
Morello Supplement to the Arm C Language
Extensions

01alpha

Date of Issue: 02 July 2021

1 Preamble

1.1 Abstract
This document specifies the Arm C Language Extensions to enable C/C++ programmers to use the Morello
architecture with minimal restrictions on source code portability.

1.2 Keywords
Predefined macros, built-in functions

1.3 Latest release and defects report
For the latest release of this document, see the ACLE project on GitHub.

Please report defects in this specification to the issue tracker page on GitHub.

1.4 License
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866,
Mountain View, CA 94042, USA.

Grant of Patent License. Subject to the terms and conditions of this license (both the Public License and this Patent
License), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and
otherwise transfer the Licensed Material, where such license applies only to those patent claims licensable by such
Licensor that are necessarily infringed by their contribution(s) alone or by combination of their contribution(s) with the
Licensed Material to which such contribution(s) was submitted. If You institute patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that the Licensed Material or a contribution incorporated
within the Licensed Material constitutes direct or contributory patent infringement, then any licenses granted to You
under this license for that Licensed Material shall terminate as of the date such litigation is filed.

1.5 About the license
As identified more fully in the License section, this project is licensed under CC-BY-SA-4.0 along with an additional
patent license. The language in the additional patent license is largely identical to that in Apache-2.0 (specifically,
Section 3 of Apache-2.0 as reflected at https://www.apache.org/licenses/LICENSE-2.0) with two exceptions.

First, several changes were made related to the defined terms so as to reflect the fact that such defined terms need to
align with the terminology in CC-BY-SA-4.0 rather than Apache-2.0 (e.g., changing “Work” to “Licensed Material”).

Second, the defensive termination clause was changed such that the scope of defensive termination applies to “any
licenses granted to You” (rather than “any patent licenses granted to You”). This change is intended to help maintain a
healthy ecosystem by providing additional protection to the community against patent litigation claims.

1.6 Contributions
Contributions to this project are licensed under an inbound=outbound model such that any such contributions are
licensed by the contributor under the same terms as those in the LICENSE file.

2

Copyright © 2020-2021, Arm Limited and its affiliates. All rights reserved.

https://github.com/ARM-software/acle
https://github.com/ARM-software/acle/issues
http://creativecommons.org/licenses/by-sa/4.0/
https://www.apache.org/licenses/LICENSE-2.0

1.7 Trademark notice
The text of and illustrations in this document are licensed by Arm under a Creative Commons Attribution–Share Alike
4.0 International license ("CC-BY-SA-4.0”), with an additional clause on patents. The Arm trademarks featured here
are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights
reserved. Please visit https://www.arm.com/company/policies/trademarks for more information about Arm’s
trademarks.

1.8 Copyright
Copyright (c) 2020-2021, Arm Limited and its affiliates. All rights reserved.

2 About This Document

2.1 Change Control

2.1.1 Current Status and Anticipated Changes
The following support level definitions are used by the ACLE specifications:

Release

Arm considers this specification to have enough implementations, which have received sufficient testing, to verify
that it is correct. The details of these criteria are dependent on the scale and complexity of the change over
previous versions: small, simple changes might only require one implementation, but more complex changes
require multiple independent implementations, which have been rigorously tested for cross-compatibility. Arm
anticipates that future changes to this specification will be limited to typographical corrections, clarifications and
compatible extensions.

Beta

Arm considers this specification to be complete, but existing implementations do not meet the requirements for
confidence in its release quality. Arm may need to make incompatible changes if issues emerge from its
implementation.

Alpha

The content of this specification is a draft, and Arm considers the likelihood of future incompatible changes to be
significant.

All content in this document is at the Alpha quality level.

2.1.2 Change History

Issue Date Change

00alpha 30th September 2020 Alpha release

01alpha 02 July 2021 Open source release. NFCI.

2.2 References
This document refers to, or is referred to by, the following documents.

3

Copyright © 2020-2021, Arm Limited and its affiliates. All rights reserved.

https://www.arm.com/company/policies/trademarks

Ref URL or other reference Title

ACLE-morello This document Morello Supplement to the Arm C Language
Extensions

ACLE Document number: 101028 Arm C Language Extensions

CHERI UCAM-CL-TR-947, SSN 1476-2986 CHERI C/C++ Programming Guide

2.3 Terms & Abbreviations
Capability

The capability data type is an unforgeable token of authority which provides a foundation for fine grained memory
protection and strong compartmentalisation.

Permissions

The permissions mask controls how the capability can be used - for example, by authorizing the loading and
storing of data and/or capabilities.

Deriving a capability

A capability value CV2 is said to be derived from a capability value CV1 when CV2 is a copy of CV1 with
optionally removed permissions and/or optionally narrowed bounds (base increased or limit reduced).

Sealing a capability

When a capability is sealed it cannot be modified or dereferenced, but it can be used to implement opaque
pointer types.

3 Scope
The Morello Supplement to the Arm C Language Extensions highlights the language features added on top of the
CHERI programming language to further exploit the Morello architecture. We recommend reading the CHERI
Pure-Capability C/C++ Programming Guide as preliminary material.

4 Predefined macros
ACLE introduces several predefined macros that define how the C/C++ implementation uses the Morello architecture.

4.1 __ARM_FEATURE_C64
This macro indicates that the code is being compiled for the C64 ISA.

4.2 Capability Permissions
The following macros indicate capability permissions:

Name Value

__ARM_CAP_PERMISSION_EXECUTIVE__ 2

__ARM_CAP_PERMISSION_MUTABLE_LOAD__ 64

__ARM_CAP_PERMISSION_COMPARTMENT_ID__ 128

__ARM_CAP_PERMISSION_BRANCH_SEALED_PAIR__ 256

4

Copyright © 2020-2021, Arm Limited and its affiliates. All rights reserved.

http://github.com/arm-software/acle/morello
https://developer.arm.com/documentation/101028/latest
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

Those can be used to form a bitmask that is acceptable for cheri_perms_and() and cheri_perms_clear(). The
value of each macro corresponds to the permission bit as it appears in the architecture documentation.

4.3 Deviation from CHERI
The macro __CHERI_CAP_PERMISSION_PERMIT_CCALL__ is not available on the Morello architecture.

5 Builtin functions
ACLE standardizes builtin functions to access the Morello architecture. These are the following:

5.1 Check subset and conditionally unseal or return null

void* __capability
__builtin_morello_subset_test_unseal_or_null(const void* __capability a,
 const void* __capability b)

Assuming two valid capabilities a and b, with the former being sealed and the latter being unsealed, if a can be
derived from b, then it unseals a and returns it, otherwise it returns a null capability.

5.2 Check subset and conditionally unseal

void* __capability
__builtin_morello_chkssu(const void* __capability a,
 const void* __capability b)

Assuming two valid capabilities a and b, with the former being sealed and the latter being unsealed, if a can be
derived from b, then it unseals a and returns it, otherwise it just returns a.

5.3 Convert pointer to capability offset (zeroing form)

void* __capability
__builtin_morello_cvtz(const void* __capability a, size_t b)

If the specified offset b is zero, then it returns a null capability, otherwise it sets the offset of capability a to b and
returns a. If capability a is sealed then the returned capability is marked invalid.

5

Copyright © 2020-2021, Arm Limited and its affiliates. All rights reserved.

	1 Preamble
	1.1 Abstract
	1.2 Keywords
	1.3 Latest release and defects report
	1.4 License
	1.5 About the license
	1.6 Contributions
	1.7 Trademark notice
	1.8 Copyright

	2 About This Document
	2.1 Change Control
	2.1.1 Current Status and Anticipated Changes
	2.1.2 Change History

	2.2 References
	2.3 Terms & Abbreviations

	3 Scope
	4 Predefined macros
	4.1 __ARM_FEATURE_C64
	4.2 Capability Permissions
	4.3 Deviation from CHERI

	5 Builtin functions
	5.1 Check subset and conditionally unseal or return null
	5.2 Check subset and conditionally unseal
	5.3 Convert pointer to capability offset (zeroing form)

