PSA Certified
Attestation API 1.0

Document number: IHI 0085

Release Quality: Final

Issue Number: 4
Confidentiality: Non-confidential
Date of Issue: 23/09/2025

Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates

Contents

About this document

Release information
License

References

Terms and abbreviations
Potential for change

Conventions
Typographical conventions
Numbers

Current status and anticipated changes

Feedback

1 Introduction

11
1.2

About Platform Security Architecture
About the Attestation API

2 Use cases and rationale

2.1
2.2
2.3

Device enrolment
Identifying certification

Integrity reporting

3 Initial Attestation report

3.1
3.1.1

3.2
3.2.1
3.2.2
3.2.3
324

IHI 0085
1.0.4

Information model
Software components

Report format and signing
Token encoding

Signing

EAT standard claims

EAT custom claims

Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates
Non-confidentia

Vi
Vii
Vi
Vii

Vii

Vii

10
10
11
11

12

12
14

15
15
15
16
16

Page i

4 API reference

4.1
4.2

4.3
4.3.1
4.3.2
4.3.3

4.4
441
442
443

4.5

45.1
452

API conventions
Status codes

General definitions

PSA_INITIAL_ATTEST_API_VERSION_MAJOR (macro)
PSA_INITIAL_ATTEST_API_VERSION_MINOR (macro)
PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE (macro)

Challenge sizes

PSA_INITIAL_ATTEST_CHALLENGE_SIZE_32 (macro)
PSA_INITIAL_ATTEST_CHALLENGE_SIZE_48 (macro)
PSA_INITIAL_ATTEST_CHALLENGE_SIZE_64 (macro)

Attestation
psa_initial_attest_get_token (function)
psa_initial_attest_get_token_size (function)

A Example header file

Al

psa/inital_attestation.h

B Example report

C CDDL

D Document history

IHI 0085
1.0.4

Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates
Non-confidential

18
18
18

19
19
19
19

19

19
19
19

20

20
21

22

22

24

26

30

Page ii

About this document

Release information

The change history table lists the changes that have been made to this document.

Date Version
February 2019 1.0 beta O
June 2019 1.0.0
August 2019 1.0.1
February 2020 1.0.2
October 2022 1.0.3

September 2025 1.04

Confidentiality

Non-confidential

Non-confidential

Non-confidential

Non-confidential

Non-confidential

Non-confidential

Table 1 Document revision history
Change

Initial publication.

First stable release with 1.0 API finalized.

Uses the PSA Certified APl common error
status codes.

Modified the API parameters to align with
other PSA Certified APlIs.

Updated the claims and lifecycle to match the
latest Platform Security Model.

Updated CBOR example in the appendix.
Recommend type byte Ox01 for
arm_psa_UEID.

Remove erroneous guidance regarding EAT's
origination claim.

Clarify the claim number of Instance ID.

Permit COSE-MacO for signing tokens (with
appropriate warning).

Update URLs.

Relicensed as open source under CC BY-SA
4.0.

CDDL definition added to the appendices.
Example header file added to the appendices.
Minor corrections and clarifications.

GlobalPlatform governance of PSA Certified
evaluation scheme.

The detailed changes in each release are described in Document history on page 30.

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page iii
Non-confidential

1.0.4

PSA Certified Attestation API

Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates. The copyright statement reflects the
fact that some draft issues of this document have been released, to a limited circulation.

License

Text and illustrations

Text and illustrations in this work are licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy of the
license, visit creativecommons.org/licenses/by-sa/4.0.

Grant of patent license. Subject to the terms and conditions of this license (both the CC BY-SA 4.0 Public License and this Patent
License), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as
stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Licensed Material,
where such license applies only to those patent claims licensable by such Licensor that are necessarily infringed by their
contribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such contribution(s) was
submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the
Licensed Material or a contribution incorporated within the Licensed Material constitutes direct or contributory patent infringement,
then any licenses granted to You under this license for that Licensed Material shall terminate as of the date such litigation is filed.

The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or
elsewhere. All rights reserved. Please visit arm.com/company/policies/trademarks for more information about Arm’s trademarks.

About the license

The language in the additional patent license is largely identical to that in section 3 of the Apache License, Version 2.0 (Apache 2.0),
with two exceptions:

1. Changes are made related to the defined terms, to align those defined terms with the terminology in CC BY-SA 4.0 rather
than Apache 2.0 (for example, changing “Work” to “Licensed Material”).

2. The scope of the defensive termination clause is changed from “any patent licenses granted to You” to “any licenses granted
to You”. This change is intended to help maintain a healthy ecosystem by providing additional protection to the community
against patent litigation claims.

To view the full text of the Apache 2.0 license, visit apache.org/licenses/LICENSE-2.0.
Source code

Source code samples in this work are licensed under the Apache License, Version 2.0 (the “License”); you may not use such samples
except in compliance with the License. You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS I1S” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under the License.

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page iv
1.04 Non-confidential

https://creativecommons.org/licenses/by-sa/4.0
https://arm.com/company/policies/trademarks
https://apache.org/licenses/LICENSE-2.0
https://apache.org/licenses/LICENSE-2.0

References

This document refers to the following documents.

Ref

[PSM]

[PSA-STAT]

[PSA-FF-M]

[C99]

[EAT]

[PSATOKEN]

[STD94]

[STD?6]

[RFC8610]

[EAN-13]

Document Number

ARM DEN 0128

ARM IHI 0097/

ARM DEN 0063

Terms and abbreviations

Table 2 Documents referenced by this document

Title

Platform Security Model.
developer.arm.com/documentation/den0128

PSA Certified Status code API.
arm-software.github.io/psa-api/status-code

Arm® Platform Security Architecture Firmware Framework.
pages.arm.com/psa-apis

ISO/IEC, ISO/IEC 9899:1999 — Programming Languages — C,
December 1999. www.iso.org/standard/29237 .html

|IETF Entity Attestation Token (EAT), Draft.
datatracker.ietf.org/doc/draft-ietf-rats-eat

Arm'’s Platform Security Architecture (PSA) Attestation Token, Draft.
datatracker.ietf.org/doc/draft-tschofenig-rats-psa-token

Bormann, C. and P. Hoffman, Concise Binary Object
Representation (CBOR), December 2020.
rfc-editor.org/info/std94

Schaad, J., CBOR Object Signing and Encryption (COSE): Structures
and Process, August 2022. rfc-editor.org/info/std%96

IETF, Concise Data Definition Language (CDDL).
tools.ietf.org/html/rfc8610

International Article Number.
www.gs1.org/standards/barcodes/ean-upc

This document uses the following terms and abbreviations.

Term

CBOR

Concise Binary Object
Representation (CBOR)

EAT

IHI 0085
1.0.4

Meaning

Table 3 Terms and abbreviations

See Concise Binary Object Representation.

A format for encoding binary objects in a bitstream, defined in Concise Binary
Object Representation (CBOR) [STD%4].

See Entity Attestation Token.

Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates

continues on next page

Page v
Non-confidential

https://developer.arm.com/documentation/den0128
https://arm-software.github.io/psa-api/status-code
https://pages.arm.com/psa-apis
https://www.iso.org/standard/29237.html
https://datatracker.ietf.org/doc/draft-ietf-rats-eat
https://datatracker.ietf.org/doc/draft-tschofenig-rats-psa-token
https://rfc-editor.org/info/std94
https://rfc-editor.org/info/std96
https://tools.ietf.org/html/rfc8610
https://www.gs1.org/standards/barcodes/ean-upc

Term

Entity Attestation Token
(EAT)

IAK

Immutable Platform
Root of Trust

IMPLEMENTATION DEFINED

Initial Attestation Key
(IAK)

Non-secure Processing
Environment (NSPE)

NSPE

Platform Root of Trust
(PRoT)

PRol
PSA

Secure Processing
Environment (SPE)

SPE

Table 3 - continued from previous page

Meaning

A report format for attestation tokens, defined in IETF Entity Attestation Token
(EAT) [EAT].

See Initial Attestation Key.

Part of the Platform Root of Trust, which is inherently trusted. This refers to the
hardware and firmware that cannot be updated on a production device. See
Platform Security Model [PSM].

Behavior that is not defined by this specification, but is defined and
documented by individual implementations.

Application developers can choose to depend on IMPLEMENTATION DEFINED
behavior, but must be aware that their code might not be portable to another
implementation.

Typically, the Initial Attestation Key is a secret private key from an asymmetric
key-pair accessible only to the Initial Attestation service within the Platform
Root of Trust. See Platform Security Model [PSM].

This is the security domain outside of the Secure Processing Environment. It is
the application domain, typically containing the application firmware and
hardware.

See Non-secure Processing Environment.

The overall trust anchor for the system. This ensures the platform is securely
booted and configured, and establishes the secure environments required to
protect security services. See Platform Security Model [PSM].

See Platform Root of Trust.
Platform Security Architecture

This is the security domain that includes the Platform Root of Trust domain.

See Secure Processing Environment.

Potential for change

The contents of this specification are stable for version 1.0.

The following may change in updates to the version 1.0 specification:

e Small optional feature additions.

e Clarifications.

Significant additions, or any changes that affect the compatibility of the interfaces defined in this
specification will only be included in a new major or minor version of the specification.

IHI 0085
1.0.4

Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates
Non-confidential

Page vi

Conventions

Typographical conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS
Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Terms
and abbreviations.

Red text Indicates an open issue.
Blue text Indicates a link. This can be

e A cross-reference to another location within the document
e A URL, for example example.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by Ob, and hexadecimal numbers by
Ox.

In both cases, the prefix and the associated value are written in a monospace font, for example oxFFFFo000.
To improve readability, long numbers can be written with an underscore separator between every four
characters, for example oxFFFF_o000_o000_0000. Ignore any underscores when interpreting the value of a
number.

Current status and anticipated changes

The token format defined within this specification has been superseded by the attestation token format
defined in Arm's Platform Security Architecture (PSA) Attestation Token [PSATOKEN]. A future update to this
specification will incorporate the new token definition.

Feedback
We welcome feedback on the PSA Certified APl documentation.

If you have comments on the content of this book, visit github.com/arm-software/psa-api/issues to create a
new issue at the PSA Certified APl GitHub project. Give:

e The title (Attestation API).
e The number and issue (IHI 0085 1.0.4).
e The location in the document to which your comments apply.

e A concise explanation of your comments.

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page vii
1.04 Non-confidential

https://example.com
https://github.com/arm-software/psa-api/issues

We also welcome general suggestions for additions and improvements.

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page viii
1.04 Non-confidential

1 Introduction

1.1 About Platform Security Architecture

This document is one of a set of resources provided by Arm that can help organizations develop products
that meet the security requirements of GlobalPlatform’s PSA Certified evaluation scheme on Arm-based
platforms. The PSA Certified scheme provides a framework and methodology that helps silicon
manufacturers, system software providers and OEMs to develop more secure products. Arm resources that
support PSA Certified range from threat models, standard architectures that simplify development and
increase portability, and open-source partnerships that provide ready-to-use software. You can read more
about PSA Certified here at www.psacertified.org and find more Arm resources here at
developer.arm.com/platform-security-resources and www.trustedfirmware.org.

1.2 About the Attestation API

The interface described in this document is a PSA Certified API, that provides a verifiable report of the state
of the platform. The platform attestation service is provided by the Platform Root of Trust and is described in
Platform Security Model [PSM].

This document includes:

e A set of common use cases. See Use cases and rationale on page 10.
e Information about the attestation report and the format. See Initial Attestation report on page 12.

e The associated Application Programming Interface (API). See API reference on page 18.

The Attestation API can be used either to directly produce verifiable evidence about the platform state in
the context of a challenge-response interaction, or as a way to bootstrap trust in other attestation schemes.
The PSA Certified framework provides the generic security features allowing OEM and service providers to
integrate various attestation schemes on top of the Platform Root of Trust.

You can find additional resources relating to the Attestation API here at
arm-software.github.io/psa-api/attestation, and find other PSA Certified APIs here at
arm-software.github.io/psa-api.

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page 9
1.04 Non-confidential

https://www.psacertified.org
https://developer.arm.com/platform-security-resources
https://www.trustedfirmware.org
https://arm-software.github.io/psa-api/attestation
https://arm-software.github.io/psa-api

2 Use cases and rationale

The following subsections describe the primary use cases that this version of Attestation API aims to
support. Other use cases are also possible.

The Platform Root of Trust (PRoT) reports information, known as claims, that can be used to determine the
exact implementation of the PRol and its security state. If the PRoT loads other components then it also
includes information about what it has loaded. Other components outside of the PRoTl can add additional
information to the report by calling the provided API, which will include and sign the additional information.
The PRoT signs attestation reports using the Initial Attestation Key (IAK).

2.1 Device enrolment

Enrolment is the ability for an online service to enlist a device. For example, a generic connected sensor that
becomes part of a company’s deployment. As part of the enrolment process, credentials need to be created
for each device. However, the devices themselves need to be trustworthy to ensure that credentials are not
leaked.

A common solution to this problem is to certify security hardware using third-party labs, who are trusted to
deliver worthwhile certifications. By placing trust in evaluation reports (such as Common Criteria or PSA
Certified), one can ascertain whether a Root of Trust exhibits important security properties. For example,
one important property is the ability to generate a key pair of good quality (using a non-predictable random
number generator) and store it in an isolated and tamper-proof area, which provides strong assurance that a
device private key is only ever known by that device. Each device instance contains a protected attestation
key that can be used to prove that they are a particular certified implementation.

During such an enrolment process, a device might generate a new key pair and create a Certificate Signing
Request (CSR) or equivalent, containing:

e The public key of the generated key-pair.

e A proof of possession of the corresponding private key (in general this is the public key signed by the
private key). This protects against man-in-the-middle attacks where an attacker can hijack the
enrolment to insert their own public key into the device request.

e An initial attestation, in order for the recipient to assess how that particular combination of hardware
and firmware can be trusted.

The CSR is then passed to a Certification Authority who can assign it an identity with the new service and
then return an identity certificate signed using the private key of the Certification Authority. The
Certification Authority may be operated by the company who owns the devices or operated by a trusted
third party. Creating extra identities on devices is expected to be a routine operation.

If a device enforces a high level of isolation, where all applications execute within their own Secure
Partition, then it allows several mutually-distrustful providers to install their applications side-by-side
without having to worry about leaking assets from one application to another.

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page 10
1.04 Non-confidential

The attestation identity can be verified in an attestation process and checked against certification
information. At the end of the process the credential manager can establish a secure connection to the
attested endpoint, and deliver credentials. For example, these may be service access credentials.

2.2 ldentifying certification

The combination of a hardware entity and the software installed on that entity can be certified to conform
to some published security level.

Manufacturers of devices can advertise a security certification as an incentive to purchase their devices, or
because it is a requirement from a regulator. To gain the certification a manufacturer can engage a test lab
to verify the hardware and software combination of a device conforms to specific standards. Certification
should not be declared by the device, instead it is a dynamic situation where the hardware and software
state can be checked against the current known certification status for that combination.

The initial attestation report declares the state of the device to a verification service. The verification service
can then:
e Verify the production status of the device identity. For example, to identify whether the device is in an
inventory, and whether it is a secured production device or a development device.

e Verify the certification status of a device. This involves checking that all components are up to date,
correctly signed, and certified to work together.

2.3 Integrity reporting

A party may want to check the received list of claims against a database of known measurements for each
component in order to decide which level of trust should be applied. Additional information can be
included, such as the version numbers for all software running on the device. As a minimum, the device
provides a hash for each loaded component. Boot measurements are included in order to assess if there are
obvious signs of tampering with the device firmware.

Initial attestation requires three services:

e Enrolment verification service enforcing policy as part of service enrolment of the device.
e Production verification service (OEM), providing the production state of an attestation identity

e Certification verification service (third party), verifying that all attested components are up to date,
signed correctly, and certified to work together.

It is possible to further separate these roles. For example, there may be a separate software verification
service.

These services can be hosted by different parties in online or offline settings:

e The first service requires generating a challenge, reading back the device’s token, and validating the
signature of the token.

e The second service may periodically log the current security state for all addressable devices and
make that information available upon request. It does not require the knowledge of any pre-shared
secret or a prior trust exchange with a device vendor. The various databases required for the full
verification process may be local, replicated, or centralized, depending on the particular market.

Further information about using existing attestation protocols can be found in [PSM].

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page 11
1.04 Non-confidential

3 Initial Attestation report

This section begins with a description of the information model for the report and then describes the
expected format.

3.1 Information model

The following table describes the mandatory and optional claims in the report:

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page 12
1.04 Non-confidential

Claim

Auth challenge

Instance ID

Verification service
indicator

Profile definition

Implementation ID

Client ID

Security Lifecycle

IHI 0085
1.0.4

Mandatory

Yes

Yes

No

No

Yes

Yes

Yes

Description

Input object from the caller. For example, this can be a
cryptographic nonce or a hash of locally attested data. The
length must be 32, 48, or 64 bytes.

This is the auth_challenge parameter to
psa_initial attest_get_token().

Represents the unique identifier of the instance:

e \When using an asymmetric key-pair for the Initial
Attestation Key (IAK), Arm recommends the Instance ID
be a hash of the corresponding public key.

e When using a symmetric key for the IAK, Arm
recommends that the Instance ID is always a double
hash of the key, hence InstanceID = H(H(IAK)). This
eliminates risks when exposing the key to different
HMAC block size. For further information, read
RFC2104.

The use of the IAK is also discussed in [PSM].

A hint used by a relying party to locate a validation service
for the token. The value is a text string that can be used to
locate the service or a URL specifying the address of the
service.

A verifier may choose to ignore this claim in favor of other
information.

Contains the name of a document that describes the ‘profile’
of the report. The document name may include versioning.
The value for this specification is PSA_IOT_PROFILE_1.

Uniquely identifies the underlying Immutable Platform Root of
Trust. A verification service can use this claim to locate the
details of the verification process. Such details include the
implementation’s origin and associated certification state.
The full definition is in [PSM].

Represents the Partition 1D of the caller. It is a signed integer
whereby negative values represent callers from the NSPE
and where positive |Ds represent callers from the SPE. The
value o is not permitted. The full definition of a Partition ID is
provided by Arm® Platform Security Architecture Firmware
Framework [PSA-FF-M].

It is essential that this claim is checked in the verification
process to ensure that a security domain cannot spoof a
report from another security domain.

Represents the current lifecycle state of the Platform Root of
Trust (PRoT). The state is represented by an integer that is
partitioned to convey a major state and a minor state. The
major state is mandatory and defined by [PSM]. The minor
state is optional and IMPLEMENTATION DEFINED. The PRoT

Copyright © 2018-20205204p tyolfeayelenstatemnst irpfgpagntation state are page 13

enendedfasfodlows:

e version[15:8] — PRoT security lifecycle state
e version[7:0] — IMPLEMENTATION DEFINED state.

3.1.1 Software components

Each software component in the Software Components claim must include the required properties of the
following table:

Key ID Type Required Description

1 Measurement type No A short string representing the role of this software
component (e.g. ‘BL for boot loader).

Expected types may include:

BL (a bootloader)

PRoT (a component of the Platform Root of
Trust)

ARoT (a component of the Application Root of
Trust)

App (@ component of the NSPE application)
TS (@ component of a trusted subsystem)

2 Measurement value Yes Represents a hash of the invariant software
component in memory at startup time. The value
must be a cryptographic hash of 256 bits or stronger.

3 Reserved No Reserved

Version No The issued software version in the form of a text
string. The value of this claim corresponds to the entry
in the original signed manifest of the component.

This field must be present to be compliant with [PSM].

5 Signer ID No The hash of a signing authority public key for the
software component. The value of this claim
corresponds to the entry in the original manifest for
the component.

This can be used by a verifier to ensure the
components were signed by an expected trusted
source.

This field must be present to be compliant with [PSM].

continues on next page

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page 14
1.04 Non-confidential

Table 4 - continued from previous page

Key ID Type Required Description

6 Measurement description No Description of the software component, which
represents the way in which the measurement value
of the software component is computed. The value is
a text string containing an abbreviated description (or
name) of the measurement method which can be
used to lookup the details of the method in a profile
document. This claim may normally be excluded,
unless there is an exception to the default
measurement described in the profile for a specific
component.

3.2 Report format and signing

This section describes the specific representation, encoding and signing of the information described in the
Information Model.

3.2.1 Token encoding

The report is represented as a token, which must be formatted in accordance to IETF Entity Attestation Token
(EAT) [EAT] draft specification. The token consists of a series of claims declaring evidence as to the nature of
the instance of hardware and software. The claims are encoded with the CBOR format, defined in Concise
Binary Object Representation (CBOR) [STD94].

3.2.2 Signing

The token is signed following the structure defined in CBOR Object Signing and Encryption (COSE): Structures
and Process [STD96] specification:

e For asymmetric key algorithms, the signature structure must be COSE-Sign1. An asymmetric key
algorithm is needed to achieve all the use cases defined in Use cases and rationale on page 10.

e For symmetric key algorithms, the structure must be COSE-MacO.

A Warning

A symmetric key is strongly discouraged due to the associated infrastructure costs for key
management and operational complexities. It may also restrict the ability to interoperate with
scenarios that involve third parties (see Use cases and rationale on page 10).

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page 15
1.04 Non-confidential

3.2.3 EAT standard claims

The token is modelled to include custom values that correspond to the following EAT standard claims (as

expressed in the draft EAT proposal):

e nonce (mandatory); arm_psa_nonce is used instead

e UEID (mandatory); arm_psa_UEID is used instead

A future version of the profile, corresponding to an issued standard, might declare support for both custom
and standard claims as a transitionary state towards exclusive use of standard claims.

3.2.4 EAT custom claims

The token can include the following EAT custom claims. Custom claims for the Attestation API have a root

identity of -75000.

Some fields must be at least 32 bytes to provide sufficient cryptographic strength.

Key ID Type

-75000 Profile Definition

-75001 Client ID

-75002 Security Lifecycle

-75003 Implementation ID

-75004 Boot seed

-75005 Hardware version

-75006 Software components
(compound map claim)

-75007 No software
measurements

-75008 Auth challenge

IHI 0085

1.0.4

Name

arm_psa_profile_id

arm_psa_partition_id

arm_psa_security_lifecycle
arm_psa_implementation_id
arm_psa_boot_seed
arm_psa_hw_version

arm_psa_sw_components

arm_psa_no_sw_measurements

arm_psa_nonce

Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates

Non-confidential

CBOR type

Text string

Unsigned integer or Negative
integer

Unsigned integer

Byte string (>=32 bytes)
Byte string (>=32 bytes)
Text string

Array of map entries. The map
entries have the following types:
1. Text string (type)

2. Byte string (measurement,
>=32 bytes)

3. Reserved
4. Text string (version)

5. Byte string (signer ID,
>=32 bytes)

6. Text string (measurement
description)

See Software components on
page 14 for details.

Unsigned integer (the
recommended value is 1)

Byte string

continues on next page

Page 16

Table 5 - continued from previous page

Key ID Type Name CBOR type

-75009 Instance 1D arm_psa_UEID Byte string (the type byte should
be set to oxe1. The type byte is
described in the [EAT] draft.)

-75010 Verification service arm_psa_origination Text string
indicator

An example report can be found in Example report on page 24.

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page 17
1.04 Non-confidential

4 API reference

The Attestation API defines a header file that is provided by the implementation. The header is

psa/initial_attestation.h.

All the elements are defined in the C language. The Attestation API makes use of standard C data types,
including the fixed-width integer types from the ISO C99 specification update [C29].

4.1 API conventions

All functions return a status indication of type psa_status_t, which is defined by PSA Certified Status code
API [PSA-STAT]. The value o (PSA_SUCCESS) indicates successful operation, and a negative value indicates an
error. Each APl documents the specific error codes that might be returned, and the meaning of each error.

All parameters of pointer type must be valid, non-null pointers unless the pointer is to a buffer of length O
or the function’s documentation explicitly describes the behavior when the pointer is null. For
implementations where a null pointer dereference usually aborts the application, passing NULL as a
function parameter where a null pointer is not allowed should abort the caller in the habitual manner.

Pointers to input parameters may be in read-only memory. Output parameters must be in writable memory.
Output parameters that are not buffers must also be readable, and the implementation must be able to
write to a non-buffer output parameter and read back the same value.

4.2 Status codes

The Attestation API uses the status code definitions that are shared with the other PSA Certified APIs.
The following elements are defined in psa/error.h from PSA Certified Status code APl [PSA-STAT] (previously
defined in [PSA-FF-M]):

typedef int32_t psa_status_t;
#define PSA_SUCCESS ((psa_status_t)0)

#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-
#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-13
#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-
#define PSA_ERROR_SERVICE_FAILURE ((psa_status_t)-

These definitions must be available to an application that includes the psa/initial_attestation.h header file.

Implementation note

An implementation is permitted to define the status code interface elements within
psa/initial_attestation.h, or to define them via inclusion of a psa/error.h header file that is shared
with the implementation of other PSA Certified APlIs.

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page 18
1.04 Non-confidential

4.3 General definitions

4.3.1 PSA_INITIAL_ATTEST_API_VERSION_MAJOR (macro)

The major version of this implementation of the Attestation API.

#define PSA_INITIAL_ATTEST_API_VERSION_MAJOR 1

4.3.2 PSA_INITIAL_ATTEST_API_VERSION_MINOR (macro)

The minor version of this implementation of the Attestation API.

#define PSA_INITIAL_ATTEST_API_VERSION_MINOR @

4.3.3 PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE (macro)

The maximum possible size of a token.

#define PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE /* implementation-specific value */

The value of this constant is IMPLEMENTATION DEFINED.

4.4 Challenge sizes

The following constants define the valid challenge sizes that must be supported by the function
psa_initial_attest_get_token() and psa_initial_attest_get_token_size().

An implementation must not support other challenge sizes.

4.4.1 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_32 (macro)
A challenge size of 32 bytes (256 bits).

#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE_32 (32u)

4.4.2 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_48 (macro)
A challenge size of 48 bytes (384 bits).

#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE 48 (48u)

4.4.3 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_64 (macro)
A challenge size of 64 bytes (512 bits).

#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE_ 64 (64u)

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates
1.04 Non-confidential

Page 19

4.5 Attestation

4.5.1 psa_initial_attest_get_token (function)

Retrieve the Initial Attestation Token.

psa_status_t psa_initial attest_get_token(const uint8_t *auth_challenge,

Parameters

auth_challenge

challenge_size

token_buf

token_buf_size

token_size

Outputs

*token_buf

*token_size

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_SERVICE_FAILURE
PSA_ERROR_BUFFER_TOO_SMALL
PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_GENERIC_ERROR

IHI 0085
1.0.4

size_t challenge_size,
uint8_t *token_buf,
size_t token_buf_size,
size_t *token_size);

Buffer with a challenge object. The challenge object is data provided
by the caller. For example, it may be a cryptographic nonce or a hash
of data (such as an external object record).

If a hash of data is provided then it is the caller’s responsibility to
ensure that the data is protected against replay attacks (for example,
by including a cryptographic nonce within the data).

Size of the buffer auth_challenge in bytes. The size must always be a
supported challenge size. Supported challenge sizes are defined in
Challenge sizes on page 19.

Output buffer where the attestation token is to be written.

Size of token_buf. The expected size can be determined by using the
psa_initial_attest_get_token_size function.

Output variable for the actual token size.

On success, the attestation token.

On success, the number of bytes written into token_buf.

Action was performed successfully.

The implementation failed to fully initialize.
token_buf is too small for the attestation token.
The challenge size is not supported.

An unspecified internal error has occurred.

Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page 20

Non-confidentia

Description

Retrieves the Initial Attestation Token. A challenge can be passed as an input to mitigate replay attacks.

4.5.2 psa_initial_attest_get_token_size (function)

Calculate the size of an Initial Attestation Token.

psa_status_t psa_initial attest_get_token_size(size_t challenge_size,
size_t *token_size);

Parameters
challenge_size Size of a challenge object in bytes. This must be a supported challenge
size as specified in Challenge sizes on page 19.
token_size Output variable for the token size.
Outputs
*token_size On success, the maximum size of an attestation token in bytes when

using the specified challenge_size

Returns: psa_status_t

PSA_SUCCESS Action was performed successfully.

PSA_ERROR_SERVICE_FAILURE The implementation failed to fully initialize.

PSA_ERROR_INVALID_ARGUMENT The challenge size is not supported.

PSA_ERROR_GENERIC_ERROR An unspecified internal error has occurred.
Description

Retrieve the exact size of the Initial Attestation Token in bytes, given a specific challenge size.

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates
1.04 Non-confidential

Page 21

Appendix A: Example header file

Each implementation of the Attestation APl must provide a header file named psa/initial_attestation.h, in

which the interface elements in this specification are defined.

This appendix provides a example of the psa/initial_attestation.h header file with all of the API elements.

This can be used as a starting point or reference for an implementation.

Note:

Not all of the API elements are fully defined. An implementation must provide the full definition.

The header will not compile without these missing definitions, and might require reordering to satisfy

C compilation rules.

A.1 psa/inital_attestation.h

/* This file is a reference template for implementation of the

* PSA Certified Attestation API v1.0
Y/

#ifndef PSA_INITIAL_ATTESTATION_H
#define PSA_INITIAL_ATTESTATION_H

#include <stddef.h>
#include <stdint.h>

#ifdef __cplusplus
extern "C" {
#endif

#define PSA_INITIAL_ATTEST_API_VERSION_MAJOR 1
#define PSA_INITIAL_ATTEST_API_VERSION_MINOR @
#define PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE /* implementation-specific value */
#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE_32 (32u)
#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE_48 (48u)
#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE_64 (64u)
psa_status_t psa_initial attest_get_token(const uint8_t *auth_challenge,
size_t challenge_size,
uint8_t *token_buf,
size_t token_buf_size,
size_t *token_size);
psa_status_t psa_initial attest_get_token_size(size_t challenge_size,
size_t *token_size);

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates
1.04 Non-confidentia

(continues on next page)

Page 22

(continued from previous page)
#ifdef __cplusplus
}

#endif

#endif // PSA_INITIAL_ATTESTATION_H

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page 23
1.04 Non-confidential

Appendix B: Example report

An example report is included here in extended CBOR diagnostic form for illustrative purposes:

18(
[
/ protected / h'alel26' / {
\ alg \ 1: -7 \ ECDSA 256 \
Yo
/ unprotected / {},
/ payload / h'a93a000124fb5820000102030405060708090a0b0c0d0ed 1011121
31415161718191a1b1c1d1e1f3a000124fa5820000102030405060708090a0b0cddde
0f101112131415161718191alblc1d1e1f3a0001241d84a4025820000102030405060
708090a0b0c0d0edf101112131415161718191alblc1d1e1f0465332e312e34055820
000102030405060708090a0b0c0d0edf101112131415161718191a1blcldlelf01624
24ca4025820000102030405060708090a0b0c@d0edf101112131415161718191alblc
1d1e1f0463312e31055820000102030405060708090a0b0c@d0edf101112131415161
718191al1b1c1d1e1f016450526154a4025820000102030405060708090a0b0c0d0edf
101112131415161718191a1b1c1d1e1f0463312e30055820000102030405060708090
a0b0c0d0edf101112131415161718191a1b1c1d1e1f016441526154a4025820000102
030405060708090a0b0c0d0edf101112131415161718191a1blc1d1el1f0463322e320
55820000102030405060708090a0b0c@d0edf101112131415161718191alblcldlelf
0163417070320001241919300032000124ff5820000102030405060708090a0b0c@dd
e0f101112131415161718191a1b1c1d1e1f3a000125016c7073615f76657269666965
723a00012418203a00012500582101000102030405060708090a0b0c0d0ed 1011121
31415161718191al1blc1d1e1f3a000124t7715053415T496F545F50524F46494c455F
31" /A
/ arm_psa_boot_seed / -75004: h'000102030405060708090a0b0c@d0edf10
1112131415161718191alblcldlelf",
/ arm_psa_implementation_id / -75003: h'000102030405060708090a0b0oc
0d0e0f101112131415161718191alblcldlelf’,
/ arm_psa_sw_components / -75006: [
{
/ measurement / 2: h'000102030405060708090a0b0c0ddedf101112
131415161718191alblcldlelf",
/ version / 4: "3.1.4",
/ signerID / 5: h'000102030405060708090a0b0c@d0e@f101112131
415161718191alblcldlelf",
/ type / 1: "BL"
T
{
/ measurement / 2: h'000102030405060708090a0b0c@d0edf101112
131415161718191alblcldlelf",
/ version / 4. "1.1",

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates

1.04 Non-confidentia

(continues on next page)

Page 24

/ signerID / 5: h'000102030405060708090a0b0c0d0edf101112131
415161718191alblcldlelf’,
/ type / 1: "PRoT"
b
{
/ measurement / 2: h'000102030405060708090a0b0c@d0edf101112
131415161718191alblcldlelf",
/ version / 4: "1.0",
/ signerID / 5: h'000102030405060708090a0b0c@d0edf101112131
415161718191alblcldlelf',
/ type / 1: "ARoT"
B
{
/ measurement / 2: h'000102030405060708090a0b0c@d0edf101112
131415161718191alblcldlelf",
/ version / 4: "2.2",
/ signerID / 5: h'000102030405060708090a0b0c@d0edf101112131
415161718191alblcldlelf’,
/ type / 1: "App"
}
1,
/ arm_psa_security_lifecycle / -75002: 12288 / SECURED /,
/ arm_psa_nonce / -75008: h'000102030405060708090a0b0c@d0e@f10111
2131415161718191alblcldlelf",
/ arm_psa_origination / -75010: "psa_verifier",
/ arm_psa_partition_id / -75001: -1,
/ arm_psa_UEID / -75009: h'01000102030405060708090a0b0c0d0edf1011
12131415161718191alblcldlelf",
/ arm_psa_profile_id / -75000: "PSA_IOT_PROFILE_1"
),
| B
/ signature / h'58860508ee7e8cc48ebal872dbb5d694a542b1322ad0d51023c197
0dT429706501c683a95108a0cced0abe80ed966T22bd63d1c0056974a11ba332d7877
87fbaf!
1
)

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates
1.04 Non-confidentia

(continued from previous page)

Page 25

Appendix C: CDDL

The Concise Data Definition Language (CDDL) [RFC8610] definition of the PSA token is included here for

reference:

psa-token = {
psa-nonce-claim,
psa-client-id,
psa-instance-id,
psa-implementation-id,
psa-hardware-version,
psa-lifecycle,
psa-boot-seed,
(psa-software-components // psa-no-sw-measurement),
psa-profile,
psa-verification-service-indicator,

arm_psa_profile_id = -75000
arm_psa_partition_id = -75001
arm_psa_security_lifecycle = -75002
arm_psa_implementation_id = -75003
arm_psa_boot_seed = -75004
arm_psa_hw_version = -75005
arm_psa_sw_components = -75006
arm_psa_no_sw_measurements = -75007
arm_psa_nonce = -75008

arm_psa_UEID = -75009
arm_psa_origination = -75010

psa-boot-seed-type = bytes .size 32

psa-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64

psa-boot-seed = (
arm_psa_boot_seed => psa-boot-seed-type

psa-client-id-nspe-type = -2147483648...0
psa-client-id-spe-type = 1..2147483647

psa-client-id-type = psa-client-id-nspe-type / psa-client-id-spe-type

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates
1.04 Non-confidentia

(continues on next page)

Page 26

psa-client-id = (
arm_psa_partition_id => psa-client-id-type

psa-hardware-version-type = text .regexp "[0-9]{13}"
psa-hardware-version = (
? arm_psa_hw_version => psa-hardware-version-type

psa-implementation-id-type = bytes .size 32
psa-implementation-id = (
arm_psa_implementation_id => psa-implementation-id-type

psa-instance-id-type = bytes .size 33
psa-instance-id = (
arm_psa_UEID => psa-instance-id-type

psa-no-sw-measurements-type = 1

psa-no-sw-measurement = (
arm_psa_no_sw_measurements => psa-no-sw-measurements-type

psa-nonce-claim = (
arm_psa_nonce => psa-hash-type

psa-profile-type = "PSA_IOT_PROFILE_ 1"

psa-profile = (
? arm_psa_profile_id => psa-profile-type

psa-lifecycle-unknown-type = 0x0000..0x00fT
psa-lifecycle-assembly-and-test-type = 0x1000..0x10ff
psa-lifecycle-psa-rot-provisioning-type = 0x2000..0x20ff
psa-lifecycle-secured-type = 0x3000..0x30ff
psa-lifecycle-non-psa-rot-debug-type = 0x4000..0x40ff
psa-lifecycle-recoverable-psa-rot-debug-type = 0x5000..0x50ff
psa-lifecycle-decommissioned-type = 0x6000..0x60ff

psa-lifecycle-type =

psa-lifecycle-unknown-type /

IHI 0085
1.0.4

Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates
Non-confidentia

(continued from previous page)

(continues on next page)

Page 27

(continued from previous page)
psa-lifecycle-assembly-and-test-type /
psa-lifecycle-psa-rot-provisioning-type /
psa-lifecycle-secured-type /
psa-lifecycle-non-psa-rot-debug-type /
psa-lifecycle-recoverable-psa-rot-debug-type /
psa-lifecycle-decommissioned-type

psa-lifecycle = (
arm_psa_security_lifecycle => psa-lifecycle-type

psa-software-component = {

? 1 => text, ; measurement type

2 => psa-hash-type, ; measurement value

? 4 => text, ; version

5 => psa-hash-type, ; signer id

? 6 => text, ; measurement description

psa-software-components = (
arm_psa_sw_components => [+ psa-software-component]

psa-verification-service-indicator-type = text

psa-verification-service-indicator = (
? arm_psa_origination => psa-verification-service-indicator-type

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page 28
1.04 Non-confidentia

IHI 0085 Copyright © 2018-2020, 2022, 2025 Arm Limited and/or its affiliates Page 29
1.04 Non-confidential

Appendix D: Document history

Date Changes

2019-02-25 1.0 Beta O

e First public version for review

2019-06-12 1.0.0

e First stable release
e [he API functions now use the shared psa_status_t return type.
e Error values now use shared error codes, which are now defined in psa/error.h.

e Input parameters are now separate from output parameters. There are no longer
any in/out parameters.

e Size types have been replaced with size_t instead of uint32_t.
e Some parameter names have been changed to improve legibility.

e The description of the Implementation ID claim has been rewritten to better match
the definition in PSM.

e Signer ID is no longer a mandatory part of the Software Components claim.
However, it is needed for PSM compliance.

e Explicitly describe which optional claims are required for PSM compliance.
e Added lifecycle state (PSA_LIFECYCLE_ASSEMBLY_AND_TEST).

e Clarifications and improvements to the description of some APl elements and to
the structure of the document.

e Updated CBOR example in the appendix.
e Added macro PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE.

2019-08-16 1.0.1
e Fixed typos and descriptions based on feedback.
e Recommend type byte OxO1 for arm_psa_UEID.

e Remove erroneous guidance regarding EAT’s origination claim - it should not be
used to find a verification service.

2020-02-06 1.0.2

e Clarify the claim number of Instance 1D
e Permit COSE-MacO for signing tokens (with appropriate warning)
e Update URLs

2022-10-17 1.0.3
IHI 0085 o Relfamig EheOddclirie RO ihder Atribinitsd BHacAlikeiaed International with &age 30
1.04 patent license derived fRSA #paeERRicense 2.0. See License on page iv.

e Fix CBOR type of arm_psa_origination to text string. Spec and example were in
conflict, and the example was correct.

A Ll LA NN~ 1 ey N 1 1. e 1 Y e 1 1

	About this document
	Release information
	License
	References
	Terms and abbreviations
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Current status and anticipated changes
	Feedback

	1 Introduction
	1.1 About Platform Security Architecture
	1.2 About the Attestation API

	2 Use cases and rationale
	2.1 Device enrolment
	2.2 Identifying certification
	2.3 Integrity reporting

	3 Initial Attestation report
	3.1 Information model
	3.1.1 Software components

	3.2 Report format and signing
	3.2.1 Token encoding
	3.2.2 Signing
	3.2.3 EAT standard claims
	3.2.4 EAT custom claims

	4 API reference
	4.1 API conventions
	4.2 Status codes
	4.3 General definitions
	4.3.1 PSA_INITIAL_ATTEST_API_VERSION_MAJOR (macro)
	4.3.2 PSA_INITIAL_ATTEST_API_VERSION_MINOR (macro)
	4.3.3 PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE (macro)

	4.4 Challenge sizes
	4.4.1 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_32 (macro)
	4.4.2 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_48 (macro)
	4.4.3 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_64 (macro)

	4.5 Attestation
	4.5.1 psa_initial_attest_get_token (function)
	4.5.2 psa_initial_attest_get_token_size (function)

	A Example header file
	A.1 psa/inital_attestation.h

	B Example report
	C CDDL
	D Document history

