ArmNN
 21.08
CustomMemoryAllocatorSample.cpp

This example is basically a copy of the SimpleSample example. But it makes use of a CustomAllocator to allocate memory for the inputs, outputs and inter layer memory.

Note
This is currently an experimental interface
//
// Copyright © 2021 Arm Ltd and Contributors. All rights reserved.
// SPDX-License-Identifier: MIT
//
#include <armnn/ArmNN.hpp>
#include <arm_compute/core/CL/CLKernelLibrary.h>
#include <arm_compute/runtime/CL/CLScheduler.h>
#include <iostream>
/** Sample implementation of ICustomAllocator for use with the ClBackend.
* Note: any memory allocated must be host addressable with write access
* in order for ArmNN to be able to properly use it. */
class SampleClBackendCustomAllocator : public armnn::ICustomAllocator
{
public:
SampleClBackendCustomAllocator() = default;
void* allocate(size_t size, size_t alignment)
{
// If alignment is 0 just use the CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE for alignment
if (alignment == 0)
{
alignment = arm_compute::CLKernelLibrary::get().get_device().getInfo<CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE>();
}
size_t space = size + alignment + alignment;
auto allocatedMemPtr = std::malloc(space * sizeof(size_t));
if (std::align(alignment, size, allocatedMemPtr, space) == nullptr)
{
throw armnn::Exception("SampleClBackendCustomAllocator::Alignment failed");
}
return allocatedMemPtr;
}
void free(void* ptr)
{
std::free(ptr);
}
{
}
};
// A simple example application to show the usage of a custom memory allocator. In this sample, the users single
// input number is multiplied by 1.0f using a fully connected layer with a single neuron to produce an output
// number that is the same as the input. All memory required to execute this mini network is allocated with
// the provided custom allocator.
//
// Using a Custom Allocator is required for use with Protected Mode and Protected Memory.
// This example is provided using only unprotected malloc as Protected Memory is platform
// and implementation specific.
//
// Note: This example is similar to the SimpleSample application that can also be found in armnn/samples.
// The differences are in the use of a custom allocator, the backend is GpuAcc, and the inputs/outputs
// are being imported instead of copied. (Import must be enabled when using a Custom Allocator)
// You might find this useful for comparison.
int main()
{
using namespace armnn;
float number;
std::cout << "Please enter a number: " << std::endl;
std::cin >> number;
// Turn on logging to standard output
// This is useful in this sample so that users can learn more about what is going on
armnn::ConfigureLogging(true, false, LogSeverity::Info);
// Construct ArmNN network
armnn::NetworkId networkIdentifier;
INetworkPtr myNetwork = INetwork::Create();
armnn::FullyConnectedDescriptor fullyConnectedDesc;
float weightsData[] = {1.0f}; // Identity
TensorInfo weightsInfo(TensorShape({1, 1}), DataType::Float32);
weightsInfo.SetConstant(true);
armnn::ConstTensor weights(weightsInfo, weightsData);
IConnectableLayer *fullyConnected = myNetwork->AddFullyConnectedLayer(fullyConnectedDesc,
weights,
"fully connected");
IConnectableLayer *InputLayer = myNetwork->AddInputLayer(0);
IConnectableLayer *OutputLayer = myNetwork->AddOutputLayer(0);
InputLayer->GetOutputSlot(0).Connect(fullyConnected->GetInputSlot(0));
fullyConnected->GetOutputSlot(0).Connect(OutputLayer->GetInputSlot(0));
// Create ArmNN runtime:
//
// This is the interesting bit when executing a model with a custom allocator.
// You can have different allocators for different backends. To support this
// the runtime creation option has a map that takes a BackendId and the corresponding
// allocator that should be used for that backend.
// Only GpuAcc supports a Custom Allocator for now
//
// Note: This is not covered in this example but if you want to run a model on
// protected memory a custom allocator needs to be provided that supports
// protected memory allocations and the MemorySource of that allocator is
// set to MemorySource::DmaBufProtected
auto customAllocator = std::make_shared<SampleClBackendCustomAllocator>();
options.m_CustomAllocatorMap = {{"GpuAcc", std::move(customAllocator)}};
IRuntimePtr runtime = IRuntime::Create(options);
//Set the tensors in the network.
TensorInfo inputTensorInfo(TensorShape({1, 1}), DataType::Float32);
InputLayer->GetOutputSlot(0).SetTensorInfo(inputTensorInfo);
unsigned int numElements = inputTensorInfo.GetNumElements();
size_t totalBytes = numElements * sizeof(float);
TensorInfo outputTensorInfo(TensorShape({1, 1}), DataType::Float32);
fullyConnected->GetOutputSlot(0).SetTensorInfo(outputTensorInfo);
// Optimise ArmNN network
OptimizerOptions optOptions;
optOptions.m_ImportEnabled = true;
Optimize(*myNetwork, {"GpuAcc"}, runtime->GetDeviceSpec(), optOptions);
if (!optNet)
{
// This shouldn't happen for this simple sample, with GpuAcc backend.
// But in general usage Optimize could fail if the backend at runtime cannot
// support the model that has been provided.
std::cerr << "Error: Failed to optimise the input network." << std::endl;
return 1;
}
// Load graph into runtime
std::string ignoredErrorMessage;
INetworkProperties networkProperties(false, MemorySource::Malloc, MemorySource::Malloc);
runtime->LoadNetwork(networkIdentifier, std::move(optNet), ignoredErrorMessage, networkProperties);
// Creates structures for input & output
const size_t alignment =
arm_compute::CLKernelLibrary::get().get_device().getInfo<CL_DEVICE_GLOBAL_MEM_CACHELINE_SIZE>();
void* alignedInputPtr = options.m_CustomAllocatorMap["GpuAcc"]->allocate(totalBytes, alignment);
// Input with negative values
auto* inputPtr = reinterpret_cast<float*>(alignedInputPtr);
std::fill_n(inputPtr, numElements, number);
void* alignedOutputPtr = options.m_CustomAllocatorMap["GpuAcc"]->allocate(totalBytes, alignment);
auto* outputPtr = reinterpret_cast<float*>(alignedOutputPtr);
std::fill_n(outputPtr, numElements, -10.0f);
armnn::InputTensors inputTensors
{
{0, armnn::ConstTensor(runtime->GetInputTensorInfo(networkIdentifier, 0), alignedInputPtr)},
};
armnn::OutputTensors outputTensors
{
{0, armnn::Tensor(runtime->GetOutputTensorInfo(networkIdentifier, 0), alignedOutputPtr)}
};
// Execute network
runtime->EnqueueWorkload(networkIdentifier, inputTensors, outputTensors);
// Tell the CLBackend to sync memory so we can read the output.
arm_compute::CLScheduler::get().sync();
auto* outputResult = reinterpret_cast<float*>(alignedOutputPtr);
std::cout << "Your number was " << outputResult[0] << std::endl;
runtime->UnloadNetwork(networkIdentifier);
return 0;
}