
PSA Certified
Attestation API 1.0

Document number: IHI 0085
Release Quality: Final
Issue Number: 4
Confidentiality: Non-confidential
Date of Issue: 23/09/2025

Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates

Contents

About this document iii
Release information iii
License iv
References v
Terms and abbreviations v
Potential for change vi
Conventions vii
Typographical conventions viiNumbers vii
Current status and anticipated changes vii
Feedback vii

1 Introduction 9
1.1 About Platform Security Architecture 9
1.2 About the Attestation API 9
2 Use cases and rationale 10
2.1 Device enrolment 10
2.2 Identifying certification 11
2.3 Integrity reporting 11
3 Initial Attestation report 12
3.1 Information model 12

3.1.1 Software components 14
3.2 Report format and signing 15

3.2.1 Token encoding 153.2.2 Signing 153.2.3 EAT standard claims 163.2.4 EAT custom claims 16
IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page i

4 API reference 18
4.1 API conventions 18
4.2 Status codes 18
4.3 General definitions 19

4.3.1 PSA_INITIAL_ATTEST_API_VERSION_MAJOR (macro) 194.3.2 PSA_INITIAL_ATTEST_API_VERSION_MINOR (macro) 194.3.3 PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE (macro) 19
4.4 Challenge sizes 19

4.4.1 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_32 (macro) 194.4.2 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_48 (macro) 194.4.3 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_64 (macro) 19
4.5 Attestation 20

4.5.1 psa_initial_attest_get_token (function) 204.5.2 psa_initial_attest_get_token_size (function) 21
A Example header file 22
A.1 psa/inital_attestation.h 22
B Example report 24
C CDDL 26
D Document history 30

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page ii

About this document
Release information
The change history table lists the changes that have been made to this document.

Table 1 Document revision history
Date Version Confidentiality Change

February 2019 1.0 beta 0 Non-confidential Initial publication.
June 2019 1.0.0 Non-confidential First stable release with 1.0 API finalized.

Uses the PSA Certified API common errorstatus codes.
Modified the API parameters to align withother PSA Certified APIs.
Updated the claims and lifecycle to match thelatest Platform Security Model.
Updated CBOR example in the appendix.

August 2019 1.0.1 Non-confidential Recommend type byte 0x01 forarm_psa_UEID.
Remove erroneous guidance regarding EAT’sorigination claim.

February 2020 1.0.2 Non-confidential Clarify the claim number of Instance ID.
Permit COSE-Mac0 for signing tokens (withappropriate warning).
Update URLs.

October 2022 1.0.3 Non-confidential Relicensed as open source under CC BY-SA4.0.
CDDL definition added to the appendices.
Example header file added to the appendices.
Minor corrections and clarifications.

September 2025 1.0.4 Non-confidential GlobalPlatform governance of PSA Certifiedevaluation scheme.
The detailed changes in each release are described in Document history on page 30.

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page iii

PSA Certified Attestation API
Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates. The copyright statement reflects thefact that some draft issues of this document have been released, to a limited circulation.

License
Text and illustrations
Text and illustrations in this work are licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy of thelicense, visit creativecommons.org/licenses/by-sa/4.0.
Grant of patent license. Subject to the terms and conditions of this license (both the CC BY-SA 4.0 Public License and this PatentLicense), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except asstated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Licensed Material,where such license applies only to those patent claims licensable by such Licensor that are necessarily infringed by theircontribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such contribution(s) wassubmitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that theLicensed Material or a contribution incorporated within the Licensed Material constitutes direct or contributory patent infringement,then any licenses granted to You under this license for that Licensed Material shall terminate as of the date such litigation is filed.
The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/orelsewhere. All rights reserved. Please visit arm.com/company/policies/trademarks for more information about Arm’s trademarks.
About the license
The language in the additional patent license is largely identical to that in section 3 of the Apache License, Version 2.0 (Apache 2.0),with two exceptions:

1. Changes are made related to the defined terms, to align those defined terms with the terminology in CC BY-SA 4.0 ratherthan Apache 2.0 (for example, changing “Work” to “Licensed Material”).
2. The scope of the defensive termination clause is changed from “any patent licenses granted to You” to “any licenses grantedto You”. This change is intended to help maintain a healthy ecosystem by providing additional protection to the communityagainst patent litigation claims.

To view the full text of the Apache 2.0 license, visit apache.org/licenses/LICENSE-2.0.
Source code
Source code samples in this work are licensed under the Apache License, Version 2.0 (the “License”); you may not use such samplesexcept in compliance with the License. You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS,WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page iv

https://creativecommons.org/licenses/by-sa/4.0
https://arm.com/company/policies/trademarks
https://apache.org/licenses/LICENSE-2.0
https://apache.org/licenses/LICENSE-2.0

References
This document refers to the following documents.

Table 2 Documents referenced by this document
Ref Document Number Title

[PSM] ARM DEN 0128 Platform Security Model.developer.arm.com/documentation/den0128
[PSA-STAT] ARM IHI 0097 PSA Certified Status code API.arm-software.github.io/psa-api/status-code
[PSA-FF-M] ARM DEN 0063 Arm® Platform Security Architecture Firmware Framework.pages.arm.com/psa-apis
[C99] ISO/IEC, ISO/IEC 9899:1999 — Programming Languages — C,December 1999. www.iso.org/standard/29237.html
[EAT] IETF Entity Attestation Token (EAT), Draft.datatracker.ietf.org/doc/draft-ietf-rats-eat
[PSATOKEN] Arm’s Platform Security Architecture (PSA) Attestation Token, Draft.datatracker.ietf.org/doc/draft-tschofenig-rats-psa-token
[STD94] Bormann, C. and P. Hoffman, Concise Binary ObjectRepresentation (CBOR), December 2020.rfc-editor.org/info/std94
[STD96] Schaad, J., CBOR Object Signing and Encryption (COSE): Structuresand Process, August 2022. rfc-editor.org/info/std96
[RFC8610] IETF, Concise Data Definition Language (CDDL).tools.ietf.org/html/rfc8610
[EAN-13] International Article Number.www.gs1.org/standards/barcodes/ean-upc

Terms and abbreviations
This document uses the following terms and abbreviations.

Table 3 Terms and abbreviations
Term Meaning

CBOR See Concise Binary Object Representation.
Concise Binary ObjectRepresentation (CBOR) A format for encoding binary objects in a bitstream, defined in Concise BinaryObject Representation (CBOR) [STD94].
EAT See Entity Attestation Token.

continues on next page

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page v

https://developer.arm.com/documentation/den0128
https://arm-software.github.io/psa-api/status-code
https://pages.arm.com/psa-apis
https://www.iso.org/standard/29237.html
https://datatracker.ietf.org/doc/draft-ietf-rats-eat
https://datatracker.ietf.org/doc/draft-tschofenig-rats-psa-token
https://rfc-editor.org/info/std94
https://rfc-editor.org/info/std96
https://tools.ietf.org/html/rfc8610
https://www.gs1.org/standards/barcodes/ean-upc

Table 3 – continued from previous page

Term Meaning

Entity Attestation Token(EAT) A report format for attestation tokens, defined in IETF Entity Attestation Token(EAT) [EAT].
IAK See Initial Attestation Key.
Immutable PlatformRoot of Trust Part of the Platform Root of Trust, which is inherently trusted. This refers to thehardware and firmware that cannot be updated on a production device. SeePlatform Security Model [PSM].
IMPLEMENTATION DEFINED Behavior that is not defined by this specification, but is defined anddocumented by individual implementations.

Application developers can choose to depend on IMPLEMENTATION DEFINEDbehavior, but must be aware that their code might not be portable to anotherimplementation.
Initial Attestation Key(IAK) Typically, the Initial Attestation Key is a secret private key from an asymmetrickey-pair accessible only to the Initial Attestation service within the PlatformRoot of Trust. See Platform Security Model [PSM].
Non-secure ProcessingEnvironment (NSPE) This is the security domain outside of the Secure Processing Environment. It isthe application domain, typically containing the application firmware andhardware.
NSPE See Non-secure Processing Environment.
Platform Root of Trust(PRoT) The overall trust anchor for the system. This ensures the platform is securelybooted and configured, and establishes the secure environments required toprotect security services. See Platform Security Model [PSM].
PRoT See Platform Root of Trust.
PSA Platform Security Architecture
Secure ProcessingEnvironment (SPE) This is the security domain that includes the Platform Root of Trust domain.
SPE See Secure Processing Environment.

Potential for change
The contents of this specification are stable for version 1.0.
The following may change in updates to the version 1.0 specification:

∙ Small optional feature additions.
∙ Clarifications.

Significant additions, or any changes that affect the compatibility of the interfaces defined in thisspecification will only be included in a new major or minor version of the specification.

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page vi

Conventions
Typographical conventions
The typographical conventions are:
italic Introduces special terminology, and denotes citations.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other itemsappearing in assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALSUsed for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Termsand abbreviations.
Red text Indicates an open issue.
Blue text Indicates a link. This can be

∙ A cross-reference to another location within the document
∙ A URL, for example example.com

Numbers
Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by
0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.To improve readability, long numbers can be written with an underscore separator between every fourcharacters, for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of anumber.

Current status and anticipated changes
The token format defined within this specification has been superseded by the attestation token formatdefined in Arm's Platform Security Architecture (PSA) Attestation Token [PSATOKEN]. A future update to thisspecification will incorporate the new token definition.

Feedback
We welcome feedback on the PSA Certified API documentation.
If you have comments on the content of this book, visit github.com/arm-software/psa-api/issues to create anew issue at the PSA Certified API GitHub project. Give:

∙ The title (Attestation API).
∙ The number and issue (IHI 0085 1.0.4).
∙ The location in the document to which your comments apply.
∙ A concise explanation of your comments.

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page vii

https://example.com
https://github.com/arm-software/psa-api/issues

We also welcome general suggestions for additions and improvements.

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page viii

1 Introduction
1.1 About Platform Security Architecture
This document is one of a set of resources provided by Arm that can help organizations develop productsthat meet the security requirements of GlobalPlatform’s PSA Certified evaluation scheme on Arm-basedplatforms. The PSA Certified scheme provides a framework and methodology that helps siliconmanufacturers, system software providers and OEMs to develop more secure products. Arm resources thatsupport PSA Certified range from threat models, standard architectures that simplify development andincrease portability, and open-source partnerships that provide ready-to-use software. You can read moreabout PSA Certified here at www.psacertified.org and find more Arm resources here atdeveloper.arm.com/platform-security-resources and www.trustedfirmware.org.

1.2 About the Attestation API
The interface described in this document is a PSA Certified API, that provides a verifiable report of the stateof the platform. The platform attestation service is provided by the Platform Root of Trust and is described inPlatform Security Model [PSM].
This document includes:

∙ A set of common use cases. See Use cases and rationale on page 10.
∙ Information about the attestation report and the format. See Initial Attestation report on page 12.
∙ The associated Application Programming Interface (API). See API reference on page 18.

The Attestation API can be used either to directly produce verifiable evidence about the platform state inthe context of a challenge-response interaction, or as a way to bootstrap trust in other attestation schemes.The PSA Certified framework provides the generic security features allowing OEM and service providers tointegrate various attestation schemes on top of the Platform Root of Trust.
You can find additional resources relating to the Attestation API here atarm-software.github.io/psa-api/attestation, and find other PSA Certified APIs here atarm-software.github.io/psa-api.

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 9

https://www.psacertified.org
https://developer.arm.com/platform-security-resources
https://www.trustedfirmware.org
https://arm-software.github.io/psa-api/attestation
https://arm-software.github.io/psa-api

2 Use cases and rationale
The following subsections describe the primary use cases that this version of Attestation API aims tosupport. Other use cases are also possible.
The Platform Root of Trust (PRoT) reports information, known as claims, that can be used to determine theexact implementation of the PRoT and its security state. If the PRoT loads other components then it alsoincludes information about what it has loaded. Other components outside of the PRoT can add additionalinformation to the report by calling the provided API, which will include and sign the additional information.The PRoT signs attestation reports using the Initial Attestation Key (IAK).

2.1 Device enrolment
Enrolment is the ability for an online service to enlist a device. For example, a generic connected sensor thatbecomes part of a company’s deployment. As part of the enrolment process, credentials need to be createdfor each device. However, the devices themselves need to be trustworthy to ensure that credentials are notleaked.
A common solution to this problem is to certify security hardware using third-party labs, who are trusted todeliver worthwhile certifications. By placing trust in evaluation reports (such as Common Criteria or PSACertified), one can ascertain whether a Root of Trust exhibits important security properties. For example,one important property is the ability to generate a key pair of good quality (using a non-predictable randomnumber generator) and store it in an isolated and tamper-proof area, which provides strong assurance that adevice private key is only ever known by that device. Each device instance contains a protected attestationkey that can be used to prove that they are a particular certified implementation.
During such an enrolment process, a device might generate a new key pair and create a Certificate SigningRequest (CSR) or equivalent, containing:

∙ The public key of the generated key-pair.
∙ A proof of possession of the corresponding private key (in general this is the public key signed by theprivate key). This protects against man-in-the-middle attacks where an attacker can hijack theenrolment to insert their own public key into the device request.
∙ An initial attestation, in order for the recipient to assess how that particular combination of hardwareand firmware can be trusted.

The CSR is then passed to a Certification Authority who can assign it an identity with the new service andthen return an identity certificate signed using the private key of the Certification Authority. TheCertification Authority may be operated by the company who owns the devices or operated by a trustedthird party. Creating extra identities on devices is expected to be a routine operation.
If a device enforces a high level of isolation, where all applications execute within their own SecurePartition, then it allows several mutually-distrustful providers to install their applications side-by-sidewithout having to worry about leaking assets from one application to another.

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 10

The attestation identity can be verified in an attestation process and checked against certificationinformation. At the end of the process the credential manager can establish a secure connection to theattested endpoint, and deliver credentials. For example, these may be service access credentials.

2.2 Identifying certification
The combination of a hardware entity and the software installed on that entity can be certified to conformto some published security level.
Manufacturers of devices can advertise a security certification as an incentive to purchase their devices, orbecause it is a requirement from a regulator. To gain the certification a manufacturer can engage a test labto verify the hardware and software combination of a device conforms to specific standards. Certificationshould not be declared by the device, instead it is a dynamic situation where the hardware and softwarestate can be checked against the current known certification status for that combination.
The initial attestation report declares the state of the device to a verification service. The verification servicecan then:

∙ Verify the production status of the device identity. For example, to identify whether the device is in aninventory, and whether it is a secured production device or a development device.
∙ Verify the certification status of a device. This involves checking that all components are up to date,correctly signed, and certified to work together.

2.3 Integrity reporting
A party may want to check the received list of claims against a database of known measurements for eachcomponent in order to decide which level of trust should be applied. Additional information can beincluded, such as the version numbers for all software running on the device. As a minimum, the deviceprovides a hash for each loaded component. Boot measurements are included in order to assess if there areobvious signs of tampering with the device firmware.
Initial attestation requires three services:

∙ Enrolment verification service enforcing policy as part of service enrolment of the device.
∙ Production verification service (OEM), providing the production state of an attestation identity
∙ Certification verification service (third party), verifying that all attested components are up to date,signed correctly, and certified to work together.

It is possible to further separate these roles. For example, there may be a separate software verificationservice.
These services can be hosted by different parties in online or offline settings:

∙ The first service requires generating a challenge, reading back the device’s token, and validating thesignature of the token.
∙ The second service may periodically log the current security state for all addressable devices andmake that information available upon request. It does not require the knowledge of any pre-sharedsecret or a prior trust exchange with a device vendor. The various databases required for the fullverification process may be local, replicated, or centralized, depending on the particular market.

Further information about using existing attestation protocols can be found in [PSM].
IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 11

3 Initial Attestation report
This section begins with a description of the information model for the report and then describes theexpected format.

3.1 Information model
The following table describes the mandatory and optional claims in the report:

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 12

Claim Mandatory Description

Auth challenge Yes Input object from the caller. For example, this can be acryptographic nonce or a hash of locally attested data. Thelength must be 32, 48, or 64 bytes.
This is the auth_challenge parameter to
psa_initial_attest_get_token().

Instance ID Yes Represents the unique identifier of the instance:
∙ When using an asymmetric key-pair for the InitialAttestation Key (IAK), Arm recommends the Instance IDbe a hash of the corresponding public key.
∙ When using a symmetric key for the IAK, Armrecommends that the Instance ID is always a doublehash of the key, hence InstanceID = H(H(IAK)). Thiseliminates risks when exposing the key to differentHMAC block size. For further information, readRFC2104.

The use of the IAK is also discussed in [PSM].
Verification serviceindicator No A hint used by a relying party to locate a validation servicefor the token. The value is a text string that can be used tolocate the service or a URL specifying the address of theservice.

A verifier may choose to ignore this claim in favor of otherinformation.
Profile definition No Contains the name of a document that describes the ‘profile’of the report. The document name may include versioning.The value for this specification is PSA_IOT_PROFILE_1.
Implementation ID Yes Uniquely identifies the underlying Immutable Platform Root ofTrust. A verification service can use this claim to locate thedetails of the verification process. Such details include theimplementation’s origin and associated certification state.The full definition is in [PSM].
Client ID Yes Represents the Partition ID of the caller. It is a signed integerwhereby negative values represent callers from the NSPEand where positive IDs represent callers from the SPE. Thevalue 0 is not permitted. The full definition of a Partition ID isprovided by Arm® Platform Security Architecture FirmwareFramework [PSA-FF-M].

It is essential that this claim is checked in the verificationprocess to ensure that a security domain cannot spoof areport from another security domain.
Security Lifecycle Yes Represents the current lifecycle state of the Platform Root ofTrust (PRoT). The state is represented by an integer that ispartitioned to convey a major state and a minor state. Themajor state is mandatory and defined by [PSM]. The minorstate is optional and IMPLEMENTATION DEFINED. The PRoTsecurity lifecycle state and implementation state areencoded as follows:

∙ version[15:8] — PRoT security lifecycle state
∙ version[7:0] — IMPLEMENTATION DEFINED state.

The PRoT security lifecycle states consist of the followingvalues:
∙ PSA_LIFECYCLE_UNKNOWN (0x0000u)
∙ PSA_LIFECYCLE_ASSEMBLY_AND_TEST (0x1000u)
∙ PSA_LIFECYCLE_PSA_ROT_PROVISIONING (0x2000u)
∙ PSA_LIFECYCLE_SECURED (0x3000u)
∙ PSA_LIFECYCLE_NON_PSA_ROT_DEBUG (0x4000u)
∙ PSA_LIFECYCLE_RECOVERABLE_PSA_ROT_DEBUG(0x5000u)
∙ PSA_LIFECYCLE_DECOMMISSIONED (0x6000u)

For PSA Certified, a remote verifier can only trust reportsfrom the PRoT when it has a major state that is SECURED orNON_PSA_ROT_DEBUG.
Hardware version No Provides metadata linking the token to the GDSII that wentto fabrication for this instance. It can be used to link theclass of chip and PRoT to the data on a certification website.It must be represented as a thirteen-digit [EAN-13].
Boot seed Yes Represents a random value created at system boot time thatcan allow differentiation of reports from different bootsessions.
Software components Yes (unless theNo SoftwareMeasurementsclaim isspecified)

A list of software components that represent all the softwareloaded by the PRoT. This claim is needed for the rulesoutlined in [PSM]. Each entry has the following fields: 1.Measurement type 2. Measurement value 3. Version 4.Signer ID 5. Measurement description The full definition ofthe software component is described in Software componentson page 14. This claim is required to be compliant with[PSM].
No SoftwareMeasurements Yes (if nosoftwarecomponentsspecified)

In the event that the implementation does not contain anysoftware measurements then the Software Componentsclaim above can be omitted but instead it is mandatory toinclude this claim to indicate this is a deliberate state.
This claim is intended for devices that are not compliant with[PSM].

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 13

3.1.1 Software components
Each software component in the Software Components claim must include the required properties of thefollowing table:

Key ID Type Required Description

1 Measurement type No A short string representing the role of this softwarecomponent (e.g. ‘BL’ for boot loader).
Expected types may include:

∙ BL (a bootloader)
∙ PRoT (a component of the Platform Root ofTrust)
∙ ARoT (a component of the Application Root ofTrust)
∙ App (a component of the NSPE application)
∙ TS (a component of a trusted subsystem)

2 Measurement value Yes Represents a hash of the invariant softwarecomponent in memory at startup time. The valuemust be a cryptographic hash of 256 bits or stronger.
3 Reserved No Reserved
4 Version No The issued software version in the form of a textstring. The value of this claim corresponds to the entryin the original signed manifest of the component.

This field must be present to be compliant with [PSM].
5 Signer ID No The hash of a signing authority public key for thesoftware component. The value of this claimcorresponds to the entry in the original manifest forthe component.

This can be used by a verifier to ensure thecomponents were signed by an expected trustedsource.
This field must be present to be compliant with [PSM].

continues on next page

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 14

Table 4 – continued from previous page

Key ID Type Required Description

6 Measurement description No Description of the software component, whichrepresents the way in which the measurement valueof the software component is computed. The value isa text string containing an abbreviated description (orname) of the measurement method which can beused to lookup the details of the method in a profiledocument. This claim may normally be excluded,unless there is an exception to the defaultmeasurement described in the profile for a specificcomponent.

3.2 Report format and signing
This section describes the specific representation, encoding and signing of the information described in theInformation Model.

3.2.1 Token encoding
The report is represented as a token, which must be formatted in accordance to IETF Entity Attestation Token(EAT) [EAT] draft specification. The token consists of a series of claims declaring evidence as to the nature ofthe instance of hardware and software. The claims are encoded with the CBOR format, defined in ConciseBinary Object Representation (CBOR) [STD94].

3.2.2 Signing
The token is signed following the structure defined in CBOR Object Signing and Encryption (COSE): Structuresand Process [STD96] specification:

∙ For asymmetric key algorithms, the signature structure must be COSE-Sign1. An asymmetric keyalgorithm is needed to achieve all the use cases defined in Use cases and rationale on page 10.
∙ For symmetric key algorithms, the structure must be COSE-Mac0.

. Warning

A symmetric key is strongly discouraged due to the associated infrastructure costs for keymanagement and operational complexities. It may also restrict the ability to interoperate withscenarios that involve third parties (see Use cases and rationale on page 10).

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 15

3.2.3 EAT standard claims
The token is modelled to include custom values that correspond to the following EAT standard claims (asexpressed in the draft EAT proposal):

∙ nonce (mandatory); arm_psa_nonce is used instead
∙ UEID (mandatory); arm_psa_UEID is used instead

A future version of the profile, corresponding to an issued standard, might declare support for both customand standard claims as a transitionary state towards exclusive use of standard claims.

3.2.4 EAT custom claims
The token can include the following EAT custom claims. Custom claims for the Attestation API have a rootidentity of -75000.
Some fields must be at least 32 bytes to provide sufficient cryptographic strength.

Key ID Type Name CBOR type

-75000 Profile Definition arm_psa_profile_id Text string
-75001 Client ID arm_psa_partition_id Unsigned integer or Negativeinteger
-75002 Security Lifecycle arm_psa_security_lifecycle Unsigned integer
-75003 Implementation ID arm_psa_implementation_id Byte string (>=32 bytes)
-75004 Boot seed arm_psa_boot_seed Byte string (>=32 bytes)
-75005 Hardware version arm_psa_hw_version Text string
-75006 Software components(compound map claim) arm_psa_sw_components Array of map entries. The mapentries have the following types:

1. Text string (type)
2. Byte string (measurement,>=32 bytes)
3. Reserved
4. Text string (version)
5. Byte string (signer ID,>=32 bytes)
6. Text string (measurementdescription)

See Software components onpage 14 for details.
-75007 No softwaremeasurements arm_psa_no_sw_measurements Unsigned integer (therecommended value is 1)
-75008 Auth challenge arm_psa_nonce Byte string

continues on next page

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 16

Table 5 – continued from previous page

Key ID Type Name CBOR type

-75009 Instance ID arm_psa_UEID Byte string (the type byte shouldbe set to 0x01. The type byte isdescribed in the [EAT] draft.)
-75010 Verification serviceindicator arm_psa_origination Text string

An example report can be found in Example report on page 24.

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 17

4 API reference
The Attestation API defines a header file that is provided by the implementation. The header is
psa/initial_attestation.h.
All the elements are defined in the C language. The Attestation API makes use of standard C data types,including the fixed-width integer types from the ISO C99 specification update [C99].

4.1 API conventions
All functions return a status indication of type psa_status_t, which is defined by PSA Certified Status codeAPI [PSA-STAT]. The value 0 (PSA_SUCCESS) indicates successful operation, and a negative value indicates anerror. Each API documents the specific error codes that might be returned, and the meaning of each error.
All parameters of pointer type must be valid, non-null pointers unless the pointer is to a buffer of length 0or the function’s documentation explicitly describes the behavior when the pointer is null. Forimplementations where a null pointer dereference usually aborts the application, passing NULL as afunction parameter where a null pointer is not allowed should abort the caller in the habitual manner.
Pointers to input parameters may be in read-only memory. Output parameters must be in writable memory.Output parameters that are not buffers must also be readable, and the implementation must be able towrite to a non-buffer output parameter and read back the same value.

4.2 Status codes
The Attestation API uses the status code definitions that are shared with the other PSA Certified APIs.
The following elements are defined in psa/error.h from PSA Certified Status code API [PSA-STAT] (previouslydefined in [PSA-FF-M]):
typedef int32_t psa_status_t;

#define PSA_SUCCESS ((psa_status_t)0)

#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
#define PSA_ERROR_SERVICE_FAILURE ((psa_status_t)-144)

These definitions must be available to an application that includes the psa/initial_attestation.h header file.
Implementation note
An implementation is permitted to define the status code interface elements within
psa/initial_attestation.h, or to define them via inclusion of a psa/error.h header file that is sharedwith the implementation of other PSA Certified APIs.

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 18

4.3 General definitions
4.3.1 PSA_INITIAL_ATTEST_API_VERSION_MAJOR (macro)
The major version of this implementation of the Attestation API.
#define PSA_INITIAL_ATTEST_API_VERSION_MAJOR 1

4.3.2 PSA_INITIAL_ATTEST_API_VERSION_MINOR (macro)
The minor version of this implementation of the Attestation API.
#define PSA_INITIAL_ATTEST_API_VERSION_MINOR 0

4.3.3 PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE (macro)
The maximum possible size of a token.
#define PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE /* implementation-specific value */

The value of this constant is IMPLEMENTATION DEFINED.

4.4 Challenge sizes
The following constants define the valid challenge sizes that must be supported by the function
psa_initial_attest_get_token() and psa_initial_attest_get_token_size().
An implementation must not support other challenge sizes.

4.4.1 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_32 (macro)
A challenge size of 32 bytes (256 bits).
#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE_32 (32u)

4.4.2 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_48 (macro)
A challenge size of 48 bytes (384 bits).
#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE_48 (48u)

4.4.3 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_64 (macro)
A challenge size of 64 bytes (512 bits).
#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE_64 (64u)

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 19

4.5 Attestation
4.5.1 psa_initial_attest_get_token (function)
Retrieve the Initial Attestation Token.
psa_status_t psa_initial_attest_get_token(const uint8_t *auth_challenge,

size_t challenge_size,
uint8_t *token_buf,
size_t token_buf_size,
size_t *token_size);

Parameters
auth_challenge Buffer with a challenge object. The challenge object is data providedby the caller. For example, it may be a cryptographic nonce or a hashof data (such as an external object record).

If a hash of data is provided then it is the caller’s responsibility toensure that the data is protected against replay attacks (for example,by including a cryptographic nonce within the data).
challenge_size Size of the buffer auth_challenge in bytes. The size must always be asupported challenge size. Supported challenge sizes are defined inChallenge sizes on page 19.
token_buf Output buffer where the attestation token is to be written.
token_buf_size Size of token_buf. The expected size can be determined by using the

psa_initial_attest_get_token_size function.
token_size Output variable for the actual token size.

Outputs
*token_buf On success, the attestation token.
*token_size On success, the number of bytes written into token_buf.

Returns: psa_status_t
PSA_SUCCESS Action was performed successfully.
PSA_ERROR_SERVICE_FAILURE The implementation failed to fully initialize.
PSA_ERROR_BUFFER_TOO_SMALL token_buf is too small for the attestation token.
PSA_ERROR_INVALID_ARGUMENT The challenge size is not supported.
PSA_ERROR_GENERIC_ERROR An unspecified internal error has occurred.

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 20

Description
Retrieves the Initial Attestation Token. A challenge can be passed as an input to mitigate replay attacks.

4.5.2 psa_initial_attest_get_token_size (function)
Calculate the size of an Initial Attestation Token.
psa_status_t psa_initial_attest_get_token_size(size_t challenge_size,

size_t *token_size);

Parameters
challenge_size Size of a challenge object in bytes. This must be a supported challengesize as specified in Challenge sizes on page 19.
token_size Output variable for the token size.

Outputs
*token_size On success, the maximum size of an attestation token in bytes whenusing the specified challenge_size

Returns: psa_status_t
PSA_SUCCESS Action was performed successfully.
PSA_ERROR_SERVICE_FAILURE The implementation failed to fully initialize.
PSA_ERROR_INVALID_ARGUMENT The challenge size is not supported.
PSA_ERROR_GENERIC_ERROR An unspecified internal error has occurred.

Description
Retrieve the exact size of the Initial Attestation Token in bytes, given a specific challenge size.

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 21

Appendix A: Example header file
Each implementation of the Attestation API must provide a header file named psa/initial_attestation.h, inwhich the interface elements in this specification are defined.
This appendix provides a example of the psa/initial_attestation.h header file with all of the API elements.This can be used as a starting point or reference for an implementation.

Note:
Not all of the API elements are fully defined. An implementation must provide the full definition.
The header will not compile without these missing definitions, and might require reordering to satisfyC compilation rules.

A.1 psa/inital_attestation.h
/* This file is a reference template for implementation of the
* PSA Certified Attestation API v1.0
*/

#ifndef PSA_INITIAL_ATTESTATION_H
#define PSA_INITIAL_ATTESTATION_H

#include <stddef.h>
#include <stdint.h>

#ifdef __cplusplus
extern "C" {
#endif

#define PSA_INITIAL_ATTEST_API_VERSION_MAJOR 1
#define PSA_INITIAL_ATTEST_API_VERSION_MINOR 0
#define PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE /* implementation-specific value */
#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE_32 (32u)
#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE_48 (48u)
#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE_64 (64u)
psa_status_t psa_initial_attest_get_token(const uint8_t *auth_challenge,

size_t challenge_size,
uint8_t *token_buf,
size_t token_buf_size,
size_t *token_size);

psa_status_t psa_initial_attest_get_token_size(size_t challenge_size,
size_t *token_size);

(continues on next page)

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 22

(continued from previous page)
#ifdef __cplusplus
}
#endif

#endif // PSA_INITIAL_ATTESTATION_H

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 23

Appendix B: Example report
An example report is included here in extended CBOR diagnostic form for illustrative purposes:
18(
[
/ protected / h'a10126' / {

\ alg \ 1: -7 \ ECDSA 256 \
} / ,

/ unprotected / {},
/ payload / h'a93a000124fb5820000102030405060708090a0b0c0d0e0f1011121
31415161718191a1b1c1d1e1f3a000124fa5820000102030405060708090a0b0c0d0e
0f101112131415161718191a1b1c1d1e1f3a000124fd84a4025820000102030405060
708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f0465332e312e34055820
000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f01624
24ca4025820000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c
1d1e1f0463312e31055820000102030405060708090a0b0c0d0e0f101112131415161
718191a1b1c1d1e1f016450526f54a4025820000102030405060708090a0b0c0d0e0f
101112131415161718191a1b1c1d1e1f0463312e30055820000102030405060708090
a0b0c0d0e0f101112131415161718191a1b1c1d1e1f016441526f54a4025820000102
030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f0463322e320
55820000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
01634170703a000124f91930003a000124ff5820000102030405060708090a0b0c0d0
e0f101112131415161718191a1b1c1d1e1f3a000125016c7073615f76657269666965
723a000124f8203a00012500582101000102030405060708090a0b0c0d0e0f1011121
31415161718191a1b1c1d1e1f3a000124f7715053415f496f545f50524f46494c455f
31' / {

/ arm_psa_boot_seed / -75004: h'000102030405060708090a0b0c0d0e0f10
1112131415161718191a1b1c1d1e1f',
/ arm_psa_implementation_id / -75003: h'000102030405060708090a0b0c
0d0e0f101112131415161718191a1b1c1d1e1f',
/ arm_psa_sw_components / -75006: [

{
/ measurement / 2: h'000102030405060708090a0b0c0d0e0f101112
131415161718191a1b1c1d1e1f',
/ version / 4: "3.1.4",
/ signerID / 5: h'000102030405060708090a0b0c0d0e0f101112131
415161718191a1b1c1d1e1f',
/ type / 1: "BL"

},
{

/ measurement / 2: h'000102030405060708090a0b0c0d0e0f101112
131415161718191a1b1c1d1e1f',
/ version / 4: "1.1",

(continues on next page)

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 24

(continued from previous page)
/ signerID / 5: h'000102030405060708090a0b0c0d0e0f101112131
415161718191a1b1c1d1e1f',
/ type / 1: "PRoT"

},
{

/ measurement / 2: h'000102030405060708090a0b0c0d0e0f101112
131415161718191a1b1c1d1e1f',
/ version / 4: "1.0",
/ signerID / 5: h'000102030405060708090a0b0c0d0e0f101112131
415161718191a1b1c1d1e1f',
/ type / 1: "ARoT"

},
{

/ measurement / 2: h'000102030405060708090a0b0c0d0e0f101112
131415161718191a1b1c1d1e1f',
/ version / 4: "2.2",
/ signerID / 5: h'000102030405060708090a0b0c0d0e0f101112131
415161718191a1b1c1d1e1f',
/ type / 1: "App"

}
],

/ arm_psa_security_lifecycle / -75002: 12288 / SECURED /,
/ arm_psa_nonce / -75008: h'000102030405060708090a0b0c0d0e0f10111
2131415161718191a1b1c1d1e1f',
/ arm_psa_origination / -75010: "psa_verifier",
/ arm_psa_partition_id / -75001: -1,
/ arm_psa_UEID / -75009: h'01000102030405060708090a0b0c0d0e0f1011
12131415161718191a1b1c1d1e1f',
/ arm_psa_profile_id / -75000: "PSA_IOT_PROFILE_1"

}),
} / ,

/ signature / h'58860508ee7e8cc48eba872dbb5d694a542b1322ad0d51023c197
0df429f06501c683a95108a0cced0a6e80e0966f22bd63d1c0056974a11ba332d7877
87fb4f'
]
)

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 25

Appendix C: CDDL
The Concise Data Definition Language (CDDL) [RFC8610] definition of the PSA token is included here forreference:
psa-token = {

psa-nonce-claim,
psa-client-id,
psa-instance-id,
psa-implementation-id,
psa-hardware-version,
psa-lifecycle,
psa-boot-seed,
(psa-software-components // psa-no-sw-measurement),
psa-profile,
psa-verification-service-indicator,

}

arm_psa_profile_id = -75000
arm_psa_partition_id = -75001
arm_psa_security_lifecycle = -75002
arm_psa_implementation_id = -75003
arm_psa_boot_seed = -75004
arm_psa_hw_version = -75005
arm_psa_sw_components = -75006
arm_psa_no_sw_measurements = -75007
arm_psa_nonce = -75008
arm_psa_UEID = -75009
arm_psa_origination = -75010

psa-boot-seed-type = bytes .size 32

psa-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64

psa-boot-seed = (
arm_psa_boot_seed => psa-boot-seed-type

)

psa-client-id-nspe-type = -2147483648...0
psa-client-id-spe-type = 1..2147483647

psa-client-id-type = psa-client-id-nspe-type / psa-client-id-spe-type

(continues on next page)

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 26

(continued from previous page)
psa-client-id = (

arm_psa_partition_id => psa-client-id-type
)

psa-hardware-version-type = text .regexp "[0-9]{13}"

psa-hardware-version = (
? arm_psa_hw_version => psa-hardware-version-type

)

psa-implementation-id-type = bytes .size 32

psa-implementation-id = (
arm_psa_implementation_id => psa-implementation-id-type

)

psa-instance-id-type = bytes .size 33

psa-instance-id = (
arm_psa_UEID => psa-instance-id-type

)

psa-no-sw-measurements-type = 1

psa-no-sw-measurement = (
arm_psa_no_sw_measurements => psa-no-sw-measurements-type

)

psa-nonce-claim = (
arm_psa_nonce => psa-hash-type

)

psa-profile-type = "PSA_IOT_PROFILE_1"

psa-profile = (
? arm_psa_profile_id => psa-profile-type

)

psa-lifecycle-unknown-type = 0x0000..0x00ff
psa-lifecycle-assembly-and-test-type = 0x1000..0x10ff
psa-lifecycle-psa-rot-provisioning-type = 0x2000..0x20ff
psa-lifecycle-secured-type = 0x3000..0x30ff
psa-lifecycle-non-psa-rot-debug-type = 0x4000..0x40ff
psa-lifecycle-recoverable-psa-rot-debug-type = 0x5000..0x50ff
psa-lifecycle-decommissioned-type = 0x6000..0x60ff

psa-lifecycle-type =
psa-lifecycle-unknown-type / (continues on next page)

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 27

(continued from previous page)
psa-lifecycle-assembly-and-test-type /
psa-lifecycle-psa-rot-provisioning-type /
psa-lifecycle-secured-type /
psa-lifecycle-non-psa-rot-debug-type /
psa-lifecycle-recoverable-psa-rot-debug-type /
psa-lifecycle-decommissioned-type

psa-lifecycle = (
arm_psa_security_lifecycle => psa-lifecycle-type

)

psa-software-component = {
? 1 => text, ; measurement type
2 => psa-hash-type, ; measurement value
? 4 => text, ; version
5 => psa-hash-type, ; signer id
? 6 => text, ; measurement description

}

psa-software-components = (
arm_psa_sw_components => [+ psa-software-component]

)

psa-verification-service-indicator-type = text

psa-verification-service-indicator = (
? arm_psa_origination => psa-verification-service-indicator-type

)

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 28

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 29

Appendix D: Document history

Date Changes

2019-02-25 1.0 Beta 0
∙ First public version for review

2019-06-12 1.0.0
∙ First stable release
∙ The API functions now use the shared psa_status_t return type.
∙ Error values now use shared error codes, which are now defined in psa/error.h.
∙ Input parameters are now separate from output parameters. There are no longerany in/out parameters.
∙ Size types have been replaced with size_t instead of uint32_t.
∙ Some parameter names have been changed to improve legibility.
∙ The description of the Implementation ID claim has been rewritten to better matchthe definition in PSM.
∙ Signer ID is no longer a mandatory part of the Software Components claim.However, it is needed for PSM compliance.
∙ Explicitly describe which optional claims are required for PSM compliance.
∙ Added lifecycle state (PSA_LIFECYCLE_ASSEMBLY_AND_TEST).
∙ Clarifications and improvements to the description of some API elements and tothe structure of the document.
∙ Updated CBOR example in the appendix.
∙ Added macro PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE.

2019-08-16 1.0.1
∙ Fixed typos and descriptions based on feedback.
∙ Recommend type byte 0x01 for arm_psa_UEID.
∙ Remove erroneous guidance regarding EAT’s origination claim - it should not beused to find a verification service.

2020-02-06 1.0.2
∙ Clarify the claim number of Instance ID
∙ Permit COSE-Mac0 for signing tokens (with appropriate warning)
∙ Update URLs

2022-10-17 1.0.3
∙ Relicensed the document under Attribution-ShareAlike 4.0 International with apatent license derived from Apache License 2.0. See License on page iv.
∙ Fix CBOR type of arm_psa_origination to text string. Spec and example were inconflict, and the example was correct.
∙ Added CDDL definition to the appendices, which can be helpful to developers.
∙ Instance ID definition for symmetric keys has been improved. The specificconstructions are now recommended rather than normative.
∙ Clarified the optionality of map entries in the Software Components claim. See EATcustom claims on page 16.

2025-09-23 1.0.4
∙ Updated introduction to reflect GlobalPlatform assuming the governance of thePSA Certified evaluation scheme.

IHI 00851.0.4 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliatesNon-confidential Page 30

	About this document
	Release information
	License
	References
	Terms and abbreviations
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Current status and anticipated changes
	Feedback

	1 Introduction
	1.1 About Platform Security Architecture
	1.2 About the Attestation API

	2 Use cases and rationale
	2.1 Device enrolment
	2.2 Identifying certification
	2.3 Integrity reporting

	3 Initial Attestation report
	3.1 Information model
	3.1.1 Software components

	3.2 Report format and signing
	3.2.1 Token encoding
	3.2.2 Signing
	3.2.3 EAT standard claims
	3.2.4 EAT custom claims

	4 API reference
	4.1 API conventions
	4.2 Status codes
	4.3 General definitions
	4.3.1 PSA_INITIAL_ATTEST_API_VERSION_MAJOR (macro)
	4.3.2 PSA_INITIAL_ATTEST_API_VERSION_MINOR (macro)
	4.3.3 PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE (macro)

	4.4 Challenge sizes
	4.4.1 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_32 (macro)
	4.4.2 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_48 (macro)
	4.4.3 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_64 (macro)

	4.5 Attestation
	4.5.1 psa_initial_attest_get_token (function)
	4.5.2 psa_initial_attest_get_token_size (function)

	A Example header file
	A.1 psa/inital_attestation.h

	B Example report
	C CDDL
	D Document history

