stack 
Consider the following example: 
#include <arm_cmse.h> 
struct s { int a, int b}; 
struct s __attribute__((cmse_nonsecure_entry)) foo(void) { 
    return (struct s) { 4, 2 }; 
} 

The function foo uses the stack to return the structure. The following T32 instruction sequence is an 
implementation of this function: 
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.global foo 

.global __acle_se_foo 
foo: 
__acle_se_foo: 
    @ 1: if called from secure, memory for the result value is assumed correct 
    tst     lr, #1 
    bne     .LdoneRES 
    @ 2: calculate final address of result value 
    adds    r1, r0, #7 
    @ 3: take permissions at begin and end of range 
    tta     r2, r0 
    tta     r3, r1 
    @ 4: check if range is in one region (this means identical permissions) 
    cmp     r2, r3 
    it      ne 
    blne    cmse_abort 
    @ 5: check bit 21 of the TT result (non-secure readwrite flag) 
    tst     r2, #0x200000 
    it      eq 
    bleq    cmse_abort 
.LdoneRES: 
    @ 6: function body 
    movs    r2, #2 
    movs    r1, #4 
    str     r2, [r0, #4] 
    str     r1, [r0    ] 
    @ 7: clear integer caller-saved registers except for return value 
    movs    r3, #0 
    @ 8: clear integer status flags 
    msr     APSR_nzcvqg, r3 
    @ 9: return to secure or non-secure state (controlled by the LSB of lr) 
    bxns    lr 

All the code executed in secure state by this entry function is known. The clearing sequence can therefore be 
optimized. The floating point registers are not cleared and only register r3 holds potentially secret information. 
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