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Abstract

This document describes an interface for cryptoprocessor drivers within an implementation of the PSA
Certified Crypto API. This interface complements PSA Certified Crypto APl [PSA-CRYPT], which describes
the interface between a Crypto APl implementation and an application.
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1 Introduction

1.1 Purpose of the driver interface

The Crypto API defines an interface that allows applications to perform cryptographic operations in a
uniform way regardless of how the operations are performed. Under the hood, different keys may be stored
and used in different hardware or in different logical partitions, and different algorithms may involve
different hardware or software components.

The driver interface allows implementations of the Crypto API to be built compositionally. An
implementation of the Crypto APl is composed of a core and zero or more drivers. The core handles key
management, enforces key usage policies, and dispatches cryptographic operations either to the applicable
driver or to built-in code.

Functions in the Crypto APl implementation invoke functions in the core. Code from the core calls drivers
as described in the present document.

1.2 Types of drivers

The PSA Cryptoprocessor driver interface supports two types of cryptoprocessors, and accordingly two
types of drivers.

e Transparent drivers implement cryptographic operations on keys that are provided in cleartext at the
beginning of each operation. They are typically used for hardware accelerators. WWhen a transparent
driver is available for a particular combination of parameters (cryptographic algorithm, key type and
size, etc.), it is used instead of the default software implementation. Transparent drivers can also be
pure software implementations that are distributed as plug-ins to a Crypto APl implementation (for
example, an alternative implementation with different performance characteristics, or a certified
implementation).

e Opaque drivers implement cryptographic operations on keys that can only be used inside a protected
environment such as a secure element, a hardware security module, a smartcard, a secure enclave,
etc. An opaque driver is invoked for the specific key location that the driver is registered for: the
dispatch is based on the key’s lifetime.

1.3 Requirements

The present specification was designed to fulfill the following high-level requirements.

[Req.plugins]
It is possible to combine multiple drivers from different providers into the same
implementation, without any prior arrangement other than choosing certain names and
values from disjoint namespaces.

[Reqg.compile]
It is possible to compile the code of each driver and of the core separately, and link them
together. A small amount of glue code may need to be compiled once the list of drivers is
available.

[Req.types] Support drivers for the following types of hardware: accelerators that operate on keys in
cleartext; cryptoprocessors that can wrap keys with a built-in keys but not store user keys;
and cryptoprocessors that store key material.
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[Req.portable]
The interface between drivers and the core does not involve any platform-specific
consideration. Driver calls are simple C function calls. Interactions with platform-specific
hardware happen only inside the driver (and in fact a driver need not involve any hardware
at all).

[Req.location]
Applications can tell which location values correspond to which secure element drivers.

[Req.fallback]
Accelerator drivers can specify that they do not fully support a cryptographic mechanism
and that a fallback to core code may be necessary. Conversely, if an accelerator fully
supports cryptographic mechanism, the core must be able to omit code for this mechanism.

[Reg.mechanisms]
Drivers can specify which mechanisms they support. A driver’s code will not be invoked for
cryptographic mechanisms that it does not support.

2 Overview of drivers

2.1 Deliverables for a driver

To write a driver, you need to implement some functions with C linkage, and to declare these functions in a
driver description file. The driver description file declares which functions the driver implements and what
cryptographic mechanisms they support. If the driver description references custom types, macros or
constants, you also need to provide C header files defining those elements.

The concrete syntax for a driver description file is JSON. The structure of this JSON file is specified in the
section Driver description syntax on page 10.

A driver therefore consists of:

e A driver description file (in JSON format).

e C header files defining the types required by the driver description. The names of these header files
are declared in the driver description file.

e An object file compiled for the target platform defining the entry point functions specified by the
driver description. Implementations may allow drivers to be provided as source files and compiled
with the core instead of being pre-compiled.

How to provide the driver description file, the C header files and the object code is
implementation-dependent.

2.2 Driver description list

Crypto API core implementations should support multiple drivers. The driver description files are passed to
the implementation as an ordered list in an unspecified manner. This may be, for example, a list of file names
passed on a command line, or a JSON list whose elements are individual driver descriptions.
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3 Driver description

3.1 Driver description syntax

The concrete syntax for a driver description file is JSON.

In addition to the properties described here, any JSON object may have a property called "_comment" of type
string, which will be ignored.

Crypto API core implementations may support additional properties. Such properties must use names
consisting of the implementation’s name, a slash, and additional characters. For example, the Yoyodyne
implementation may use property names such as "yoyodyne/foo" and "yoyodyne/widgets/girth".

3.2 Driver description top-level element

A driver description is a JSON object containing the following properties:

e "prefix" (mandatory, string). This must be a valid, non-empty prefix for a C identifier. All the types and
functions provided by the driver have a name that starts with this prefix unless overridden with a
"name" element in the applicable capability as described below.

"type" (Mandatory, string). One of "transparent" Or "opaque".

"headers" (optional, array of strings). A list of header files. These header files must define the types,
macros and constants referenced by the driver description. They may declare the entry point
functions, but this is not required. They may include other PSA headers and standard headers of the
platform. Whether they may include other headers is implementation-specific. If omitted, the list of
headers is empty. The header files must be present at the specified location relative to a directory on
the compiler’s include path when compiling glue code between the core and the drivers.

e 'capabilities" (mandatory, array of capabilities). A list of capabilities. Each capability describes a
family of functions that the driver implements for a certain class of cryptographic mechanisms.

e "key_context" (not permitted for transparent drivers, mandatory for opaque drivers): information
about the representation of keys.

e 'persistent_state_size" (not permitted for transparent drivers, optional for opaque drivers, integer or
string). The size in bytes of the persistent state of the driver. This may be either a non-negative
integer or a C constant expression of type size_t.

e "location" (not permitted for transparent drivers, optional for opaque drivers, integer or string). The
location value for which this driver is invoked. In other words, this determines the lifetimes for which
the driver is invoked. This may be either a non-negative integer or a C constant expression of type
psa_key_location_t.

3.3 Driver description capability
3.3.1 Capability syntax

A capability declares a family of functions that the driver implements for a certain class of cryptographic
mechanisms. The capability specifies which key types and algorithms are covered and the names of the
types and functions that implement it.

A capability is a JSON object containing the following properties:
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e 'entry_points" (mandatory, list of strings). Each element is the name of a driver entry point or driver
entry point family. An entry point is a function defined by the driver. If specified, the core will invoke
this capability of the driver only when performing one of the specified operations. The driver must
implement all the specified entry points, as well as the types if applicable.

e "algorithms" (optional, list of strings). Each element is an algorithm specification. If specified, the core
will invoke this capability of the driver only when performing one of the specified algorithms. If
omitted, the core will invoke this capability for all applicable algorithms.

e "key_types" (optional, list of strings). Each element is a key type specification. If specified, the core will
invoke this capability of the driver only for operations involving a key with one of the specified key
types. If omitted, the core will invoke this capability of the driver for all applicable key types.

e "key_sizes" (optional, list of integers). If specified, the core will invoke this capability of the driver only
for operations involving a key with one of the specified key sizes. If omitted, the core will invoke this
capability of the driver for all applicable key sizes. Key sizes are expressed in bits.

e "names" (optional, object). A mapping from entry point names described by the "entry_points"
property, to the name of the C function in the driver that implements the corresponding function. If a
function is not listed here, name of the driver function that implements it is the driver’s prefix followed
by an underscore (_) followed by the function name. If this property is omitted, it is equivalent to an
empty object (so each entry point suffix is implemented by a function called prefix_suffix).

e "fallback" (optional for transparent drivers, not permitted for opaque drivers, boolean). If present and
true, the driver may return PSA_ERROR_NOT_SUPPORTED, in which case the core should call another driver
or use built-in code to perform this operation. If absent or false, the driver is expected to fully support
the mechanisms described by this capability. See the section Fallback on page 38 for more information.

3.3.2 Capability semantics

When the Crypto APl implementation performs a cryptographic mechanism, it invokes available driver entry
points as described in the section Driver entry points on page 13.

A driver is considered available for a cryptographic mechanism that invokes a given entry point if all of the
following conditions are met:

e The driver specification includes a capability whose "entry_points" list either includes the entry point
or includes an entry point family that includes the entry point.

e |f the mechanism involves an algorithm:

— either the capability does not have an "algorithms" property;
— or the value of the capability’s "algorithms" property includes an algorithm specification that
matches this algorithm.
e |f the mechanism involves a key:
— either the key is transparent (its location is PSA_KEY_LOCATION_LOCAL_STORAGE) and the driver is
transparent;
— or the key is opaque (its location is not PSA_KEY_LOCATION_LOCAL_STORAGE) and the driver is an
opaque driver whose location is the key’s location.
e |f the mechanism involves a key:

— either the capability does not have a "key_types" property;

— or the value of the capability’s "key_types" property includes a key type specification that
matches this algorithm.
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e [f the mechanism involves a key:

— either the capability does not have a "key_sizes" property;
— or the value of the capability’s "key_sizes" property includes the key’s size.

If a driver includes multiple applicable capabilities for a given combination of entry point, algorithm, key type
and key size, and all the capabilities map the entry point to the same function name, the driver is considered
available for this cryptographic mechanism. If a driver includes multiple applicable capabilities for a given
combination of entry point, algorithm, key type and key size, and at least two of these capabilities map the
entry point to the different function names, the driver specification is invalid.

If multiple transparent drivers have applicable capabilities for a given combination of entry point, algorithm,
key type and key size, the first matching driver in the specification list is invoked. If the capability has fallback
enabled and the first driver returns PSA_ERROR_NOT_SUPPORTED, the next matching driver is invoked, and so on.

If multiple opaque drivers have the same location, the list of driver specifications is invalid.

3.3.3 Capability examples

Example 1: the following capability declares that the driver can perform deterministic ECDSA signatures
(but not signature verification) using any hash algorithm and any curve that the core supports. If the prefix
of this driver is "acme", the function that performs the signature is called acme_sign_hash.

{

"entry_points": ["sign_hash"],

"algorithms": ["PSA_ALG_DETERMINISTIC_ECDSA(PSA_ALG_ANY_HASH)"T,
}

Example 2: the following capability declares that the driver can perform deterministic ECDSA signatures
using SHA-256 or SHA-384 with a SECP256R1 or SECP384R1 private key (with either hash being possible
in combination with either curve). If the prefix of this driver is "acme", the function that performs the
signature is called acme_sign_hash.

{
"entry_points": ["sign_hash"],
"algorithms": ["PSA_ALG_DETERMINISTIC_ECDSA(PSA_ALG_SHA_256)",
"PSA_ALG_DETERMINISTIC_ECDSA(PSA_ALG_SHA_384)"1,
"key_types": ["PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1)"],
"key_sizes": [256, 384]

3.4 Algorithm and key specifications
3.4.1 Algorithm specifications

An algorithm specification is a string consisting of a PSA_ALG_xxx macro that specifies a cryptographic
algorithm or an algorithm wildcard policy defined by the Crypto API. If the macro takes arguments, the
string must have the syntax of a C macro call and each argument must be an algorithm specification or a
decimal or hexadecimal literal with no suffix, depending on the expected type of argument.

Spaces are optional after commas. Whether other whitespace is permitted is implementation-specific.
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Valid examples:

PSA_ALG_SHA_256

PSA_ALG_HMAC(PSA_ALG_SHA_256)

PSA_ALG_KEY_AGREEMENT (PSA_ALG_ECDH, PSA_ALG_HKDF (PSA_ALG_SHA_256))
PSA_ALG_RSA_PSS (PSA_ALG_ANY_HASH)

3.4.2 Key type specifications

An algorithm specification is a string consisting of a PSA_KEY_TYPE_xxx macro that specifies a key type
defined by the Crypto APIL. If the macro takes an argument, the string must have the syntax of a C macro
call and each argument must be the name of a constant of suitable type (curve or group).

The name _ may be used instead of a curve or group to indicate that the capability concerns all curves or
groups.

Valid examples:

PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1)
PSA_KEY_TYPE_ECC_KEY_PAIR(_)

4 Driver entry points

4.1 Overview of driver entry points

Drivers define functions, each of which implements an aspect of a capability of a driver, such as a
cryptographic operation, a part of a cryptographic operation, or a key management action. These functions
are called the entry points of the driver. Most driver entry points correspond to a particular function in the
Crypto API. For example, if a call to psa_sign_hash() is dispatched to a driver, it invokes the driver’s
sign_hash function.

All driver entry points return a status of type psa_status_t which should use the status codes documented
for PSA services in general and for the Crypto API. In particular: PSA_SUCCESS indicates that the function
succeeded, and PSA_ERROR_xxx Vvalues indicate that an error occurred.

The signature of a driver entry point generally looks like the signature of the Crypto API that it implements,
with some modifications. This section gives an overview of modifications that apply to whole classes of
entry points. Refer to the reference section for each entry point or entry point family for details.

e For entry points that operate on an existing key, the psa_key_id_t parameter is replaced by a
sequence of three parameters that describe the key:
1. const psa_key_attributes_t *attributes: the key attributes.
2. const uint8_t *key_buffer: a key material or key context buffer.
3. size_t key_buffer_size: the size of the key buffer in bytes.
For transparent drivers, the key buffer contains the key material, in the same format as defined for

psa_export_key() and psa_export_public_key() in the Crypto API. For opaque drivers, the content of
the key buffer is entirely up to the driver.
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e For entry points that involve a multi-part operation, the operation state type (psa_xxX_operation_t) is
replaced by a driver-specific operation state type (prefix_xxx_operation_t).

e For entry points that are involved in key creation, the psa_key_id_t * output parameter is replaced by
a seqguence of parameters that convey the key context:

1. uint8_t *key_buffer: a buffer for the key material or key context.

2. size_t key_buffer_size: the size of the key buffer in bytes.
3. size_t *key_buffer_length: the length of the data written to the key buffer in bytes.

Some entry points are grouped in families that must be implemented as a whole. If a driver supports an
entry point family, it must provide all the entry points in the family.

Drivers can also have entry points related to random generation. A transparent driver can provide a random
generation interface. Separately, transparent and opaque drivers can have entropy collection entry points.

4.1.1 General considerations on driver entry point parameters

Buffer parameters for driver entry points obey the following conventions:

e An input buffer has the type const uint8_t * and is immediately followed by a parameter of type
size_t that indicates the buffer size.

e An output buffer has the type uint8_t * and is immediately followed by a parameter of type size_t
that indicates the buffer size. A third parameter of type size_t * is provided to report the actual
length of the data written in the buffer if the function succeeds.

e An in-out buffer has the type uint8_t * and is immediately followed by a parameter of type size_t
that indicates the buffer size. In-out buffers are only used when the input and the output have the
same length.

Buffers of size O may be represented with either a null pointer or a non-null pointer.

Input buffers and other input-only parameters (const pointers) may be in read-only memory. Overlap is
possible between input buffers, and between an input buffer and an output buffer, but not between two
output buffers or between a non-buffer parameter and another parameter.

4.2 Driver entry points for single-part cryptographic operations

The following driver entry points perform a cryptographic operation in one shot (single-part operation):

e "hash_compute" (transparent drivers only): calculation of a hash. Called by psa_hash_compute() and
psa_hash_compare(). To verify a hash with psa_hash_compare(), the core calls the driver’s
"hash_compute" entry point and compares the result with the reference hash value.

e "mac_compute": calculation of a MAC. Called by psa_mac_compute() and possibly psa_mac_verify(). To
verify a mac with psa_mac_verify(), the core calls an applicable driver’s "mac_verify" entry point if
there is one, otherwise the core calls an applicable driver’s "mac_compute" entry point and compares
the result with the reference MAC value.

e "mac_verify": verification of a MAC. Called by psa_mac_verify(). This entry point is mainly useful for
drivers of secure elements that verify a MAC without revealing the correct MAC. Although transparent
drivers may implement this entry point in addition to "mac_compute", it is generally not useful because
the core can call the "mac_compute" entry point and compare with the expected MAC value.
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e "cipher_encrypt": unauthenticated symmetric cipher encryption. Called by psa_cipher_encrypt().
e "cipher_decrypt": unauthenticated symmetric cipher decryption. Called by psa_cipher_decrypt().
e "aead_encrypt": authenticated encryption with associated data. Called by psa_aead_encrypt().

e "aead_decrypt": authenticated decryption with associated data. Called by psa_aead_decrypt().

e "asymmetric_encrypt": asymmetric encryption. Called by psa_asymmetric_encrypt().

e "asymmetric_decrypt": asymmetric decryption. Called by psa_asymmetric_decrypt().

e "sign_hash": signature of an already calculated hash. Called by psa_sign_hash() and possibly
psa_sign_message(). To sign a message with psa_sign_message(), the core calls an applicable driver’s
"sign_message" entry point if there is one, otherwise the core calls an applicable driver’s
"hash_compute" entry point followed by an applicable driver’s "sign_hash" entry point.

"verify_hash": verification of an already calculated hash. Called by psa_verify_hash() and possibly
psa_verify_message(). 1o verify a message with psa_verify_message(), the core calls an applicable

driver’s "verify_message" entry point if there is one, otherwise the core calls an applicable driver’s
"hash_compute" entry point followed by an applicable driver’s "verify_hash" entry point.

e "sign_message": signature of a message. Called by psa_sign_message().
e "verify_message": verification of a message. Called by psa_verify_message().

e "key_agreement": key agreement without a subsequent key derivation. Called by
psa_raw_key_agreement () and possibly psa_key_derivation_key_agreement().

4.3 Driver entry points for multi-part operations

4.3.1 General considerations on multi-part operations

The entry points that implement each step of a multi-part operation are grouped into a family. A driver that
implements a multi-part operation must define all of the entry points in this family as well as a type that
represents the operation context. The lifecycle of a driver operation context is similar to the lifecycle of an
APl operation context:

1. The core initializes operation context objects to either all-bits-zero or to logical zero ({@}), at its
discretion.

2. The core calls the xxx_setup entry point for this operation family. If this fails, the core destroys the
operation context object without calling any other driver entry point on it.

3. The core calls other entry points that manipulate the operation context object, respecting the
constraints.

4. If any entry point fails, the core calls the driver’s xxx_abort entry point for this operation family, then
destroys the operation context object without calling any other driver entry point on it.

5. If a “finish” entry point fails, the core destroys the operation context object without calling any other
driver entry point on it. The finish entry points are: prefix_mac_sign_finish, prefix_mac_verify_finish,
prefix_cipher_finish, prefix_aead_finish, prefix_aead_verify.

If a driver implements a multi-part operation but not the corresponding single-part operation, the core calls
the driver’'s multipart operation entry points to perform the single-part operation.
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4.3.2 Multi-part operation entry point family "hash_multipart"
This family corresponds to the calculation of a hash in multiple steps.
This family applies to transparent drivers only.
This family requires the following type and entry points:
e Type "hash_operation_t": the type of a hash operation context. It must be possible to copy a hash

operation context byte by byte, therefore hash operation contexts must not contain any embedded
pointers (except pointers to global data that do not change after the setup step).

e "hash_setup": called by psa_hash_setup().

e "hash_update": called by psa_hash_update().

e "hash_finish": called by psa_hash_finish() and psa_hash_verify().

e "hash_abort": called by all multi-part hash functions of the Crypto API.

To verify a hash with psa_hash_verify(), the core calls the driver’s prefix_hash_finish entry point and
compares the result with the reference hash value.

For example, a driver with the prefix "acme" that implements the "hash_multipart" entry point family must
define the following type and entry points (assuming that the capability does not use the "names" property
to declare different type and entry point names):

typedef ... acme_hash_operation_t;
psa_status_t acme_hash_setup(acme_hash_operation_t *operation,
psa_algorithm_t alg);
psa_status_t acme_hash_update(acme_hash_operation_t *operation,
const uint8_t *input,
size_t input_length);
psa_status_t acme_hash_finish(acme_hash_operation_t *operation,
uint8_t *hash,
size_t hash_size,
size_t *hash_length);
psa_status_t acme_hash_abort(acme_hash_operation_t *operation);

4.3.3 Operation family "mac_multipart"
TODO

4.3.4 Operation family "mac_verify_multipart"
TODO

4.3.5 Operation family "cipher_encrypt_multipart"
TODO
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4.3.6 Operation family "cipher_decrypt_multipart"
TODO

4.3.7 Operation family "aead_encrypt_multipart"
TODO

4.3.8 Operation family "aead_decrypt_multipart"
TODO

4.4 Driver entry points for key derivation

Key derivation is more complex than other multipart operations for several reasons:

e There are multiple inputs and outputs.

e Multiple drivers can be involved. This happens when an operation combines a key agreement and a
subseqguent symmetric key derivation, each of which can have independent drivers. This also happens
when deriving an asymmetric key, where processing the secret input and generating the key output
might involve different drivers.

e \When multiple drivers are involved, they are not always independent: if the secret input is managed
by an opaque driver, it might not allow the core to retrieve the intermediate output and pass it to
another driver.

e The involvement of an opaque driver cannot be determined as soon as the operation is set up (since
psa_key_derivation_setup() does not determine the key input).

4.4.1 Key derivation driver dispatch logic
The core decides whether to dispatch a key derivation operation to a driver based on the location
associated with the input step PSA_KEY_DERIVATION_INPUT_SECRET.

1. If this step is passed via psa_key_derivation_input_key () for a key in a secure element:

e |f the driver for this secure element implements the "key_derivation" family for the specified
algorithm, the core calls that driver’s "key_derivation_setup" and subsequent entry points. Note
that for all currently specified algorithms, the key type for the secret input does not matter.

e Otherwise the core calls the secure element driver's "export_key" entry point.

2. Otherwise (or on fallback?), if there is a transparent driver for the specified algorithm, the core calls
that driver’s "key_derivation_setup" and subsequent entry points.

3. Otherwise, or on fallback, the core uses its built-in implementation.
4.4.2 Summary of entry points for the operation family "key_derivation"

A key derivation driver has the following entry points:
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e 'key_derivation_setup" (mandatory): always the first entry point to be called. This entry point provides
the initial inputs. See Key derivation driver setup on page 20.

e "key_derivation_input_step" (mandatory if the driver supports a key derivation algorithm with long
inputs, otherwise ignored): provide an extra input for the key derivation. This entry point is only
mandatory in drivers that support algorithms that have extra inputs. See Key derivation driver long
inputs on page 21.

e "key_derivation_output_bytes" (mandatory): derive cryptographic material and output it. See Key
derivation driver outputs on page 21.

e "key_derivation_output_key", "key_derivation_verify_bytes", "key_derivation_verify_key" (optional,
opaque drivers only): derive key material which remains inside the same secure element. See Key
derivation driver outputs on page 21.

e "key_derivation_set_capacity" (mandatory for opaque drivers that implement
"key_derivation_output_key" for “cooked” i.e. non-raw-data key types; ignored for other opaque
drivers; not permitted for transparent drivers): update the capacity policy on the operation. See Key
derivation driver operation capacity on page 21.

e "key_derivation_abort" (mandatory): always the last entry point to be called.

For naming purposes, here and in the following subsection, this specification takes the example of a driver
with the prefix "acme" that implements the "key_derivation" entry point family with a capability that does
not use the "names" property to declare different type and entry point names. Such a driver must implement
the following type and functions, as well as the entry points listed above and described in the following
subsections:

typedef ... acme_key_derivation_operation_t;
psa_status_t acme_key_derivation_abort(acme_key_derivation_operation_t *operation);

4.4.3 Key derivation driver initial inputs

The core conveys the initial inputs for a key derivation via an opaque data structure of type
psa_crypto_driver_key_derivation_inputs_t.

typedef ... psa_crypto_driver_key_ derivation_inputs_t; // implementation-specific type

A driver receiving an argument that points to a psa_crypto_driver_key_derivation_inputs_t can retrieve its
contents by calling one of the type-specific functions below. To determine the correct function, the driver
can call psa_crypto_driver_key_derivation_get_input_type().

enum psa_crypto_driver key_derivation_input_type_t {
PSA_KEY_DERIVATION_INPUT_TYPE_INVALID = 0,
PSA_KEY_DERIVATION_INPUT_TYPE_OMITTED,
PSA_KEY_DERIVATION_INPUT_TYPE_BYTES,
PSA_KEY_DERIVATION_INPUT_TYPE_KEY,
PSA_KEY_DERIVATION_INPUT_TYPE_INTEGER,
// Implementations may add other values, and may freely choose the
// numerical values for each identifer except as explicitly specified
// above.

(continues on next page)
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(continued from previous page)
psa_crypto_driver_key_derivation_input_type_t psa_crypto_driver_key_derivation_get_input_type(
const psa_crypto_driver_key_derivation_inputs_t *inputs,
psa_key_derivation_step_t step);

The function psa_crypto_driver_key_derivation_get_input_type() determines whether a given step is
present and how to access its value:

e PSA_KEY_DERIVATION_INPUT_TYPE_INVALID: the step is invalid for the algorithm of the operation that the
inputs are for.

e PSA_KEY_DERIVATION_INPUT_TYPE_OMITTED: the step is optional for the algorithm of the operation that
the inputs are for, and has been omitted.

e PSA_KEY_DERIVATION_INPUT_TYPE_BYTES: the step is valid and present and is a transparent byte string.
Call psa_crypto_driver_key_derivation_get_input_size() to obtain the size of the input data. Call
psa_crypto_driver_key_derivation_get_input_bytes() to make a copy of the input data (design note:
why a copy?).

e PSA_KEY_DERIVATION_INPUT_TYPE_KEY: the step is valid and present and is a byte string passed via a key
object. Call psa_crypto_driver_key_derivation_get_input_key() to obtain a pointer to the key context.

e PSA_KEY_DERIVATION_INPUT_TYPE_INTEGER: the step is valid and present and is an integer. Call
psa_crypto_driver_key_derivation_get_input_integer() to retrieve the integer value.

psa_status_t psa_crypto_driver key_derivation_get_input_size(
const psa_crypto_driver_key_derivation_inputs_t *inputs,
psa_key_derivation_step_t step,
size_t *size);
psa_status_t psa_crypto_driver_key_derivation_get_input_bytes(
const psa_crypto_driver_key_derivation_inputs_t *inputs,
psa_key_derivation_step_t step,
uint8_t *buffer, size_t buffer_size, size_t *buffer_length);
psa_status_t psa_crypto_driver_ key_derivation_get_input_key (
const psa_crypto_driver_key_derivation_inputs_t *inputs,
psa_key_derivation_step_t step,
const psa_key_attributes_t *attributes,
uint8_t** p_key_buffer, size_t *key_buffer_size);
psa_status_t psa_crypto_driver_ key_derivation_get_input_integer(
const psa_crypto_driver_key_derivation_inputs_t *inputs,
psa_key_derivation_step_t step,
uint64_t *value);

The get-data functions take the following parameters:
e The first parameter inputs must be a pointer passed by the core to a key derivation driver setup entry
point which has not returned yet.
e The step parameter indicates the input step whose content the driver wants to retrieve.

e On a successful invocation of psa_crypto_driver_key derivation_get_input_size, the core sets *size
to the size of the specified input in bytes.

e On a successful invocation of psa_crypto_driver_key_derivation_get_input_bytes, the core fills the
first N bytes of buffer with the specified input and sets *buffer_length to N, where N is the length of
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the input in bytes. The value of buffer_size must be at least N, otherwise this function fails with the
status PSA_ERROR_BUFFER_TOO_SMALL.

On a successful invocation of psa_crypto_driver_key_derivation_get_input_key, the core sets
*key_buffer to a pointer to a buffer containing the key context and *key_buffer_size to the size of the
key context in bytes. The key context buffer remains valid for the duration of the driver entry point. If
the driver needs to access the key context after the current entry point returns, it must make a copy
of the key context.

On a successful invocation of psa_crypto_driver_key_derivation_get_input_integer, the core sets
*value to the value of the specified input.

These functions can return the following statuses:

PSA_SUCCESS: the call succeeded and the requested value has been copied to the output parameter
(size, buffer, value or p_key_buffer) and if applicable the size of the value has been written to the
applicable parameter (buffer_length, key_buffer_size).

PSA_ERROR_DOES_NOT_EXIST: the input step is valid for this particular algorithm, but it is not part of the
initial inputs. This is not a fatal error. The driver will receive the input later as a long input.

PSA_ERROR_INVALID_ARGUMENT: the input type is not compatible with this function or was omitted. Call
psa_crypto_driver_key_derivation_get_input_type() to find out the actual type of this input step. This
is not a fatal error and the driver can, for example, subsequently call the appropriate function on the
same step.

PSA_ERROR_BUFFER_TOO_SMALL (psa_crypto_driver key_derivation_get_input_bytes only): the output
buffer is too small. This is not a fatal error and the driver can, for example, subsequently call the same
function again with a larger buffer. Call psa_crypto_driver_key_derivation_get_input_size to obtain
the required size.

The core may return other errors such as PSA_ERROR_CORRUPTION_DETECTED or
PSA_ERROR_COMMUNICATION_FAILURE to convey implementation-specific error conditions. Portable drivers
should treat such conditions as fatal errors.

4.4.4 Key derivation driver setup

A key derivation driver must implement the following entry point:

psa_status_t acme_key_derivation_setup(
acme_key_derivation_operation_t *operation,

psa_algorithm_t alg,
const psa_crypto_driver_key_derivation_inputs_t *inputs);

operation is a zero-initialized operation object.

e alg is the algorithm for the key derivation operation. It does not include a key agreement component.
e inputs iS an opaque pointer to the initial inputs for the key derivation.
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4.4.5 Key derivation driver long inputs

Some key derivation algorithms take long inputs which it would not be practical to pass in the initial inputs.
A driver that implements a key derivation algorithm that takes such inputs must provide a
"key_derivation_input_step" entry point. The core calls this entry point for all the long inputs after calling
"acme_key_derivation_setup". A long input step may be fragmented into multiple calls of
psa_key_derivation_input_bytes(), and the core may reassemble or refragment those fragments before
passing them to the driver. Calls to this entry point for different step values occur in an unspecified order
and may be interspersed.

psa_status_t acme_key_derivation_input_step(
acme_key_derivation_operation_t *operation,
psa_key_derivation_step_t step,
const uint8_t *input, size_t input_length);

At the time of writing, no standard key derivation algorithm has long inputs. It is likely that such algorithms
will be added in the future.

4.4.6 Key derivation driver operation capacity

The core keeps track of an operation’s capacity and enforces it. The core guarantees that it will not request
output beyond the capacity of the operation, with one exception: opaque drivers that support

"key derivation_output_key", i.e. for key types where the derived key material is not a direct copy of the key
derivation’s output stream.

Such drivers must enforce the capacity limitation and must return PSA_ERROR_INSUFFICIENT_CAPACITY from
any output request that exceeds the operation’s capacity. Such drivers must provide the following entry
point:

psa_status_t acme_key_derivation_set_capacity(
acme_key_derivation_operation_t *operation,
size_t capacity);

capacity is guaranteed to be less or equal to any value previously set through this entry point, and is
guaranteed not to be PSA_KEY_DERIVATION_UNLIMITED_CAPACITY.

If this entry point has not been called, the operation has an unlimited capacity.

4.4.7 Key derivation driver outputs

A key derivation driver must provide the following entry point:

psa_status_t acme_key_derivation_output_bytes(
acme_key_derivation_operation_t *operation,
uint8_t *output, size_t length);

An opaque key derivation driver may provide the following entry points:

psa_status_t acme_key_derivation_output_key(
const psa_key_attributes_t *attributes,
acme_key_derivation_operation_t *operation,
(continues on next page)
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(continued from previous page)
uint8_t *key_buffer, size_t key_buffer_size, size_t *key_buffer_length);
psa_status_t acme_key_derivation_verify_bytes(
acme_key_derivation_operation_t *operation,
const uint8_t *expected output, size_t length);
psa_status_t acme_key_derivation_verify_key(
acme_key_derivation_operation_t *operation,
uint8_t *key_buffer, size_t key_buffer_size);

The core calls a key derivation driver’s output entry point when the application calls
psa_key_derivation_output_bytes(), psa_key_derivation_output_key(), psa_key_derivation_verify_bytes()
Or psa_key_derivation_verify_key().

If the key derivation’s PSA_KEY_DERIVATION_INPUT_SECRET input is in a secure element and the derivation
operation is handled by that secure element, the core performs the following steps:

e For acall to psa_key_derivation_output_key():

1. If the derived key is in the same secure element, if the driver has an "key_derivation_output_key"
entry point, call that entry point. If the driver has no such entry point, or if that entry point
returns PSA_ERROR_NOT_SUPPORTED, continue with the following steps, otherwise stop.

2. If the driver’s capabilities indicate that its "import_key" entry point does not support the derived
key, stop and return PSA_ERROR_NOT_SUPPORTED.

3. Otherwise proceed as for psa_key_derivation_output_bytes(), then import the resulting key
material.

e For a call to psa_key_derivation_verify_key():

1. If the driver has a "key_derivation_verify_key" entry point, call it and stop.

2. Call the driver’s "export_key" entry point on the key object that contains the expected value,
then proceed as for psa_key_derivation_verify_bytes().

e For a call to psa_key_derivation_verify_bytes():

1. If the driver has a "key_derivation_verify_bytes" entry point, call that entry point on the
expected output, then stop.

2. Otherwise, proceed as for psa_key_derivation_output_bytes(), and compare the resulting output
to the expected output inside the core.

e For a call to psa_key_derivation_output_bytes():

1. Call the "key_derivation_output_bytes" entry point. The core may call this entry point multiple
times to implement a single call from the application when deriving a cooked (non-raw) key as
described below, or if the output size exceeds some implementation limit.

If the key derivation operation is not handled by an opaque driver as described above, the core calls the
"key_derivation_output_bytes" from the applicable transparent driver (or multiple drivers in succession if
fallback applies). In some cases, the core then calls additional entry points in the same or another driver:

e For a call to psa_key_derivation_output_key() for some key types, the core calls a transparent driver’s
"derive_key" entry point. See Transparent cooked key derivation on page 23.

e For a call to psa_key_derivation_output_key() where the derived key is in a secure element, call that
secure element driver’s "import_key" entry point.
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4.4.8 Transparent cooked key derivation

Key derivation is said to be raw for some key types, where the key material of a derived (8n)-bit key consists
of the next n bytes of output from the key derivation, and cooked otherwise. When deriving a raw key, the
core only calls the driver’s "output_bytes" entry point, except when deriving a key entirely inside a secure
element as described in Key derivation driver outputs on page 21. When deriving a cooked key, the core calls
a transparent driver’s "derive_key" entry point if available.

A capability for cooked key derivation contains the following properties (this is not a subset of the usual
entry point properties):
e "entry_points" (mandatory, list of strings). Must be ["derive_key"].

e 'derived_types" (mandatory, list of strings). Each element is a key type specification. This capability
only applies when deriving a key of the specified type.

e "derived_sizes" (optional, list of integers). Each element is a size for the derived key, in bits. This
capability only applies when deriving a key of the specified sizes. If absent, this capability applies to all
sizes for the specified types.

e "memory" (optional, boolean). If present and true, the driver must define a type "derive_key_memory_t"
and the core will allocate an object of that type as specified below.

"names" (optional, object). A mapping from entry point names to C function and type names, as usual.

"fallback" (optional, boolean). If present and true, the driver may return PSA_ERROR_NOT_SUPPORTED if it
only partially supports the specified mechanism, as usual.

A transparent driver with the prefix "acme" that implements cooked key derivation must provide the
following type and function:

typedef ... acme_derive_key_memory_t; // only if the "memory" property is true
psa_status_t acme_derive_key(
const psa_key_attributes_t *attributes,
const uint8_t *input, size_t input_length,
acme_derive_key_memory_t *memory, // if the "memory" property is false: void*
uint8_t *key_buffer, size_t key_buffer_size, size_t *key_buffer_length);

e attributes contains the attributes of the specified key. Note that only the key type and the bit-size
are guaranteed to be set.

e input is a buffer of input_length bytes which contains the raw key stream, i.e. the data that
psa_key_derivation_output_bytes() would return.

e |f "memory" property in the driver capability is true, memory is a data structure that the driver may use to
store data between successive calls of the "derive_key" entry point to derive the same key. If the
"memoxy" property is false or absent, the memory parameter is a null pointer.

e key_buffer is a buffer for the output material, in the appropriate export format for the key type. Its
size is key_buffer_size bytes.

e On success, *key_buffer_length must contain the number of bytes written to key_buffer.
This entry point may return the following statuses:

e PSA_SUCCESS: a key was derived successfully. The driver has placed the representation of the key in
key_buffer.
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e PSA_ERROR_NOT_SUPPORTED (for the first call only) (only if fallback is enabled): the driver cannot fulfill this
request, but a fallback driver might.

e PSA_ERROR_INSUFFICIENT_DATA: the core must call the "derive_key" entry point again with the same
memory Object and with subsequent data from the key stream.

e Any other error is a fatal error.
The core calls the "derive_key" entry point in a loop until it returns a status other than
PSA_ERROR_INSUFFICIENT_DATA. Each call has a successive fragment of the key stream. The memory object is

guaranteed to be the same for successive calls, but note that its address may change between calls. Before
the first call, *memory is initialized to all-bits-zero.

For standard key types, the "derive_key" entry point is called with a certain input length as follows:

e PSA_KEY_TYPE_DES: the length of the key.

e PSA_KEY_TYPE_ECC_KEY_PAIR(...), PSA_KEY_TYPE_DH_KEY_PAIR(...): m bytes, where the bit-size of the
key n satisfies 8(m-1) < n <= 8m.

e PSA_KEY_TYPE_RSA_KEY_PAIR: an implementation-defined length. A future version of this specification
may specify a length.

e Other key types: not applicable.

See Open questions around cooked key derivation on page 49 for some points that may not be fully settled.

449 Key agreement
The core always decouples key agreement from symmetric key derivation.

To implement a call to psa_key_derivation_key_agreement () where the private key is in a secure element that
has a "key_agreement_to_key" entry point which is applicable for the given key type and algorithm, the core
calls the secure element driver as follows:

1. Call the "key_agreement_to_key" entry point to create a key object containing the shared secret. The
key object is volatile and has the type PSA_KEY_TYPE_DERIVE.

2. Call the "key_derivation_setup" entry point, passing the resulting key object .

3. Perform the rest of the key derivation, up to and including the call to the "key_derivation_abort"
entry point.

4. Call the "destroy_key" entry point to destroy the key containing the key object.

In other cases, the core treats psa_key_derivation_key_agreement() as if it was a call to
psa_raw_key_agreement () followed by a call to psa_key_derivation_input_bytes() on the shared secret.

The entry points related to key agreement have the following prototypes for a driver with the prefix "acme":

psa_status_t acme_key_agreement(psa_algorithm_t alg,
const psa_key_attributes_t *our_attributes,
const uint8_t *our_key_buffer,
size_t our_key_buffer_length,
const uint8_t *peer_key,
size_t peer_key_length,
(continues on next page)
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(continued from previous page)
uint8_t *output,
size_t output_size,
size_t *output_length);
psa_status_t acme_key_agreement_to_key(psa_algorithm_t alg,
const psa_key_attributes_t *our_attributes,
const uint8_t *our_key_buffer,
size_t our_key_buffer_length,
const uint8_t *peer_key,
size_t peer_key_length,
const psa_key_attributes_t *shared_secret_attributes,
uint8_t *shared_secret_key_buffer,
size_t shared_secret_key_buffer_size,
size_t *shared_secret_key_buffer_length);

Note that unlike most other key creation entry points, in "acme_key_agreement_to_key", the attributes for the
shared secret are not placed near the beginning, but rather grouped with the other parameters related to
the shared secret at the end of the parameter list. This is to avoid potential confusion with the attributes of
the private key that is passed as an input.

4.5 Driver entry points for PAKE

A PAKE operation is divided into two stages: collecting inputs and computation. Core side is responsible for
keeping inputs and core set-data functions do not have driver entry points. Collected inputs are available
for drivers via get-data functions for password, role and cipher_suite.

4.5.1 PAKE driver dispatch logic

The core decides whether to dispatch a PAKE operation to a driver based on the location of the provided
password. When all inputs are collected and "psa_pake_output" or "psa_pake_input" is called for the first
time "pake_setup" driver entry point is invoked.

1. If the location of the password is the local storage

e if there is a transparent driver for the specified ciphersuite, the core calls that driver's
"pake_setup" and subsequent entry points.

e otherwise, or on fallback, the core uses its built-in implementation.

2. If the location of the password is the location of a secure element - the core calls the "pake_setup"
entry point of the secure element driver and subsequent entry points.

4.5.2 Summary of entry points for PAKE
A PAKE driver has the following entry points:

e "pake_setup" (Mmandatory): always the first entry point to be called. It is called when all inputs are
collected and the computation stage starts.

e "pake_output" (mandatory): derive cryptographic material for the specified step and output it.
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e 'pake_input" (mandatory): provides cryptographic material in the format appropriate for the specified

step.

e "pake_get_implicit_key" (mandatory): returns implicitly confirmed shared secret from a PAKE.

e "pake_abort" (mandatory): always the last entry point to be called.

For naming purposes, here and in the following subsection, this specification takes the example of a driver
with the prefix "acme" that implements the PAKE entry point family with a capability that does not use the
"names" property to declare different type and entry point names. Such a driver must implement the
following type and functions, as well as the entry points listed above and described in the following

subsections:

typedef ... acme_pake_operation_t;
psa_status_t acme_pake_abort( acme_pake_operation_t *operation );

4.5.3 PAKE driver inputs

The core conveys the initial inputs for a PAKE operation via an opaque data structure of type

psa_crypto_driver_pake_inputs_t.

typedef ... psa_crypto_driver_pake_inputs_t; // implementation-specific type

A driver receiving an argument that points to a psa_crypto_driver_pake_inputs_t can retrieve its contents by

calling one of the get-data functions below.

psa_status_t psa_crypto_driver_ pake_get_password_len(
const psa_crypto_driver_pake_inputs_t *inputs,
size_t *password_len);

psa_status_t psa_crypto_driver pake_get_password_bytes(
const psa_crypto_driver_pake_inputs_t *inputs,
uint8_t *buffer, size_t buffer_size, size_t *buffer_length);

psa_status_t psa_crypto_driver pake_get_password_key(
const psa_crypto_driver_pake_inputs_t *inputs,
uint8_t** p_key_buffer, size_t *key_buffer_size,
const psa_key_attributes_t *attributes);

psa_status_t psa_crypto_driver_pake_get_user_len(
const psa_crypto_driver_pake_inputs_t *inputs,
size_t *user_len);

psa_status_t psa_crypto_driver pake_get_user(
const psa_crypto_driver_pake_inputs_t *inputs,
uint8_t *user_id, size_t user_id_size, size_t *user_id_len);

psa_status_t psa_crypto_driver_pake_get_peer_len(
const psa_crypto_driver_pake_inputs_t *inputs,
size_t *peer_len);
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psa_status_t psa_crypto_driver pake_get_peer(
const psa_crypto_driver_pake_inputs_t *inputs,
uint8_t *peer_id, size_t peer_id_size, size_t *peer_id_length);

psa_status_t psa_crypto_driver_pake_get_cipher_suite(
const psa_crypto_driver_pake_inputs_t *inputs,
psa_pake_cipher_suite_t *cipher_suite);

The get-data functions take the following parameters:

The first parameter inputs must be a pointer passed by the core to a PAKE driver setup entry point. Next
parameters are return buffers (must not be null pointers).

These functions can return the following statuses:

e PSA_SUCCESS: value has been successfully obtained
e PSA_ERROR_BAD_STATE: the inputs are not ready

® PSA_ERROR_BUFFER_TOO_SMALL (psa_crypto_driver_pake_get_password_bytes and
psa_crypto_driver_pake_get_password_key only): the output buffer is too small. This is not a fatal error
and the driver can, for example, subsequently call the same function again with a larger buffer. Call
psa_crypto_driver_pake_get_password_len to obtain the required size.

4.5.4 PAKE driver setup

psa_status_t acme_pake_setup( acme_pake_operation_t *operation,
const psa_crypto_driver_pake_inputs_t *inputs );

e operation is a zero-initialized operation object.

e inputs is an opaque pointer to the inputs for the PAKE operation.

The setup driver function should preserve the inputs using get-data functions.

The pointer output by psa_crypto_driver_pake_get_password_key is only valid until the “pake_setup” entry
point returns. Opaque drivers must copy all relevant data from the key buffer during the “pake_setup” entry
point and must not store the pointer itself.

4.5.5 PAKE driver output

psa_status_t acme_pake_output(acme_pake_operation_t *operation,
psa_crypto_driver_pake_step_t step,
uint8_t *output,
size_t output_size,
size_t *output_length);

e operation iS an operation object.

e step computation step based on which driver should perform an action.
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output buffer where the output is to be written.
output_size size of the output buffer in bytes.

output_length the number of bytes of the returned output.

For PSA_ALG_JPAKE the following steps are available for output operation: step can be one of the following
values:

PSA_JPAKE_X1_STEP_KEY_SHARE Round 1: output our key share (for ephemeral private key X1)
PSA_JPAKE_X1_STEP_ZK_PUBLIC Round 1: output Schnorr NIZKP public key for the X1 key
PSA_JPAKE_X1_STEP_ZK_PROOF Round 1: output Schnorr NIZKP proof for the X1 key
PSA_JPAKE_X2_STEP_KEY_SHARE Round 1: output our key share (for ephemeral private key X2)
PSA_JPAKE_X2_STEP_zK_PUBLIC Round 1: output Schnorr NIZKP public key for the X2 key
PSA_JPAKE_X2_STEP_ZK_PROOF Round 1: output Schnorr NIZKP proof for the X2 key
PSA_JPAKE_X2S_STEP_KEY_SHARE Round 2: output our X2S key

PSA_JPAKE_X2S_STEP_ZK_PUBLIC Round 2: output Schnorr NIZKP public key for the X2S key
PSA_JPAKE_X2S_STEP_ZK_PROOF Round 2: output Schnorr NIZKP proof for the X2S key

4.5.6 PAKE driver input

psa_status_t acme_pake_input(acme_pake_operation_t *operation,

psa_crypto_driver_pake_step_t step,
uint8_t *input,
size_t input_size);

operation is an operation object.
step computation step based on which driver should perform an action.
input buffer containing the input.

input_length length of the input in bytes.

For psA_ALG_JPAKE the following steps are available for input operation:

PSA_JPAKE_X1_STEP_KEY_SHARE Round 1: input key share from peer (for ephemeral private key X1)
PSA_JPAKE_X1_STEP_zK_PUBLIC Round 1: input Schnorr NIZKP public key for the X1 key
PSA_JPAKE_X1_STEP_ZK_PROOF Round 1: input Schnorr NIZKP proof for the X1 key
PSA_JPAKE_X2_STEP_KEY_SHARE Round 1: input key share from peer (for ephemeral private key X2)
PSA_JPAKE_X2_STEP_ZK_PUBLIC Round 1: input Schnorr NIZKP public key for the X2 key
PSA_JPAKE_X2_STEP_ZK_PROOF Round 1: input Schnorr NIZKP proof for the X2 key
PSA_JPAKE_X4S_STEP_KEY_SHARE Round 2: input X4S key from peer

PSA_JPAKE_X4S_STEP_ZK_PUBLIC Round 2: input Schnorr NIZKP public key for the X4S key
PSA_JPAKE_X4S_STEP_ZK_PROOF Round 2: input Schnorr NIZKP proof for the X4S key

The core checks that input_length is not greater than PSA_PAKE_INPUT_SIZE(alg, prim, step) and the driver
can rely on that.
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4.5.7 PAKE driver get implicit key

psa_status_t acme_pake_get_implicit_key(
acme_pake_operation_t *operation,
uint8_t *output, size_t output_size,
size_t *output_length );

e operation The driver PAKE operation object to use.
e output Buffer where the implicit key is to be written.
e output_size Size of the output buffer in bytes.

e output_length On success, the number of bytes of the implicit key.

4.6 Driver entry points for key management

The driver entry points for key management differ significantly between transparent drivers and opaque
drivers. This section describes common elements. Refer to the applicable section for each driver type for
more information.

The entry points that create or format key data have the following prototypes for a driver with the prefix
"acme":

psa_status_t acme_import_key(const psa_key_attributes_t *attributes,
const uint8_t *data,
size_t data_length,
uint8_t *key_buffer,
size_t key_buffer_ size,
size_t *key_buffer_length,
size_t *bits); // additional parameter, see below
psa_status_t acme_generate_key(const psa_key_attributes_t *attributes,
uint8_t *key_buffer,
size_t key_buffer_size,
size_t *key_buffer_length);

Additionally, opaque drivers can create keys through their "key_derivation_output_key" and
"key_agreement_key" entry points. Transparent drivers can create key material through their "derive_key"
entry point.

TODO: copy

e The key attributes (attributes) have the same semantics as in the Crypto API.

e For the "import_key" entry point, the input in the data buffer is either the export format or an
implementation-specific format that the core documents as an acceptable input format for
psa_import_key().

e The size of the key data buffer key_buffer is sufficient for the internal representation of the key. For a
transparent driver, this is the key’s export format. For an opaque driver, this is the size determined
from the driver description and the key attributes, as specified in the section Key format for opaque
drivers on page 38.
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e For an opaque driver with an "allocate_key" entry point, the content of the key data buffer on entry
is the output of that entry point.

e The "import_key" entry point must determine or validate the key size and set *bits as described in Key
size determination on import.

All key creation entry points must ensure that the resulting key is valid as specified in Key validation. This is
primarily important for import entry points since the key data comes from the application.

4.6.1 Key size determination on import

The "import_key" entry point must determine or validate the key size. The Crypto APl exposes the key size
as part of the key attributes. When importing a key, the key size recorded in the key attributes can be either
a size specified by the caller of the APl (who may not be trusted), or @ which indicates that the size must be
calculated from the data.

When the core calls the "import_key" entry point to process a call to psa_import_key, it passes an attributes
structure such that psa_get_key_bits(attributes) is the size passed by the caller of psa_import_key. If this
size is @, the "import_key" entry point must set the bits input-output parameter to the correct key size. The
semantics of bits is as follows:

e The core sets *bits to psa_get_key_bits(attributes) before calling the "import_key" entry point.

e [f *bits == 0, the driver must determine the key size from the data and set *bits to this size. If the key
size cannot be determined from the data, the driver must return PSA_ERROR_INVALID_ARGUMENT (as of
version 1.0 of the Crypto API specification, it is possible to determine the key size for all standard key
types).

e [f *bits I= 0, the driver must check the value of *bits against the data and return
PSA_ERROR_INVALID_ARGUMENT if it does not match. If the driver entry point changes *bits to a different
value but returns Psa_success, the core will consider the key as invalid and the import will fail.

4.6.2 Key validation

Key creation entry points must produce valid key data. Key data is valid if operations involving the key are
guaranteed to work functionally and not to cause indirect security loss. Operation functions are supposed
to receive valid keys, and should not have to check and report invalid keys. For example:

e |f a cryptographic mechanism is defined as having keying material of a certain size, or if the keying
material involves integers that have to be in a certain range, key creation must ensure that the keying
material has an appropriate size and falls within an appropriate range.

e [f a cryptographic operation involves a division by an integer which is provided as part of a key, key
creation must ensure that this integer is nonzero.

e If a cryptographic operation involves two keys A and B (or more), then the creation of A must ensure
that using it does not risk compromising B. This applies even if A's policy does not explicitly allow a
problematic operation, but A is exportable. In particular, public keys that can potentially be used for
key agreement are considered invalid and must not be created if they risk compromising the private
key.

e On the other hand, it is acceptable for import to accept a key that cannot be verified as valid if using
this key would at most compromise the key itself and material that is secured with this key. For
example, RSA key import does not need to verify that the primes are actually prime. Key import may
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accept an insecure key if the conseqguences of the insecurity are no worse than a leak of the key prior
to its import.

With opaque drivers, the key context can only be used by code from the same driver, so key validity is
primarily intended to report key creation errors at creation time rather than during an operation. With
transparent drivers, the key context can potentially be used by code from a different provider, so key validity
is critical for interoperability.

This section describes some minimal validity requirements for standard key types.

e For symmetric key types, check that the key size is suitable for the type.
e For DES (PSA_KEY_TYPE_DES), additionally verify the parity bits.

e For RSA (PSA_KEY_TYPE_RSA_PUBLIC_KEY, PSA_KEY_TYPE_RSA_KEY_PAIR), check the syntax of the key and
make sanity checks on its components. TODO: what sanity checks? Value ranges (e.g. p < n), sanity
checks such as parity, minimum and maximum size, what else?

e For elliptic curve private keys (PSA_KEY_TYPE_ECC_KEY_PAIR), check the size and range. TODO: what
else?

e For elliptic curve public keys (PSA_KEY_TYPE_ECC_PUBLIC_KEY), check the size and range, and that the
point is on the curve. TODO: what else?

4.7 Entropy collection entry point

A driver can declare an entropy source by providing a "get_entropy" entry point. This entry point has the
following prototype for a driver with the prefix "acme":

typedef uint32_t psa_driver_get_entropy_flags_t;

psa_status_t acme_get_entropy(psa_driver get_entropy_flags_t flags,
size_t *estimate_bits,
uint8_t *output,
size_t output_size);

The semantics of the parameters is as follows:

e flags: a bit-mask of entropy collection flags.

e estimate_bits: on success, an estimate of the amount of entropy that is present in the output buffer, in
bits. This must be at least 1 on success. The value is ignored on failure. Drivers should return a
conservative estimate, even in circumstances where the quality of the entropy source is degraded due
to environmental conditions (e.g. undervolting, low temperature, etc.).

e output: on success, this buffer contains non-deterministic data with an estimated entropy of at least
*estimate_bits bits. When the entropy is coming from a hardware peripheral, this should preferably
be raw or lightly conditioned measurements from a physical process, such that statistical tests run
over a sufficiently large amount of output can confirm the entropy estimates. But this specification
also permits entropy sources that are fully conditioned, for example when the Crypto API
implementation is running within an application in an operating system and "get_entropy" returns data
from the random generator in the operating system'’s kernel.

e output_size: the size of the output buffer in bytes. This size should be large enough to allow a driver
to pass unconditioned data with a low density of entropy; for example a peripheral that returns eight
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bytes of data with an estimated one bit of entropy cannot provide meaningful output in less than 8
bytes.

Note that there is no output parameter indicating how many bytes the driver wrote to the buffer. Such an
output length indication is not necessary because the entropy may be located anywhere in the buffer, so
the driver may write less than output_size bytes but the core does not need to know this. The output
parameter estimate_bits contains the amount of entropy, expressed in bits, which may be significantly less
than output_size * 8.

The entry point may return the following statuses:

e PSA_SUCCESS: success. The output buffer contains some entropy.

e PSA_ERROR_INSUFFICIENT_ENTROPY: no entropy is available without blocking. This is only permitted if the
PSA_DRIVER_GET_ENTROPY_NONBLOCK flag is set. The core may call get_entropy again later, giving time for
entropy to be gathered or for adverse environmental conditions to be rectified.

e PSA_ERROR_NOT_SUPPORTED: a flag is not recognized. The core may try again with different flags.
e Other error codes indicate a transient or permanent failure of the entropy source.

Unlike most other entry points, if multiple transparent drivers include a "get_entropy" point, the core will
call all of them (as well as the entry points from opaque drivers). Fallback is not applicable to "get_entropy".

4.7.1 Entropy collection flags

e PSA_DRIVER_GET_ENTROPY_NONBLOCK: If this flag is clean, the driver should block until it has at least one
bit of entropy. If this flag is set, the driver should avoid blocking if no entropy is readily available.

e PSA_DRIVER_GET_ENTROPY_KEEPALIVE: This flag is intended to help with energy management for
entropy-generating peripherals. If this flag is set, the driver should expect another call to
acme_get_entropy after a short time. If this flag is clear, the core is not expecting to call the
"get_entropy" entry point again within a short amount of time (but it may do so nonetheless).

A very simple core can just pass flags=0. All entropy drivers should support this case.

If the entry point returns PSA_ERROR_NOT_SUPPORTED, the core may try calling the entry point again with fewer
flags. Drivers should be consistent from one call to the next with respect to which flags they support. The
core may cache an acceptable flag mask on its first call to an entry point.

4.7.2 Entropy collection and blocking

The intent of the NONBLOCK and KEEPALIVE flags is to support drivers for TRNG (True Random Number
Generator, i.e. an entropy source peripheral) that have a long ramp-up time, especially on platforms with
multiple entropy sources.

Here is a suggested call sequence for entropy collection that leverages these flags:
1. The core makes a first round of calls to "get_entropy" on every source with the NONBLOCK flag set and
the KEEPALIVE flag set, so that drivers can prepare the TRNG peripheral.

2. The core makes a second round of calls with the NoNBLOCK flag clear and the KEEPALIVE flag clear to
gather needed entropy.

3. If the second round does not collect enough entropy, the core makes more similar rounds, until the
total amount of collected entropy is sufficient.
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4.8 Miscellaneous driver entry points

4.8.1 Driver initialization

A driver may declare an "init" entry point in a capability with no algorithm, key type or key size. If so, the
core calls this entry point once during the initialization of the Crypto APl implementation. If the init entry
point of any driver fails, the initialization of the Crypto APl implementation fails.

When multiple drivers have an init entry point, the order in which they are called is unspecified. It is also
unspecified whether other drivers’ "init" entry points are called if one or more init entry point fails.

On platforms where the Crypto APl implementation is a subsystem of a single application, the initialization
of the Crypto APl implementation takes place during the call to psa_crypto_init(). On platforms where the
Crypto APl implementation is separate from the application or applications, the initialization of the Crypto
APl implementation takes place before or during the first time an application calls psa_crypto_init().

The init entry point does not take any parameter.

4.9 Combining multiple drivers

To declare a cryptoprocessor can handle both cleartext and wrapped keys, you need to provide two driver
descriptions, one for a transparent driver and one for an opaque driver. You can use the mapping in
capabilities’ "names" property to arrange for multiple driver entry points to map to the same C function.

5 Transparent drivers

5.1 Key format for transparent drivers

The format of a key for transparent drivers is the same as in applications. Refer to the documentation in the
Key format sub-section of each key type in §9.2 Key types in the Crypto API specification. For custom key
types defined by an implementation, refer to the documentation of that implementation.

5.2 Key management with transparent drivers

Transparent drivers may provide the following key management entry points:

e "import_key": called by psa_import_key (), only when importing a key pair or a public key (key such that
PSA_KEY_TYPE_IS_ASYMMETRIC is true).

e "generate_key": called by psa_generate_key (), only when generating a key pair (key such that
PSA_KEY_TYPE_IS_KEY_PAIR is true).

e "key_derivation_output_key": called by psa_key_derivation_output_key (), only when deriving a key
pair (key such that PSA_KEY_TYPE_IS_KEY_PAIR is true).

e "export_public_key": called by the core to obtain the public key of a key pair. The core may call this
function at any time to obtain the public key, which can be for psa_export_public_key() but also at
other times, including during a cryptographic operation that requires the public key such as a call to
psa_verify_message() on a key pair object.

111106 Copyright © 2020-2025 Arm Limited and/or its affiliates Page 33
1.0 Alpha (Issue 1) Non-confidential


https://arm-software.github.io/psa-api/crypto/1.3/api/keys/types.html#key-types

Transparent drivers are not involved when exporting, copying or destroying keys, or when importing,
generating or deriving symmetric keys.

5.2.1 Key import with transparent drivers

As discussed in the general section about key management entry points, the key import entry points has the
following prototype for a driver with the prefix "acme":

psa_status_t acme_import_key(const psa_key_attributes_t *attributes,
const uint8_t *data,
size_t data_length,
uint8_t *key_buffer,
size_t key_buffer_size,
size_t *key_buffer_length,
size_t *bits);

This entry point has several roles:

1. Parse the key data in the input buffer data. The driver must support the export format for the key
types that the entry point is declared for. It may support additional formats as specified in the
description of psa_import_key() in the Crypto API specification.

2. Validate the key data. The necessary validation is described in Key validation on page 30.
3. Determine the key size and output it through *bits.

4. Copy the validated key data from data to key_buffer. The output must be in the canonical format
documented for the key type: see the Key format sub-section of the key type in §9.2 Key types, so if
the input is not in this format, the entry point must convert it.

5.3 Random generation entry points

A transparent driver may provide an operation family that can be used as a cryptographic random number
generator. The random generation mechanism must obey the following requirements:

e The random output must be of cryptographic quality, with a uniform distribution. Therefore, if the
random generator includes an entropy source, this entropy source must be fed through a CSPRNG
(cryptographically secure pseudo-random number generator).

e Random generation is expected to be fast. (If a device can provide entropy but is slow at generating
random data, declare it as an entropy driver instead.)

e The random generator should be able to incorporate entropy provided by an outside source. If it isn't,
the random generator can only be used if it's the only entropy source on the platform. (A random
generator peripheral can be declared as an entropy source instead of a random generator; this way
the core will combine it with other entropy sources.)

e The random generator may either be deterministic (in the sense that it always returns the same data
when given the same entropy inputs) or non-deterministic (including its own entropy source). In other
words, this interface is suitable both for PRNG (pseudo-random number generator, also known as
DRBG (deterministic random bit generator)) and for NRBG (non-deterministic random bit generator).
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If no driver implements the random generation entry point family, the core provides an unspecified random
generation mechanism.

This operation family requires the following type, entry points and parameters (TODO: where exactly are
the parameters in the JSON structure?):

e Type "random_context_t": the type of a random generation context.

e "init_random" (entry point, optional): if this function is present, the core calls it once after allocating a
"random_context_t" object.

"add_entropy" (entry point, optional): the core calls this function to inject entropy. This entry point is
optional if the driver is for a peripheral that includes an entropy source of its own, however random
generator drivers without entropy injection have limited portability since they can only be used on
platforms with no other entropy source. This entry point is mandatory if "initial_entropy_size" is
nonzero.

e "get_random" (entry point, mandatory): the core calls this function whenever it needs to obtain random
data.

e "initial_entropy_size" (integer, mandatory): the minimum number of bytes of entropy that the core
must supply before the driver can output random data. This can be o if the driver is for a peripheral
that includes an entropy source of its own.

e "reseed_entropy_size" (integer, optional): the minimum number of bytes of entropy that the core
should supply via "add_entropy" when the driver runs out of entropy. This value is also a hint for the
size to supply if the core makes additional calls to "add_entropy", for example to enforce prediction
resistance. If omitted, the core should pass an amount of entropy corresponding to the expected
security strength of the device (for example, pass 32 bytes of entropy when reseeding to achieve a
security strength of 256 bits). If specified, the core should pass the larger of "reseed_entropy_size"
and the amount corresponding to the security strength.

Random generation is not parametrized by an algorithm. The choice of algorithm is up to the driver.

5.3.1 Random generator initialization

The "init_random" entry point has the following prototype for a driver with the prefix "acme":

psa_status_t acme_init_random(acme_random_context_t *context);

The core calls this entry point once after allocating a random generation context. Initially, the context object
is all-bits-zero.

If a driver does not have an "init_random" entry point, the context object passed to the first call to
"add_entropy" Or "get_random" will be all-bits-zero.

5.3.2 Entropy injection
The "add_entropy" entry point has the following prototype for a driver with the prefix "acme":
psa_status_t acme_add_entropy(acme_random_context_t *context,

const uint8_t *entropy,
size_t entropy_size);
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The semantics of the parameters is as follows:

e context: a random generation context. On the first call to "add_entropy", this object has been initialized
by a call to the driver’s "init_random" entry point if one is present, and to all-bits-zero otherwise.

e entropy: a buffer containing full-entropy data to seed the random generator. “Full-entropy” means that
the data is uniformly distributed and independent of any other observable quantity.

e entropy_size: the size of the entropy buffer in bytes. It is guaranteed to be at least 1, but it may be
smaller than the amount of entropy that the driver needs to deliver random data, in which case the
core will call the "add_entropy" entry point again to supply more entropy.

The core calls this function to supply entropy to the driver. The driver must mix this entropy into its internal
state. The driver must mix the whole supplied entropy, even if there is more than what the driver requires,
to ensure that all entropy sources are mixed into the random generator state. The driver may mix additional
entropy of its own.

The core may call this function at any time. For example, to enforce prediction resistance, the core can call
"add_entropy" immediately after each call to "get_random". The core must call this function in two
circumstances:

e Before the first call to the "get_random" entry point, to supply "initial_entropy_size" bytes of entropy.

e After a call to the "get_random" entry point returns less than the required amount of random data, to
supply at least "reseed_entropy_size" bytes of entropy.

When the driver requires entropy, the core can supply it with one or more successive calls to the
"add_entropy" entry point. If the required entropy size is zero, the core does not need to call "add_entropy".

5.3.3 Combining entropy sources with a random generation driver

This section provides guidance on combining one or more entropy sources (each having a "get_entropy"
entry point) with a random generation driver (with an "add_entropy" entry point).

Note that "get_entropy" returns data with an estimated amount of entropy that is in general less than the
buffer size. The core must apply a mixing algorithm to the output of "get_entropy" to obtain full-entropy
data.

For example, the core may use a simple mixing scheme based on a pseudorandom function family (Fy) with
an E-bit output where E = 8 entropysi,e and entropysise is the desired amount of entropy in bytes (typically
the random driver’s "initial_entropy_size" property for the initial seeding and the "reseed_entropy_size"
property for subsequent reseeding). The core calls the "get_entropy" points of the available entropy drivers,
outputting a string s; and an entropy estimate e; on the ith call. It does so until the total entropy estimate e;
+ey+ ... +eyisatleast E. The core then calculates Fi(O) where k = s1 || so || ... || sn. This value is a string of
entropysize, and since (Fy) is a pseudorandom function family, F(O) is uniformly distributed over strings of
entropysie bytes. Therefore F(0) is a suitable value to pass to "add_entropy".

Note that the mechanism above is only given as an example. Implementations may choose a different
mechanism, for example involving multiple pools or intermediate compression functions.
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5.3.4 Random generator drivers without entropy injection

Random generator drivers should have the capability to inject additional entropy through the "add_entropy"
entry point. This ensures that the random generator depends on all the entropy sources that are available
on the platform. A driver where a call to "add_entropy" does not affect the state of the random generator is
not compliant with this specification.

However, a driver may omit the "add_entropy" entry point. This limits the driver’s portability:
implementations of the Crypto API specification may reject drivers without an "add_entropy" entry point, or
only accept such drivers in certain configurations. In particular, the "add_entropy" entry point is required if:

e the implementation of the Crypto API includes an entropy source that is outside the driver; or

e the core saves random data in persistent storage to be preserved across platform resets.

5.3.5 The "get_random" entry point

The "get_random" entry point has the following prototype for a driver with the prefix "acme":

psa_status_t acme_get_random(acme_random_context_t *context,
uint8_t *output,
size_t output_size,
size_t *output_length);

The semantics of the parameters is as follows:

e context: a random generation context. If the driver’s "initial_entropy_size" property is nonzero, the
core must have called "add_entropy" at least once with a total of at least "initial_entropy_size" bytes
of entropy before it calls "get_random". Alternatively, if the driver's "initial_entropy_size" property is
zero and the core did not call "add_entropy", or if the driver has no "add_entropy" entry point, the core
must have called "init_random" if present, and otherwise the context is all-bits zero.

e output: on success (including partial success), the first *output_length bytes of this buffer contain
cryptographic-quality random data. The output is not used on error.

e output_size: the size of the output buffer in bytes.

e *output_length: on success (including partial success), the number of bytes of random data that the
driver has written to the output buffer. This is preferably output_size, but the driver is allowed to
return less data if it runs out of entropy as described below. The core sets this value to O on entry.
The value is not used on error.

The driver may return the following status codes:

e PSA_SUCCESS: the output buffer contains *output_length bytes of cryptographic-quality random data.
Note that this may be less than output_size; in this case the core should call the driver's "add_entropy"
method to supply at least "reseed_entropy_size" bytes of entropy before calling "get_random" again.

e PSA_ERROR_INSUFFICIENT_ENTROPY: the core must supply additional entropy by calling the "add_entropy"
entry point with at least "reseed_entropy_size" bytes.

e PSA_ERROR_NOT_SUPPORTED: the random generator is not available. This is only permitted if the driver
specification for random generation has the fallback property enabled.

e Other error codes such as PSA_ERROR_COMMUNICATION_FAILURE Or PSA_ERROR_HARDWARE_FAILURE indicate a
transient or permanent error.
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5.4 Fallback

Sometimes cryptographic accelerators only support certain cryptographic mechanisms partially. The
capability description language allows specifying some restrictions, including restrictions on key sizes, but it
cannot cover all the possibilities that may arise in practice. Furthermore, it may be desirable to deploy the
same binary image on different devices, only some of which have a cryptographic accelerators. For these
purposes, a transparent driver can declare that it only supports a capability partially, by setting the
capability’s "fallback" property to true.

If a transparent driver entry point is part of a capability which has a true "fallback" property and returns
PSA_ERROR_NOT_SUPPORTED, the core will call the next transparent driver that supports the mechanism, if there
is one. The core considers drivers in the order given by the driver description list.

If all the available drivers have fallback enabled and return PSA_ERROR_NOT_SUPPORTED, the core will perform
the operation using built-in code. As soon as a driver returns any value other than PSA_ERROR_NOT_SUPPORTED
(PsA_SUCCESS or a different error code), this value is returned to the application, without attempting to call
any other driver or built-in code.

If a transparent driver entry point is part of a capability where the "fallback" property is false or omitted,
the core should not include any other code for this capability, whether built in or in another transparent
driver.

6 Opaque drivers

Opaque drivers allow a Crypto APl implementation to delegate cryptographic operations to a separate
environment that might not allow exporting key material in cleartext. The opaque driver interface is
designed so that the core never inspects the representation of a key. The opaque driver interface is
designed to support two subtypes of cryptoprocessors:

e Some cryptoprocessors do not have persistent storage for individual keys. The representation of a key
is the key material wrapped with a master key which is located in the cryptoprocessor and never
exported from it. The core stores this wrapped key material on behalf of the cryptoprocessor.

e Some cryptoprocessors have persistent storage for individual keys. The representation of a key is an
identifier such as label or slot number. The core stores this identifier.

6.1 Key format for opaque drivers

The format of a key for opaque drivers is an opaque blob. The content of this blob is fully up to the driver.
The core merely stores this blob.

Note that since the core stores the key context blob as it is in memory, it must only contain data that is
meaningful after a reboot. In particular, it must not contain any pointers or transient handles.

The "key_context" property in the driver description specifies how to calculate the size of the key context
as a function of the key type and size. This is an object with the following properties:

e "base_size" (integer or string, optional): this many bytes are included in every key context. If omitted,
this value defaults to O.

e "key pair_size" (integer or string, optional): this many bytes are included in every key context for a
key pair. If omitted, this value defaults to O.
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"public_key_size" (integer or string, optional): this many bytes are included in every key context for a
public key. If omitted, this value defaults to O.

e "symmetric_factor" (integer or string, optional): every key context for a symmetric key includes this
many times the key size. If omitted, this value defaults to O.

e "store_public_key" (boolean, optional): If specified and true, for a key pair, the key context includes
space for the public key. If omitted or false, no additional space is added for the public key.

e "size_function" (string, optional): the name of a function that returns the number of bytes that the
driver needs in a key context for a key. This may be a pointer to function. This must be a C identifier;
more complex expressions are not permitted. If the core uses this function, it supersedes all the other
properties except for "builtin_key_size" (where applicable, if present).

e "builtin_key_size" (integer or string, optional): If specified, this overrides all other methods (including
the "size_function" entry point) to determine the size of the key context for built-in keys. This allows
drivers to efficiently represent application keys as wrapped key material, but built-in keys by an
internal identifier that takes up less space.

The integer properties must be C language constants. A typical value for "base_size" is
sizeof(acme_key_context_t) where acme_key_context_t is a type defined in a driver header file.

6.1.1 Size of a dynamically allocated key context

If the core supports dynamic allocation for the key context and chooses to use it, and the driver
specification includes the "size_function" property, the size of the key context is at least

size_function(key_type, key_bits)

where size_function is the function named in the "size function" property, key_type is the key type and
key_bits is the key size in bits. The prototype of the size function is

. code-block:

size_t size_function(psa_key_type_t key_type, size_t key_bits);

6.1.2 Size of a statically allocated key context

If the core does not support dynamic allocation for the key context or chooses not to use it, or if the driver
specification does not include the "size_function" property, the size of the key context for a key of type
key_type and of size key_bits bits is:

e For a key pair (PSA_KEY_TYPE_IS_KEY_PAIR(key_type) is true):
base_size + key_pair_size + public_key_overhead

where public_key_overhead = PSA_EXPORT_PUBLIC_KEY_MAX_SIZE(key_type, key_bits) if the
"store_public_key" property is true and public_key_overhead = @ otherwise.

e For a public key (PSA_KEY_TYPE_IS_PUBLIC_KEY (key_type) is true):

base_size + public_key_size

e For a symmetric key (not a key pair or public key):
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base_size + symmetric_factor * key_bytes

where key_bytes = ((key_bits + 7) / 8) is the key size in bytes.

6.1.3 Key context size for a secure element with storage

If the key is stored in the secure element and the driver only needs to store a label for the key, use
"base_size" as the size of the label plus any other metadata that the driver needs to store, and omit the
other properties.

If the key is stored in the secure element, but the secure element does not store the public part of a key pair
and cannot recompute it on demand, additionally use the "store_public_key" property with the value true.
Note that this only influences the size of the key context: the driver code must copy the public key to the
key context and retrieve it on demand in its export_public_key entry point.

6.1.4 Key context size for a secure element without storage

If the key is stored in wrapped form outside the secure element, and the wrapped form of the key plus any
metadata has up to N bytes of overhead, use N as the value of the "base_size" property and set the
"symmetric_factor" property to 1. Set the "key_pair_size" and "public_key_size" properties appropriately
for the largest supported key pair and the largest supported public key respectively.

6.2 Key management with opaque drivers

Opaque drivers may provide the following key management entry points:

e "export_key": called by psa_export_key (), Or by psa_copy_key () when copying a key from or to a
different location, or as a fallback for key derivation.

e "export_public_key": called by the core to obtain the public key of a key pair. The core may call this
entry point at any time to obtain the public key, which can be for psa_export_public_key() but also at
other times, including during a cryptographic operation that requires the public key such as a call to
psa_verify_message() on a key pair object.

"import_key": called by psa_import_key (), or by psa_copy_key () when copying a key from another
location.

e "generate_key": called by psa_generate_key().
e "key_derivation_output_key": called by psa_key_derivation_output_key().
e "copy_key": called by psa_copy_key() when copying a key within the same location.

e "get_builtin_key": called by functions that access a key to retrieve information about a built-in key.

In addition, secure elements that store the key material internally must provide the following two entry
points:

e "allocate_key": called by psa_import_key (), psa_generate_key(), psa_key_derivation_output_key() Or
psa_copy_key () before creating a key in the location of this driver.

e "destroy_key": called by psa_destroy_key().
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6.2.1 Key creation in a secure element without storage

This section describes the key creation process for secure elements that do not store the key material. The
driver must obtain a wrapped form of the key material which the core will store. A driver for such a secure
element has no "allocate_key" or "destroy_key" entry point.

When creating a key with an opaque driver which does not have an "allocate_key" or "destroy_key" entry
point:

1. The core allocates memory for the key context.

2. The core calls the driver's import, generate, derive or copy entry point.

3. The core saves the resulting wrapped key material and any other data that the key context may
contain.

To destroy a key, the core simply destroys the wrapped key material, without invoking driver code.

6.2.2 Key management in a secure element with storage

This section describes the key creation and key destruction processes for secure elements that have
persistent storage for the key material. A driver for such a secure element has two mandatory entry points:

e "allocate_key": this function obtains an internal identifier for the key. This may be, for example, a
unique label or a slot number.

e "destroy_key": this function invalidates the internal identifier and destroys the associated key material.
These functions have the following prototypes for a driver with the prefix "acme":

psa_status_t acme_allocate_key(const psa_key_attributes_t *attributes,
uint8_t *key_buffer,
size_t key_buffer_size);

psa_status_t acme_destroy_key(const psa_key_attributes_t *attributes,
const uint8_t *key_buffer,
size_t key_buffer_size);

When creating a persistent key with an opaque driver which has an "allocate_key" entry point:

1. The core calls the driver’s "allocate_key" entry point. This function typically allocates an internal
identifier for the key without modifying the state of the secure element and stores the identifier in the
key context. This function should not modify the state of the secure element. It may modify the copy
of the persistent state of the driver in memory.

2. The core saves the key context to persistent storage.
3. The core calls the driver’s key creation entry point.

4. The core saves the updated key context to persistent storage.

If a failure occurs after the "allocate_key" step but before the call to the second driver entry point, the core
will do one of the following:

e Fail the creation of the key without indicating this to the driver. This can happen, in particular, if the
device loses power immediately after the key allocation entry point returns.

e Call the driver’s "destroy_key" entry point.
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To destroy a key, the core calls the driver’s "destroy_key" entry point.

Note that the key allocation and destruction entry points must not rely solely on the key identifier in the key
attributes to identify a key. Some implementations of the Crypto API store keys on behalf of multiple clients,
and different clients may use the same key identifier to designate different keys. The manner in which the
core distinguishes keys that have the same identifier but are part of the key namespace for different clients
is implementation-dependent and is not accessible to drivers. Some typical strategies to allocate an internal
key identifier are:

e Maintain a set of free slot numbers which is stored either in the secure element or in the driver’s
persistent storage. To allocate a key slot, find a free slot number, mark it as occupied and store the
number in the key context. When the key is destroyed, mark the slot number as free.

e Maintain a monotonic counter with a practically unbounded range in the secure element or in the
driver’s persistent storage. To allocate a key slot, increment the counter and store the current value in
the key context. Destroying a key does not change the counter.

TODO: explain constraints on how the driver updates its persistent state for resilience

TODO: some of the above doesn't apply to volatile keys

6.2.3 Key creation entry points in opaque drivers

The key creation entry points have the following prototypes for a driver with the prefix "acme":

psa_status_t acme_import_key(const psa_key_attributes_t *attributes,
const uint8_t *data,
size_t data_length,
uint8_t *key_buffer,
size_t key_buffer_ size,
size_t *key_buffer_length,
size_t *bits);
psa_status_t acme_generate_key(const psa_key_attributes_t *attributes,
uint8_t *key_buffer,
size_t key_buffer_size,
size_t *key_buffer_length);

If the driver has an "allocate_key" entry point, the core calls the "allocate_key" entry point with the same
attributes on the same key buffer before calling the key creation entry point.

TODQ: derivation, copy

6.2.4 Key export entry points in opaque drivers

The key export entry points have the following prototypes for a driver with the prefix "acme":

psa_status_t acme_export_key(const psa_key_attributes_t *attributes,
const uint8_t *key_buffer,
size_t key_buffer_size,
uint8_t *data,
size_t data_size,
(continues on next page)

111106 Copyright © 2020-2025 Arm Limited and/or its affiliates Page 42
1.0 Alpha (Issue 1) Non-confidential



(continued from previous page)
size_t *data_length);
psa_status_t acme_export_public_key(const psa_key_attributes_t *attributes,
const uint8_t *key_buffer,
size_t key_buffer_size,
uint8_t *data,
size_t data_size,
size_t *data_length);

The core will only call acme_export_public_key on a private key. Drivers implementers may choose to store
the public key in the key context buffer or to recalculate it on demand. If the key context includes the public
key, it needs to have an adequate size; see Key format for opaque drivers on page 38.

The core guarantees that the size of the output buffer (data_size) is sufficient to export any key with the
given attributes. The driver must set *data_length to the exact size of the exported key.

6.3 Opaque driver persistent state

The core maintains persistent state on behalf of an opaque driver. This persistent state consists of a single
byte array whose size is given by the "persistent_state_size" property in the driver description.

The core loads the persistent state in memory before it calls the driver’s init entry point. It is adjusted to
match the size declared by the driver, in case a driver upgrade changes the size:

e The first time the driver is loaded on a system, the persistent state is all-bits-zero.

e |f the stored persistent state is smaller than the declared size, the core pads the persistent state with
all-bits-zero at the end.

e |f the stored persistent state is larger than the declared size, the core truncates the persistent state to
the declared size.

The core provides the following callback functions, which an opaque driver may call while it is processing a
call from the driver:

psa_status_t psa_crypto_driver_get_persistent_state(uint_8_t **persistent_state_ptr);
psa_status_t psa_crypto_driver_commit_persistent_state(size_t from, size_t length);

psa_crypto_driver_get_persistent_state Sets *persistent_state_ptr to a pointer to the first byte of the
persistent state. This pointer remains valid during a call to a driver entry point. Once the entry point returns,
the pointer is no longer valid. The core guarantees that calls to psa_crypto_driver_get_persistent_state
within the same entry point return the same address for the persistent state, but this address may change
between calls to an entry point.

psa_crypto_driver_commit_persistent_state updates the persistent state in persistent storage. Only the
portion at byte offsets from inclusive to from + length exclusive is guaranteed to be updated; it is
unspecified whether changes made to other parts of the state are taken into account. The driver must call
this function after updating the persistent state in memory and before returning from the entry point,
otherwise it is unspecified whether the persistent state is updated.

The core will not update the persistent state in storage while an entry point is running except when the
entry point calls psa_crypto_driver_commit_persistent_state. [t may update the persistent state in storage
after an entry point returns.
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In a multithreaded environment, the driver may only call these two functions from the thread that is
executing the entry point.

6.3.1 Built-in keys

Opaque drivers may declare built-in keys. Built-in keys can be accessed, but not created, through the Crypto
API.

A built-in key is identified by its location and its slot number. Drivers that support built-in keys must provide
a "get_builtin_key" entry point to retrieve the key data and metadata. The core calls this entry point when
it needs to access the key, typically because the application requested an operation on the key. The core
may keep information about the key in cache, and successive calls to access the same slot number should
return the same data. This entry point has the following prototype:

psa_status_t acme_get_builtin_key(psa_drv_slot_number_t slot_number,
psa_key_attributes_t *attributes,
uint8_t *key_buffer,
size_t key_buffer_size,
size_t *key_buffer_length);

If this function returns PSA_SUCCESS or PSA_ERROR_BUFFER_TOO0_SMALL, it must fill attributes with the attributes
of the key (except for the key identifier). On success, this function must also fill key_buffer with the key
context.

On entry, psa_get_key_lifetime(attributes) is the location at which the driver was declared and a
persistence level with which the platform is attempting to register the key. The driver entry point may
choose to change the lifetime (psa_set_key_lifetime(attributes, lifetime)) of the reported key attributes
to one with the same location but a different persistence level, in case the driver has more specific
knowledge about the actual persistence level of the key which is being retrieved. For example, if a driver
knows it cannot delete a key, it may override the persistence level in the lifetime to
PSA_KEY_PERSISTENCE_READ_ONLY. The standard attributes other than the key identifier and lifetime have the
value conveyed by PSA_KEY_ATTRIBUTES_INIT.

The output parameter key_buffer points to a writable buffer of key_buffer_size bytes. If the driver has a
"builtin_key_size" property property, key_buffer_size has this value, otherwise key_buffer_size has the
value determined from the key type and size.

Typically, for a built-in key, the key context is a reference to key material that is kept inside the secure
element, similar to the format returned by "allocate_key". A driver may have built-in keys even if it doesn’t
have an "allocate_key" entry point.

This entry point may return the following status values:
e PSA_SUCCESS: the requested key exists, and the output parameters attributes and key_buffer contain

the key metadata and key context respectively, and *key_buffer_length contains the length of the data
written to key_buffer.

e PSA_ERROR_BUFFER_TOO_SMALL: key_buffer_size is insufficient. In this case, the driver must pass the key’s
attributes in *attributes. In particular, get_builtin_key(slot_number, &attributes, NULL, @) iS a way
for the core to obtain the key's attributes.

e PSA_ERROR_DOES_NOT_EXIST: the requested key does not exist.

e Other error codes such as PSA_ERROR_COMMUNICATION_FAILURE Or PSA_ERROR_HARDWARE_FAILURE indicate a
transient or permanent error.
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The core will pass authorized requests to destroy a built-in key to the "destroy _key" entry point if there is
one. If built-in keys must not be destroyed, it is up to the driver to reject such requests.

7 Using drivers from an application

7.1 Using transparent drivers

Transparent drivers linked into the library are automatically used for the mechanisms that they implement.

7.2 Using opaque drivers

Each opaque driver is assigned a location. The driver is invoked for all actions that use a key in that location.
A key’s location is indicated by its lifetime. The application chooses the key's lifetime when it creates the key.

For example, the following snippet creates an AES-GCM key which is only accessible inside the secure
element designated by the location PSA_KEY_LOCATION_acme.

psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

psa_set_key_lifetime(&attributes, PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(
PSA_KEY_PERSISTENCE_DEFAULT, PSA_KEY_LOCATION_acme));

psa_set_key_identifier(&attributes, 42);

psa_set_key_type(&attributes, PSA_KEY_TYPE_AES);

psa_set_key_size(&attributes, 128);

psa_set_key_algorithm(&attributes, PSA_ALG_GCM);

psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT);

psa_key_id_t key;

psa_generate_key(&attributes, &key);

7.2.1 Lifetimes and locations

The PSA Certified Crypto APl defines lifetimes as an attribute of a key that indicates where the key is stored
and which application and system actions will create and destroy it. The lifetime is expressed as a 32-bit
value (typedef uint32_t psa_key_lifetime_t). An upcoming version of the Crypto APl defines more
structure for lifetime values to separate these two aspects of the lifetime:

e Bits O-7 are a persistence level. This value indicates what device management actions can cause it to
be destroyed. In particular, it indicates whether the key is volatile or persistent.

e Bits 8-31 are a location indicator. This value indicates where the key material is stored and where
operations on the key are performed. Location values can be stored in a variable of type
psa_key_location_t.

An opaque driver is attached to a specific location. Keys in the default location
(PSA_KEY_LOCATION_LOCAL_STORAGE = @) are transparent: the core has direct access to the key material. For
keys in a location that is managed by an opaque driver, only the secure element has access to the key
material and can perform operations on the key, while the core only manipulates a wrapped form of the key
or an identifier of the key.
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7.2.2 Creating a key in a secure element

The core defines a compile-time constant for each opaque driver indicating its location called
PSA_KEY_LOCATION_prefix where prefix is the value of the "prefix" property in the driver description. For
convenience, Mbed TLS also declares a compile-time constant for the corresponding lifetime with the
default persistence called PSA_KEY_LIFETIME_prefix. Therefore, to declare an opaque key in the location with
the prefix foo with the default persistence, call psa_set_key_lifetime during the key creation as follows:

psa_set_key_lifetime(&attributes, PSA_KEY_LIFETIME_foo);

To declare a volatile key:

psa_set_key_lifetime(&attributes, PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION (
PSA_KEY_LOCATION_foo,
PSA_KEY_PERSISTENCE_VOLATILE));

Generally speaking, to declare a key with a specified persistence:

psa_set_key_lifetime(&attributes, PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION (
PSA_KEY_LOCATION_foo,
persistence));
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Appendix A: Open questions

A.1 Value representation
A.1.1 Integers

It would be better if there was a uniform requirement on integer values. Do they have to be JSON integers?
C preprocessor integers (which could be e.g. a macro defined in some header file)? C compile-time
constants (allowing sizeof)?

This choice is partly driven by the use of the values, so they might not be uniform. Note that if the value
can be zero and it's plausible that the core would want to statically allocate an array of the given size, the
core needs to know whether the value is O so that it could use code like

#if ACME_FOO_SIZE '= 0
uint8_t foo[ACME_FOO_SIZE];
#endif

A.2 Driver declarations
A.2.1 Declaring driver entry points

The core may want to provide declarations for the driver entry points so that it can compile code using
them. At the time of writing this paragraph, the driver headers must define types but there is no obligation
for them to declare functions. The core knows what the function names and argument types are, so it can
generate prototypes.

It should be ok for driver functions to be function-like macros or function pointers.

A.2.2 Driver location values

How does a driver author decide which location values to use? It should be possible to combine drivers
from different sources. Use the same vendor assignment as for PSA services?

Can the driver assembly process generate distinct location values as needed? This can be convenient, but
it's also risky: if you upgrade a device, you need the location values to be the same between builds.

The current plan is for Arm to maintain a registry of vendors and assign a location namespace to each
vendor. Parts of the namespace would be reserved for implementations and integrators.

A.2.3 Multiple transparent drivers

When multiple transparent drivers implement the same mechanism, which one is called? The first one? The
last one? Unspecified? Or is this an error (excluding capabilities with fallback enabled)?

The current choice is that the first one is used, which allows having a preference order on drivers, but may
mask integration errors.
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A.3 Driver function interfaces

A.3.1 Driver function parameter conventions
Should O-size buffers be guaranteed to have a non-null pointers?
Should drivers really have to cope with overlap?

Should the core guarantee that the output buffer size has the size indicated by the applicable buffer size
macro (which may be an overestimation)?

A.3.2 Key derivation inputs and buffer ownership
Why is psa_crypto_driver_key_derivation_get_input_bytes a copy, rather than giving a pointer?

The main reason is to avoid complex buffer ownership. A driver entry point does not own memory after the
entry point return. This is generally necessary because an API function does not own memory after the
entry point returns. In the case of key derivation inputs, this could be relaxed because the driver entry point
is making callbacks to the core: these functions could return a pointer that is valid until the driver entry
point returns, which would allow the driver to process the data immediately (e.g. hash it rather than copy it).

A.4 Partial computations in drivers
A.4.1 Substitution points

Earlier drafts of the driver interface had a concept of substitution points: places in the calculation where a
driver may be called. Some hardware doesn’t do the whole calculation, but only the “main” part. This goes
both for transparent and opaque drivers. Some common examples:

e A processor that performs the RSA exponentiation, but not the padding. The driver should be able to
leverage the padding code in the core.

e A processor that performs a block cipher operation only for a single block, or only in ECB mode, or
only in CTR mode. The core would perform the block mode (CBC, CTR, CCM, ...).

This concept, or some other way to reuse portable code such as specifying inner functions like psa_rsa_pad
in the core, should be added to the specification.

A.5 Key management

A.5.1 Mixing drivers in key derivation

How does psa_key_derivation_output_key work when the extraction part and the expansion part use
different drivers?

A.5.2 Public key calculation

ECC key pairs are represented as the private key value only. The public key needs to be calculated from
that. Both transparent drivers and opaque drivers provide a function to calculate the public key
("export_public_key”).
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The specification doesn’'t mention when the public key might be calculated. The core may calculate it on
creation, on demand, or anything in between. Opaque drivers have a choice of storing the public key in the
key context or calculating it on demand and can convey whether the core should store the public key with
the "store_public_key" property. Is this good enough or should the specification include non-functional
requirements?

A.5.3 Symmetric key validation with transparent drivers

Should the entry point be called for symmetric keys as well?

A.5.4 Support for custom import formats

Driver entry points for key management on page 29 states that the input to "import_key" can be an
implementation-defined format. Is this a good idea? It reduces driver portability, since a core that accepts a
custom format would not work with a driver that doesn't accept this format. On the other hand, if a driver
accepts a custom format, the core should let it through because the driver presumably handles it more
efficiently (in terms of speed and code size) than the core could.

Allowing custom formats also causes a problem with import: the core can’t know the size of the key
representation until it knows the bit-size of the key, but determining the bit-size of the key is part of the job
of the "import_key" entry point. For standard key types, this could plausibly be an issue for RSA private keys,
where an implementation might accept a custom format that omits the CRT parameters (or that omits d).

A.6 Opaque drivers
A.6.1 Opaque driver persistent state

The driver is allowed to update the state at any time. Is this ok?

An example use case for updating the persistent state at arbitrary times is to renew a key that is used to
encrypt communications between the application processor and the secure element.

psa_crypto_driver_get_persistent_state does not identify the calling driver, so the driver needs to
remember which driver it's calling. This may require a thread-local variable in a multithreaded core. Is this ok?

A.6.2 Open questions around cooked key derivation
"derive_key" is not a clear name. Can we use a better one?

For the "derive_key" entry point, how does the core choose input_length? Doesn't the driver know better?
Should there be a driver entry point to determine the length, or should there be a callback that allows the
driver to retrieve the input? Note that for some key types, it's impossible to predict the amount of input in
advance, because it depends on some complex calculation or even on random data, e.g. if doing a
randomized pseudo-primality test. However, for all key types except RSA, the specification mandates how
the key is derived, which practically dictates how the pseudorandom key stream is consumed. So it's
probably ok.
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A.6.3 Fallback for key derivation in opaque drivers

Should dispatch to an opaque driver allow fallback, so that if "key_derivation_setup" returns
PSA_ERROR_NOT_SUPPORTED then the core exports the key from the secure element instead?

Should the "key_derivation_output_key" capability indicate which key types the driver can derive? How
should fallback work? For example, consider a secure element that implements HMAC, HKDF and ECDSA,
and that can derive an HMAC key from HKDF without exporting intermediate material but can only import
or randomly generate ECC keys. How does this driver convey that it can’t derive an ECC key with HKDF,
but it can let the core do this and import the resulting key?

A.7 Randomness

A.7.1 Input to "add_entropy"

Should the input to the "add_entropy" entry point be a full-entropy buffer (with data from all entropy
sources already mixed), raw entropy direct from the entropy sources, or give the core a choice?

e Raw data: drivers must implement entropy mixing. "add_entropy" needs an extra parameter to indicate
the amount of entropy in the data. The core must not do any conditioning.

e Choice: drivers must implement entropy mixing. "add_entropy" needs an extra parameter to indicate
the amount of entropy in the data. The core may do conditioning if it wants, but doesn’t have to.

e Full entropy: drivers don't need to do entropy mixing.

A.7.2 Flags for "get_entropy"

Are the entropy collection flags well-chosen?

A.7.3 Random generator instantiations

May the core instantiate a random generation context more than once? In other words, can there be
multiple objects of type acme_random_context_t?

Functionally, one RNG is as good as any. If the core wants some parts of the system to use a deterministic
generator for reproducibility, it can’t use this interface anyway, since the RNG is not necessarily
deterministic. However, for performance on multiprocessor systems, a multithreaded core could prefer to
use one RNG instance per thread.

Appendix B: Changes to the API

B.1 Document change history

This section provides the detailed changes made between published version of the document.
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