ArmNN
 25.11
Loading...
Searching...
No Matches
PreluLayer.cpp
Go to the documentation of this file.
1//
2// Copyright © 2017,2019-2024 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
5
6#include "PreluLayer.hpp"
7
8#include "LayerCloneBase.hpp"
9
11
15
16namespace armnn
17{
18
19PreluLayer::PreluLayer(const char* name)
20 : Layer(2, 1, LayerType::Prelu, name)
21{}
22
23std::unique_ptr<IWorkload> PreluLayer::CreateWorkload(const IWorkloadFactory& factory) const
24{
25 PreluQueueDescriptor descriptor;
26 SetAdditionalInfo(descriptor);
27
28 return factory.CreateWorkload(LayerType::Prelu, descriptor, PrepInfoAndDesc(descriptor));
29}
30
32{
33 auto layer = CloneBase<PreluLayer>(graph, GetName());
34
35 return std::move(layer);
36}
37
38std::vector<TensorShape> PreluLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
39{
40 if (inputShapes.size() != 2)
41 {
42 throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
43 "\" - should be \"2\".");
44 }
45
46 const TensorShape& inputShape = inputShapes[0];
47 const TensorShape& alphaShape = inputShapes[1];
48
49 const unsigned int inputShapeDimensions = inputShape.GetNumDimensions();
50 const unsigned int alphaShapeDimensions = alphaShape.GetNumDimensions();
51
52 if (inputShapeDimensions == 0)
53 {
54 throw armnn::Exception("inputShapeDimensions must be greater than 0.");
55 }
56
57 if (alphaShapeDimensions == 0)
58 {
59 throw armnn::Exception("alphaShapeDimensions must be not be zero (\""
60 + std::to_string(alphaShapeDimensions) + "\")");
61 }
62
63 // The size of the output is the maximum size along each dimension of the input operands,
64 // it starts with the trailing dimensions, and works its way forward
65
66 unsigned int outputDimensions = std::max(inputShapeDimensions, alphaShapeDimensions);
67
68 TensorShape outputShape(outputDimensions);
69
70 int inputShapeIndex = armnn::numeric_cast<int>(inputShapeDimensions) - 1;
71 int alphaShapeIndex = armnn::numeric_cast<int>(alphaShapeDimensions) - 1;
72 unsigned int outputShapeIndex = outputDimensions - 1;
73
74 // Loop backwards through the common part of the shapes
75 while (inputShapeIndex >= 0 && alphaShapeIndex >= 0)
76 {
77 unsigned int inputDimension = inputShape[armnn::numeric_cast<unsigned int>(inputShapeIndex)];
78 unsigned int alphaDimension = alphaShape[armnn::numeric_cast<unsigned int>(alphaShapeIndex)];
79
80 // Check that the inputs are broadcast compatible
81 if (inputDimension != alphaDimension && inputDimension != 1 && alphaDimension != 1)
82 {
83 throw armnn::Exception("PreluLayer: Dimensions should either match or one should be of size 1");
84 }
85
86 outputShape[outputShapeIndex] = std::max(inputDimension, alphaDimension);
87
88 inputShapeIndex--;
89 alphaShapeIndex--;
90 outputShapeIndex--;
91 }
92
93 // Loop backwards through the remaing part of the input shape (if any)
94 while (inputShapeIndex >= 0)
95 {
96 outputShape[outputShapeIndex] = inputShape[armnn::numeric_cast<unsigned int>(inputShapeIndex)];
97
98 inputShapeIndex--;
99 outputShapeIndex--;
100 }
101
102 // Loop backwards through the remaing part of the alpha shape (if any)
103 while (alphaShapeIndex >= 0)
104 {
105 outputShape[outputShapeIndex] = alphaShape[armnn::numeric_cast<unsigned int>(alphaShapeIndex)];
106
107 alphaShapeIndex--;
108 outputShapeIndex--;
109 }
110
111 return { outputShape };
112}
113
115{
117
118 const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
119
121
122 std::vector<TensorShape> inferredShapes = InferOutputShapes(
123 {
126 });
127
128 if (inferredShapes.size() != 1)
129 {
130 throw armnn::LayerValidationException("inferredShapes has "
131 + std::to_string(inferredShapes.size()) +
132 " elements - should only have 1.");
133 }
134
135 ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "PreluLayer");
136}
137
139{
140 strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
141}
142
143} // namespace armnn
#define CHECK_LOCATION()
Base class for all ArmNN exceptions so that users can filter to just those.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition Layer.cpp:614
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition Layer.cpp:410
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition Layer.hpp:337
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *LayerCreateWorkload.
Definition Layer.hpp:409
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition Layer.cpp:526
Layer(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const char *name)
Definition Layer.cpp:260
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition Layer.hpp:339
LayerType * CloneBase(Graph &graph, Params &&... params) const
const char * GetName() const override
Returns the name of the layer.
Definition Layer.hpp:332
virtual const BaseDescriptor & GetParameters() const override
If the layer has a descriptor return it.
Definition Layer.hpp:378
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition Layer.cpp:457
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition Layer.cpp:303
friend class Graph
Definition Layer.hpp:382
ShapeInferenceMethod m_ShapeInferenceMethod
Definition Layer.hpp:441
const TensorInfo & GetTensorInfo() const override
Definition Layer.cpp:100
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of PreluLayer.
PreluLayer(const char *name)
Constructor to create a PreluLayer.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the PReLU type.
PreluLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
const TensorShape & GetShape() const
Definition Tensor.hpp:193
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition Tensor.cpp:174
Copyright (c) 2021 ARM Limited and Contributors.
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
Definition Types.hpp:494
std::enable_if_t< std::is_unsigned< Source >::value &&std::is_unsigned< Dest >::value, Dest > numeric_cast(Source source)