
PSA Certified
Crypto API 1.2

Document number: IHI 0086
Release Quality: Final
Issue Number: 1
Confidentiality: Non-confidential
Date of Issue: 28/03/2024

Copyright © 2018-2024 Arm Limited and/or its affiliates

Abstract
This document is part of the PSA Certified API specifications. It defines interfaces to provide cryptographicoperations and key storage services.

Contents

About this document vii
Release information vii
License viii
References ix
Terms and abbreviations xiii
Potential for change xv
Conventions xvTypographical conventions xvNumbers xvi
Feedback xvi

1 Introduction 17
1.1 About Platform Security Architecture 17
1.2 About the Crypto API 17
2 Design goals 18
2.1 Suitable for constrained devices 18
2.2 A keystore interface 18
2.3 Optional isolation 18
2.4 Choice of algorithms 19
2.5 Ease of use 20
2.6 Example use cases 202.6.1 Network Security (TLS) 202.6.2 Secure Storage 202.6.3 Network Credentials 202.6.4 Device Pairing 202.6.5 Secure Boot 202.6.6 Attestation 212.6.7 Factory Provisioning 21
3 Functionality overview 21
3.1 Library management 21
3.2 Key management 213.2.1 Key types 22
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page i

3.2.2 Key identifiers 223.2.3 Key lifetimes 223.2.4 Key policies 233.2.5 Recommendations of minimum standards for key management 23
3.3 Symmetric cryptography 233.3.1 Single-part Functions 243.3.2 Multi-part operations 243.3.3 Example of the symmetric cryptography API 26
3.4 Asymmetric cryptography 27
3.5 Randomness and key generation 27
4 Sample architectures 27
4.1 Single-partition architecture 27
4.2 Cryptographic token and single-application processor 28
4.3 Cryptoprocessor with no key storage 28
4.4 Multi-client cryptoprocessor 28
4.5 Multi-cryptoprocessor architecture 29
5 Library conventions 29
5.1 Header files 29
5.2 API conventions 305.2.1 Identifier names 305.2.2 Basic types 305.2.3 Data types 305.2.4 Constants 315.2.5 Function-like macros 315.2.6 Functions 31
5.3 Error handling 325.3.1 Return status 325.3.2 Behavior on error 32
5.4 Parameter conventions 335.4.1 Pointer conventions 335.4.2 Input buffer sizes 335.4.3 Output buffer sizes 345.4.4 Overlap between parameters 345.4.5 Stability of parameters 34
5.5 Key types and algorithms 355.5.1 Structure of key types and algorithms 35
5.6 Concurrent calls 36

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page ii

6 Implementation considerations 37
6.1 Implementation-specific aspects of the interface 376.1.1 Implementation profile 376.1.2 Implementation-specific types 376.1.3 Implementation-specific macros 37
6.2 Porting to a platform 386.2.1 Platform assumptions 386.2.2 Platform-specific types 386.2.3 Cryptographic hardware support 39
6.3 Security requirements and recommendations 396.3.1 Error detection 396.3.2 Indirect object references 396.3.3 Memory cleanup 396.3.4 Managing key material 406.3.5 Safe outputs on error 406.3.6 Attack resistance 40
6.4 Other implementation considerations 416.4.1 Philosophy of resource management 41
7 Usage considerations 41
7.1 Security recommendations 417.1.1 Always check for errors 417.1.2 Shared memory and concurrency 427.1.3 Cleaning up after use 42
8 Library management reference 42
8.1 Status codes 428.1.1 Common error codes 438.1.2 Error codes specific to the Crypto API 44
8.2 Crypto API library 458.2.1 API version 458.2.2 Library initialization 45
9 Key management reference 47
9.1 Key attributes 479.1.1 Managing key attributes 47
9.2 Key types 519.2.1 Key type encoding 519.2.2 Key categories 529.2.3 Symmetric keys 539.2.4 RSA keys 619.2.5 Elliptic Curve keys 62
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page iii

9.2.6 Diffie Hellman keys 699.2.7 Attribute accessors 72
9.3 Key lifetimes 749.3.1 Volatile keys 749.3.2 Persistent keys 759.3.3 Lifetime encodings 759.3.4 Lifetime values 789.3.5 Attribute accessors 809.3.6 Support macros 81
9.4 Key identifiers 829.4.1 Key identifier type 839.4.2 Attribute accessors 84
9.5 Key policies 859.5.1 Permitted algorithms 859.5.2 Key usage flags 87
9.6 Key management functions 929.6.1 Key creation 929.6.2 Key destruction 989.6.3 Key export 1009.6.4 Key formats 105
10 Cryptographic operation reference 108
10.1 Algorithms 10810.1.1 Algorithm encoding 10910.1.2 Algorithm categories 110
10.2 Message digests (Hashes) 11410.2.1 Hash algorithms 11510.2.2 Single-part hashing functions 11910.2.3 Multi-part hashing operations 12110.2.4 Support macros 13010.2.5 Hash suspend state 133
10.3 Message authentication codes (MAC) 13510.3.1 MAC algorithms 13610.3.2 Single-part MAC functions 13910.3.3 Multi-part MAC operations 14210.3.4 Support macros 149
10.4 Unauthenticated ciphers 15110.4.1 Cipher algorithms 15210.4.2 Single-part cipher functions 15910.4.3 Multi-part cipher operations 16310.4.4 Support macros 172
10.5 Authenticated encryption with associated data (AEAD) 17810.5.1 AEAD algorithms 179
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page iv

10.5.2 Single-part AEAD functions 18410.5.3 Multi-part AEAD operations 18710.5.4 Support macros 203
10.6 Key derivation 20910.6.1 Key derivation algorithms 21010.6.2 Input step types 22010.6.3 Key derivation functions 22210.6.4 Support macros 238
10.7 Asymmetric signature 24210.7.1 Asymmetric signature algorithms 24210.7.2 Asymmetric signature functions 25110.7.3 Support macros 258
10.8 Asymmetric encryption 26410.8.1 Asymmetric encryption algorithms 26410.8.2 Asymmetric encryption functions 26510.8.3 Support macros 269
10.9 Key agreement 27110.9.1 Key agreement algorithms 27110.9.2 Standalone key agreement 27410.9.3 Combining key agreement and key derivation 27810.9.4 Support macros 280
10.10 Other cryptographic services 28310.10.1 Random number generation 283
A Example header file 284
A.1 psa/crypto.h 284
B Algorithm and key type encoding 298
B.1 Algorithm identifier encoding 298B.1.1 Algorithm categories 299B.1.2 Hash algorithm encoding 299B.1.3 MAC algorithm encoding 300B.1.4 Cipher algorithm encoding 301B.1.5 AEAD algorithm encoding 302B.1.6 Key derivation algorithm encoding 303B.1.7 Asymmetric signature algorithm encoding 304B.1.8 Asymmetric encryption algorithm encoding 305B.1.9 Key agreement algorithm encoding 305
B.2 Key type encoding 306B.2.1 Key type categories 306B.2.2 Raw key encoding 307B.2.3 Symmetric key encoding 307B.2.4 Asymmetric key encoding 308
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page v

C Example macro implementations 310
C.1 Algorithm macros 311
C.2 Key type macros 315
C.3 Hash suspend state macros 316
D Security Risk Assessment 317
D.1 Architecture 317D.1.1 System definition 317D.1.2 Assets and stakeholders 319D.1.3 Security goals 320
D.2 Threat Model 320D.2.1 Adversarial models 320D.2.2 Threats and attacks 322D.2.3 Risk assessment 324
D.3 Mitigations 325D.3.1 Objectives 325D.3.2 Requirements 326
D.4 Remediation & residual risk 329D.4.1 Implementation remediations 329D.4.2 Residual risk 330
E Changes to the API 330
E.1 Document change history 330E.1.1 Changes between 1.2.0 and 1.2.1 331E.1.2 Changes between 1.1.2 and 1.2.0 331E.1.3 Changes between 1.1.1 and 1.1.2 332E.1.4 Changes between 1.1.0 and 1.1.1 332E.1.5 Changes between 1.0.1 and 1.1.0 332E.1.6 Changes between 1.0.0 and 1.0.1 334E.1.7 Changes between 1.0 beta 3 and 1.0.0 335E.1.8 Changes between 1.0 beta 2 and 1.0 beta 3 345E.1.9 Changes between 1.0 beta 1 and 1.0 beta 2 346
E.2 Planned changes for version 1.2.x 346
E.3 Future additions 347

Index of API elements 348

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page vi

About this document
Release information
The change history table lists the changes that have been made to this document.

Table 1 Document revision history
Date Version Confidentiality Change

January 2019 1.0 Beta 1 Non-confidential First public beta release.
February 2019 1.0 Beta 2 Non-confidential Update for release with other PSA CertifiedAPI specifications.
May 2019 1.0 Beta 3 Non-confidential Update for release with other PSA CertifiedAPI specifications.
February 2020 1.0 Final Non-confidential 1.0 API finalized.
August 2020 1.0.1 Final Non-confidential Update to fix errors and provideclarifications.
February 2022 1.1.0 Final Non-confidential New API for EdDSA, password hashing andkey stretching.

Many significant clarifications andimprovements across the documentation.
October 2022 1.1.1 Final Non-confidential Relicensed as open source under CC BY-SA4.0.

Improve support for TLS.
March 2023 1.1.2 Final Non-confidential Clarifications and fixes
February 2024 1.2.0 Final Non-confidential Better support for key agreement.

New algorithms for Zigbee, XChaCha, TLS1.2, and key derivation.
March 2024 1.2.1 Final Non-confidential Clarifications and fixes

The detailed changes in each release are described in Document change history on page 330.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page vii

PSA Certified Crypto API
Copyright © 2018-2024 Arm Limited and/or its affiliates. The copyright statement reflects the fact thatsome draft issues of this document have been released, to a limited circulation.

License
Text and illustrations
Text and illustrations in this work are licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy ofthe license, visit creativecommons.org/licenses/by-sa/4.0.
Grant of patent license. Subject to the terms and conditions of this license (both the CC BY-SA 4.0 Public License and this PatentLicense), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except asstated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the LicensedMaterial, where such license applies only to those patent claims licensable by such Licensor that are necessarily infringed by theircontribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such contribution(s) wassubmitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that theLicensed Material or a contribution incorporated within the Licensed Material constitutes direct or contributory patentinfringement, then any licenses granted to You under this license for that Licensed Material shall terminate as of the date suchlitigation is filed.
The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/orelsewhere. All rights reserved. Please visit arm.com/company/policies/trademarks for more information about Arm’s trademarks.
About the license
The language in the additional patent license is largely identical to that in section 3 of the Apache License, Version 2.0 (Apache2.0), with two exceptions:

1. Changes are made related to the defined terms, to align those defined terms with the terminology in CC BY-SA 4.0 ratherthan Apache 2.0 (for example, changing “Work” to “Licensed Material”).
2. The scope of the defensive termination clause is changed from “any patent licenses granted to You” to “any licensesgranted to You”. This change is intended to help maintain a healthy ecosystem by providing additional protection to thecommunity against patent litigation claims.

To view the full text of the Apache 2.0 license, visit apache.org/licenses/LICENSE-2.0.
Source code
Source code samples in this work are licensed under the Apache License, Version 2.0 (the “License”); you may not use suchsamples except in compliance with the License. You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS”BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page viii

https://creativecommons.org/licenses/by-sa/4.0
https://arm.com/company/policies/trademarks
https://apache.org/licenses/LICENSE-2.0
https://apache.org/licenses/LICENSE-2.0

References
This document refers to the following documents.

Table 2 Arm documents referenced by this document
Ref Document

Number
Title

[PSA-PAKE] ARM AES 0058 PSA Certified Crypto API 1.2 PAKE Extension.arm-software.github.io/psa-api/crypto
[PSM] ARM DEN 0128 Platform Security Model.developer.arm.com/documentation/den0128
[PSA-FFM] ARM DEN 0063 Arm® Platform Security Architecture Firmware Framework.developer.arm.com/documentation/den0063
[PSA-STAT] ARM IHI 0097 PSA Certified Status code API.arm-software.github.io/psa-api/status-code

Table 3 Other documents referenced by this document
Ref Title

[C99] ISO/IEC, ISO/IEC 9899:1999 — Programming Languages — C, December 1999.www.iso.org/standard/29237.html
[CHACHA20] Bernstein, D., ChaCha, a variant of Salsa20, January 2008.http://cr.yp.to/chacha/chacha-20080128.pdf
[CLULOW] Clulow, Jolyon, On the Security of PKCS #11, 2003.link.springer.com/chapter/10.1007/978-3-540-45238-6_32
[CSTC0002] Cryptography Standardization Technical Committee, GM/T 0002-2012: SM4 blockcipher algorithm, March 2012.
[CSTC0004] Cryptography Standardization Technical Committee, GM/T 0004-2012: SM3cryptographic hash algorithm, March 2012.
[Curve25519] Bernstein et al., Curve25519: new Diffie-Hellman speed records, LNCS 3958, 2006.www.iacr.org/archive/pkc2006/39580209/39580209.pdf
[Curve448] Hamburg, Ed448-Goldilocks, a new elliptic curve, NIST ECC Workshop, 2015.eprint.iacr.org/2015/625.pdf
[Ed25519] Bernstein et al., Twisted Edwards curves, Africacrypt, 2008.eprint.iacr.org/2008/013.pdf
[Ed448] Hamburg, Ed448-Goldilocks, a new elliptic curve, NIST ECC Workshop, 2015.eprint.iacr.org/2015/625.pdf

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page ix

https://arm-software.github.io/psa-api/crypto
https://developer.arm.com/documentation/den0128
https://developer.arm.com/documentation/den0063
https://arm-software.github.io/psa-api/status-code
https://www.iso.org/standard/29237.html
http://cr.yp.to/chacha/chacha-20080128.pdf
https://link.springer.com/chapter/10.1007/978-3-540-45238-6_32
https://www.iacr.org/archive/pkc2006/39580209/39580209.pdf
https://eprint.iacr.org/2015/625.pdf
https://eprint.iacr.org/2008/013.pdf
https://eprint.iacr.org/2015/625.pdf

Table 3 – continued from previous page

Ref Title

[FIPS180-4] NIST, FIPS Publication 180-4: Secure Hash Standard (SHS), August 2015.doi.org/10.6028/NIST.FIPS.180-4
[FIPS186-4] NIST, FIPS Publication 186-4: Digital Signature Standard (DSS), July 2013.doi.org/10.6028/NIST.FIPS.186-4
[FIPS197] NIST, FIPS Publication 197: Advanced Encryption Standard (AES), November 2001.doi.org/10.6028/NIST.FIPS.197
[FIPS202] NIST, FIPS Publication 202: SHA-3 Standard: Permutation-Based Hash andExtendable-Output Functions, August 2015. doi.org/10.6028/NIST.FIPS.202
[FRP] Agence nationale de la sécurité des systèmes d’information, Publication d’unparamétrage de courbe elliptique visant des applications de passeport électronique et del’administration électronique française, 21 November 2011.www.ssi.gouv.fr/agence/rayonnement-scientifique/publications-scientifiques/articles-ouvrages-actes
[IEEE-CCM] IEEE, IEEE Standard for Low-Rate Wireless Networks, 2020.standards.ieee.org/ieee/802.15.4/7029/
[IEEE-XTS] IEEE, 1619-2018 — IEEE Standard for Cryptographic Protection of Data onBlock-Oriented Storage Devices, January 2019.ieeexplore.ieee.org/servlet/opac?punumber=8637986
[ISO10118] ISO/IEC, ISO/IEC 10118-3:2018 IT Security techniques — Hash-functions — Part 3:Dedicated hash-functions, October 2018. www.iso.org/standard/67116.html
[ISO9797] ISO/IEC, ISO/IEC 9797-1:2011 Information technology — Security techniques —Message Authentication Codes (MACs) — Part 1: Mechanisms using a block cipher,March 2011. www.iso.org/standard/50375.html
[NTT-CAM] NTT Corporation and Mitsubishi Electric Corporation, Specification of Camellia — a128-bit Block Cipher, September 2001.info.isl.ntt.co.jp/crypt/eng/camellia/specifications
[RFC1319] IETF, The MD2 Message-Digest Algorithm, April 1992.tools.ietf.org/html/rfc1319.html
[RFC1320] IETF, The MD4 Message-Digest Algorithm, April 1992.tools.ietf.org/html/rfc1320.html
[RFC1321] IETF, The MD5 Message-Digest Algorithm, April 1992.tools.ietf.org/html/rfc1321.html
[RFC2104] IETF, HMAC: Keyed-Hashing for Message Authentication, February 1997.tools.ietf.org/html/rfc2104.html
[RFC2315] IETF, PKCS #7: Cryptographic Message Syntax Version 1.5, March 1998.tools.ietf.org/html/rfc2315.html

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page x

https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.202
https://www.ssi.gouv.fr/agence/rayonnement-scientifique/publications-scientifiques/articles-ouvrages-actes
https://www.ssi.gouv.fr/agence/rayonnement-scientifique/publications-scientifiques/articles-ouvrages-actes
https://standards.ieee.org/ieee/802.15.4/7029/
https://ieeexplore.ieee.org/servlet/opac?punumber=8637986
https://www.iso.org/standard/67116.html
https://www.iso.org/standard/50375.html
https://info.isl.ntt.co.jp/crypt/eng/camellia/specifications
https://tools.ietf.org/html/rfc1319.html
https://tools.ietf.org/html/rfc1320.html
https://tools.ietf.org/html/rfc1321.html
https://tools.ietf.org/html/rfc2104.html
https://tools.ietf.org/html/rfc2315.html

Table 3 – continued from previous page

Ref Title

[RFC3279] IETF, Algorithms and Identifiers for the Internet X.509 Public Key InfrastructureCertificate and Certificate Revocation List (CRL) Profile, April 2002.tools.ietf.org/html/rfc3279.html
[RFC3610] IETF, Counter with CBC-MAC (CCM), September 2003. tools.ietf.org/html/rfc3610
[RFC3713] IETF, A Description of the Camellia Encryption Algorithm, April 2004.tools.ietf.org/html/rfc3713
[RFC4279] IETF, Pre-Shared Key Ciphersuites for Transport Layer Security (TLS), December 2005.tools.ietf.org/html/rfc4279.html
[RFC4615] IETF, The Advanced Encryption Standard-Cipher-based Message AuthenticationCode-Pseudo-Random Function-128 (AES-CMAC-PRF-128) Algorithm for the InternetKey Exchange Protocol (IKE), August 2006. tools.ietf.org/html/rfc4615.html
[RFC5116] IETF, An Interface and Algorithms for Authenticated Encryption, January 2008.tools.ietf.org/html/rfc5116.html
[RFC5246] IETF, The Transport Layer Security (TLS) Protocol Version 1.2, August 2008.tools.ietf.org/html/rfc5246.html
[RFC5489] IETF, ECDHE_PSK Cipher Suites for Transport Layer Security (TLS), March 2009.tools.ietf.org/html/rfc5489.html
[RFC5639] IETF, Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and CurveGeneration, March 2010. tools.ietf.org/html/rfc5639.html
[RFC5794] IETF, A Description of the ARIA Encryption Algorithm, March 2010.datatracker.ietf.org/doc/html/rfc5794
[RFC5869] IETF, HMAC-based Extract-and-Expand Key Derivation Function (HKDF), May 2010.tools.ietf.org/html/rfc5869.html
[RFC5915] IETF, Elliptic Curve Private Key Structure, June 2010. tools.ietf.org/html/rfc5915.html
[RFC6979] IETF, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic CurveDigital Signature Algorithm (ECDSA), August 2013. tools.ietf.org/html/rfc6979.html
[RFC7748] IETF, Elliptic Curves for Security, January 2016. tools.ietf.org/html/rfc7748.html
[RFC7919] IETF, Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport LayerSecurity (TLS), August 2016. tools.ietf.org/html/rfc7919.html
[RFC8017] IETF, PKCS #1: RSA Cryptography Specifications Version 2.2, November 2016.tools.ietf.org/html/rfc8017.html
[RFC8018] IETF, PKCS #5: Password-Based Cryptography Specification Version 2.1, January 2017.tools.ietf.org/html/rfc8018.html
[RFC8032] IRTF, Edwards-Curve Digital Signature Algorithm (EdDSA), January 2017.tools.ietf.org/html/rfc8032.html

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page xi

https://tools.ietf.org/html/rfc3279.html
https://tools.ietf.org/html/rfc3610
https://tools.ietf.org/html/rfc3713
https://tools.ietf.org/html/rfc4279.html
https://tools.ietf.org/html/rfc4615.html
https://tools.ietf.org/html/rfc5116.html
https://tools.ietf.org/html/rfc5246.html
https://tools.ietf.org/html/rfc5489.html
https://tools.ietf.org/html/rfc5639.html
https://datatracker.ietf.org/doc/html/rfc5794
https://tools.ietf.org/html/rfc5869.html
https://tools.ietf.org/html/rfc5915.html
https://tools.ietf.org/html/rfc6979.html
https://tools.ietf.org/html/rfc7748.html
https://tools.ietf.org/html/rfc7919.html
https://tools.ietf.org/html/rfc8017.html
https://tools.ietf.org/html/rfc8018.html
https://tools.ietf.org/html/rfc8032.html

Table 3 – continued from previous page

Ref Title

[RFC8439] IRTF, ChaCha20 and Poly1305 for IETF Protocols, June 2018.tools.ietf.org/html/rfc8439.html
[RIPEMD] Dobbertin, Bosselaers and Preneel, RIPEMD-160: A Strengthened Version of RIPEMD,April 1996. homes.esat.kuleuven.be/~bosselae/ripemd160.html
[SEC1] Standards for Efficient Cryptography, SEC 1: Elliptic Curve Cryptography, May 2009.www.secg.org/sec1-v2.pdf
[SEC2] Standards for Efficient Cryptography, SEC 2: Recommended Elliptic Curve DomainParameters, January 2010. www.secg.org/sec2-v2.pdf
[SEC2v1] Standards for Efficient Cryptography, SEC 2: Recommended Elliptic Curve DomainParameters, Version 1.0, September 2000. www.secg.org/SEC2-Ver-1.0.pdf
[SP800-108] NIST, NIST Special Publication 800-108r1: Recommendation for Key Derivation UsingPseudorandom Functions, August 2022. doi.org/10.6028/NIST.SP.800-108r1
[SP800-30] NIST, NIST Special Publication 800-30 Revision 1: Guide for Conducting RiskAssessments, September 2012. doi.org/10.6028/NIST.SP.800-30r1
[SP800-38A] NIST, NIST Special Publication 800-38A: Recommendation for Block Cipher Modes ofOperation: Methods and Techniques, December 2001.doi.org/10.6028/NIST.SP.800-38A
[SP800-38B] NIST, NIST Special Publication 800-38B: Recommendation for Block Cipher Modes ofOperation: the CMAC Mode for Authentication, May 2005.doi.org/10.6028/NIST.SP.800-38B
[SP800-38D] NIST, NIST Special Publication 800-38D: Recommendation for Block Cipher Modes ofOperation: Galois/Counter Mode (GCM) and GMAC, November 2007.doi.org/10.6028/NIST.SP.800-38D
[SP800-56A] NIST, NIST Special Publication 800-56A: Recommendation for Pair-WiseKey-Establishment Schemes Using Discrete Logarithm Cryptography, April 2018.doi.org/10.6028/NIST.SP.800-56Ar3
[SP800-67] NIST, NIST Special Publication 800-67: Recommendation for the Triple Data EncryptionAlgorithm (TDEA) Block Cipher, November 2017. doi.org/10.6028/NIST.SP.800-67r2
[TLS-ECJPAKE] Cragie, Hao, Elliptic Curve J-PAKE Cipher Suites for Transport Layer Security (TLS), June2016. datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01
[X9-62] ANSI, Public Key Cryptography For The Financial Services Industry: The Elliptic CurveDigital Signature Algorithm (ECDSA).standards.globalspec.com/std/1955141/ANSI%20X9.62
[XCHACHA] Arciszewski, XChaCha: eXtended-nonce ChaCha and AEAD_XChaCha20_Poly1305,January 2020. datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha-03
[ZIGBEE] zigbee alliance, zigbee Specification, April 2017. csa-iot.org/wp-content/uploads/2022/01/docs-05-3474-22-0csg-zigbee-specification-1.pdf

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page xii

https://tools.ietf.org/html/rfc8439.html
https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec2-v2.pdf
https://www.secg.org/SEC2-Ver-1.0.pdf
https://doi.org/10.6028/NIST.SP.800-108r1
https://doi.org/10.6028/NIST.SP.800-30r1
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-67r2
https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01
https://standards.globalspec.com/std/1955141/ANSI%20X9.62
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha-03
https://csa-iot.org/wp-content/uploads/2022/01/docs-05-3474-22-0csg-zigbee-specification-1.pdf
https://csa-iot.org/wp-content/uploads/2022/01/docs-05-3474-22-0csg-zigbee-specification-1.pdf

Terms and abbreviations
This document uses the following terms and abbreviations.

Table 4 Terms and abbreviations
Term Meaning

AEAD See Authenticated Encryption with Associated Data.
Algorithm A finite sequence of steps to perform a particular operation.

In this specification, an algorithm is a cipher or a related function. Other textscall this a cryptographic mechanism.
API Application Programming Interface.
Asymmetric See Public-key cryptography.
AuthenticatedEncryption withAssociated Data(AEAD)

A type of encryption that provides confidentiality and authenticity of datausing symmetric keys.

Byte In this specification, a unit of storage comprising eight bits, also called anoctet.
Caller isolation Property of an implementation in which there are multiple applicationinstances, with a security boundary between the application instances, aswell as between the cryptoprocessor and the application instances.

See Optional isolation on page 18.
Cipher An algorithm used for encryption or decryption with a symmetric key.
Cryptoprocessor The component that performs cryptographic operations. A cryptoprocessormight contain a keystore and countermeasures against a range of physical andtiming attacks.
Cryptoprocessorisolation Property of an implementation in which there is a security boundarybetween the application and the cryptoprocessor, but the cryptoprocessordoes not communicate with other applications.

See Optional isolation on page 18.
Hash A cryptographic hash function, or the value returned by such a function.
HMAC A type ofMAC that uses a cryptographic key with a hash function.
IMPLEMENTATION DEFINED Behavior that is not defined by the architecture, but is defined anddocumented by individual implementations.
Initialization vector (IV) An additional input that is not part of the message. It is used to prevent anattacker from making any correlation between cipher text and plain text.

This specification uses the term for such initial inputs in all contexts. Forexample, the initial counter in CTR mode is called the IV.
continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page xiii

Table 4 – continued from previous page

Term Meaning

Isolation Property of an implementation in which there is a security boundarybetween the application and the cryptoprocessor.
See Optional isolation on page 18.

IV See Initialization vector.
KDF See Key Derivation Function.
Key agreement An algorithm for two or more parties to establish a common secret key.
Key DerivationFunction (KDF) Key Derivation Function. An algorithm for deriving keys from secret material.
Key identifier A reference to a cryptographic key. Key identifiers in the Crypto API are32-bit integers.
Key policy Key metadata that describes and restricts what a key can be used for.
Key size The size of a key as defined by common conventions for each key type. Forkeys that are built from several numbers of strings, this is the size of aparticular one of these numbers or strings.

This specification expresses key sizes in bits.
Key type Key metadata that describes the structure and content of a key.
Keystore A hardware or software component that protects, stores, and managescryptographic keys.
Lifetime Key metadata that describes when a key is destroyed.
MAC SeeMessage Authentication Code.
MessageAuthentication Code(MAC)

A short piece of information used to authenticate a message. It is created andverified using a symmetric key.
Message digest A hash of a message. Used to determine if a message has been tampered.
Multi-part operation An API which splits a single cryptographic operation into a sequence ofseparate steps.
No isolation Property of an implementation in which there is no security boundarybetween the application and the cryptoprocessor.

See Optional isolation on page 18.
Non-extractable key A key with a key policy that prevents it from being read by ordinary means.
Nonce Used as an input for certain AEAD algorithms. Nonces must not be reusedwith the same key because this can break a cryptographic protocol.
Persistent key A key that is stored in protected non-volatile memory.

See Key lifetimes on page 74.
PSA Platform Security Architecture

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page xiv

Table 4 – continued from previous page

Term Meaning

Public-keycryptography A type of cryptographic system that uses key pairs. A keypair consists of a(secret) private key and a public key (not secret). A public key cryptographicalgorithm can be used for key distribution and for digital signatures.
Salt Used as an input for certain algorithms, such as key derivations.
Signature The output of a digital signature scheme that uses an asymmetric keypair.Used to establish who produced a message.
Single-part function An API that implements the cryptographic operation in a single function call.
SPECIFICATION DEFINED Behavior that is defined by this specification.
Symmetric A type of cryptographic algorithm that uses a single key. A symmetric key canbe used with a block cipher or a stream cipher.
Volatile key A key that has a short lifespan and is guaranteed not to exist after a restart ofan application instance.

See Key lifetimes on page 74.

Potential for change
The contents of this specification are stable for version 1.2.
The following may change in updates to the version 1.2 specification:

∙ Small optional feature additions.
∙ Clarifications.

Significant additions, or any changes that affect the compatibility of the interfaces defined in thisspecification will only be included in a new major or minor version of the specification.

Conventions
Typographical conventions

The typographical conventions are:
italic Introduces special terminology, and denotes citations.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other itemsappearing in assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALSUsed for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Termsand abbreviations.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page xv

Red text Indicates an open issue.
Blue text Indicates a link. This can be

∙ A cross-reference to another location within the document
∙ A URL, for example example.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbersby 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.To improve readability, long numbers can be written with an underscore separator between every fourcharacters, for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of anumber.

Feedback
We welcome feedback on the PSA Certified API documentation.
If you have comments on the content of this book, visit github.com/arm-software/psa-api/issues to createa new issue at the PSA Certified API GitHub project. Give:

∙ The title (Crypto API).
∙ The number and issue (IHI 0086 1.2.1).
∙ The location in the document to which your comments apply.
∙ A concise explanation of your comments.

We also welcome general suggestions for additions and improvements.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page xvi

https://example.com
https://github.com/arm-software/psa-api/issues

1 Introduction
1.1 About Platform Security Architecture
This document is one of a set of resources provided by Arm that can help organizations develop productsthat meet the security requirements of PSA Certified on Arm-based platforms. The PSA Certified schemeprovides a framework and methodology that helps silicon manufacturers, system software providers andOEMs to develop more secure products. Arm resources that support PSA Certified range from threatmodels, standard architectures that simplify development and increase portability, and open-sourcepartnerships that provide ready-to-use software. You can read more about PSA Certified here atwww.psacertified.org and find more Arm resources here atdeveloper.arm.com/platform-security-resources.

1.2 About the Crypto API
The interface described in this document is a PSA Certified API, that provides a portable programminginterface to cryptographic operations, and key storage functionality, on a wide range of hardware.
The interface is user-friendly, while still providing access to the low-level primitives used in moderncryptography. It does not require that the user has access to the key material. Instead, it uses opaque keyidentifiers.
You can find additional resources relating to the Crypto API here at arm-software.github.io/psa-api/crypto,and find other PSA Certified APIs here at arm-software.github.io/psa-api.
This document includes:

∙ A rationale for the design. See Design goals on page 18.
∙ A high-level overview of the functionality provided by the interface. See Functionality overview onpage 21.
∙ A description of typical architectures of implementations for this specification. See Samplearchitectures on page 27.
∙ General considerations for implementers of this specification, and for applications that use theinterface defined in this specification. See Implementation considerations on page 37 and Usageconsiderations on page 41.
∙ A detailed definition of the API. See Library management reference on page 42, Key managementreference on page 47, and Cryptographic operation reference on page 108.

PSA Certified Crypto API 1.2 PAKE Extension [PSA-PAKE] is a companion document for version 1.2 of thisspecification. [PSA-PAKE] defines an API for Password Authenticated Key Establishment (PAKE)algorithms. The PAKE API is now at FINAL status, and will be included in a future version of the CryptoAPI specification.
In future, other companion documents will define profiles for this specification. A profile is a minimummandatory subset of the interface that a compliant implementation must provide.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 17

https://www.psacertified.org
https://developer.arm.com/platform-security-resources
https://arm-software.github.io/psa-api/crypto
https://arm-software.github.io/psa-api

2 Design goals
2.1 Suitable for constrained devices
The interface is suitable for a vast range of devices: from special-purpose cryptographic processors thatprocess data with a built-in key, to constrained devices running custom application code, such asmicrocontrollers, and multi-application devices, such as servers. Consequentially, the interface is scalableand modular.

∙ Scalable: devices only need to implement the functionality that they will use.
∙ Modular: larger devices implement larger subsets of the same interface, rather than differentinterfaces.

In this interface, all operations on unbounded amounts of data allow multi-part processing, as long as thecalculations on the data are performed in a streaming manner. This means that the application does notneed to store the whole message in memory at one time. As a result, this specification is suitable for veryconstrained devices, including those where memory is very limited.
Memory outside the keystore boundary is managed by the application. An implementation of the interfaceis not required to retain any state between function calls, apart from the content of the keystore and otherdata that must be kept inside the keystore security boundary.
The interface does not expose the representation of keys and intermediate data, except when required forinterchange. This allows each implementation to choose optimal data representations. Implementationswith multiple components are also free to choose which memory area to use for internal data.

2.2 A keystore interface
The specification allows cryptographic operations to be performed on a key to which the application doesnot have direct access. Except where required for interchange, applications access all keys indirectly, by anidentifier. The key material corresponding to that identifier can reside inside a security boundary thatprevents it from being extracted, except as permitted by a policy that is defined when the key is created.

2.3 Optional isolation
Implementations can isolate the cryptoprocessor from the calling application, and can further isolatemultiple calling applications. The interface allows the implementation to be separated between a frontendand a backend. In an isolated implementation, the frontend is the part of the implementation that islocated in the same isolation boundary as the application, which the application accesses by function calls.The backend is the part of the implementation that is located in a different environment, which isprotected from the frontend. Various technologies can provide protection, for example:

∙ Process isolation in an operating system.
∙ Partition isolation, either with a virtual machine or a partition manager.
∙ Physical separation between devices.

Communication between the frontend and backend is beyond the scope of this specification.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 18

In an isolated implementation, the backend can serve more than one implementation instance. In this case,a single backend communicates with multiple instances of the frontend. The backend must enforce callerisolation: it must ensure that assets of one frontend are not visible to any other frontend. The mechanismfor identifying callers is beyond the scope of this specification. An implementation that provides callerisolation must document the identification mechanism. An implementation that provides caller isolationmust document any implementation-specific extension of the API that enables frontend instances to sharedata in any form.
An isolated implementation that only has a single frontend provides cryptoprocessor isolation.
In summary, there are three types of implementation:

∙ No isolation: there is no security boundary between the application and the cryptoprocessor. Forexample, a statically or dynamically linked library is an implementation with no isolation.
∙ Cryptoprocessor isolation: there is a security boundary between the application and thecryptoprocessor, but the cryptoprocessor does not communicate with other applications. Forexample, a cryptoprocessor chip that is a companion to an application processor is animplementation with cryptoprocessor isolation.
∙ Caller isolation: there are multiple application instances, with a security boundary between theapplication instances among themselves, as well as between the cryptoprocessor and the applicationinstances. For example, a cryptography service in a multiprocess environment is an implementationwith caller and cryptoprocessor isolation.

2.4 Choice of algorithms
The specification defines a low-level cryptographic interface, where the caller explicitly chooses whichalgorithm and which security parameters they use. This is necessary to implement protocols that areinescapable in various use cases. The design of the interface enables applications to implementwidely-used protocols and data exchange formats, as well as custom ones.
As a consequence, all cryptographic functionality operates according to the precise algorithm specified bythe caller. However, this does not apply to device-internal functionality, which does not involve any formof interoperability, such as random number generation. The specification does not include generichigher-level interfaces, where the implementation chooses the best algorithm for a purpose. However,higher-level libraries can be built on top of the Crypto API.
Another consequence is that the specification permits the use of algorithms, key sizes and otherparameters that, while known to be insecure, might be necessary to support legacy protocols or legacydata. Where major weaknesses are known, the algorithm descriptions give applicable warnings. However,the lack of a warning both does not and cannot indicate that an algorithm is secure in all circumstances.Application developers need to research the security of the protocols and algorithms that they plan to useto determine if these meet their requirements.
The interface facilitates algorithm agility. As a consequence, cryptographic primitives are presentedthrough generic functions with a parameter indicating the specific choice of algorithm. For example, thereis a single function to calculate a message digest, which takes a parameter that identifies the specific hashalgorithm.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 19

2.5 Ease of use
The interface is designed to be as user-friendly as possible, given the aforementioned constraints onsuitability for various types of devices and on the freedom to choose algorithms.
In particular, the code flows are designed to reduce the risk of dangerous misuse. The interface is designedin part to make it harder to misuse. Where possible, it is designed so that typical mistakes result in testfailures, rather than subtle security issues. Implementations avoid leaking data when a function is calledwith invalid parameters, to the extent allowed by the C language and by implementation size constraints.

2.6 Example use cases
This section lists some of the use cases that were considered during the design of the Crypto API. This listis not exhaustive, nor are all implementations required to support all use cases.
2.6.1 Network Security (TLS)

The API provides all of the cryptographic primitives needed to establish TLS connections.
2.6.2 Secure Storage

The API provides all primitives related to storage encryption, block or file-based, with master encryptionkeys stored inside a key store.
2.6.3 Network Credentials

The API provides network credential management inside a key store, for example, for X.509-basedauthentication or pre-shared keys on enterprise networks.
2.6.4 Device Pairing

The API provides support for key agreement protocols that are often used for secure pairing of devicesover wireless channels. For example, the pairing of an NFC token or a Bluetooth device might use keyagreement protocols upon first use.
2.6.5 Secure Boot

The API provides primitives for use during firmware integrity and authenticity validation, during a secureor trusted boot process.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 20

2.6.6 Attestation
The API provides primitives used in attestation activities. Attestation is the ability for a device to sign anarray of bytes with a device private key and return the result to the caller. There are several use cases;ranging from attestation of the device state, to the ability to generate a key pair and prove that it has beengenerated inside a secure key store. The API provides access to the algorithms commonly used forattestation.
2.6.7 Factory Provisioning
Most IoT devices receive a unique identity during the factory provisioning process, or once they have beendeployed to the field. This API provides the APIs necessary for populating a device with keys thatrepresent that identity.

3 Functionality overview
This section provides a high-level overview of the functionality provided by the interface defined in thisspecification. Refer to the API definition for a detailed description, which begins with Library managementreference on page 42.
Future additions on page 347 describes features that might be included in future versions of thisspecification.
Due to the modularity of the interface, almost every part of the library is optional. The only mandatoryfunction is psa_crypto_init().

3.1 Library management
Applications must call psa_crypto_init() to initialize the library before using any other function.

3.2 Key management
Applications always access keys indirectly via an identifier, and can perform operations using a key withoutaccessing the key material. This allows keys to be non-extractable, where an application can use a key but isnot permitted to obtain the key material. Non-extractable keys are bound to the device, can berate-limited and can have their usage restricted by policies.
Each key has a set of attributes that describe the key and the policy for using the key. A
psa_key_attributes_t object contains all of the attributes, which is used when creating a key and whenquerying key attributes.
The key attributes include:

∙ A type and size that describe the key material. See Key types on page 22.
∙ The key identifier that the application uses to refer to the key. See Key identifiers on page 22.
∙ A lifetime that determines when the key material is destroyed, and where it is stored. See Keylifetimes on page 22.
∙ A policy that determines how the key can be used. See Key policies on page 23.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 21

Keys are created using one of the key creation functions:
∙ psa_import_key()

∙ psa_generate_key()

∙ psa_key_derivation_output_key()

∙ psa_key_agreement()

∙ psa_copy_key()

These output the key identifier, that is used to access the key in all other parts of the API.
All of the key attributes are set when the key is created and cannot be changed without destroying the keyfirst. If the original key permits copying, then the application can specify a different lifetime or restrictedpolicy for the copy of the key.
A call to psa_destroy_key() destroys the key material, and will cause any active operations that are usingthe key to fail. Therefore an application must not destroy a key while an operation using that key is inprogress, unless the application is prepared to handle a failure of the operation.
3.2.1 Key types

Each cryptographic algorithm requires a key that has the right form, in terms of the size of the key materialand its numerical properties. The key type and key size encode that information about a key, anddetermine whether the key is compatible with a cryptographic algorithm.
Additional non-cryptographic key types enable applications to store other secret values in the keystore.
See Key types on page 51.
3.2.2 Key identifiers

Key identifiers are integral values that act as permanent names for persistent keys, or as transientreferences to volatile keys. Key identifiers are defined by the application for persistent keys, and by theimplementation for volatile keys and for built-in keys.
Key identifiers are output from a successful call to one of the key creation functions.
Valid key identifiers must have distinct values within the same application. If the implementation providescaller isolation, then key identifiers are local to each application.
See Key identifiers on page 82.
3.2.3 Key lifetimes

The lifetime of a key indicates where it is stored and which application and system actions will create anddestroy it.
There are two main types of lifetimes: volatile and persistent.
Volatile keys are automatically destroyed when the application instance terminates or on a power reset ofthe device. Volatile key identifiers are allocated by the implementation when the key is created. Volatilekeys can be explicitly destroyed with a call to psa_destroy_key().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 22

Persistent keys are preserved until the application explicitly destroys them or until animplementation-specific device management event occurs, for example, a factory reset. The key identifierfor a persistent key is set by the application when creating the key, and remains valid throughout thelifetime of the key, even if the application instance that created the key terminates.
See Key lifetimes on page 74.
3.2.4 Key policies
All keys have an associated policy that regulates which operations are permitted on the key. Each keypolicy is a set of usage flags and a specific algorithm that is permitted with the key. See Key policies onpage 85.
3.2.5 Recommendations of minimum standards for key management
Most implementations provide the following functions:

∙ psa_import_key(). The exceptions are implementations that only give access to a key or keys that areprovisioned by proprietary means, and do not allow the main application to use its owncryptographic material.
∙ psa_get_key_attributes() and the psa_get_key_xxx() accessor functions. They are easy to implement,and it is difficult to write applications and to diagnose issues without being able to check themetadata.
∙ psa_export_public_key(). This function is usually provided if the implementation supports anyasymmetric algorithm, since public-key cryptography often requires the delivery of a public key thatis associated with a protected private key.
∙ psa_export_key(). However, highly constrained implementations that are designed to work only withshort-term keys, or only with long-term non-extractable keys, do not need to provide this function.

3.3 Symmetric cryptography
This specification defines interfaces for the following types of symmetric cryptographic operation:

∙ Message digests, commonly known as hash functions. SeeMessage digests (Hashes) on page 114.
∙ Message authentication codes (MAC). SeeMessage authentication codes (MAC) on page 135.
∙ Symmetric ciphers. See Unauthenticated ciphers on page 151.
∙ Authenticated encryption with associated data (AEAD). See Authenticated encryption with associateddata (AEAD) on page 178.
∙ Key derivation. See Key derivation on page 209.

For each type of symmetric cryptographic operation, the API can include:
∙ A pair of single-part functions. For example, compute and verify, or encrypt and decrypt.
∙ A series of functions that permit multi-part operations.

Key derivation only provides multi-part operation, to support the flexibility required by these type ofalgorithms.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 23

3.3.1 Single-part Functions

Single-part functions are APIs that implement the cryptographic operation in a single function call. This isthe easiest API to use when all of the inputs and outputs fit into the application memory.
Some use cases involve messages that are too large to be assembled in memory, or require non-defaultconfiguration of the algorithm. These use cases require the use of a multi-part operation.
3.3.2 Multi-part operations

Multi-part operations are APIs which split a single cryptographic operation into a sequence of separatesteps. This enables fine control over the configuration of the cryptographic operation, and allows themessage data to be processed in fragments instead of all at once. For example, the following situationsrequire the use of a multi-part operation:
∙ Processing messages that cannot be assembled in memory.
∙ Using a deterministic IV for unauthenticated encryption.
∙ Providing the IV separately for unauthenticated encryption or decryption.
∙ Separating the AEAD authentication tag from the cipher text.

Each multi-part operation defines a specific object type to maintain the state of the operation. These typesare implementation-defined.
All multi-part operations follow the same pattern of use, which is shown in Figure 1 on page 25.
The typical sequence of actions with a multi-part operation is as follows:

1. Allocate: Allocate memory for an operation object of the appropriate type. The application can useany allocation strategy: stack, heap, static, etc.
2. Initialize: Initialize or assign the operation object by one of the following methods:

∙ Set it to logical zero. This is automatic for static and global variables. Explicit initialization mustuse the associated PSA_xxx_INIT macro as the type is implementation-defined.
∙ Set it to all-bits zero. This is automatic if the object was allocated with calloc().
∙ Assign the value of the associated macro PSA_xxx_INIT.
∙ Assign the result of calling the associated function psa_xxx_init().

The resulting object is now inactive.
It is an error to initialize an operation object that is in active or error states. This can leak memory orother resources.

3. Setup: Start a new multi-part operation on an inactive operation object. Each operation object willdefine one or more setup functions to start a specific operation.
On success, a setup function will put an operation object into an active state. On failure, theoperation object will remain inactive.

4. Update: Update an active operation object. The update function can provide additional parameters,supply data for processing or generate outputs.
On success, the operation object remains active. On failure, the operation object will enter an errorstate.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 24

inactive

active

error

Operation object starts as
uninitialised memory

Initialize

Setup Finish Abort

Update Abort

Setup
fails

Update
fails

Finish
fails

——— Solid lines show successful operation
---Dashed lines show error flows
………Dotted lines show operation cancellation

Figure 1 General state model for a multi-part operation

5. Finish: To end the operation, call the applicable finishing function. This will take any final inputs,produce any final outputs, and then release any resources associated with the operation.
On success, the operation object returns to the inactive state. On failure, the operation object willenter an error state.

6. Abort: An operation can be aborted at any stage during its use by calling the associated
psa_xxx_abort() function. This will release any resources associated with the operation and returnthe operation object to the inactive state.
Any error that occurs to an operation while it is in an active state will result in the operation enteringan error state. The application must call the associated psa_xxx_abort() function to release theoperation resources and return the object to the inactive state.
psa_xxx_abort() can be called on an inactive operation, and this has no effect.

Once an operation object is returned to the inactive state, it can be reused by calling one of the applicablesetup functions again.
If a multi-part operation object is not initialized before use, the behavior is undefined.
If a multi-part operation function determines that the operation object is not in any valid state, it canreturn PSA_ERROR_CORRUPTION_DETECTED.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 25

If a multi-part operation function is called with an operation object in the wrong state, the function willreturn PSA_ERROR_BAD_STATE and the operation object will enter the error state.
It is safe to move a multi-part operation object to a different memory location, for example, using a bitwisecopy, and then to use the object in the new location. For example, an application can allocate an operationobject on the stack and return it, or the operation object can be allocated within memory managed by agarbage collector. However, this does not permit the following behaviors:

∙ Moving the object while a function is being called on the object. This is not safe. See also Concurrentcalls on page 36.
∙ Working with both the original and the copied operation objects. This requires cloning the operation,which is only available for hash operations using psa_hash_clone().

Each type of multi-part operation can have multiple active states. Documentation for the specific operationdescribes the configuration and update functions, and any requirements about their usage and ordering.
3.3.3 Example of the symmetric cryptography API

Here is an example of a use case where a master key is used to generate both a message encryption keyand an IV for the encryption, and the derived key and IV are then used to encrypt a message.
1. Derive the message encryption material from the master key.

a. Initialize a psa_key_derivation_operation_t object to zero or to
PSA_KEY_DERIVATION_OPERATION_INIT.

b. Call psa_key_derivation_setup() with PSA_ALG_HKDF as the algorithm.
c. Call psa_key_derivation_input_key() with the step PSA_KEY_DERIVATION_INPUT_SECRET and themaster key.
d. Call psa_key_derivation_input_bytes() with the step PSA_KEY_DERIVATION_INPUT_INFO and a publicvalue that uniquely identifies the message.
e. Populate a psa_key_attributes_t object with the derived message encryption key’s attributes.
f. Call psa_key_derivation_output_key() to create the derived message key.
g. Call psa_key_derivation_output_bytes() to generate the derived IV.
h. Call psa_key_derivation_abort() to release the key derivation operation memory.

2. Encrypt the message with the derived material.
a. Initialize a psa_cipher_operation_t object to zero or to PSA_CIPHER_OPERATION_INIT.
b. Call psa_cipher_encrypt_setup() with the derived message encryption key.
c. Call psa_cipher_set_iv() using the derived IV retrieved above.
d. Call psa_cipher_update() one or more times to encrypt the message.
e. Call psa_cipher_finish() at the end of the message.

3. Call psa_destroy_key() to clear the generated key.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 26

3.4 Asymmetric cryptography
This specification defines interfaces for the following types of asymmetric cryptographic operation:

∙ Asymmetric encryption (also known as public key encryption). See Asymmetric encryption onpage 264.
∙ Asymmetric signature. See Asymmetric signature on page 242.
∙ Two-way key agreement (also known as key establishment). See Key agreement on page 271.

For asymmetric encryption and signature, the API provides single-part functions. For key agreement, theAPI provides single-part functions and an additional input method for a key derivation operation.

3.5 Randomness and key generation
We strongly recommended that implementations include a random generator, consisting of acryptographically secure pseudo-random generator (CSPRNG), which is adequately seeded with acryptographic-quality hardware entropy source, commonly referred to as a true random number generator(TRNG). Constrained implementations can omit the random generation functionality if they do notimplement any algorithm that requires randomness internally, and they do not provide a key generationfunctionality. For example, a special-purpose component for signature verification can omit this.
It is recommended that applications use psa_generate_key(), psa_cipher_generate_iv() or
psa_aead_generate_nonce() to generate suitably-formatted random data, as applicable. In addition, the APIincludes a function psa_generate_random() to generate and extract arbitrary random data.

4 Sample architectures
This section describes some example architectures that can be used for implementations of the interfacedescribed in this specification. This list is not exhaustive and the section is entirely non-normative.

4.1 Single-partition architecture
In the single-partition architecture, there is no security boundary inside the system. The application codecan access all the system memory, including the memory used by the cryptographic services described inthis specification. Thus, the architecture provides no isolation.
This architecture does not conform to the Arm Platform Security Architecture Security Model. However, it isuseful for providing cryptographic services that use the same interface, even on devices that cannotsupport any security boundary. So, while this architecture is not the primary design goal of the API definedin the present specification, it is supported.
The functions in this specification simply execute the underlying algorithmic code. Security checks can bekept to a minimum, since the cryptoprocessor cannot defend against a malicious application. Key importand export copy data inside the same memory space.
This architecture also describes a subset of some larger systems, where the cryptographic services areimplemented inside a high-security partition, separate from the code of the main application, though itshares this high-security partition with other platform security services.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 27

4.2 Cryptographic token and single-application processor
This system is composed of two partitions: one is a cryptoprocessor and the other partition runs anapplication. There is a security boundary between the two partitions, so that the application cannot accessthe cryptoprocessor, except through its public interface. Thus, the architecture provides cryptoprocessorisolation. The cryptoprocessor has some non-volatile storage, a TRNG, and possibly, some cryptographicaccelerators.
There are a number of potential physical realizations: the cryptoprocessor might be a separate chip, aseparate processor on the same chip, or a logical partition using a combination of hardware and softwareto provide the isolation. These realizations are functionally equivalent in terms of the offered softwareinterface, but they would typically offer different levels of security guarantees.
The Crypto API in the application processor consists of a thin layer of code that translates function calls toremote procedure calls in the cryptoprocessor. All cryptographic computations are, therefore, performedinside the cryptoprocessor. Non-volatile keys are stored inside the cryptoprocessor.

4.3 Cryptoprocessor with no key storage
As in the Cryptographic token and single-application processor architecture, this system is also composed oftwo partitions separated by a security boundary and also provides cryptoprocessor isolation. However,unlike the previous architecture, in this system, the cryptoprocessor does not have any secure, persistentstorage that could be used to store application keys.
If the cryptoprocessor is not capable of storing cryptographic material, then there is little use for aseparate cryptoprocessor, since all data would have to be imported by the application.
The cryptoprocessor can provide useful services if it is able to store at least one key. This might be ahardware unique key that is burnt to one-time programmable memory during the manufacturing of thedevice. This key can be used for one or more purposes:

∙ Encrypt and authenticate data stored in the application processor.
∙ Communicate with a paired device.
∙ Allow the application to perform operations with keys that are derived from the hardware unique key.

4.4 Multi-client cryptoprocessor
This is an expanded variant of Cryptographic token and single-application processor. In this variant, thecryptoprocessor serves multiple applications that are mutually untrustworthy. This architecture providescaller isolation.
In this architecture, API calls are translated to remote procedure calls, which encode the identity of theclient application. The cryptoprocessor carefully segments its internal storage to ensure that a client’s datais never leaked to another client.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 28

4.5 Multi-cryptoprocessor architecture
This system includes multiple cryptoprocessors. There are several reasons to have multiplecryptoprocessors:

∙ Different compromises between security and performance for different keys. Typically, this means acryptoprocessor that runs on the same hardware as the main application and processes short-termsecrets, a secure element or a similar separate chip that retains long-term secrets.
∙ Independent provisioning of certain secrets.
∙ A combination of a non-removable cryptoprocessor and removable ones, for example, a smartcard orHSM.
∙ Cryptoprocessors managed by different stakeholders who do not trust each other.

The keystore implementation needs to dispatch each request to the correct processor. For example:
∙ All requests involving a non-extractable key must be processed in the cryptoprocessor that holdsthat key.
∙ Requests involving a persistent key must be processed in the cryptoprocessor that corresponds tothe key’s lifetime value.
∙ Requests involving a volatile key might target a cryptoprocessor based on parameters supplied bythe application, or based on considerations such as performance inside the implementation.

5 Library conventions
5.1 Header files
The header file for the Crypto API has the name psa/crypto.h. All of the API elements that are provided byan implementation must be visible to an application program that includes this header file.
#include "psa/crypto.h"

Implementations must provide their own version of the psa/crypto.h header file. Implementations canprovide a subset of the API defined in this specification and a subset of the available algorithms. Exampleheader file on page 284 provides an incomplete, example header file which includes all of the API elements.See also Implementation considerations on page 37.
The Crypto API uses the status code definitions that are shared with the other PSA Certified APIs. PSACertified Status code API [PSA-STAT] defines these status codes in the psa/error.h header file. Applicationsare not required to explicitly include the psa/error.h header file when using these status codes with theCrypto API. See Status codes on page 42.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 29

5.2 API conventions
The interface in this specification is defined in terms of C macros, data types, and functions.
5.2.1 Identifier names

All of the identifiers defined in the Crypto API begin with the prefix psa_, for types and functions, or PSA_for macros.
Future versions of this specification will use the same prefix for additional API elements. It isrecommended that applications and implementations do not use this prefix for their own identifiers, toavoid a potential conflict with a future version of the Crypto API.
5.2.2 Basic types

This specification makes use of standard C data types, including the fixed-width integer types from theISO C99 specification update [C99]. The following standard C types are used:
int32_t a 32-bit signed integer
uint8_t an 8-bit unsigned integer
uint16_t a 16-bit unsigned integer
uint32_t a 32-bit unsigned integer
uint64_t a 64-bit unsigned integer
size_t an unsigned integer large enough to hold the size of an object in memory

5.2.3 Data types

Integral types are defined for specific API elements to provide clarity in the interface definition, and toimprove code readability. For example, psa_algorithm_t and psa_status_t.
For enum-like integral types, the value 0 is usually reserved by the API to indicate an unspecified or invalidvalue.
Structure types are declared using typedef instead of a struct tag, also to improve code readability.
Fully-defined types must be declared exactly as defined in this specification. Types that are not fullydefined in this specification must be defined by an implementation. See Implementation-specific types onpage 37.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 30

5.2.4 Constants

Constant values are defined using C macros. Constants defined in this specification have names that are allupper-case.
A constant macro evaluates to a compile-time constant expression.
5.2.5 Function-like macros

Function-like macros are C macros that take parameters, providing supporting functionality in the API.Function-like macros defined in this specification have names that are all upper-case.
Function-like macros are permitted to evaluate each argument multiple times or zero times. Providingarguments that have side effects will result in IMPLEMENTATION DEFINED behavior, and is non-portable.
If all of the arguments to a function-like macro are compile-time constant expressions, the then resultevaluates to a compile-time constant expression.
If an argument to a function-like macro has an invalid value (for example, a value outside the domain of thefunction-like macro), then the result is IMPLEMENTATION DEFINED.
5.2.6 Functions

Functions defined in this specification have names that are all lower-case.
An implementation is permitted to declare any API function with static inline linkage, instead of thedefault extern linkage.
An implementation is permitted to also define a function-like macro with the same name as a function inthis specification. If an implementation defines a function-like macro for a function from this specification,then:

∙ The implementation must also provide a definition of the function. This enables an application totake the address of a function defined in this specification.
∙ The function-like macro must expand to code that evaluates each of its arguments exactly once, as ifthe call was made to a C function. This enables an application to safely use arbitrary expressions asarguments to a function defined in this specification.

If a non-pointer argument to a function has an invalid value (for example, a value outside the domain ofthe function), then the function will normally return an error, as specified in the function definition. Seealso Error handling on page 32.
If a pointer argument to a function has an invalid value (for example, a pointer outside the address space ofthe program, or a null pointer), the result is IMPLEMENTATION DEFINED. See also Pointer conventions on page 33.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 31

5.3 Error handling
5.3.1 Return status
Almost all functions return a status indication of type psa_status_t. This is an enumeration of integervalues, with 0 (PSA_SUCCESS) indicating successful operation and other values indicating errors. Theexceptions are functions which only access objects that are intended to be implemented as simple datastructures. Such functions cannot fail and either return void or a data value.
Unless specified otherwise, if multiple error conditions apply, an implementation is free to return any ofthe applicable error codes. The choice of error code is considered an implementation quality issue.Different implementations can make different choices, for example to favor code size over ease ofdebugging or vice versa.
If the behavior is undefined, for example, if a function receives an invalid pointer as a parameter, thisspecification makes no guarantee that the function will return an error. Implementations are encouragedto return an error or halt the application in a manner that is appropriate for the platform if the undefinedbehavior condition can be detected. However, application developers need to be aware that undefinedbehavior conditions cannot be detected in general.
5.3.2 Behavior on error
In general, function calls must be implemented atomically:

∙ When a function returns a type other than psa_status_t, the requested action has been carried out.
∙ When a function returns the status PSA_SUCCESS, the requested action has been carried out.
∙ When a function returns another status of type psa_status_t, no action has been carried out. Unlessotherwise documented by the API or the implementation, the content of output parameters is notdefined. The state of the system has not changed, except as described below.

In general, functions that modify the system state, for example, creating or destroying a key, must leavethe system state unchanged if they return an error code. There are specific conditions that can result indifferent behavior:
∙ The status PSA_ERROR_BAD_STATE indicates that a parameter was not in a valid state for the requestedaction. This parameter might have been modified by the call and is now in an error state. The onlyvalid action on an object in an error state is to abort it with the appropriate psa_xxx_abort() function.SeeMulti-part operations on page 24.
∙ The status PSA_ERROR_INSUFFICIENT_DATA indicates that a key derivation object has reached itsmaximum capacity. The key derivation operation might have been modified by the call. Any furtherattempt to obtain output from the key derivation operation will return PSA_ERROR_INSUFFICIENT_DATA.
∙ The status PSA_ERROR_COMMUNICATION_FAILURE indicates that the communication between theapplication and the cryptoprocessor has broken down. In this case, the cryptoprocessor must eitherfinish the requested action successfully, or interrupt the action and roll back the system to its originalstate. Because it is often impossible to report the outcome to the application after a communicationfailure, this specification does not provide a way for the application to determine whether the actionwas successful.
∙ The statuses PSA_ERROR_STORAGE_FAILURE, PSA_ERROR_DATA_CORRUPT, PSA_ERROR_HARDWARE_FAILURE and

PSA_ERROR_CORRUPTION_DETECTED might indicate data corruption in the system state. When a function
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 32

returns one of these statuses, the system state might have changed from its previous state beforethe function call, even though the function call failed.
∙ Some system states cannot be rolled back, for example, the internal state of the random numbergenerator or the content of access logs.

Implementation note
When a function returns an error status, it is recommended that implementations set outputparameters to safe defaults to avoid leaking confidential data and limit risk, in case an applicationdoes not properly handle all errors.

5.4 Parameter conventions
5.4.1 Pointer conventions

Unless explicitly stated in the documentation of a function, all pointers must be valid pointers to an objectof the specified type.
A parameter is considered a buffer if it points to an array of bytes. A buffer parameter always has the type
uint8_t * or const uint8_t *, and always has an associated parameter indicating the size of the array. Notethat a parameter of type void * is never considered a buffer.
All parameters of pointer type must be valid non-null pointers, unless the pointer is to a buffer of length 0or the function’s documentation explicitly describes the behavior when the pointer is null. Passing a nullpointer as a function parameter in other cases is expected to abort the caller on implementations wherethis is the normal behavior for a null pointer dereference.
Pointers to input parameters can be in read-only memory. Output parameters must be in writable memory.Output parameters that are not buffers must also be readable, and the implementation must be able towrite to a non-buffer output parameter and read back the same value, as explained in Stability ofparameters on page 34.
5.4.2 Input buffer sizes

For input buffers, the parameter convention is:
const uint8_t *fooPointer to the first byte of the data. The pointer can be invalid if the buffer size is 0.
size_t foo_lengthSize of the buffer in bytes.

The interface never uses input-output buffers.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 33

5.4.3 Output buffer sizes

For output buffers, the parameter convention is:
uint8_t *fooPointer to the first byte of the data. The pointer can be invalid if the buffer size is 0.
size_t foo_sizeThe size of the buffer in bytes.
size_t *foo_lengthOn successful return, contains the length of the output in bytes.

The content of the data buffer and of *foo_length on errors is unspecified, unless explicitly mentioned inthe function description. They might be unmodified or set to a safe default. On successful completion, thecontent of the buffer between the offsets *foo_length and foo_size is also unspecified.
Functions return PSA_ERROR_BUFFER_TOO_SMALL if the buffer size is insufficient to carry out the requestedoperation. The interface defines macros to calculate a sufficient buffer size for each operation that has anoutput buffer. These macros return compile-time constants if their arguments are compile-time constants,so they are suitable for static or stack allocation. Refer to an individual function’s documentation for theassociated output size macro.
Some functions always return exactly as much data as the size of the output buffer. In this case, theparameter convention changes to:

uint8_t *fooPointer to the first byte of the output. The pointer can be invalid if the buffer size is 0.
size_t foo_lengthThe number of bytes to return in foo if successful.

5.4.4 Overlap between parameters

Output parameters that are not buffers must not overlap with any input buffer or with any other outputparameter. Otherwise, the behavior is undefined.
Output buffers can overlap with input buffers. In this event, the implementation must return the sameresult as if the buffers did not overlap. The implementation must behave as if it had copied all the inputsinto temporary memory, as far as the result is concerned. However, it is possible that overlap betweenparameters will affect the performance of a function call. Overlap might also affect memory managementsecurity if the buffer is located in memory that the caller shares with another security context, asdescribed in Stability of parameters.
5.4.5 Stability of parameters

In some environments, it is possible for the content of a parameter to change while a function is executing.It might also be possible for the content of an output parameter to be read before the function terminates.This can happen if the application is multithreaded. In some implementations, memory can be sharedbetween security contexts, for example, between tasks in a multitasking operating system, between a userland task and the kernel, or between the Non-secure world and the Secure world of a trusted executionenvironment.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 34

This section describes the assumptions that an implementation can make about function parameters, andthe guarantees that the implementation must provide about how it accesses parameters.
Parameters that are not buffers are assumed to be under the caller’s full control. In a shared memoryenvironment, this means that the parameter must be in memory that is exclusively accessible by theapplication. In a multithreaded environment, this means that the parameter must not be modified duringthe execution, and the value of an output parameter is undetermined until the function returns. Theimplementation can read an input parameter that is not a buffer multiple times and expect to read thesame data. The implementation can write to an output parameter that is not a buffer and expect to readback the value that it last wrote. The implementation has the same permissions on buffers that overlapwith a buffer in the opposite direction.
In an environment with multiple threads or with shared memory, the implementation carefully accessesnon-overlapping buffer parameters in order to prevent any security risk resulting from the content of thebuffer being modified or observed during the execution of the function. In an input buffer that does notoverlap with an output buffer, the implementation reads each byte of the input once, at most. Theimplementation does not read from an output buffer that does not overlap with an input buffer.Additionally, the implementation does not write data to a non-overlapping output buffer if this data ispotentially confidential and the implementation has not yet verified that outputting this data is authorized.
Unless otherwise specified, the implementation must not keep a reference to any parameter once afunction call has returned.

5.5 Key types and algorithms
Types of cryptographic keys and cryptographic algorithms are encoded separately. Each is encoded byusing an integral type: psa_key_type_t and psa_algorithm_t, respectively.
There is some overlap in the information conveyed by key types and algorithms. Both types containenough information, so that the meaning of an algorithm type value does not depend on what type of keyit is used with, and vice versa. However, the particular instance of an algorithm might depend on the keytype. For example, the algorithm PSA_ALG_GCM can be instantiated as any AEAD algorithm using the GCMmode over a block cipher. The underlying block cipher is determined by the key type.
Key types do not encode the key size. For example, AES-128, AES-192 and AES-256 share a key type
PSA_KEY_TYPE_AES.
5.5.1 Structure of key types and algorithms

Both types use a partial bitmask structure, which allows the analysis and building of values from parts.However, the interface defines constants, so that applications do not need to depend on the encoding,and an implementation might only care about the encoding for code size optimization.
The encodings follows a few conventions:

∙ The highest bit is a vendor flag. Current and future versions of this specification will only definevalues where this bit is clear. Implementations that wish to define additional implementation-specificvalues must use values where this bit is set, to avoid conflicts with future versions of thisspecification.
∙ The next few highest bits indicate the algorithm or key category: hash, MAC, symmetric cipher,asymmetric encryption, and so on.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 35

∙ The following bits identify a family of algorithms or keys in a category-dependent manner.
∙ In some categories and algorithm families, the lowest-order bits indicate a variant in a systematicway. For example, algorithm families that are parametrized around a hash function encode the hashin the 8 lowest bits.

The Algorithm and key type encoding on page 298 appendix provides a full definition of the encoding of keytypes and algorithm identifiers.

5.6 Concurrent calls
In some environments, an application can make calls to the Crypto API in separate threads. In such anenvironment, concurrent calls are two or more calls to the API whose execution can overlap in time.
Sequential consistencyThe result of two or more concurrent calls must be consistent with the same set of callsbeing executed sequentially in some order, provided that the calls obey the followingconstraints:

∙ There is no overlap between an output parameter of one call and an input or outputparameter of another call. Overlap between input parameters is permitted.
∙ A call to psa_destroy_key() must not overlap with a concurrent call to any of thefollowing functions:

— Any call where the same key identifier is a parameter to the call.
— Any call in a multi-part operation, where the same key identifier was used as aparameter to a previous step in the multi-part operation.

∙ Concurrent calls must not use the same operation object.
If any of these constraints are violated, the behavior is undefined.
The consistency requirement does not apply to errors that arise from resource failures orlimitations. For example, errors resulting from resource exhaustion can arise in concurrentexecution that do not arise in sequential execution.
As an example of this rule: suppose two calls are executed concurrently which both attemptto create a new key with the same key identifier that is not already in the key store. Then:

∙ If one call returns PSA_ERROR_ALREADY_EXISTS, then the other call must succeed.
∙ If one of the calls succeeds, then the other must fail: either with

PSA_ERROR_ALREADY_EXISTS or some other error status.
∙ Both calls can fail with error codes that are not PSA_ERROR_ALREADY_EXISTS.

Parameter stabilityIf the application concurrently modifies an input parameter while a function call is inprogress, the behavior is undefined.
Individual implementations can provide additional guarantees.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 36

6 Implementation considerations
6.1 Implementation-specific aspects of the interface
6.1.1 Implementation profile

Implementations can implement a subset of the API and a subset of the available algorithms. Theimplemented subset is known as the implementation’s profile. The documentation for eachimplementation must describe the profile that it implements. This specification’s companion documentsalso define a number of standard profiles.
6.1.2 Implementation-specific types

This specification defines a number of implementation-specific types, which represent objects whosecontent depends on the implementation. These are defined as C typedef types in this specification, with acomment /* implementation-defined type */ in place of the underlying type definition. For some types thespecification constrains the type, for example, by requiring that the type is a struct, or that it is convertibleto and from an unsigned integer. In the implementation’s version of psa/crypto.h, these types need to bedefined as complete C types so that objects of these types can be instantiated by application code.
Applications that rely on the implementation specific definition of any of these types might not beportable to other implementations of this specification.
6.1.3 Implementation-specific macros

Some macro constants and function-like macros are precisely defined by this specification. The use of anexact definition is essential if the definition can appear in more than one header file within a compilation.
Other macros that are defined by this specification have a macro body that is implementation-specific. Thedescription of an implementation-specific macro can optionally specify each of the following requirements:

∙ Input domains: the macro must be valid for arguments within the input domain.
∙ A return type: the macro result must be compatible with this type.
∙ Output range: the macro result must lie in the output range.
∙ Computed value: A precise mapping of valid input to output values.

Each implementation-specific macro is in one of following categories:
Specification-defined valueThe result type and computed value of the macro expression is defined by thisspecification, but the definition of the macro body is provided by the implementation.

These macros are indicated in this specification using the comment:
/* specification-defined value */

For function-like macros with specification-defined values:
∙ Example implementations are provided in an appendix to this specification. SeeExample macro implementations on page 310.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 37

∙ The expected computation for valid and supported input arguments will be defined aspseudo-code in a future version of this specification.
Implementation-defined valueThe value of the macro expression is implementation-defined.

For some macros, the computed value is derived from the specification of one or morecryptographic algorithms. In these cases, the result must exactly match the value in thoseexternal specifications.
These macros are indicated in this specification using the comment:
/* implementation-defined value */

Some of these macros compute a result based on an algorithm or key type. If an implementation definesvendor-specific algorithms or key types, then it must provide an implementation for such macros thattakes all relevant algorithms and types into account. Conversely, an implementation that does not supporta certain algorithm or key type can define such macros in a simpler way that does not take unsupportedargument values into account.
Some macros define the minimum sufficient output buffer size for certain functions. In some cases, animplementation is permitted to require a buffer size that is larger than the theoretical minimum. Animplementation must define minimum-size macros in such a way that it guarantees that the buffer of theresulting size is sufficient for the output of the corresponding function. Refer to each macro’sdocumentation for the applicable requirements.

6.2 Porting to a platform
6.2.1 Platform assumptions

This specification is designed for a C99 platform. The interface is defined in terms of C macros, functionsand objects.
The specification assumes 8-bit bytes, and “byte” and “octet” are used synonymously.
6.2.2 Platform-specific types

The specification makes use of some types defined in C99. These types must be defined in theimplementation version of psa/crypto.h or by a header included in this file. The following C99 types areused:
uint8_t, uint16_t, uint32_tUnsigned integer types with 8, 16 and 32 value bits respectively. These types are definedby the C99 header stdint.h.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 38

6.2.3 Cryptographic hardware support

Implementations are encouraged to make use of hardware accelerators where available. A future versionof this specification will define a function interface that calls drivers for hardware accelerators and externalcryptographic hardware.

6.3 Security requirements and recommendations
6.3.1 Error detection

Implementations that provide isolation between the caller and the cryptography processing environmentmust validate parameters to ensure that the cryptography processing environment is protected fromattacks caused by passing invalid parameters.
Even implementations that do not provide isolation are recommended to detect bad parameters andfail-safe where possible.
6.3.2 Indirect object references

Implementations can use different strategies for allocating key identifiers, and other types of indirectobject reference.
Implementations that provide isolation between the caller and the cryptography processing environmentmust consider the threats relating to abuse and misuse of key identifiers and other indirect resourcereferences. For example, multi-part operations can be implemented as backend state to which the clientonly maintains an indirect reference in the application’s multi-part operation object.
An implementation that supports multiple callers must implement strict isolation of API resources betweendifferent callers. For example, a client must not be able to obtain a reference to another client’s key byguessing the key identifier value. Isolation of key identifiers can be achieved in several ways. For example:

∙ There is a single identifier namespace for all clients, and the implementation verifies that the client isthe owner of the identifier when looking up the key.
∙ Each client has an independent identifier namespace, and the implementation uses a client specificidentifier-to-key mapping when looking up the key.

After a volatile key identifier is destroyed, it is recommended that the implementation does notimmediately reuse the same identifier value for a different key. This reduces the risk of an attack that isable to exploit a key identifier reuse vulnerability within an application.
6.3.3 Memory cleanup

Implementations must wipe all sensitive data from memory when it is no longer used. It is recommendedthat they wipe this sensitive data as soon as possible. All temporary data used during the execution of afunction, such as stack buffers, must be wiped before the function returns. All data associated with anobject, such as a multi-part operation, must be wiped, at the latest, when the object becomes inactive, forexample, when a multi-part operation is aborted.
The rationale for this non-functional requirement is to minimize impact if the system is compromised. Ifsensitive data is wiped immediately after use, only data that is currently in use can be leaked. It does notcompromise past data.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 39

6.3.4 Managing key material
In implementations that have limited volatile memory for keys, the implementation is permitted to store avolatile key to a temporary location in non-volatile memory. The implementation must delete anynon-volatile copies when the key is destroyed, and it is recommended that these copies are deleted assoon as the key is reloaded into volatile memory. An implementation that uses this method must clear anystored volatile key material on startup.
Implementing the memory cleanup rule (seeMemory cleanup on page 39) for a persistent key can result ininefficiencies when the same persistent key is used sequentially in multiple cryptographic operations. Theinefficiency stems from loading the key from non-volatile storage on each use of the key. The
PSA_KEY_USAGE_CACHE usage flag in a key policy allows an application to request that the implementationdoes not cleanup non-essential copies of persistent key material, effectively suspending the cleanup rulesfor that key. The effects of this policy depend on the implementation and the key, for example:

∙ For volatile keys or keys in a secure element with no open/close mechanism, this is likely to have noeffect.
∙ For persistent keys that are not in a secure element, this allows the implementation to keep the keyin a memory cache outside of the memory used by ongoing operations.
∙ For keys in a secure element with an open/close mechanism, this is a hint to keep the key open in thesecure element.

The application can indicate when it has finished using the key by calling psa_purge_key(), to request thatthe key material is cleaned from memory.
6.3.5 Safe outputs on error
Implementations must ensure that confidential data is not written to output parameters before validatingthat the disclosure of this confidential data is authorized. This requirement is particularly important forimplementations where the caller can share memory with another security context, as described inStability of parameters on page 34.
In most cases, the specification does not define the content of output parameters when an error occurs. Itis recommended that implementations try to ensure that the content of output parameters is as safe aspossible, in case an application flaw or a data leak causes it to be used. In particular, Arm recommends thatimplementations avoid placing partial output in output buffers when an action is interrupted. The meaningof “safe as possible” depends on the implementation, as different environments require differentcompromises between implementation complexity, overall robustness and performance. Some commonstrategies are to leave output parameters unchanged, in case of errors, or zeroing them out.
6.3.6 Attack resistance
Cryptographic code tends to manipulate high-value secrets, from which other secrets can be unlocked. Assuch, it is a high-value target for attacks. There is a vast body of literature on attack types, such as sidechannel attacks and glitch attacks. Typical side channels include timing, cache access patterns,branch-prediction access patterns, power consumption, radio emissions and more.
This specification does not specify particular requirements for attack resistance. Implementers areencouraged to consider the attack resistance desired in each use case and design their implementationaccordingly. Security standards for attack resistance for particular targets might be applicable in certainuse cases.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 40

6.4 Other implementation considerations
6.4.1 Philosophy of resource management

The specification allows most functions to return PSA_ERROR_INSUFFICIENT_MEMORY. This givesimplementations the freedom to manage memory as they please.
Alternatively, the interface is also designed for conservative strategies of memory management. Animplementation can avoid dynamic memory allocation altogether by obeying certain restrictions:

∙ Pre-allocate memory for a predefined number of keys, each with sufficient memory for all key typesthat can be stored.
∙ For multi-part operations, in an implementation with no isolation, place all the data that needs to becarried over from one step to the next in the operation object. The application is then fully in controlof how memory is allocated for the operation.
∙ In an implementation with isolation, pre-allocate memory for a predefined number of operationsinside the cryptoprocessor.

7 Usage considerations
7.1 Security recommendations
7.1.1 Always check for errors

Most functions in the Crypto API can return errors. All functions that can fail have the return type
psa_status_t. A few functions cannot fail, and thus, return void or some other type.
If an error occurs, unless otherwise specified, the content of the output parameters is undefined and mustnot be used.
Some common causes of errors include:

∙ In implementations where the keys are stored and processed in a separate environment from theapplication, all functions that need to access the cryptography processing environment might fail dueto an error in the communication between the two environments.
∙ If an algorithm is implemented with a hardware accelerator, which is logically separate from theapplication processor, the accelerator might fail, even when the application processor keeps runningnormally.
∙ Most functions might fail due to a lack of resources. However, some implementations guarantee thatcertain functions always have sufficient memory.
∙ All functions that access persistent keys might fail due to a storage failure.
∙ All functions that require randomness might fail due to a lack of entropy. Implementations areencouraged to seed the random generator with sufficient entropy during the execution of

psa_crypto_init(). However, some security standards require periodic reseeding from a hardwarerandom generator, which can fail.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 41

7.1.2 Shared memory and concurrency

Some environments allow applications to be multithreaded, while others do not. In some environments,applications can share memory with a different security context. In environments with multithreadedapplications or shared memory, applications must be written carefully to avoid data corruption or leakage.This specification requires the application to obey certain constraints.
In general, the Crypto API allows either one writer or any number of simultaneous readers, on any givenobject. In other words, if two or more calls access the same object concurrently, then the behavior is onlywell-defined if all the calls are only reading from the object and do not modify it. Read accesses includereading memory by input parameters and reading keystore content by using a key. For more details, referto Concurrent calls on page 36.
If an application shares memory with another security context, it can pass shared memory blocks as inputbuffers or output buffers, but not as non-buffer parameters. For more details, refer to Stability ofparameters on page 34.
7.1.3 Cleaning up after use

To minimize impact if the system is compromised, it is recommended that applications wipe all sensitivedata from memory when it is no longer used. That way, only data that is currently in use can be leaked, andpast data is not compromised.
Wiping sensitive data includes:

∙ Clearing temporary buffers in the stack or on the heap.
∙ Aborting operations if they will not be finished.
∙ Destroying keys that are no longer used.

8 Library management reference
8.1 Status codes
The Crypto API uses the status code definitions that are shared with the other PSA Certified APIs. TheCrypto API also provides some Crypto API-specific status codes, see Error codes specific to the Crypto APIon page 44.
The following elements are defined in psa/error.h from PSA Certified Status code API [PSA-STAT](previously defined in [PSA-FFM]):
typedef int32_t psa_status_t;

#define PSA_SUCCESS ((psa_status_t)0)

#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)

#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)

#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)

#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 42

(continued from previous page)
#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)

#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)

#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)

#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)

#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)

#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)

#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)

#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)

#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)

#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)

#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)

#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)

#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)

#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)

#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)

These definitions must be available to an application that includes the psa/crypto.h header file.
Implementation note
An implementation is permitted to define the status code interface elements within the psa/crypto.hheader file, or to define them via inclusion of a psa/error.h header file that is shared with theimplementation of other PSA Certified APIs.

8.1.1 Common error codes

Some of the common status codes have a more precise meaning when returned by a function in theCrypto API, compared to the definitions in [PSA-STAT].
Error code Meaning in the Crypto API

PSA_ERROR_INVALID_HANDLE A key identifier does not refer to an existing key. See also Keyidentifiers on page 22.
PSA_ERROR_BAD_STATE Multi-part operations return this error when one of the functions iscalled out of sequence. Refer to the function descriptions forpermitted sequencing of functions.

Implementations can return this error if the caller has not initializedthe library by a call to psa_crypto_init().
PSA_ERROR_BUFFER_TOO_SMALL Applications can call the PSA_xxx_SIZE macro listed in the functiondescription to determine a sufficient buffer size.

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 43

Table 5 – continued from previous page

Error code Meaning in the Crypto API

PSA_ERROR_STORAGE_FAILURE When a storage failure occurs, it is no longer possible to ensure theglobal integrity of the keystore. Depending on the global integrityguarantees offered by the implementation, access to other datamight fail even if the data is still readable but its integrity cannot beguaranteed.
PSA_ERROR_CORRUPTION_DETECTED This error code is intended as a last resort when a security breach isdetected and it is unsure whether the keystore data is stillprotected. Implementations must only return this error code toreport an alarm from a tampering detector, to indicate that theconfidentiality of stored data can no longer be guaranteed, or toindicate that the integrity of previously returned data is nowconsidered compromised.
PSA_ERROR_DATA_CORRUPT When a storage failure occurs, it is no longer possible to ensure theglobal integrity of the keystore. Depending on the global integrityguarantees offered by the implementation, access to other datamight fail even if the data is still readable but its integrity cannot beguaranteed.

8.1.2 Error codes specific to the Crypto API

The following elements are defined in the psa/crypto.h header file.
PSA_ERROR_INSUFFICIENT_ENTROPY (macro)

A status code that indicates that there is not enough entropy to generate random data needed for therequested action.
#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)

This error indicates a failure of a hardware random generator. Application writers must note that this errorcan be returned not only by functions whose purpose is to generate random data, such as key, IV or noncegeneration, but also by functions that execute an algorithm with a randomized result, as well as functionsthat use randomization of intermediate computations as a countermeasure to certain attacks.
It is recommended that implementations do not return this error after psa_crypto_init() has succeeded.This can be achieved if the implementation generates sufficient entropy during initialization andsubsequently a cryptographically secure pseudorandom generator (PRNG) is used. However,implementations might return this error at any time, for example, if a policy requires the PRNG to bereseeded during normal operation.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 44

PSA_ERROR_INVALID_PADDING (macro)

A status code that indicates that the decrypted padding is incorrect.
#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)

Warning: In some protocols, when decrypting data, it is essential that the behavior of the applicationdoes not depend on whether the padding is correct, down to precise timing. Protocols that useauthenticated encryption are recommended for use by applications, rather than plain encryption. If theapplication must perform a decryption of unauthenticated data, the application writer must take carenot to reveal whether the padding is invalid.
Implementations must handle padding carefully, aiming to make it impossible for an external observer todistinguish between valid and invalid padding. In particular, it is recommended that the timing of adecryption operation does not depend on the validity of the padding.

8.2 Crypto API library
8.2.1 API version

PSA_CRYPTO_API_VERSION_MAJOR (macro)

The major version of this implementation of the Crypto API.
#define PSA_CRYPTO_API_VERSION_MAJOR 1

PSA_CRYPTO_API_VERSION_MINOR (macro)

The minor version of this implementation of the Crypto API.
#define PSA_CRYPTO_API_VERSION_MINOR 2

8.2.2 Library initialization

psa_crypto_init (function)

Library initialization.
psa_status_t psa_crypto_init(void);

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 45

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

It is recommended that applications call this function before calling any other function in this module.
Applications are permitted to call this function more than once. Once a call succeeds, subsequent calls areguaranteed to succeed.
If the application calls any function that returns a psa_status_t result code before calling psa_crypto_init(),the following will occur:

∙ If initialization of the library is essential for secure operation of the function, the implementationmust return PSA_ERROR_BAD_STATE or other appropriate error.
∙ If failure to initialize the library does not compromise the security of the function, theimplementation must either provide the expected result for the function, or return

PSA_ERROR_BAD_STATE or other appropriate error.
Note:
The following scenarios are examples where an implementation can require that the library has beeninitialized by calling psa_crypto_init():

∙ A client-server implementation, in which psa_crypto_init() establishes the communication withthe server. No key management or cryptographic operation can be performed until this is done.
∙ An implementation in which psa_crypto_init() initializes the random bit generator, and nooperations that require the RNG can be performed until this is done. For example, random data,key, IV, or nonce generation; randomized signature or encryption; and algorithms that areimplemented with blinding.

Warning: The set of functions that depend on successful initialization of the library is IMPLEMENTATION
DEFINED. Applications that rely on calling functions before initializing the library might not be portableto other implementations.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 46

9 Key management reference
9.1 Key attributes
Key attributes are managed in a psa_key_attributes_t object. These are used when a key is created, afterwhich the key attributes are fixed. Attributes of an existing key can be queried using
psa_get_key_attributes().
Description of the individual attributes is found in the following sections:

∙ Key types on page 51
∙ Key identifiers on page 82
∙ Key lifetimes on page 74
∙ Key policies on page 85

9.1.1 Managing key attributes

psa_key_attributes_t (typedef)

The type of an object containing key attributes.
typedef /* implementation-defined type */ psa_key_attributes_t;

This is the object that represents the metadata of a key object. Metadata that can be stored in attributesincludes:
∙ The location of the key in storage, indicated by its key identifier and its lifetime.
∙ The key’s policy, comprising usage flags and a specification of the permitted algorithm(s).
∙ Information about the key itself: the key type and its size.
∙ Implementations can define additional attributes.

The actual key material is not considered an attribute of a key. Key attributes do not contain informationthat is generally considered highly confidential.
Note:
Implementations are recommended to define the attribute object as a simple data structure, withfields corresponding to the individual key attributes. In such an implementation, each function
psa_set_key_xxx() sets a field and the corresponding function psa_get_key_xxx() retrieves the valueof the field.
An implementations can report attribute values that are equivalent to the original one, but have adifferent encoding. For example, an implementation can use a more compact representation fortypes where many bit-patterns are invalid or not supported, and store all values that it does notsupport as a special marker value. In such an implementation, after setting an invalid value, thecorresponding get function returns an invalid value which might not be the one that was originallystored.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 47

This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.
An attribute object can contain references to auxiliary resources, for example pointers to allocatedmemory or indirect references to pre-calculated values. In order to free such resources, the applicationmust call psa_reset_key_attributes(). As an exception, calling psa_reset_key_attributes() on an attributeobject is optional if the object has only been modified by the following functions since it was initialized orlast reset with psa_reset_key_attributes():

∙ psa_set_key_id()

∙ psa_set_key_lifetime()

∙ psa_set_key_type()

∙ psa_set_key_bits()

∙ psa_set_key_usage_flags()

∙ psa_set_key_algorithm()

Before calling any function on a key attribute object, the application must initialize it by any of thefollowing means:
∙ Set the object to all-bits-zero, for example:

psa_key_attributes_t attributes;

memset(&attributes, 0, sizeof(attributes));

∙ Initialize the object to logical zero values by declaring the object as static or global without anexplicit initializer, for example:
static psa_key_attributes_t attributes;

∙ Initialize the object to the initializer PSA_KEY_ATTRIBUTES_INIT, for example:
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

∙ Assign the result of the function psa_key_attributes_init() to the object, for example:
psa_key_attributes_t attributes;

attributes = psa_key_attributes_init();

A freshly initialized attribute object contains the following values:

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 48

Attribute Value

lifetime PSA_KEY_LIFETIME_VOLATILE.
key identifier PSA_KEY_ID_NULL — which is not a valid key identifier.
type PSA_KEY_TYPE_NONE — meaning that the type is unspecified.
key size 0 — meaning that the size is unspecified.
usage flags 0 — which permits no usage except exporting a public key.
algorithm PSA_ALG_NONE — which does not permit cryptographic usage, but permits exporting.

Usage

A typical sequence to create a key is as follows:
1. Create and initialize an attribute object.
2. If the key is persistent, call psa_set_key_id(). Also call psa_set_key_lifetime() to place the key in anon-default location.
3. Set the key policy with psa_set_key_usage_flags() and psa_set_key_algorithm().
4. Set the key type with psa_set_key_type(). Skip this step if copying an existing key with

psa_copy_key().
5. When generating a random key with psa_generate_key() or deriving a key with

psa_key_derivation_output_key(), set the desired key size with psa_set_key_bits().
6. Call a key creation function: psa_import_key(), psa_generate_key(), psa_key_derivation_output_key(),

psa_key_agreement(), or psa_copy_key(). This function reads the attribute object, creates a key withthese attributes, and outputs an identifier for the newly created key.
7. Optionally call psa_reset_key_attributes(), now that the attribute object is no longer needed.Currently this call is not required as the attributes defined in this specification do not requireadditional resources beyond the object itself.

A typical sequence to query a key’s attributes is as follows:
1. Call psa_get_key_attributes().
2. Call psa_get_key_xxx() functions to retrieve the required attribute(s).
3. Call psa_reset_key_attributes() to free any resources that can be used by the attribute object.

Once a key has been created, it is impossible to change its attributes.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 49

PSA_KEY_ATTRIBUTES_INIT (macro)

This macro returns a suitable initializer for a key attribute object of type psa_key_attributes_t.
#define PSA_KEY_ATTRIBUTES_INIT /* implementation-defined value */

psa_key_attributes_init (function)

Return an initial value for a key attribute object.
psa_key_attributes_t psa_key_attributes_init(void);

Returns: psa_key_attributes_t

psa_get_key_attributes (function)

Retrieve the attributes of a key.
psa_status_t psa_get_key_attributes(psa_key_id_t key,

psa_key_attributes_t * attributes);

Parameters

key Identifier of the key to query.
attributes On entry, *attributes must be in a valid state. On successful return, itcontains the attributes of the key. On failure, it is equivalent to afreshly-initialized attribute object.

Returns: psa_status_t

PSA_SUCCESS Success. attributes contains the attributes of the key.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function first resets the attribute object as with psa_reset_key_attributes(). It then copies theattributes of the given key into the given attribute object.
Note:

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 50

This function clears any previous content from the attribute object and therefore expects it to be ina valid state. In particular, if this function is called on a newly allocated attribute object, the attributeobject must be initialized before calling this function.

Note:
This function might allocate memory or other resources. Once this function has been called on anattribute object, psa_reset_key_attributes() must be called to free these resources.

psa_reset_key_attributes (function)

Reset a key attribute object to a freshly initialized state.
void psa_reset_key_attributes(psa_key_attributes_t * attributes);

Parameters

attributes The attribute object to reset.
Returns: void
Description

The attribute object must be initialized as described in the documentation of the type psa_key_attributes_tbefore calling this function. Once the object has been initialized, this function can be called at any time.
This function frees any auxiliary resources that the object might contain.

9.2 Key types
9.2.1 Key type encoding

psa_key_type_t (typedef)

Encoding of a key type.
typedef uint16_t psa_key_type_t;

This is a structured bitfield that identifies the category and type of key. The range of key type values isdivided as follows:
PSA_KEY_TYPE_NONE == 0Reserved as an invalid key type.
0x0001 – 0x7fffSpecification-defined key types. Key types defined by this standard always have bit 15clear. Unallocated key type values in this range are reserved for future use.
0x8000 – 0xffffImplementation-defined key types. Implementations that define additional key types mustuse an encoding with bit 15 set. The related support macros will be easier to write if thesekey encodings also respect the bitwise structure used by standard encodings.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 51

The Algorithm and key type encoding on page 298 appendix provides a full definition of the key typeencoding.
PSA_KEY_TYPE_NONE (macro)

An invalid key type value.
#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)

Zero is not the encoding of any key type.
9.2.2 Key categories

PSA_KEY_TYPE_IS_UNSTRUCTURED (macro)

Whether a key type is an unstructured array of bytes.
#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.
Description

This encompasses both symmetric keys and non-key data.
See Symmetric keys on page 53 for a list of symmetric key types.
PSA_KEY_TYPE_IS_ASYMMETRIC (macro)

Whether a key type is asymmetric: either a key pair or a public key.
#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.
Description

See RSA keys on page 61 for a list of asymmetric key types.
PSA_KEY_TYPE_IS_PUBLIC_KEY (macro)

Whether a key type is the public part of a key pair.
#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) /* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 52

Parameters

type A key type: a value of type psa_key_type_t.
PSA_KEY_TYPE_IS_KEY_PAIR (macro)

Whether a key type is a key pair containing a private part and a public part.
#define PSA_KEY_TYPE_IS_KEY_PAIR(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.
9.2.3 Symmetric keys

PSA_KEY_TYPE_RAW_DATA (macro)

Raw data.
#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)

A “key” of this type cannot be used for any cryptographic operation. Applications can use this type to storearbitrary data in the keystore.
The bit size of a raw key must be a non-zero multiple of 8. The maximum size of a raw key is
IMPLEMENTATION DEFINED.
Compatible algorithms

PSA_ALG_HKDF (non-secret inputs)
PSA_ALG_HKDF_EXPAND (non-secret inputs)
PSA_ALG_HKDF_EXTRACT (non-secret inputs)
PSA_ALG_SP800_108_COUNTER_HMAC (non-secret inputs)
PSA_ALG_SP800_108_COUNTER_CMAC (non-secret inputs)
PSA_ALG_TLS12_PRF (non-secret inputs)
PSA_ALG_TLS12_PSK_TO_MS (non-secret inputs)

PSA_KEY_TYPE_HMAC (macro)

HMAC key.
#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)

HMAC keys can be used in HMAC, or HMAC-based, algorithms. Although HMAC is parameterized by aspecific hash algorithm, for example SHA-256, the hash algorithm is not specified in the key type. Thepermitted-algorithm policy for the key must specify a particular hash algorithm.
The bit size of an HMAC key must be a non-zero multiple of 8. An HMAC key is typically the same size asthe output of the underlying hash algorithm. An HMAC key that is longer than the block size of theunderlying hash algorithm will be hashed before use, see HMAC: Keyed-Hashing for Message Authentication[RFC2104] §2.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 53

https://datatracker.ietf.org/doc/html/rfc2104.html#section-2

It is recommended that an application does not construct HMAC keys that are longer than the block sizeof the hash algorithm that will be used. It is IMPLEMENTATION DEFINED whether an HMAC key that is longerthan the hash block size is supported.
If the application does not control the length of the data used to construct the HMAC key, it isrecommended that the application hashes the key data, when it exceeds the hash block length, beforeconstructing the HMAC key.

Note:
PSA_HASH_LENGTH(alg) provides the output size of hash algorithm alg, in bytes.
PSA_HASH_BLOCK_LENGTH(alg) provides the block size of hash algorithm alg, in bytes.

Compatible algorithms

PSA_ALG_HMAC

PSA_ALG_SP800_108_COUNTER_HMAC (secret input)

PSA_KEY_TYPE_DERIVE (macro)

A secret for key derivation.
#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)

This key type is for high-entropy secrets only. For low-entropy secrets, PSA_KEY_TYPE_PASSWORD should beused instead.
These keys can be used in the PSA_KEY_DERIVATION_INPUT_SECRET or PSA_KEY_DERIVATION_INPUT_PASSWORD inputstep of key derivation algorithms.
The key policy determines which key derivation algorithm the key can be used for.
The bit size of a secret for key derivation must be a non-zero multiple of 8. The maximum size of a secretfor key derivation is IMPLEMENTATION DEFINED.
Compatible algorithms

PSA_ALG_HKDF (secret input)
PSA_ALG_HKDF_EXPAND (secret input)
PSA_ALG_HKDF_EXTRACT (secret input)
PSA_ALG_TLS12_PRF (secret input)
PSA_ALG_TLS12_PSK_TO_MS (secret input)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 54

PSA_KEY_TYPE_PASSWORD (macro)

A low-entropy secret for password hashing or key derivation.
#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)

This key type is suitable for passwords and passphrases which are typically intended to be memorizable byhumans, and have a low entropy relative to their size. It can be used for randomly generated or derivedkeys with maximum or near-maximum entropy, but PSA_KEY_TYPE_DERIVE is more suitable for such keys. It isnot suitable for passwords with extremely low entropy, such as numerical PINs.
These keys can be used in the PSA_KEY_DERIVATION_INPUT_PASSWORD input step of key derivation algorithms.Algorithms that accept such an input were designed to accept low-entropy secret and are known aspassword hashing or key stretching algorithms.
These keys cannot be used in the PSA_KEY_DERIVATION_INPUT_SECRET input step of key derivation algorithms,as the algorithms expect such an input to have high entropy.
The key policy determines which key derivation algorithm the key can be used for, among the permissiblesubset defined above.
Compatible algorithms

PSA_ALG_PBKDF2_HMAC() (password input)
PSA_ALG_PBKDF2_AES_CMAC_PRF_128 (password input)

PSA_KEY_TYPE_PASSWORD_HASH (macro)

A secret value that can be used to verify a password hash.
#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)

The key policy determines which key derivation algorithm the key can be used for, among the samepermissible subset as for PSA_KEY_TYPE_PASSWORD.
Compatible algorithms

PSA_ALG_PBKDF2_HMAC() (key output and verification)
PSA_ALG_PBKDF2_AES_CMAC_PRF_128 (key output and verification)

PSA_KEY_TYPE_PEPPER (macro)

A secret value that can be used when computing a password hash.
#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)

The key policy determines which key derivation algorithm the key can be used for, among the subset ofalgorithms that can use pepper.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 55

Compatible algorithms

PSA_ALG_PBKDF2_HMAC() (salt input)
PSA_ALG_PBKDF2_AES_CMAC_PRF_128 (salt input)

PSA_KEY_TYPE_AES (macro)

Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)

The size of the key is related to the AES algorithm variant. For algorithms except the XTS block ciphermode, the following key sizes are used:
∙ AES-128 uses a 16-byte key : key_bits = 128

∙ AES-192 uses a 24-byte key : key_bits = 192

∙ AES-256 uses a 32-byte key : key_bits = 256

For the XTS block cipher mode (PSA_ALG_XTS), the following key sizes are used:
∙ AES-128-XTS uses two 16-byte keys : key_bits = 256

∙ AES-192-XTS uses two 24-byte keys : key_bits = 384

∙ AES-256-XTS uses two 32-byte keys : key_bits = 512

The AES block cipher is defined in FIPS Publication 197: Advanced Encryption Standard (AES) [FIPS197].
Compatible algorithms

PSA_ALG_CBC_MAC

PSA_ALG_CMAC

PSA_ALG_CTR

PSA_ALG_CFB

PSA_ALG_OFB

PSA_ALG_XTS

PSA_ALG_CBC_NO_PADDING

PSA_ALG_CBC_PKCS7

PSA_ALG_ECB_NO_PADDING

PSA_ALG_CCM

PSA_ALG_GCM

PSA_ALG_SP800_108_COUNTER_CMAC (secret input)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 56

PSA_KEY_TYPE_ARIA (macro)

Key for a cipher, AEAD or MAC algorithm based on the ARIA block cipher.
#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)

The size of the key is related to the ARIA algorithm variant. For algorithms except the XTS block ciphermode, the following key sizes are used:
∙ ARIA-128 uses a 16-byte key : key_bits = 128

∙ ARIA-192 uses a 24-byte key : key_bits = 192

∙ ARIA-256 uses a 32-byte key : key_bits = 256

For the XTS block cipher mode (PSA_ALG_XTS), the following key sizes are used:
∙ ARIA-128-XTS uses two 16-byte keys : key_bits = 256

∙ ARIA-192-XTS uses two 24-byte keys : key_bits = 384

∙ ARIA-256-XTS uses two 32-byte keys : key_bits = 512

The ARIA block cipher is defined in A Description of the ARIA Encryption Algorithm [RFC5794].
Compatible algorithms

PSA_ALG_CBC_MAC

PSA_ALG_CMAC

PSA_ALG_CTR

PSA_ALG_CFB

PSA_ALG_OFB

PSA_ALG_XTS

PSA_ALG_CBC_NO_PADDING

PSA_ALG_CBC_PKCS7

PSA_ALG_ECB_NO_PADDING

PSA_ALG_CCM

PSA_ALG_GCM

PSA_ALG_SP800_108_COUNTER_CMAC (secret input)

PSA_KEY_TYPE_DES (macro)

Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)

The size of the key determines which DES algorithm is used:
∙ Single DES uses an 8-byte key : key_bits = 64

∙ 2-key 3DES uses a 16-byte key : key_bits = 128

∙ 3-key 3DES uses a 24-byte key : key_bits = 192

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 57

Warning: Single DES and 2-key 3DES are weak and strongly deprecated and are only recommendedfor decrypting legacy data.
3-key 3DES is weak and deprecated and is only recommended for use in legacy applications.

The DES and 3DES block ciphers are defined in NIST Special Publication 800-67: Recommendation for theTriple Data Encryption Algorithm (TDEA) Block Cipher [SP800-67].
Compatible algorithms

PSA_ALG_CBC_MAC

PSA_ALG_CMAC

PSA_ALG_CTR

PSA_ALG_CFB

PSA_ALG_OFB

PSA_ALG_XTS

PSA_ALG_CBC_NO_PADDING

PSA_ALG_CBC_PKCS7

PSA_ALG_ECB_NO_PADDING

PSA_KEY_TYPE_CAMELLIA (macro)

Key for a cipher, AEAD or MAC algorithm based on the Camellia block cipher.
#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)

The size of the key is related to the Camellia algorithm variant. For algorithms except the XTS block ciphermode, the following key sizes are used:
∙ Camellia-128 uses a 16-byte key : key_bits = 128

∙ Camellia-192 uses a 24-byte key : key_bits = 192

∙ Camellia-256 uses a 32-byte key : key_bits = 256

For the XTS block cipher mode (PSA_ALG_XTS), the following key sizes are used:
∙ Camellia-128-XTS uses two 16-byte keys : key_bits = 256

∙ Camellia-192-XTS uses two 24-byte keys : key_bits = 384

∙ Camellia-256-XTS uses two 32-byte keys : key_bits = 512

The Camellia block cipher is defined in Specification of Camellia — a 128-bit Block Cipher [NTT-CAM] andalso described in A Description of the Camellia Encryption Algorithm [RFC3713].

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 58

Compatible algorithms

PSA_ALG_CBC_MAC

PSA_ALG_CMAC

PSA_ALG_CTR

PSA_ALG_CFB

PSA_ALG_OFB

PSA_ALG_XTS

PSA_ALG_CBC_NO_PADDING

PSA_ALG_CBC_PKCS7

PSA_ALG_ECB_NO_PADDING

PSA_ALG_CCM

PSA_ALG_GCM

PSA_ALG_SP800_108_COUNTER_CMAC (secret input)

PSA_KEY_TYPE_SM4 (macro)

Key for a cipher, AEAD or MAC algorithm based on the SM4 block cipher.
#define PSA_KEY_TYPE_SM4 ((psa_key_type_t)0x2405)

For algorithms except the XTS block cipher mode, the SM4 key size is 128 bits (16 bytes).
For the XTS block cipher mode (PSA_ALG_XTS), the SM4 key size is 256 bits (two 16-byte keys).
The SM4 block cipher is defined in GM/T 0002-2012: SM4 block cipher algorithm [CSTC0002].
Compatible algorithms

PSA_ALG_CBC_MAC

PSA_ALG_CMAC

PSA_ALG_CTR

PSA_ALG_CFB

PSA_ALG_OFB

PSA_ALG_XTS

PSA_ALG_CBC_NO_PADDING

PSA_ALG_CBC_PKCS7

PSA_ALG_ECB_NO_PADDING

PSA_ALG_CCM

PSA_ALG_GCM

PSA_ALG_SP800_108_COUNTER_CMAC (secret input)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 59

PSA_KEY_TYPE_ARC4 (macro)

Key for the ARC4 stream cipher.
#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)

Warning: The ARC4 cipher is weak and deprecated and is only recommended for use in legacyapplications.
The ARC4 cipher supports key sizes between 40 and 2048 bits, that are multiples of 8. (5 to 256 bytes)
Use algorithm PSA_ALG_STREAM_CIPHER to use this key with the ARC4 cipher.
Compatible algorithms

PSA_ALG_STREAM_CIPHER

PSA_KEY_TYPE_CHACHA20 (macro)

Key for the ChaCha20 stream cipher or the ChaCha20-Poly1305 AEAD algorithm.
#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)

The ChaCha20 key size is 256 bits (32 bytes).
∙ Use algorithm PSA_ALG_STREAM_CIPHER to use this key with the ChaCha20 cipher for unauthenticatedencryption. See PSA_ALG_STREAM_CIPHER for details of this algorithm.
∙ Use algorithm PSA_ALG_CHACHA20_POLY1305 to use this key with the ChaCha20 cipher and Poly1305authenticator for AEAD. See PSA_ALG_CHACHA20_POLY1305 for details of this algorithm.

Compatible algorithms

PSA_ALG_STREAM_CIPHER

PSA_ALG_CHACHA20_POLY1305

PSA_KEY_TYPE_XCHACHA20 (macro)

Key for the XChaCha20 stream cipher or the XChaCha20-Poly1305 AEAD algorithm.
#define PSA_KEY_TYPE_XCHACHA20 ((psa_key_type_t)0x2007)

The XChaCha20 key size is 256 bits (32 bytes).
∙ Use algorithm PSA_ALG_STREAM_CIPHER to use this key with the XChaCha20 cipher for unauthenticatedencryption. See PSA_ALG_STREAM_CIPHER for details of this algorithm.
∙ Use algorithm PSA_ALG_XCHACHA20_POLY1305 to use this key with the XChaCha20 cipher and Poly1305authenticator for AEAD. See PSA_ALG_XCHACHA20_POLY1305 for details of this algorithm.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 60

Compatible algorithms

PSA_ALG_STREAM_CIPHER

PSA_ALG_XCHACHA20_POLY1305

9.2.4 RSA keys

PSA_KEY_TYPE_RSA_KEY_PAIR (macro)

RSA key pair: both the private and public key.
#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)

The size of an RSA key is the bit size of the modulus.
Compatible algorithms

PSA_ALG_RSA_OAEP

PSA_ALG_RSA_PKCS1V15_CRYPT

PSA_ALG_RSA_PKCS1V15_SIGN

PSA_ALG_RSA_PKCS1V15_SIGN_RAW

PSA_ALG_RSA_PSS

PSA_ALG_RSA_PSS_ANY_SALT

PSA_KEY_TYPE_RSA_PUBLIC_KEY (macro)

RSA public key.
#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)

The size of an RSA key is the bit size of the modulus.
Compatible algorithms

PSA_ALG_RSA_OAEP (encryption only)
PSA_ALG_RSA_PKCS1V15_CRYPT (encryption only)
PSA_ALG_RSA_PKCS1V15_SIGN (signature verification only)
PSA_ALG_RSA_PKCS1V15_SIGN_RAW (signature verification only)
PSA_ALG_RSA_PSS (signature verification only)
PSA_ALG_RSA_PSS_ANY_SALT (signature verification only)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 61

PSA_KEY_TYPE_IS_RSA (macro)

Whether a key type is an RSA key. This includes both key pairs and public keys.
#define PSA_KEY_TYPE_IS_RSA(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.
9.2.5 Elliptic Curve keys

psa_ecc_family_t (typedef)

The type of identifiers of an elliptic curve family.
typedef uint8_t psa_ecc_family_t;

The curve identifier is required to create an ECC key using the PSA_KEY_TYPE_ECC_KEY_PAIR() or
PSA_KEY_TYPE_ECC_PUBLIC_KEY() macros.
The specific ECC curve within a family is identified by the key_bits attribute of the key.
The range of Elliptic curve family identifier values is divided as follows:

0x00 Reserved. Not allocated to an ECC family.
0x01 – 0x7f ECC family identifiers defined by this standard. Unallocated values in this range arereserved for future use.
0x80 – 0xff Implementations that define additional families must use an encoding in this range.

PSA_KEY_TYPE_ECC_KEY_PAIR (macro)

Elliptic curve key pair: both the private and public key.
#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) /* specification-defined value */

Parameters

curve A value of type psa_ecc_family_t that identifies the ECC curve familyto be used.
Description

The size of an elliptic curve key is the bit size associated with the curve, that is, the bit size of 𝑞 for a curveover a field F𝑞 . See the documentation of each Elliptic curve family for details.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 62

Compatible algorithms

Elliptic curve key pairs can be used in Asymmetric signature and Key agreement algorithms.
The set of compatible algorithms depends on the Elliptic curve key family. See the Elliptic curve family fordetails.
PSA_KEY_TYPE_ECC_PUBLIC_KEY (macro)

Elliptic curve public key.
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) /* specification-defined value */

Parameters

curve A value of type psa_ecc_family_t that identifies the ECC curve familyto be used.
Description

The size of an elliptic curve public key is the same as the corresponding private key. See
PSA_KEY_TYPE_ECC_KEY_PAIR() and the documentation of each Elliptic curve family for details.
Compatible algorithms

Elliptic curve public keys can be used for verification in Asymmetric signature algorithms.
The set of compatible algorithms depends on the Elliptic curve key family. See each Elliptic curve family fordetails.
PSA_ECC_FAMILY_SECP_K1 (macro)

SEC Koblitz curves over prime fields.
#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)

This family comprises the following curves:
∙ secp192k1 : key_bits = 192

∙ secp224k1 : key_bits = 225

∙ secp256k1 : key_bits = 256

They are defined in SEC 2: Recommended Elliptic Curve Domain Parameters [SEC2].
Compatible algorithms

PSA_ALG_DETERMINISTIC_ECDSA

PSA_ALG_ECDSA

PSA_ALG_ECDSA_ANY

PSA_ALG_ECDH (key pair only)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 63

PSA_ECC_FAMILY_SECP_R1 (macro)

SEC random curves over prime fields.
#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)

This family comprises the following curves:
∙ secp192r1 : key_bits = 192

∙ secp224r1 : key_bits = 224

∙ secp256r1 : key_bits = 256

∙ secp384r1 : key_bits = 384

∙ secp521r1 : key_bits = 521

They are defined in [SEC2].
Compatible algorithms

PSA_ALG_DETERMINISTIC_ECDSA

PSA_ALG_ECDSA

PSA_ALG_ECDSA_ANY

PSA_ALG_ECDH (key pair only)

PSA_ECC_FAMILY_SECP_R2 (macro)

Warning: This family of curves is weak and deprecated.

#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)

This family comprises the following curves:
∙ secp160r2 : key_bits = 160 (Deprecated)

It is defined in the superseded SEC 2: Recommended Elliptic Curve Domain Parameters, Version 1.0 [SEC2v1].
Compatible algorithms

PSA_ALG_DETERMINISTIC_ECDSA

PSA_ALG_ECDSA

PSA_ALG_ECDSA_ANY

PSA_ALG_ECDH (key pair only)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 64

PSA_ECC_FAMILY_SECT_K1 (macro)

SEC Koblitz curves over binary fields.
#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)

This family comprises the following curves:
∙ sect163k1 : key_bits = 163 (Deprecated)
∙ sect233k1 : key_bits = 233

∙ sect239k1 : key_bits = 239

∙ sect283k1 : key_bits = 283

∙ sect409k1 : key_bits = 409

∙ sect571k1 : key_bits = 571

They are defined in [SEC2].
Warning: The 163-bit curve sect163k1 is weak and deprecated and is only recommended for use inlegacy applications.

Compatible algorithms

PSA_ALG_DETERMINISTIC_ECDSA

PSA_ALG_ECDSA

PSA_ALG_ECDSA_ANY

PSA_ALG_ECDH (key pair only)

PSA_ECC_FAMILY_SECT_R1 (macro)

SEC random curves over binary fields.
#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)

This family comprises the following curves:
∙ sect163r1 : key_bits = 163 (Deprecated)
∙ sect233r1 : key_bits = 233

∙ sect283r1 : key_bits = 283

∙ sect409r1 : key_bits = 409

∙ sect571r1 : key_bits = 571

They are defined in [SEC2].

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 65

Warning: The 163-bit curve sect163r1 is weak and deprecated and is only recommended for use inlegacy applications.
Compatible algorithms

PSA_ALG_DETERMINISTIC_ECDSA

PSA_ALG_ECDSA

PSA_ALG_ECDSA_ANY

PSA_ALG_ECDH (key pair only)

PSA_ECC_FAMILY_SECT_R2 (macro)

SEC additional random curves over binary fields.
#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)

This family comprises the following curves:
∙ sect163r2 : key_bits = 163 (Deprecated)

It is defined in [SEC2].
Warning: The 163-bit curve sect163r2 is weak and deprecated and is only recommended for use inlegacy applications.

Compatible algorithms

PSA_ALG_DETERMINISTIC_ECDSA

PSA_ALG_ECDSA

PSA_ALG_ECDSA_ANY

PSA_ALG_ECDH (key pair only)

PSA_ECC_FAMILY_BRAINPOOL_P_R1 (macro)

Brainpool P random curves.
#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)

This family comprises the following curves:
∙ brainpoolP160r1 : key_bits = 160 (Deprecated)
∙ brainpoolP192r1 : key_bits = 192

∙ brainpoolP224r1 : key_bits = 224

∙ brainpoolP256r1 : key_bits = 256

∙ brainpoolP320r1 : key_bits = 320

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 66

∙ brainpoolP384r1 : key_bits = 384

∙ brainpoolP512r1 : key_bits = 512

They are defined in Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation[RFC5639].
Warning: The 160-bit curve brainpoolP160r1 is weak and deprecated and is only recommended foruse in legacy applications.

Compatible algorithms

PSA_ALG_DETERMINISTIC_ECDSA

PSA_ALG_ECDSA

PSA_ALG_ECDSA_ANY

PSA_ALG_ECDH (key pair only)

PSA_ECC_FAMILY_FRP (macro)

Curve used primarily in France and elsewhere in Europe.
#define PSA_ECC_FAMILY_FRP ((psa_ecc_family_t) 0x33)

This family comprises one 256-bit curve:
∙ FRP256v1 : key_bits = 256

This is defined by Publication d'un paramétrage de courbe elliptique visant des applications de passeportélectronique et de l'administration électronique française [FRP].
Compatible algorithms

PSA_ALG_DETERMINISTIC_ECDSA

PSA_ALG_ECDSA

PSA_ALG_ECDSA_ANY

PSA_ALG_ECDH (key pair only)

PSA_ECC_FAMILY_MONTGOMERY (macro)

Montgomery curves.
#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)

This family comprises the following Montgomery curves:
∙ Curve25519 : key_bits = 255

∙ Curve448 : key_bits = 448

Curve25519 is defined in Curve25519: new Diffie-Hellman speed records [Curve25519]. Curve448 isdefined in Ed448-Goldilocks, a new elliptic curve [Curve448].
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 67

Compatible algorithms

PSA_ALG_ECDH (key pair only)

PSA_ECC_FAMILY_TWISTED_EDWARDS (macro)

Twisted Edwards curves.
#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)

This family comprises the following twisted Edwards curves:
∙ Edwards25519 : key_bits = 255. This curve is birationally equivalent to Curve25519.
∙ Edwards448 : key_bits = 448. This curve is birationally equivalent to Curve448.

Edwards25519 is defined in Twisted Edwards curves [Ed25519]. Edwards448 is defined in Ed448-Goldilocks,a new elliptic curve [Curve448].
Compatible algorithms

PSA_ALG_PURE_EDDSA

PSA_ALG_ED25519PH (Edwards25519 only)
PSA_ALG_ED448PH (Edwards448 only)

PSA_KEY_TYPE_IS_ECC (macro)

Whether a key type is an elliptic curve key, either a key pair or a public key.
#define PSA_KEY_TYPE_IS_ECC(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.
PSA_KEY_TYPE_IS_ECC_KEY_PAIR (macro)

Whether a key type is an elliptic curve key pair.
#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 68

PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY (macro)

Whether a key type is an elliptic curve public key.
#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.
PSA_KEY_TYPE_ECC_GET_FAMILY (macro)

Extract the curve family from an elliptic curve key type.
#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) /* specification-defined value */

Parameters

type An elliptic curve key type: a value of type psa_key_type_t such that
PSA_KEY_TYPE_IS_ECC(type) is true.

Returns: psa_ecc_family_t

The elliptic curve family id, if type is a supported elliptic curve key. Unspecified if type is not a supportedelliptic curve key.
9.2.6 Diffie Hellman keys

psa_dh_family_t (typedef)

The type of identifiers of a finite-field Diffie-Hellman group family.
typedef uint8_t psa_dh_family_t;

The group family identifier is required to create a finite-field Diffie-Hellman key using the
PSA_KEY_TYPE_DH_KEY_PAIR() or PSA_KEY_TYPE_DH_PUBLIC_KEY() macros.
The specific Diffie-Hellman group within a family is identified by the key_bits attribute of the key.
The range of Diffie-Hellman group family identifier values is divided as follows:

0x00 Reserved. Not allocated to a DH group family.
0x01 – 0x7f DH group family identifiers defined by this standard. Unallocated values in this range arereserved for future use.
0x80 – 0xff Implementations that define additional families must use an encoding in this range.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 69

PSA_KEY_TYPE_DH_KEY_PAIR (macro)

Finite-field Diffie-Hellman key pair: both the private key and public key.
#define PSA_KEY_TYPE_DH_KEY_PAIR(group) /* specification-defined value */

Parameters

group A value of type psa_dh_family_t that identifies the Diffie-Hellmangroup family to be used.
Compatible algorithms

PSA_ALG_FFDH

PSA_KEY_TYPE_DH_PUBLIC_KEY (macro)

Finite-field Diffie-Hellman public key.
#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) /* specification-defined value */

Parameters

group A value of type psa_dh_family_t that identifies the Diffie-Hellmangroup family to be used.
Compatible algorithms

None. Finite-field Diffie-Hellman public keys are exported to use in a key agreement algorithm, and thepeer key is provided to the PSA_ALG_FFDH key agreement algorithm as a buffer of key data.
PSA_DH_FAMILY_RFC7919 (macro)

Finite-field Diffie-Hellman groups defined for TLS in RFC 7919.
#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)

This family includes groups with the following key sizes (in bits): 2048, 3072, 4096, 6144, 8192. Animplementation can support all of these sizes or only a subset.
Keys is this group can only be used with the PSA_ALG_FFDH key agreement algorithm.
These groups are defined by Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport LayerSecurity (TLS) [RFC7919] Appendix A.
PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY (macro)

The key pair type corresponding to a public key type.
#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \

/* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 70

https://datatracker.ietf.org/doc/html/rfc7919.html#appendix-A

Parameters

type A public key type or key pair type.
Returns

The corresponding key pair type. If type is not a public key or a key pair, the return value is undefined.
Description

If type is a key pair type, it will be left unchanged.
PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR (macro)

The public key type corresponding to a key pair type.
#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \

/* specification-defined value */

Parameters

type A public key type or key pair type.
Returns

The corresponding public key type. If type is not a public key or a key pair, the return value is undefined.
Description

If type is a public key type, it will be left unchanged.
PSA_KEY_TYPE_IS_DH (macro)

Whether a key type is a Diffie-Hellman key, either a key pair or a public key.
#define PSA_KEY_TYPE_IS_DH(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.
PSA_KEY_TYPE_IS_DH_KEY_PAIR (macro)

Whether a key type is a Diffie-Hellman key pair.
#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 71

PSA_KEY_TYPE_IS_DH_PUBLIC_KEY (macro)

Whether a key type is a Diffie-Hellman public key.
#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.
PSA_KEY_TYPE_DH_GET_FAMILY (macro)

Extract the group family from a Diffie-Hellman key type.
#define PSA_KEY_TYPE_DH_GET_FAMILY(type) /* specification-defined value */

Parameters

type A Diffie-Hellman key type: a value of type psa_key_type_t such that
PSA_KEY_TYPE_IS_DH(type) is true.

Returns: psa_dh_family_t

The Diffie-Hellman group family id, if type is a supported Diffie-Hellman key. Unspecified if type is not asupported Diffie-Hellman key.
9.2.7 Attribute accessors

psa_set_key_type (function)

Declare the type of a key.
void psa_set_key_type(psa_key_attributes_t * attributes,

psa_key_type_t type);

Parameters

attributes The attribute object to write to.
type The key type to write. If this is PSA_KEY_TYPE_NONE, the key type in

attributes becomes unspecified.
Returns: void
Description

This function overwrites any key type previously set in attributes.
Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 72

psa_get_key_type (function)

Retrieve the key type from key attributes.
psa_key_type_t psa_get_key_type(const psa_key_attributes_t * attributes);

Parameters

attributes The key attribute object to query.
Returns: psa_key_type_t

The key type stored in the attribute object.
Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

psa_get_key_bits (function)

Retrieve the key size from key attributes.
size_t psa_get_key_bits(const psa_key_attributes_t * attributes);

Parameters

attributes The key attribute object to query.
Returns: size_t

The key size stored in the attribute object, in bits.
Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

psa_set_key_bits (function)

Declare the size of a key.
void psa_set_key_bits(psa_key_attributes_t * attributes,

size_t bits);

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 73

Parameters

attributes The attribute object to write to.
bits The key size in bits. If this is 0, the key size in attributes becomesunspecified. Keys of size 0 are not supported.

Returns: void
Description

This function overwrites any key size previously set in attributes.
Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

9.3 Key lifetimes
The lifetime of a key indicates where it is stored and which application and system actions will create anddestroy it.
Lifetime values are composed from:

∙ A persistence level, which indicates what device management actions can cause it to be destroyed.In particular, it indicates whether the key is volatile or persistent. See psa_key_persistence_t for moreinformation.
∙ A location indicator, which indicates where the key is stored and where operations on the key areperformed. See psa_key_location_t for more information.

There are two main types of lifetime, indicated by the persistence level: volatile and persistent.
9.3.1 Volatile keys

Volatile keys are automatically destroyed when the application instance terminates or on a power reset ofthe device. Volatile keys can be explicitly destroyed by the application.
Conceptually, a volatile key is stored in RAM. Volatile keys have the lifetime PSA_KEY_LIFETIME_VOLATILE.
To create a volatile key:

1. Populate a psa_key_attributes_t object with the required type, size, policy and other key attributes.
2. Create the key with one of the key creation functions. If successful, these functions output atransient key identifier.

To destroy a volatile key: call psa_destroy_key() with the key identifier. There must be a matching call to
psa_destroy_key() for each successful call to a create a volatile key.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 74

9.3.2 Persistent keys

Persistent keys are preserved until the application explicitly destroys them or until animplementation-specific device management event occurs, for example, a factory reset.
Each persistent key has a permanent key identifier, which acts as a name for the key. Within anapplication, the key identifier corresponds to a single key. The application specifies the key identifier whenthe key is created and when using the key.
The lifetime attribute of a persistent key indicates how and where it is stored. The default lifetime valuefor a persistent key is PSA_KEY_LIFETIME_PERSISTENT, which corresponds to a default storage area. Thisspecification defines how implementations can provide other lifetime values corresponding to differentstorage areas with different retention policies, or to secure elements with different security characteristics.
To create a persistent key:

1. Populate a psa_key_attributes_t object with the key’s type, size, policy and other attributes.
2. In the attributes object, set the desired lifetime and persistent identifier for the key.
3. Create the key with one of the key creation functions. If successful, these functions output the keyidentifier that was specified by the application in step 2.

To access an existing persistent key: use the key identifier in any API that requires a key.
To destroy a persistent key: call psa_destroy_key() with the key identifier. Destroying a persistent keypermanently removes it from memory and storage.
By default, persistent key material is removed from volatile memory when not in use. Frequently usedpersistent keys can benefit from caching, depending on the implementation and the application. Cachingcan be enabled by creating the key with the PSA_KEY_USAGE_CACHE policy. Cached keys can be removed fromvolatile memory by calling psa_purge_key(). See alsoMemory cleanup on page 39 andManaging key materialon page 40.
9.3.3 Lifetime encodings

psa_key_lifetime_t (typedef)

Encoding of key lifetimes.
typedef uint32_t psa_key_lifetime_t;

The lifetime of a key indicates where it is stored and which application and system actions will create anddestroy it.
Lifetime values have the following structure:
Bits[7:0]: Persistence levelThis value indicates what device management actions can cause it to be destroyed. Inparticular, it indicates whether the key is volatile or persistent. See psa_key_persistence_t formore information.

PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) returns the persistence level for a key lifetimevalue.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 75

Bits[31:8]: Location indicatorThis value indicates where the key material is stored (or at least where it is accessible incleartext) and where operations on the key are performed. See psa_key_location_t for moreinformation.
PSA_KEY_LIFETIME_GET_LOCATION(lifetime) returns the location indicator for a key lifetimevalue.

Volatile keys are automatically destroyed when the application instance terminates or on a power reset ofthe device. Persistent keys are preserved until the application explicitly destroys them or until animplementation-specific device management event occurs, for example, a factory reset.
Persistent keys have a key identifier of type psa_key_id_t. This identifier remains valid throughout thelifetime of the key, even if the application instance that created the key terminates.
This specification defines two basic lifetime values:

∙ Keys with the lifetime PSA_KEY_LIFETIME_VOLATILE are volatile. All implementations should supportthis lifetime.
∙ Keys with the lifetime PSA_KEY_LIFETIME_PERSISTENT are persistent. All implementations that haveaccess to persistent storage with appropriate security guarantees should support this lifetime.

psa_key_persistence_t (typedef)

Encoding of key persistence levels.
typedef uint8_t psa_key_persistence_t;

What distinguishes different persistence levels is which device management events can cause keys to bedestroyed. For example, power reset, transfer of device ownership, or a factory reset are devicemanagement events that can affect keys at different persistence levels. The specific management eventswhich affect persistent keys at different levels is outside the scope of the Crypto API.
Values for persistence levels defined by Crypto API are shown in Table 6.

Table 6 Key persistence level values
Persistence level Definition

0 = PSA_KEY_PERSISTENCE_VOLATILE Volatile key.
A volatile key is automatically destroyed by theimplementation when the application instance terminates. Inparticular, a volatile key is automatically destroyed on apower reset of the device.

1 = PSA_KEY_PERSISTENCE_DEFAULT Persistent key with a default lifetime.
Implementations should support this value if they supportpersistent keys at all. Applications should use this value ifthey have no specific needs that are only met byimplementation-specific features.

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 76

Table 6 – continued from previous page

Persistence level Definition

2 – 127 Persistent key with a PSA Certified API-specified lifetime.
The Crypto API does not define the meaning of these values,but another PSA Certified API may do so.

128 – 254 Persistent key with a vendor-specified lifetime.
No PSA Certified API will define the meaning of these values,so implementations may choose the meaning freely. As aguideline, higher persistence levels should cause a key tosurvive more management events than lower levels.

255 = PSA_KEY_PERSISTENCE_READ_ONLY Read-only or write-once key.
A key with this persistence level cannot be destroyed.Implementations that support such keys may either allowtheir creation through the Crypto API, preferably only toapplications with the appropriate privilege, or only exposekeys created through implementation-specific means such asa factory ROM engraving process.
Note that keys that are read-only due to policy restrictionsrather than due to physical limitations should not have thispersistence level.

Note:
Key persistence levels are 8-bit values. Key management interfaces operate on lifetimes (type
psa_key_lifetime_t), and encode the persistence value as the lower 8 bits of a 32-bit value.

psa_key_location_t (typedef)

Encoding of key location indicators.
typedef uint32_t psa_key_location_t;

If an implementation of the Crypto API can make calls to external cryptoprocessors such as secureelements, the location of a key indicates which secure element performs the operations on the key. If thekey material is not stored persistently inside the secure element, it must be stored in a wrapped form suchthat only the secure element can access the key material in cleartext.
Values for location indicators defined by this specification are shown in Table 7 on page 78.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 77

Table 7 Key location indicator values
Location indicator Definition

0 Primary local storage.
All implementations should support this value. The primary local storage istypically the same storage area that contains the key metadata.

1 Primary secure element.
Implementations should support this value if there is a secure elementattached to the operating environment. As a guideline, secure elements mayprovide higher resistance against side channel and physical attacks than theprimary local storage, but may have restrictions on supported key types, sizes,policies and operations and may have different performance characteristics.

2 – 0x7fffff Other locations defined by a PSA specification.
The Crypto API does not currently assign any meaning to these locations, butfuture versions of this specification or other PSA Certified APIs may do so.

0x800000 – 0xffffff Vendor-defined locations.
No PSA Certified API will assign a meaning to locations in this range.

Note:
Key location indicators are 24-bit values. Key management interfaces operate on lifetimes (type
psa_key_lifetime_t), and encode the location as the upper 24 bits of a 32-bit value.

9.3.4 Lifetime values

PSA_KEY_LIFETIME_VOLATILE (macro)

The default lifetime for volatile keys.
#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)

A volatile key only exists as long as its identifier is not destroyed. The key material is guaranteed to beerased on a power reset.
A key with this lifetime is typically stored in the RAM area of the Crypto API implementation. Howeverthis is an implementation choice. If an implementation stores data about the key in a non-volatile memory,it must release all the resources associated with the key and erase the key material if the calling applicationterminates.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 78

PSA_KEY_LIFETIME_PERSISTENT (macro)

The default lifetime for persistent keys.
#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)

A persistent key remains in storage until it is explicitly destroyed or until the corresponding storage area iswiped. This specification does not define any mechanism to wipe a storage area. Implementations arepermitted to provide their own mechanism, for example, to perform a factory reset, to prepare for devicerefurbishment, or to uninstall an application.
This lifetime value is the default storage area for the calling application. Implementations can offer otherstorage areas designated by other lifetime values as implementation-specific extensions.
PSA_KEY_PERSISTENCE_VOLATILE (macro)

The persistence level of volatile keys.
#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)

See psa_key_persistence_t for more information.
PSA_KEY_PERSISTENCE_DEFAULT (macro)

The default persistence level for persistent keys.
#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)

See psa_key_persistence_t for more information.
PSA_KEY_PERSISTENCE_READ_ONLY (macro)

A persistence level indicating that a key is never destroyed.
#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)

See psa_key_persistence_t for more information.
PSA_KEY_LOCATION_LOCAL_STORAGE (macro)

The local storage area for persistent keys.
#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)

This storage area is available on all systems that can store persistent keys without delegating the storageto a third-party cryptoprocessor.
See psa_key_location_t for more information.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 79

PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT (macro)

The default secure element storage area for persistent keys.
#define PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT ((psa_key_location_t) 0x000001)

This storage location is available on systems that have one or more secure elements that are able to storekeys.
Vendor-defined locations must be provided by the system for storing keys in additional secure elements.
See psa_key_location_t for more information.
9.3.5 Attribute accessors

psa_set_key_lifetime (function)

Set the location of a persistent key.
void psa_set_key_lifetime(psa_key_attributes_t * attributes,

psa_key_lifetime_t lifetime);

Parameters

attributes The attribute object to write to.
lifetime The lifetime for the key. If this is PSA_KEY_LIFETIME_VOLATILE, the keywill be volatile, and the key identifier attribute is reset to

PSA_KEY_ID_NULL.
Returns: void
Description

To make a key persistent, give it a persistent key identifier by using psa_set_key_id(). By default, a key thathas a persistent identifier is stored in the default storage area identifier by PSA_KEY_LIFETIME_PERSISTENT.Call this function to choose a storage area, or to explicitly declare the key as volatile.
This function does not access storage, it merely stores the given value in the attribute object. Thepersistent key will be written to storage when the attribute object is passed to a key creation functionsuch as psa_import_key(), psa_generate_key(), psa_key_derivation_output_key(), psa_key_agreement(), or
psa_copy_key().

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 80

psa_get_key_lifetime (function)

Retrieve the lifetime from key attributes.
psa_key_lifetime_t psa_get_key_lifetime(const psa_key_attributes_t * attributes);

Parameters

attributes The key attribute object to query.
Returns: psa_key_lifetime_t

The lifetime value stored in the attribute object.
Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

9.3.6 Support macros

PSA_KEY_LIFETIME_GET_PERSISTENCE (macro)

Extract the persistence level from a key lifetime.
#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \

((psa_key_persistence_t) ((lifetime) & 0x000000ff))

Parameters

lifetime The lifetime value to query: a value of type psa_key_lifetime_t.
PSA_KEY_LIFETIME_GET_LOCATION (macro)

Extract the location indicator from a key lifetime.
#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \

((psa_key_location_t) ((lifetime) >> 8))

Parameters

lifetime The lifetime value to query: a value of type psa_key_lifetime_t.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 81

PSA_KEY_LIFETIME_IS_VOLATILE (macro)

Whether a key lifetime indicates that the key is volatile.
#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \

(PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == PSA_KEY_PERSISTENCE_VOLATILE)

Parameters

lifetime The lifetime value to query: a value of type psa_key_lifetime_t.
Returns

1 if the key is volatile, otherwise 0.
Description

A volatile key is automatically destroyed by the implementation when the application instance terminates.In particular, a volatile key is automatically destroyed on a power reset of the device.
A key that is not volatile is persistent. Persistent keys are preserved until the application explicitly destroysthem or until an implementation-specific device management event occurs, for example, a factory reset.
PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION (macro)

Construct a lifetime from a persistence level and a location.
#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \

((location) << 8 | (persistence))

Parameters

persistence The persistence level: a value of type psa_key_persistence_t.
location The location indicator: a value of type psa_key_location_t.

Returns

The constructed lifetime value.

9.4 Key identifiers
Key identifiers are integral values that act as permanent names for persistent keys, or as transientreferences to volatile keys. Key identifiers use the psa_key_id_t type, and the range of identifier values isdivided as follows:

PSA_KEY_ID_NULL = 0Reserved as an invalid key identifier.
PSA_KEY_ID_USER_MIN – PSA_KEY_ID_USER_MAXApplications can freely choose persistent key identifiers in this range.
PSA_KEY_ID_VENDOR_MIN – PSA_KEY_ID_VENDOR_MAXImplementations can define additional persistent key identifiers in this range, and mustallocate any volatile key identifiers from this range.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 82

Key identifiers outside these ranges are reserved for future use.
Key identifiers are output from a successful call to one of the key creation functions. For persistent keys,this is the same identifier as the one specified in the key attributes used to create the key. The keyidentifier remains valid until it is invalidated by passing it to psa_destroy_key(). A volatile key identifiermust not be used after it has been invalidated.
If an invalid key identifier is provided as a parameter in any function, the function will return
PSA_ERROR_INVALID_HANDLE; except for the special case of calling psa_destroy_key(PSA_KEY_ID_NULL), whichhas no effect and always returns PSA_SUCCESS.
Valid key identifiers must have distinct values within the same application. If the implementation providescaller isolation, then key identifiers are local to each application. That is, the same key identifier in twoapplications corresponds to two different keys.
9.4.1 Key identifier type

psa_key_id_t (typedef)

Key identifier.
typedef uint32_t psa_key_id_t;

A key identifier can be a permanent name for a persistent key, or a transient reference to volatile key. SeeKey identifiers on page 82.
PSA_KEY_ID_NULL (macro)

The null key identifier.
#define PSA_KEY_ID_NULL ((psa_key_id_t)0)

The null key identifier is always invalid, except when used without in a call to psa_destroy_key() which willreturn PSA_SUCCESS.
PSA_KEY_ID_USER_MIN (macro)

The minimum value for a key identifier chosen by the application.
#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)

PSA_KEY_ID_USER_MAX (macro)

The maximum value for a key identifier chosen by the application.
#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 83

PSA_KEY_ID_VENDOR_MIN (macro)

The minimum value for a key identifier chosen by the implementation.
#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)

PSA_KEY_ID_VENDOR_MAX (macro)

The maximum value for a key identifier chosen by the implementation.
#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)

9.4.2 Attribute accessors

psa_set_key_id (function)

Declare a key as persistent and set its key identifier.
void psa_set_key_id(psa_key_attributes_t * attributes,

psa_key_id_t id);

Parameters

attributes The attribute object to write to.
id The persistent identifier for the key.

Returns: void
Description

The application must choose a value for id between PSA_KEY_ID_USER_MIN and PSA_KEY_ID_USER_MAX.
If the attribute object currently declares the key as volatile, which is the default lifetime of an attributeobject, this function sets the lifetime attribute to PSA_KEY_LIFETIME_PERSISTENT.
This function does not access storage, it merely stores the given value in the attribute object. Thepersistent key will be written to storage when the attribute object is passed to a key creation functionsuch as psa_import_key(), psa_generate_key(), psa_key_derivation_output_key() or psa_copy_key().

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 84

psa_get_key_id (function)

Retrieve the key identifier from key attributes.
psa_key_id_t psa_get_key_id(const psa_key_attributes_t * attributes);

Parameters

attributes The key attribute object to query.
Returns: psa_key_id_t

The persistent identifier stored in the attribute object. This value is unspecified if the attribute objectdeclares the key as volatile.
Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

9.5 Key policies
All keys have an associated policy that regulates which operations are permitted on the key. A key policy iscomposed of two elements:

∙ A set of usage flags. See Key usage flags on page 87.
∙ A specific algorithm that is permitted with the key. See Permitted algorithms.

The policy is part of the key attributes that are managed by a psa_key_attributes_t object.
A highly constrained implementation might not be able to support all the policies that can be expressedthrough this interface. If an implementation cannot create a key with the required policy, it must return anappropriate error code when the key is created.
9.5.1 Permitted algorithms

The permitted algorithm is encoded using a algorithm identifier, as described in Algorithms on page 108.
This specification only defines policies that restrict keys to a single algorithm, which is consistent withboth common practice and security good practice.
The following algorithm policies are supported:

∙ PSA_ALG_NONE does not permit any cryptographic operation with the key. The key can still be used fornon-cryptographic actions such as exporting, if permitted by the usage flags.
∙ A specific algorithm value permits exactly that particular algorithm.
∙ A signature algorithm constructed with PSA_ALG_ANY_HASH permits the specified signature schemewith any hash algorithm. In addition, PSA_ALG_RSA_PKCS1V15_SIGN(PSA_ALG_ANY_HASH) also permits the

PSA_ALG_RSA_PKCS1V15_SIGN_RAW signature algorithm.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 85

∙ A standalone key agreement algorithm also permits the specified key agreement scheme to becombined with any key derivation algorithm.
∙ An algorithm built from PSA_ALG_AT_LEAST_THIS_LENGTH_MAC() permits any MAC algorithm from thesame base class (for example, CMAC) which computes or verifies a MAC length greater than or equalto the length encoded in the wildcard algorithm.
∙ An algorithm built from PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG() permits any AEAD algorithmfrom the same base class (for example, CCM) which computes or verifies a tag length greater than orequal to the length encoded in the wildcard algorithm.
∙ The PSA_ALG_CCM_STAR_ANY_TAG wildcard algorithm permits the PSA_ALG_CCM_STAR_NO_TAG cipheralgorithm, the PSA_ALG_CCM AEAD algorithm, and the PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM,

tag_length) truncated-tag AEAD algorithm for tag_length equal to 4, 8 or 16.
When a key is used in a cryptographic operation, the application must supply the algorithm to use for theoperation. This algorithm is checked against the key’s permitted-algorithm policy.
psa_set_key_algorithm (function)

Declare the permitted-algorithm policy for a key.
void psa_set_key_algorithm(psa_key_attributes_t * attributes,

psa_algorithm_t alg);

Parameters

attributes The attribute object to write to.
alg The permitted algorithm to write.

Returns: void
Description

The permitted-algorithm policy of a key encodes which algorithm or algorithms are permitted to be usedwith this key.
This function overwrites any permitted-algorithm policy previously set in attributes.

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

psa_get_key_algorithm (function)

Retrieve the permitted-algorithm policy from key attributes.
psa_algorithm_t psa_get_key_algorithm(const psa_key_attributes_t * attributes);

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 86

Parameters

attributes The key attribute object to query.
Returns: psa_algorithm_t

The algorithm stored in the attribute object.
Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

9.5.2 Key usage flags
The usage flags are encoded in a bitmask, which has the type psa_key_usage_t. Four kinds of usage flag canbe specified:

∙ The extractable flag PSA_KEY_USAGE_EXPORT determines whether the key material can be extractedfrom the cryptoprocessor, or copied outside of its current security boundary.
∙ The copyable flag PSA_KEY_USAGE_COPY determines whether the key material can be copied into a newkey, which can have a different lifetime or a more restrictive policy.
∙ The cacheable flag PSA_KEY_USAGE_CACHE determines whether the implementation is permitted toretain non-essential copies of the key material in RAM. This policy only applies to persistent keys.See alsoManaging key material on page 40.
∙ The other usage flags, for example, PSA_KEY_USAGE_ENCRYPT and PSA_KEY_USAGE_SIGN_MESSAGE, determinewhether the corresponding operation is permitted on the key.

psa_key_usage_t (typedef)

Encoding of permitted usage on a key.
typedef uint32_t psa_key_usage_t;

PSA_KEY_USAGE_EXPORT (macro)

Permission to export the key.
#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)

This flag permits a key to be moved outside of the security boundary of its current storage location. Inparticular:
∙ This flag is required to export a key from the cryptoprocessor using psa_export_key(). A public key orthe public part of a key pair can always be exported regardless of the value of this permission flag.
∙ This flag can also be required to make a copy of a key outside of a secure element using

psa_copy_key(). See also PSA_KEY_USAGE_COPY.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 87

If a key does not have export permission, implementations must not permit the key to be exported in plainform from the cryptoprocessor, whether through psa_export_key() or through a proprietary interface. Thekey might still be exportable in a wrapped form, i.e. in a form where it is encrypted by another key.
PSA_KEY_USAGE_COPY (macro)

Permission to copy the key.
#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)

This flag is required to make a copy of a key using psa_copy_key().
For a key lifetime that corresponds to a secure element location that enforces the non-exportability ofkeys, copying a key outside the secure element also requires the usage flag PSA_KEY_USAGE_EXPORT. Copyingthe key within the secure element is permitted with just PSA_KEY_USAGE_COPY, if the secure elementsupports it. For keys with the lifetime PSA_KEY_LIFETIME_VOLATILE or PSA_KEY_LIFETIME_PERSISTENT, the usageflag PSA_KEY_USAGE_COPY is sufficient to permit the copy.
PSA_KEY_USAGE_CACHE (macro)

Permission for the implementation to cache the key.
#define PSA_KEY_USAGE_CACHE ((psa_key_usage_t)0x00000004)

This flag permits the implementation to make additional copies of the key material that are not in storageand not for the purpose of an ongoing operation. Applications can use it as a hint for the cryptoprocessor,to keep a copy of the key around for repeated access.
An application can request that cached key material is removed from memory by calling psa_purge_key().
The presence of this usage flag when creating a key is a hint:

∙ An implementation is not required to cache keys that have this usage flag.
∙ An implementation must not report an error if it does not cache keys.

If this usage flag is not present, the implementation must ensure key material is removed from memory assoon as it is not required for an operation, or for maintenance of a volatile key.
This flag must be preserved when reading back the attributes for all keys, regardless of key type orimplementation behavior.
See alsoManaging key material on page 40.
PSA_KEY_USAGE_ENCRYPT (macro)

Permission to encrypt a message with the key.
#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)

This flag is required to use the key in a symmetric encryption operation, in an AEADencryption-and-authentication operation, or in an asymmetric encryption operation. The flag must bepresent on keys used with the following APIs:

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 88

∙ psa_cipher_encrypt()

∙ psa_cipher_encrypt_setup()

∙ psa_aead_encrypt()

∙ psa_aead_encrypt_setup()

∙ psa_asymmetric_encrypt()

For a key pair, this concerns the public key.
PSA_KEY_USAGE_DECRYPT (macro)

Permission to decrypt a message with the key.
#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)

This flag is required to use the key in a symmetric decryption operation, in an AEADdecryption-and-verification operation, or in an asymmetric decryption operation. The flag must be presenton keys used with the following APIs:
∙ psa_cipher_decrypt()

∙ psa_cipher_decrypt_setup()

∙ psa_aead_decrypt()

∙ psa_aead_decrypt_setup()

∙ psa_asymmetric_decrypt()

For a key pair, this concerns the private key.
PSA_KEY_USAGE_SIGN_MESSAGE (macro)

Permission to sign a message with the key.
#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)

This flag is required to use the key in a MAC calculation operation, or in an asymmetric message signatureoperation. The flag must be present on keys used with the following APIs:
∙ psa_mac_compute()

∙ psa_mac_sign_setup()

∙ psa_sign_message()

For a key pair, this concerns the private key.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 89

PSA_KEY_USAGE_VERIFY_MESSAGE (macro)

Permission to verify a message signature with the key.
#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)

This flag is required to use the key in a MAC verification operation, or in an asymmetric message signatureverification operation. The flag must be present on keys used with the following APIs:
∙ psa_mac_verify()

∙ psa_mac_verify_setup()

∙ psa_verify_message()

For a key pair, this concerns the public key.
PSA_KEY_USAGE_SIGN_HASH (macro)

Permission to sign a message hash with the key.
#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)

This flag is required to use the key to sign a message hash in an asymmetric signature operation. The flagmust be present on keys used when calling psa_sign_hash().
This flag automatically sets PSA_KEY_USAGE_SIGN_MESSAGE: if an application sets the flag
PSA_KEY_USAGE_SIGN_HASH when creating a key, then the key always has the permissions conveyed by
PSA_KEY_USAGE_SIGN_MESSAGE, and the flag PSA_KEY_USAGE_SIGN_MESSAGE will also be present when theapplication queries the usage flags of the key.
For a key pair, this concerns the private key.
PSA_KEY_USAGE_VERIFY_HASH (macro)

Permission to verify a message hash with the key.
#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)

This flag is required to use the key to verify a message hash in an asymmetric signature verificationoperation. The flag must be present on keys used when calling psa_verify_hash().
This flag automatically sets PSA_KEY_USAGE_VERIFY_MESSAGE: if an application sets the flag
PSA_KEY_USAGE_VERIFY_HASH when creating a key, then the key always has the permissions conveyed by
PSA_KEY_USAGE_VERIFY_MESSAGE, and the flag PSA_KEY_USAGE_VERIFY_MESSAGE will also be present when theapplication queries the usage flags of the key.
For a key pair, this concerns the public key.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 90

PSA_KEY_USAGE_DERIVE (macro)

Permission to derive other keys or produce a password hash from this key.
#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)

This flag is required to use the key for derivation in a key derivation operation, or in a key agreementoperation.
This flag must be present on keys used with the following APIs:

∙ psa_key_agreement()

∙ psa_key_derivation_key_agreement()

∙ psa_raw_key_agreement()

If this flag is present on all keys used in calls to psa_key_derivation_input_key() for a key derivationoperation, then it permits calling psa_key_derivation_output_bytes(), psa_key_derivation_output_key(),
psa_key_derivation_verify_bytes(), or psa_key_derivation_verify_key() at the end of the operation.
PSA_KEY_USAGE_VERIFY_DERIVATION (macro)

Permission to verify the result of a key derivation, including password hashing.
#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)

This flag is required to use the key for verification in a key derivation operation.
This flag must be present on keys used with psa_key_derivation_verify_key().
If this flag is present on all keys used in calls to psa_key_derivation_input_key() for a key derivationoperation, then it permits calling psa_key_derivation_verify_bytes() or psa_key_derivation_verify_key() atthe end of the operation.
psa_set_key_usage_flags (function)

Declare usage flags for a key.
void psa_set_key_usage_flags(psa_key_attributes_t * attributes,

psa_key_usage_t usage_flags);

Parameters

attributes The attribute object to write to.
usage_flags The usage flags to write.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 91

Returns: void
Description

Usage flags are part of a key’s policy. They encode what kind of operations are permitted on the key. Formore details, see Key policies on page 85.
This function overwrites any usage flags previously set in attributes.

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

psa_get_key_usage_flags (function)

Retrieve the usage flags from key attributes.
psa_key_usage_t psa_get_key_usage_flags(const psa_key_attributes_t * attributes);

Parameters

attributes The key attribute object to query.
Returns: psa_key_usage_t

The usage flags stored in the attribute object.
Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

9.6 Key management functions
9.6.1 Key creation

New keys can be created in the following ways:
∙ psa_import_key() creates a key from a data buffer provided by the application.
∙ psa_generate_key() creates a key from randomly generated data.
∙ psa_key_derivation_output_key() creates a key from data generated by a pseudorandom derivationprocess. See Key derivation on page 209.
∙ psa_key_agreement() creates a key from the shared secret result of a key agreement process. See Keyagreement on page 271.
∙ psa_copy_key() duplicates an existing key with a different lifetime or with a more restrictive usagepolicy.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 92

When creating a key, the attributes for the new key are specified in a psa_key_attributes_t object. Eachkey creation function defines how it uses the attributes.
Note:
The attributes for a key are immutable after the key has been created.
The application must set the key algorithm policy and the appropriate key usage flags in theattributes in order for the key to be used in any cryptographic operations.

psa_import_key (function)

Import a key in binary format.
psa_status_t psa_import_key(const psa_key_attributes_t * attributes,

const uint8_t * data,

size_t data_length,

psa_key_id_t * key);

Parameters

attributes The attributes for the new key. This function uses the attributes asfollows:
∙ The key type is required, and determines how the data buffer isinterpreted.
∙ The key size is always determined from the data buffer. If thekey size in attributes is nonzero, it must be equal to the sizedetermined from data.
∙ The key permitted-algorithm policy is required for keys that willbe used for a cryptographic operation, see Permitted algorithmson page 85.
∙ The key usage flags define what operations are permitted withthe key, see Key usage flags on page 87.
∙ The key lifetime and identifier are required for a persistent key.

Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queriedby calling psa_get_key_attributes() with the key’s identifier.

data Buffer containing the key data. The content of this buffer isinterpreted according to the type declared in attributes. Allimplementations must support at least the format described in Keyformats on page 105 for the chosen type. Implementations cansupport other formats, but be conservative in interpreting the keydata: it is recommended that implementations reject content if itmight be erroneous, for example, if it is the wrong type or istruncated.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 93

data_length Size of the data buffer in bytes.
key On success, an identifier for the newly created key. PSA_KEY_ID_NULLon failure.

Returns: psa_status_t

PSA_SUCCESS Success. If the key is persistent, the key material and the key’smetadata have been saved to persistent storage.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_NOT_PERMITTED The implementation does not permit creating a key with thespecified attributes due to some implementation-specific policy.
PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ The key type is invalid.
∙ The key size is nonzero, and is incompatible with the key data in

data.
∙ The key lifetime is invalid.
∙ The key identifier is not valid for the key lifetime.
∙ The key usage flags include invalid values.
∙ The key’s permitted-usage algorithm is invalid.
∙ The key attributes, as a whole, are invalid.
∙ The key data is not correctly formatted for the key type.

PSA_ERROR_NOT_SUPPORTED The key attributes, as a whole, are not supported, either by theimplementation in general or in the specified storage location.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function supports any output from psa_export_key(). Refer to Key formats on page 105 for the formatof keys.
The key data determines the key size. The attributes can optionally specify a key size; in this case it mustmatch the size determined from the key data. A key size of 0 in attributes indicates that the key size issolely determined by the key data.
Implementations must reject an attempt to import a key of size 0.
This specification defines a single format for each key type. Implementations can optionally support otherformats in addition to the standard format. It is recommended that implementations that support other
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 94

formats ensure that the formats are clearly unambiguous, to minimize the risk that an invalid input isaccidentally interpreted according to a different format.
Note:
The Crypto API does not support asymmetric private key objects outside of a key pair. To import aprivate key, the attributes must specify the corresponding key pair type. Depending on the keytype, either the import format contains the public key data or the implementation will reconstructthe public key from the private key as needed.

psa_generate_key (function)

Generate a key or key pair.
psa_status_t psa_generate_key(const psa_key_attributes_t * attributes,

psa_key_id_t * key);

Parameters

attributes The attributes for the new key. This function uses the attributes asfollows:
∙ The key type is required. It cannot be an asymmetric public key.
∙ The key size is required. It must be a valid size for the key type.
∙ The key permitted-algorithm policy is required for keys that willbe used for a cryptographic operation, see Permitted algorithmson page 85.
∙ The key usage flags define what operations are permitted withthe key, see Key usage flags on page 87.
∙ The key lifetime and identifier are required for a persistent key.

Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queriedby calling psa_get_key_attributes() with the key’s identifier.

key On success, an identifier for the newly created key. PSA_KEY_ID_NULLon failure.
Returns: psa_status_t

PSA_SUCCESS Success. If the key is persistent, the key material and the key’smetadata have been saved to persistent storage.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_NOT_PERMITTED The implementation does not permit creating a key with thespecified attributes due to some implementation-specific policy.
PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 95

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ The key type is invalid, or is an asymmetric public key type.
∙ The key size is not valid for the key type.
∙ The key lifetime is invalid.
∙ The key identifier is not valid for the key lifetime.
∙ The key usage flags include invalid values.
∙ The key’s permitted-usage algorithm is invalid.
∙ The key attributes, as a whole, are invalid.

PSA_ERROR_NOT_SUPPORTED The key attributes, as a whole, are not supported, either by theimplementation in general or in the specified storage location.
PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The key is generated randomly. Its location, policy, type and size are taken from attributes.
Implementations must reject an attempt to generate a key of size 0.
The following type-specific considerations apply:

∙ For RSA keys (PSA_KEY_TYPE_RSA_KEY_PAIR), the public exponent is 65537. The modulus is a product oftwo probabilistic primes between 2𝑛−1 and 2𝑛 where 𝑛 is the bit size specified in the attributes.
psa_copy_key (function)

Make a copy of a key.
psa_status_t psa_copy_key(psa_key_id_t source_key,

const psa_key_attributes_t * attributes,

psa_key_id_t * target_key);

Parameters

source_key The key to copy. It must permit the usage PSA_KEY_USAGE_COPY. If aprivate or secret key is being copied outside of a secure element itmust also permit PSA_KEY_USAGE_EXPORT.
attributes The attributes for the new key. This function uses the attributes asfollows:

∙ The key type and size can be 0. If either is nonzero, it mustmatch the corresponding attribute of the source key.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 96

∙ The key location (the lifetime and, for persistent keys, the keyidentifier) is used directly.
∙ The key policy (usage flags and permitted algorithm) arecombined from the source key and attributes so that both setsof restrictions apply, as described in the documentation of thisfunction.

Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queriedby calling psa_get_key_attributes() with the key’s identifier.

target_key On success, an identifier for the newly created key. PSA_KEY_ID_NULLon failure.
Returns: psa_status_t

PSA_SUCCESS Success. If the new key is persistent, the key material and the key’smetadata have been saved to persistent storage.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE source_key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:

∙ source_key does not have the PSA_KEY_USAGE_COPY usage flag.
∙ source_key does not have the PSA_KEY_USAGE_EXPORT usage flag,and the location of target_key is outside the security boundaryof the source_key storage location.
∙ The implementation does not permit creating a key with thespecified attributes due to some implementation-specific policy.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ attributes specifies a key type or key size which does not matchthe attributes of source key.
∙ The lifetime or identifier in attributes are invalid.
∙ The key policies from source_key and those specified in

attributes are incompatible.
PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

∙ The source key storage location does not support copying to thetarget key’s storage location.
∙ The key attributes, as a whole, are not supported in the targetkey’s storage location.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 97

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

Copy key material from one location to another.
This function is primarily useful to copy a key from one location to another, as it populates a key using thematerial from another key which can have a different lifetime.
This function can be used to share a key with a different party, subject to implementation-definedrestrictions on key sharing.
The policy on the source key must have the usage flag PSA_KEY_USAGE_COPY set. This flag is sufficient topermit the copy if the key has the lifetime PSA_KEY_LIFETIME_VOLATILE or PSA_KEY_LIFETIME_PERSISTENT. Somesecure elements do not provide a way to copy a key without making it extractable from the secure element.If a key is located in such a secure element, then the key must have both usage flags PSA_KEY_USAGE_COPYand PSA_KEY_USAGE_EXPORT in order to make a copy of the key outside the secure element.
The resulting key can only be used in a way that conforms to both the policy of the original key and thepolicy specified in the attributes parameter:

∙ The usage flags on the resulting key are the bitwise-and of the usage flags on the source policy andthe usage flags in attributes.
∙ If both permit the same algorithm or wildcard-based algorithm, the resulting key has the samepermitted algorithm.
∙ If either of the policies permits an algorithm and the other policy permits a wildcard-based permittedalgorithm that includes this algorithm, the resulting key uses this permitted algorithm.
∙ If the policies do not permit any algorithm in common, this function fails with the status

PSA_ERROR_INVALID_ARGUMENT.
The effect of this function on implementation-defined attributes is implementation-defined.
9.6.2 Key destruction

psa_destroy_key (function)

Destroy a key.
psa_status_t psa_destroy_key(psa_key_id_t key);

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 98

Parameters

key Identifier of the key to erase. If this is PSA_KEY_ID_NULL, do nothingand return PSA_SUCCESS.
Returns: psa_status_t

PSA_SUCCESS Success. If key was a valid key identifier, then the key material that itreferred to has been erased. Alternatively, key was PSA_KEY_ID_NULL.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is neither a valid key identifier, nor PSA_KEY_ID_NULL.
PSA_ERROR_NOT_PERMITTED The key cannot be erased because it is read-only, either due to apolicy or due to physical restrictions.
PSA_ERROR_COMMUNICATION_FAILURE There was an failure in communication with the cryptoprocessor. Thekey material might still be present in the cryptoprocessor.
PSA_ERROR_CORRUPTION_DETECTED An unexpected condition which is not a storage corruption or acommunication failure occurred. The cryptoprocessor might havebeen compromised.
PSA_ERROR_STORAGE_FAILURE The storage operation failed. Implementations must make a besteffort to erase key material even in this situation, however, it mightbe impossible to guarantee that the key material is not recoverable insuch cases.
PSA_ERROR_DATA_CORRUPT The storage is corrupted. Implementations must make a best effort toerase key material even in this situation, however, it might beimpossible to guarantee that the key material is not recoverable insuch cases.
PSA_ERROR_DATA_INVALID

Description

This function destroys a key from both volatile memory and, if applicable, non-volatile storage.Implementations must make a best effort to ensure that that the key material cannot be recovered.
This function also erases any metadata such as policies and frees resources associated with the key.
Destroying the key makes the key identifier invalid, and the key identifier must not be used again by theapplication.
If a key is currently in use in a multi-part operation, then destroying the key will cause the multi-partoperation to fail.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 99

psa_purge_key (function)

Remove non-essential copies of key material from memory.
psa_status_t psa_purge_key(psa_key_id_t key);

Parameters

key Identifier of the key to purge.
Returns: psa_status_t

PSA_SUCCESS Success. The key material has been removed from memory, if the keymaterial is not currently required.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

For keys that have been created with the PSA_KEY_USAGE_CACHE usage flag, an implementation is permittedto make additional copies of the key material that are not in storage and not for the purpose of ongoingoperations.
This function will remove these extra copies of the key material from memory.
This function is not required to remove key material from memory in any of the following situations:

∙ The key is currently in use in a cryptographic operation.
∙ The key is volatile.

See alsoManaging key material on page 40.
9.6.3 Key export

psa_export_key (function)

Export a key in binary format.
psa_status_t psa_export_key(psa_key_id_t key,

uint8_t * data,

size_t data_size,

size_t * data_length);

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 100

Parameters

key Identifier of the key to export. It must permit the usage
PSA_KEY_USAGE_EXPORT, unless it is a public key.

data Buffer where the key data is to be written.
data_size Size of the data buffer in bytes. This must be appropriate for the key:

∙ The required output size is PSA_EXPORT_KEY_OUTPUT_SIZE(type,
bits) where type is the key type and bits is the key size in bits.

∙ PSA_EXPORT_KEY_PAIR_MAX_SIZE evaluates to the maximum outputsize of any supported key pair.
∙ PSA_EXPORT_PUBLIC_KEY_MAX_SIZE evaluates to the maximumoutput size of any supported public key.
∙ This API defines no maximum size for symmetric keys.Arbitrarily large data items can be stored in the key store, forexample certificates that correspond to a stored private key orinput material for key derivation.

data_length On success, the number of bytes that make up the key data.
Returns: psa_status_t

PSA_SUCCESS Success. The first (*data_length) bytes of data contain the exportedkey.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_EXPORT flag.
PSA_ERROR_BUFFER_TOO_SMALL The size of the data buffer is too small. PSA_EXPORT_KEY_OUTPUT_SIZE()or PSA_EXPORT_KEY_PAIR_MAX_SIZE can be used to determine asufficient buffer size.
PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

∙ The key’s storage location does not support export of the key.
∙ The implementation does not support export of keys with thiskey type.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 101

Description

The output of this function can be passed to psa_import_key() to create an equivalent object.
If the implementation of psa_import_key() supports other formats beyond the format specified here, theoutput from psa_export_key() must use the representation specified in Key formats on page 105, not theoriginally imported representation.
For standard key types, the output format is defined in Key formats on page 105.
The policy on the key must have the usage flag PSA_KEY_USAGE_EXPORT set.
psa_export_public_key (function)

Export a public key or the public part of a key pair in binary format.
psa_status_t psa_export_public_key(psa_key_id_t key,

uint8_t * data,

size_t data_size,

size_t * data_length);

Parameters

key Identifier of the key to export.
data Buffer where the key data is to be written.
data_size Size of the data buffer in bytes. This must be appropriate for the key:

∙ The required output size is
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(type, bits) where type isthe key type and bits is the key size in bits.

∙ PSA_EXPORT_PUBLIC_KEY_MAX_SIZE evaluates to the maximumoutput size of any supported public key or public part of a keypair.
data_length On success, the number of bytes that make up the key data.

Returns: psa_status_t

PSA_SUCCESS Success. The first (*data_length) bytes of data contain the exportedpublic key.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_BUFFER_TOO_SMALL The size of the data buffer is too small.

PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE() or
PSA_EXPORT_PUBLIC_KEY_MAX_SIZE can be used to determine a sufficientbuffer size.

PSA_ERROR_INVALID_ARGUMENT The key is neither a public key nor a key pair.
PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

∙ The key’s storage location does not support export of the key.
∙ The implementation does not support export of keys with thiskey type.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 102

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The output of this function can be passed to psa_import_key() to create an object that is equivalent to thepublic key.
If the implementation of psa_import_key() supports other formats beyond the format specified here, theoutput from psa_export_public_key() must use the representation specified in Key formats on page 105,not the originally imported representation.
For standard key types, the output format is defined in Key formats on page 105.
Exporting a public key object or the public part of a key pair is always permitted, regardless of the key’susage flags.
PSA_EXPORT_KEY_OUTPUT_SIZE (macro)

Sufficient output buffer size for psa_export_key().
#define PSA_EXPORT_KEY_OUTPUT_SIZE(key_type, key_bits) \

/* implementation-defined value */

Parameters

key_type A supported key type.
key_bits The size of the key in bits.

Returns

If the parameters are valid and supported, return a buffer size in bytes that guarantees that
psa_export_key() or psa_export_public_key() will not fail with PSA_ERROR_BUFFER_TOO_SMALL. If theparameters are a valid combination that is not supported by the implementation, this macro must returneither a sensible size or 0. If the parameters are not valid, the return value is unspecified.
Description

The following code illustrates how to allocate enough memory to export a key by querying the key typeand size at runtime.
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

psa_status_t status;

status = psa_get_key_attributes(key, &attributes);

if (status != PSA_SUCCESS)

handle_error(...);

psa_key_type_t key_type = psa_get_key_type(&attributes);

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 103

(continued from previous page)
size_t key_bits = psa_get_key_bits(&attributes);

size_t buffer_size = PSA_EXPORT_KEY_OUTPUT_SIZE(key_type, key_bits);

psa_reset_key_attributes(&attributes);

uint8_t *buffer = malloc(buffer_size);

if (buffer == NULL)

handle_error(...);

size_t buffer_length;

status = psa_export_key(key, buffer, buffer_size, &buffer_length);

if (status != PSA_SUCCESS)

handle_error(...);

See also PSA_EXPORT_KEY_PAIR_MAX_SIZE and PSA_EXPORT_PUBLIC_KEY_MAX_SIZE.
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE (macro)

Sufficient output buffer size for psa_export_public_key().
#define PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(key_type, key_bits) \

/* implementation-defined value */

Parameters

key_type A public key or key pair key type.
key_bits The size of the key in bits.

Returns

If the parameters are valid and supported, return a buffer size in bytes that guarantees that
psa_export_public_key() will not fail with PSA_ERROR_BUFFER_TOO_SMALL. If the parameters are a validcombination that is not supported by the implementation, this macro must return either a sensible size or
0. If the parameters are not valid, the return value is unspecified.
If the parameters are valid and supported, it is recommended that this macro returns the same result as
PSA_EXPORT_KEY_OUTPUT_SIZE(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(key_type), key_bits).
Description

The following code illustrates how to allocate enough memory to export a public key by querying the keytype and size at runtime.
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

psa_status_t status;

status = psa_get_key_attributes(key, &attributes);

if (status != PSA_SUCCESS)

handle_error(...);

psa_key_type_t key_type = psa_get_key_type(&attributes);

size_t key_bits = psa_get_key_bits(&attributes);

size_t buffer_size = PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(key_type, key_bits);

psa_reset_key_attributes(&attributes);

uint8_t *buffer = malloc(buffer_size);

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 104

(continued from previous page)
if (buffer == NULL)

handle_error(...);

size_t buffer_length;

status = psa_export_public_key(key, buffer, buffer_size, &buffer_length);

if (status != PSA_SUCCESS)

handle_error(...);

See also PSA_EXPORT_PUBLIC_KEY_MAX_SIZE.
PSA_EXPORT_KEY_PAIR_MAX_SIZE (macro)

Sufficient buffer size for exporting any asymmetric key pair.
#define PSA_EXPORT_KEY_PAIR_MAX_SIZE /* implementation-defined value */

This value must be a sufficient buffer size when calling psa_export_key() to export any asymmetric key pairthat is supported by the implementation, regardless of the exact key type and key size.
See also PSA_EXPORT_KEY_OUTPUT_SIZE().
PSA_EXPORT_PUBLIC_KEY_MAX_SIZE (macro)

Sufficient buffer size for exporting any asymmetric public key.
#define PSA_EXPORT_PUBLIC_KEY_MAX_SIZE /* implementation-defined value */

This value must be a sufficient buffer size when calling psa_export_key() or psa_export_public_key() toexport any asymmetric public key that is supported by the implementation, regardless of the exact keytype and key size.
See also PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE().
9.6.4 Key formats

This section defines the format of the key data that an implementation is required to support whenimporting and exporting keys. Keys can be imported using psa_import_key(), and exported using
psa_export_key() or psa_export_public_key(). The public key formats are also used for the key agreementfunctions, see Key agreement on page 271.

Table 8 Standard key formats
Key type Key type details and format

DES PSA_KEY_TYPE_DES, 64 bits.
The key data consists of 8 bytes. The parity bits must be correct.

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 105

Table 8 – continued from previous page

Key type Key type details and format

2-key 3DES
3-key 3DES

PSA_KEY_TYPE_DES, 128 bits.
PSA_KEY_TYPE_DES, 192 bits.
The key data is the concatenation of the two or three DES keys.

Other symmetric keys
∙ AES
∙ ARC4
∙ ARIA
∙ CAMELLIA
∙ ChaCha20
∙ HMAC
∙ SM4
∙ Secrets for derivation
∙ Password hashes

PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARC4

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_CHACHA20

PSA_KEY_TYPE_HMAC

PSA_KEY_TYPE_SM4

PSA_KEY_TYPE_DERIVE

PSA_KEY_TYPE_PASSWORD_HASH

The key data is the raw bytes of the key.

RSA key pair PSA_KEY_TYPE_RSA_KEY_PAIR

The key data is the non-encrypted DER encoding of the representationdefined by in PKCS #1: RSA Cryptography Specifications Version 2.2[RFC8017] as RSAPrivateKey, version 0.
RSAPrivateKey ::= SEQUENCE {

version INTEGER, -- must be 0

modulus INTEGER, -- n

publicExponent INTEGER, -- e

privateExponent INTEGER, -- d

prime1 INTEGER, -- p

prime2 INTEGER, -- q

exponent1 INTEGER, -- d mod (p-1)

exponent2 INTEGER, -- d mod (q-1)

coefficient INTEGER, -- (inverse of q) mod p

}

Note:
Although it is possible to define an RSA key pair or private keyusing a subset of these elements, the output from psa_export_key()for an RSA key pair must include all of these elements.

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 106

Table 8 – continued from previous page

Key type Key type details and format

RSA public key PSA_KEY_TYPE_RSA_PUBLIC_KEY

The key data is the DER encoding of the representation defined byAlgorithms and Identifiers for the Internet X.509 Public Key InfrastructureCertificate and Certificate Revocation List (CRL) Profile [RFC3279] §2.3.1 as
RSAPublicKey.
RSAPublicKey ::= SEQUENCE {

modulus INTEGER, -- n

publicExponent INTEGER } -- e

Weierstrass Elliptic curvekey pair PSA_KEY_TYPE_ECC_KEY_PAIR(ecc_family), where ecc_family designates aWeierstrass curve family.
The key data is the content of the privateKey field of the ECPrivateKeyformat defined by Elliptic Curve Private Key Structure [RFC5915].
This is a ⌈𝑚/8⌉-byte string in big-endian order, where𝑚 is the key size inbits.

Weierstrass Elliptic curvepublic key PSA_KEY_TYPE_ECC_PUBLIC_KEY(ecc_family), where ecc_family designates aWeierstrass curve family.
The key data is the uncompressed representation of an elliptic curvepoint as an octet string defined in SEC 1: Elliptic Curve Cryptography[SEC1] §2.3.3. If𝑚 is the bit size associated with the curve, i.e. the bit sizeof 𝑞 for a curve over F𝑞 , then the representation of point 𝑃 consists of:

∙ The byte 0x04;
∙ 𝑥𝑃 as a ⌈𝑚/8⌉-byte string, big-endian;
∙ 𝑦𝑃 as a ⌈𝑚/8⌉-byte string, big-endian.

Montgomery Elliptic curvekey pair PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_MONTGOMERY)

The key data is the scalar value of the ‘private key’ in little-endian orderas defined by Elliptic Curves for Security [RFC7748] §6. The value musthave the forced bits set to zero or one as specified by
decodeScalar25519() and decodeScalar448() in [RFC7748] §5.
This is a ⌈𝑚/8⌉-byte string where𝑚 is the key size in bits. This is 32 bytesfor Curve25519, and 56 bytes for Curve448.

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 107

https://datatracker.ietf.org/doc/html/rfc3279.html#section-2.3.1
https://datatracker.ietf.org/doc/html/rfc7748.html#section-6
https://datatracker.ietf.org/doc/html/rfc7748.html#section-5

Table 8 – continued from previous page

Key type Key type details and format

Montgomery Elliptic curvepublic key PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_MONTGOMERY)

The key data is the scalar value of the ‘public key’ in little-endian order asdefined by Elliptic Curves for Security [RFC7748] §6. This is a ⌈𝑚/8⌉-bytestring where𝑚 is the key size in bits.
∙ This is 32 bytes for Curve25519, computed as X25519(private_key,

9).
∙ This is 56 bytes for Curve448, computed as X448(private_key, 5).

Twisted Edwards Ellipticcurve key pair PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_TWISTED_EDWARDS)

The key data is the private key, as defined by Edwards-Curve DigitalSignature Algorithm (EdDSA) [RFC8032].
This is a 32-byte string for Edwards25519, and a 57-byte string forEdwards448.

Twisted Edwards Ellipticcurve public key PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_TWISTED_EDWARDS)

The key data is the public key, as defined by Edwards-Curve DigitalSignature Algorithm (EdDSA) [RFC8032].
This is a 32-byte string for Edwards25519, and a 57-byte string forEdwards448.

Finite-field Diffie-Hellmankey pair PSA_KEY_TYPE_DH_KEY_PAIR(dh_family) where dh_family designates anyDiffie-Hellman family.
The key data is the representation of the private key 𝑥 as a big-endianbyte string. The length of the byte string is the private key size in bytes,and leading zeroes are not stripped.

Finite-field Diffie-Hellmanpublic key PSA_KEY_TYPE_DH_PUBLIC_KEY(dh_family) where dh_family designates anyDiffie-Hellman family.
The key data is the representation of the public key 𝑦 = 𝑔𝑥 mod 𝑝 as abig-endian byte string. The length of the byte string is the length of thebase prime 𝑝 in bytes.

10 Cryptographic operation reference
10.1 Algorithms
This specification encodes algorithms into a structured 32-bit integer value.
Algorithm identifiers are used for two purposes in the Crypto API:

1. To specify a specific algorithm to use in a cryptographic operation. These are all defined inCryptographic operation reference.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 108

https://datatracker.ietf.org/doc/html/rfc7748.html#section-6

2. To specify the policy for a key, identifying the permitted algorithm for use with the key. This use isdescribed in Key policies on page 85.
The specific algorithm identifiers are described alongside the cryptographic operation functions to whichthey apply:

∙ Hash algorithms on page 115
∙ MAC algorithms on page 136
∙ Cipher algorithms on page 152
∙ AEAD algorithms on page 179
∙ Key derivation algorithms on page 210
∙ Asymmetric signature algorithms on page 242
∙ Asymmetric encryption algorithms on page 264
∙ Key agreement algorithms on page 271

10.1.1 Algorithm encoding

psa_algorithm_t (typedef)

Encoding of a cryptographic algorithm.
typedef uint32_t psa_algorithm_t;

This is a structured bitfield that identifies the category and type of algorithm. The range of algorithmidentifier values is divided as follows:
0x00000000 Reserved as an invalid algorithm identifier.
0x00000001 – 0x7fffffffSpecification-defined algorithm identifiers. Algorithm identifiers defined by this standardalways have bit 31 clear. Unallocated algorithm identifier values in this range are reservedfor future use.
0x80000000 – 0xffffffffImplementation-defined algorithm identifiers. Implementations that define additionalalgorithms must use an encoding with bit 31 set. The related support macros will be easierto write if these algorithm identifier encodings also respect the bitwise structure used bystandard encodings.

For algorithms that can be applied to multiple key types, this identifier does not encode the key type. Forexample, for symmetric ciphers based on a block cipher, psa_algorithm_t encodes the block cipher modeand the padding mode while the block cipher itself is encoded via psa_key_type_t.
The Algorithm and key type encoding on page 298 appendix provides a full definition of the algorithmidentifier encoding.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 109

PSA_ALG_NONE (macro)

An invalid algorithm identifier value.
#define PSA_ALG_NONE ((psa_algorithm_t)0)

Zero is not the encoding of any algorithm.
10.1.2 Algorithm categories

PSA_ALG_IS_HASH (macro)

Whether the specified algorithm is a hash algorithm.
#define PSA_ALG_IS_HASH(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a hash algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedalgorithm identifier.
Description

See Hash algorithms on page 115 for a list of defined hash algorithms.
PSA_ALG_IS_MAC (macro)

Whether the specified algorithm is a MAC algorithm.
#define PSA_ALG_IS_MAC(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a MAC algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedalgorithm identifier.
Description

SeeMAC algorithms on page 136 for a list of defined MAC algorithms.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 110

PSA_ALG_IS_CIPHER (macro)

Whether the specified algorithm is a symmetric cipher algorithm.
#define PSA_ALG_IS_CIPHER(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a symmetric cipher algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported algorithm identifier.
Description

See Cipher algorithms on page 152 for a list of defined cipher algorithms.
PSA_ALG_IS_AEAD (macro)

Whether the specified algorithm is an authenticated encryption with associated data (AEAD) algorithm.
#define PSA_ALG_IS_AEAD(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is an AEAD algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedalgorithm identifier.
Description

See AEAD algorithms on page 179 for a list of defined AEAD algorithms.
PSA_ALG_IS_SIGN (macro)

Whether the specified algorithm is an asymmetric signature algorithm, also known as public-key signaturealgorithm.
#define PSA_ALG_IS_SIGN(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 111

Returns

1 if alg is an asymmetric signature algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported algorithm identifier.
Description

See Asymmetric signature algorithms on page 242 for a list of defined signature algorithms.
PSA_ALG_IS_ASYMMETRIC_ENCRYPTION (macro)

Whether the specified algorithm is an asymmetric encryption algorithm, also known as public-keyencryption algorithm.
#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is an asymmetric encryption algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is nota supported algorithm identifier.
Description

See Asymmetric encryption algorithms on page 264 for a list of defined asymmetric encryption algorithms.
PSA_ALG_IS_KEY_AGREEMENT (macro)

Whether the specified algorithm is a key agreement algorithm.
#define PSA_ALG_IS_KEY_AGREEMENT(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a key agreement algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported algorithm identifier.
Description

See Key agreement algorithms on page 271 for a list of defined key agreement algorithms.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 112

PSA_ALG_IS_KEY_DERIVATION (macro)

Whether the specified algorithm is a key derivation algorithm.
#define PSA_ALG_IS_KEY_DERIVATION(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a key derivation algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported algorithm identifier.
Description

See Key derivation algorithms on page 210 for a list of defined key derivation algorithms.
PSA_ALG_IS_WILDCARD (macro)

Whether the specified algorithm encoding is a wildcard.
#define PSA_ALG_IS_WILDCARD(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a wildcard algorithm encoding.
0 if alg is a non-wildcard algorithm encoding that is suitable for an operation.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description

Wildcard algorithm values can only be used to set the permitted-algorithm field in a key policy, wildcardvalues cannot be used to perform an operation.
See PSA_ALG_ANY_HASH for example of how a wildcard algorithm can be used in a key policy.
PSA_ALG_GET_HASH (macro)

Get the hash used by a composite algorithm.
#define PSA_ALG_GET_HASH(alg) /* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 113

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

The underlying hash algorithm if alg is a composite algorithm that uses a hash algorithm.
PSA_ALG_NONE if alg is not a composite algorithm that uses a hash.
Description

The following composite algorithms require a hash algorithm:
∙ PSA_ALG_ECDSA()

∙ PSA_ALG_HKDF()

∙ PSA_ALG_HKDF_EXPAND()

∙ PSA_ALG_HKDF_EXTRACT()

∙ PSA_ALG_HMAC()

∙ PSA_ALG_RSA_OAEP()

∙ PSA_ALG_RSA_PKCS1V15_SIGN()

∙ PSA_ALG_RSA_PSS()

∙ PSA_ALG_RSA_PSS_ANY_SALT()

∙ PSA_ALG_TLS12_PRF()

∙ PSA_ALG_TLS12_PSK_TO_MS()

∙ PSA_ALG_PBKDF2_HMAC()

10.2 Message digests (Hashes)
The single-part hash functions are:

∙ psa_hash_compute() to calculate the hash of a message.
∙ psa_hash_compare() to compare the hash of a message with a reference value.

The psa_hash_operation_t multi-part operation allows messages to be processed in fragments. A multi-parthash operation is used as follows:
1. Initialize the psa_hash_operation_t object to zero, or by assigning the value of the associated macro

PSA_HASH_OPERATION_INIT.
2. Call psa_hash_setup() to specify the required hash algorithm, call psa_hash_clone() to duplicate thestate of active psa_hash_operation_t object, or call psa_hash_resume() to restart a hash operation withthe output from a previously suspended hash operation.
3. Call the psa_hash_update() function on successive chunks of the message.
4. At the end of the message, call the required finishing function:

∙ To suspend the hash operation and extract a hash suspend state, call psa_hash_suspend(). Theoutput state can subsequently be used to resume the hash operation.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 114

∙ To calculate the digest of a message, call psa_hash_finish().
∙ To verify the digest of a message against a reference value, call psa_hash_verify().

To abort the operation or recover from an error, call psa_hash_abort().
10.2.1 Hash algorithms

PSA_ALG_MD2 (macro)

The MD2 message-digest algorithm.
#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)

Warning: The MD2 hash is weak and deprecated and is only recommended for use in legacyapplications.
MD2 is defined in The MD2 Message-Digest Algorithm [RFC1319].
PSA_ALG_MD4 (macro)

The MD4 message-digest algorithm.
#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)

Warning: The MD4 hash is weak and deprecated and is only recommended for use in legacyapplications.
MD4 is defined in The MD4 Message-Digest Algorithm [RFC1320].
PSA_ALG_MD5 (macro)

The MD5 message-digest algorithm.
#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)

Warning: The MD5 hash is weak and deprecated and is only recommended for use in legacyapplications.
MD5 is defined in The MD5 Message-Digest Algorithm [RFC1321].

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 115

PSA_ALG_RIPEMD160 (macro)

The RIPEMD-160 message-digest algorithm.
#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)

RIPEMD-160 is defined in RIPEMD-160: A Strengthened Version of RIPEMD [RIPEMD], and also in ISO/IEC10118-3:2018 IT Security techniques — Hash-functions — Part 3: Dedicated hash-functions [ISO10118].
PSA_ALG_AES_MMO_ZIGBEE (macro)

The Zigbee 1.0 hash function based on a Matyas-Meyer-Oseas (MMO) construction using AES-128.
#define PSA_ALG_AES_MMO_ZIGBEE ((psa_algorithm_t)0x02000007)

This is the cryptographic hash function based on the Merkle-Damgård construction over aMatyas-Meyer-Oseas one-way compression function and the AES-128 block cipher, with theparametrization defined in zigbee Specification [ZIGBEE] §B.6.
This hash function can operate on input strings of up to 232 − 1 bits.

Note:
The Zigbee keyed hash function from [ZIGBEE] §B.1.4 is PSA_ALG_HMAC(PSA_ALG_AES_MMO_ZIGBEE).

PSA_ALG_SHA_1 (macro)

The SHA-1 message-digest algorithm.
#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)

Warning: The SHA-1 hash is weak and deprecated and is only recommended for use in legacyapplications.
SHA-1 is defined in FIPS Publication 180-4: Secure Hash Standard (SHS) [FIPS180-4].
PSA_ALG_SHA_224 (macro)

The SHA-224 message-digest algorithm.
#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)

SHA-224 is defined in [FIPS180-4].

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 116

PSA_ALG_SHA_256 (macro)

The SHA-256 message-digest algorithm.
#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)

SHA-256 is defined in [FIPS180-4].
PSA_ALG_SHA_384 (macro)

The SHA-384 message-digest algorithm.
#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)

SHA-384 is defined in [FIPS180-4].
PSA_ALG_SHA_512 (macro)

The SHA-512 message-digest algorithm.
#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)

SHA-512 is defined in [FIPS180-4].
PSA_ALG_SHA_512_224 (macro)

The SHA-512/224 message-digest algorithm.
#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)

SHA-512/224 is defined in [FIPS180-4].
PSA_ALG_SHA_512_256 (macro)

The SHA-512/256 message-digest algorithm.
#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)

SHA-512/256 is defined in [FIPS180-4].
PSA_ALG_SHA3_224 (macro)

The SHA3-224 message-digest algorithm.
#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)

SHA3-224 is defined in FIPS Publication 202: SHA-3 Standard: Permutation-Based Hash andExtendable-Output Functions [FIPS202].

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 117

PSA_ALG_SHA3_256 (macro)

The SHA3-256 message-digest algorithm.
#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)

SHA3-256 is defined in [FIPS202].
PSA_ALG_SHA3_384 (macro)

The SHA3-384 message-digest algorithm.
#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)

SHA3-384 is defined in [FIPS202].
PSA_ALG_SHA3_512 (macro)

The SHA3-512 message-digest algorithm.
#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)

SHA3-512 is defined in [FIPS202].
PSA_ALG_SHAKE256_512 (macro)

The first 512 bits (64 bytes) of the SHAKE256 output.
#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)

This is the prehashing for Ed448ph (see PSA_ALG_ED448PH).
SHAKE256 is defined in [FIPS202].

Note:
For other scenarios where a hash function based on SHA3 or SHAKE is required, SHA3-512 isrecommended. SHA3-512 has the same output size, and a theoretically higher security strength.

PSA_ALG_SM3 (macro)

The SM3 message-digest algorithm.
#define PSA_ALG_SM3 ((psa_algorithm_t)0x02000014)

SM3 is defined in ISO/IEC 10118-3:2018 IT Security techniques — Hash-functions — Part 3: Dedicatedhash-functions [ISO10118], and also in GM/T 0004-2012: SM3 cryptographic hash algorithm [CSTC0004].

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 118

10.2.2 Single-part hashing functions

psa_hash_compute (function)

Calculate the hash (digest) of a message.
psa_status_t psa_hash_compute(psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

uint8_t * hash,

size_t hash_size,

size_t * hash_length);

Parameters

alg The hash algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_HASH(alg) is true.
input Buffer containing the message to hash.
input_length Size of the input buffer in bytes.
hash Buffer where the hash is to be written.
hash_size Size of the hash buffer in bytes. This must be at least

PSA_HASH_LENGTH(alg).
hash_length On success, the number of bytes that make up the hash value. This isalways PSA_HASH_LENGTH(alg).

Returns: psa_status_t

PSA_SUCCESS Success. The first (*hash_length) bytes of hash contain the hash value.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_BUFFER_TOO_SMALL The size of the hash buffer is too small. PSA_HASH_LENGTH() can be usedto determine a sufficient buffer size.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a hash algorithm.
∙ input_length is too large for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a hash algorithm.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 119

Description

Note:
To verify the hash of a message against an expected value, use psa_hash_compare() instead.

psa_hash_compare (function)

Calculate the hash (digest) of a message and compare it with a reference value.
psa_status_t psa_hash_compare(psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

const uint8_t * hash,

size_t hash_length);

Parameters

alg The hash algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_HASH(alg) is true.
input Buffer containing the message to hash.
input_length Size of the input buffer in bytes.
hash Buffer containing the expected hash value.
hash_length Size of the hash buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success. The expected hash is identical to the actual hash of theinput.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_SIGNATURE The calculated hash of the message does not match the value in hash.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a hash algorithm.
∙ input_length is too large for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a hash algorithm.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 120

10.2.3 Multi-part hashing operations

psa_hash_operation_t (typedef)

The type of the state object for multi-part hash operations.
typedef /* implementation-defined type */ psa_hash_operation_t;

Before calling any function on a hash operation object, the application must initialize it by any of thefollowing means:
∙ Set the object to all-bits-zero, for example:

psa_hash_operation_t operation;

memset(&operation, 0, sizeof(operation));

∙ Initialize the object to logical zero values by declaring the object as static or global without anexplicit initializer, for example:
static psa_hash_operation_t operation;

∙ Initialize the object to the initializer PSA_HASH_OPERATION_INIT, for example:
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;

∙ Assign the result of the function psa_hash_operation_init() to the object, for example:
psa_hash_operation_t operation;

operation = psa_hash_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.
PSA_HASH_OPERATION_INIT (macro)

This macro returns a suitable initializer for a hash operation object of type psa_hash_operation_t.
#define PSA_HASH_OPERATION_INIT /* implementation-defined value */

psa_hash_operation_init (function)

Return an initial value for a hash operation object.
psa_hash_operation_t psa_hash_operation_init(void);

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 121

Returns: psa_hash_operation_t

psa_hash_setup (function)

Set up a multi-part hash operation.
psa_status_t psa_hash_setup(psa_hash_operation_t * operation,

psa_algorithm_t alg);

Parameters

operation The operation object to set up. It must have been initialized as perthe documentation for psa_hash_operation_t and not yet in use.
alg The hash algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_HASH(alg) is true.

Returns: psa_status_t

PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT alg is not a hash algorithm.
PSA_ERROR_NOT_SUPPORTED alg is not supported or is not a hash algorithm.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

The sequence of operations to calculate a hash (message digest) is as follows:
1. Allocate a hash operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_hash_operation_t, e.g. PSA_HASH_OPERATION_INIT.
3. Call psa_hash_setup() to specify the algorithm.
4. Call psa_hash_update() zero, one or more times, passing a fragment of the message each time. Thehash that is calculated is the hash of the concatenation of these messages in order.
5. To calculate the hash, call psa_hash_finish(). To compare the hash with an expected value, call

psa_hash_verify(). To suspend the hash operation and extract the current state, call
psa_hash_suspend().

After a successful call to psa_hash_setup(), the operation is active, and the application must eventuallyterminate the operation. The following events terminate an operation:
∙ A successful call to psa_hash_finish() or psa_hash_verify() or psa_hash_suspend().
∙ A call to psa_hash_abort().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 122

If psa_hash_setup() returns an error, the operation object is unchanged. If a subsequent function call withan active operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_hash_abort().
SeeMulti-part operations on page 24.
psa_hash_update (function)

Add a message fragment to a multi-part hash operation.
psa_status_t psa_hash_update(psa_hash_operation_t * operation,

const uint8_t * input,

size_t input_length);

Parameters

operation Active hash operation.
input Buffer containing the message fragment to hash.
input_length Size of the input buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The total input for the operation is too large for the hash algorithm.
PSA_ERROR_NOT_SUPPORTED The total input for the operation is too large for the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

The application must call psa_hash_setup() or psa_hash_resume() before calling this function.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_hash_abort().
psa_hash_finish (function)

Finish the calculation of the hash of a message.
psa_status_t psa_hash_finish(psa_hash_operation_t * operation,

uint8_t * hash,

size_t hash_size,

size_t * hash_length);

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 123

Parameters

operation Active hash operation.
hash Buffer where the hash is to be written.
hash_size Size of the hash buffer in bytes. This must be at least

PSA_HASH_LENGTH(alg) where alg is the algorithm that the operationperforms.
hash_length On success, the number of bytes that make up the hash value. This isalways PSA_HASH_LENGTH(alg) where alg is the hash algorithm that theoperation performs.

Returns: psa_status_t

PSA_SUCCESS Success. The first (*hash_length) bytes of hash contain the hash value.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the hash buffer is too small. PSA_HASH_LENGTH() can be usedto determine a sufficient buffer size.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

The application must call psa_hash_setup() or psa_hash_resume() before calling this function. This functioncalculates the hash of the message formed by concatenating the inputs passed to preceding calls to
psa_hash_update().
When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_hash_abort().
Warning: It is not recommended to use this function when a specific value is expected for the hash.Call psa_hash_verify() instead with the expected hash value.
Comparing integrity or authenticity data such as hash values with a function such as memcmp() is riskybecause the time taken by the comparison might leak information about the hashed data which couldallow an attacker to guess a valid hash and thereby bypass security controls.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 124

psa_hash_verify (function)

Finish the calculation of the hash of a message and compare it with an expected value.
psa_status_t psa_hash_verify(psa_hash_operation_t * operation,

const uint8_t * hash,

size_t hash_length);

Parameters

operation Active hash operation.
hash Buffer containing the expected hash value.
hash_length Size of the hash buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success. The expected hash is identical to the actual hash of themessage.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_SIGNATURE The calculated hash of the message does not match the value in hash.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

The application must call psa_hash_setup() before calling this function. This function calculates the hash ofthe message formed by concatenating the inputs passed to preceding calls to psa_hash_update(). It thencompares the calculated hash with the expected hash passed as a parameter to this function.
When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_hash_abort().

Note:
Implementations must make the best effort to ensure that the comparison between the actual hashand the expected hash is performed in constant time.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 125

psa_hash_abort (function)

Abort a hash operation.
psa_status_t psa_hash_abort(psa_hash_operation_t * operation);

Parameters

operation Initialized hash operation.
Returns: psa_status_t

PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,the operation object can be reused for another operation by calling psa_hash_setup() again.
This function can be called any time after the operation object has been initialized by one of the methodsdescribed in psa_hash_operation_t.
In particular, calling psa_hash_abort() after the operation has been terminated by a call to psa_hash_abort(),
psa_hash_finish() or psa_hash_verify() is safe and has no effect.
psa_hash_suspend (function)

Halt the hash operation and extract the intermediate state of the hash computation.
psa_status_t psa_hash_suspend(psa_hash_operation_t * operation,

uint8_t * hash_state,

size_t hash_state_size,

size_t * hash_state_length);

Parameters

operation Active hash operation.
hash_state Buffer where the hash suspend state is to be written.
hash_state_size Size of the hash_state buffer in bytes. This must be appropriate forthe selected algorithm:

∙ A sufficient output size is PSA_HASH_SUSPEND_OUTPUT_SIZE(alg)where alg is the algorithm that was used to set up the operation.
∙ PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE evaluates to the maximumoutput size of any supported hash algorithm.

hash_state_length On success, the number of bytes that make up the hash suspendstate.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 126

Returns: psa_status_t

PSA_SUCCESS Success. The first (*hash_state_length) bytes of hash_state containthe intermediate hash state.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the hash_state buffer is too small.
PSA_HASH_SUSPEND_OUTPUT_SIZE() or PSA_HASH_SUSPEND_OUTPUT_MAX_SIZEcan be used to determine a sufficient buffer size.

PSA_ERROR_NOT_SUPPORTED The hash algorithm being computed does not support suspend andresume.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

The application must call psa_hash_setup() or psa_hash_resume() before calling this function. This functionextracts an intermediate state of the hash computation of the message formed by concatenating theinputs passed to preceding calls to psa_hash_update().
This function can be used to halt a hash operation, and then resume the hash operation at a later time, orin another application, by transferring the extracted hash suspend state to a call to psa_hash_resume().
When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_hash_abort().
Hash suspend and resume is not defined for the SHA3 family of hash algorithms. Hash suspend state onpage 133 defines the format of the output from psa_hash_suspend().
Warning: Applications must not use any of the hash suspend state as if it was a hash output. Instead,the suspend state must only be used to resume a hash operation, and psa_hash_finish() or
psa_hash_verify() can then calculate or verify the final hash value.

Usage

The sequence of operations to suspend and resume a hash operation is as follows:
1. Compute the first part of the hash.

a. Allocate an operation object and initialize it as described in the documentation for
psa_hash_operation_t.

b. Call psa_hash_setup() to specify the algorithm.
c. Call psa_hash_update() zero, one or more times, passing a fragment of the message each time.
d. Call psa_hash_suspend() to extract the hash suspend state into a buffer.

2. Pass the hash state buffer to the application which will resume the operation.
3. Compute the rest of the hash.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 127

a. Allocate an operation object and initialize it as described in the documentation for
psa_hash_operation_t.

b. Call psa_hash_resume() with the extracted hash state.
c. Call psa_hash_update() zero, one or more times, passing a fragment of the message each time.
d. To calculate the hash, call psa_hash_finish(). To compare the hash with an expected value, call

psa_hash_verify().
If an error occurs at any step after a call to psa_hash_setup() or psa_hash_resume(), the operation will needto be reset by a call to psa_hash_abort(). The application can call psa_hash_abort() at any time after theoperation has been initialized.
psa_hash_resume (function)

Set up a multi-part hash operation using the hash suspend state from a previously suspended hashoperation.
psa_status_t psa_hash_resume(psa_hash_operation_t * operation,

const uint8_t * hash_state,

size_t hash_state_length);

Parameters

operation The operation object to set up. It must have been initialized as perthe documentation for psa_hash_operation_t and not yet in use.
hash_state A buffer containing the suspended hash state which is to beresumed. This must be in the format output by psa_hash_suspend(),which is described in Hash suspend state format on page 133.
hash_state_length Length of hash_state in bytes.

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT hash_state does not correspond to a valid hash suspend state. SeeHash suspend state format on page 133 for the definition.
PSA_ERROR_NOT_SUPPORTED The provided hash suspend state is for an algorithm that is notsupported.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 128

Description

See psa_hash_suspend() for an example of how to use this function to suspend and resume a hashoperation.
After a successful call to psa_hash_resume(), the application must eventually terminate the operation. Thefollowing events terminate an operation:

∙ A successful call to psa_hash_finish(), psa_hash_verify() or psa_hash_suspend().
∙ A call to psa_hash_abort().

psa_hash_clone (function)

Clone a hash operation.
psa_status_t psa_hash_clone(const psa_hash_operation_t * source_operation,

psa_hash_operation_t * target_operation);

Parameters

source_operation The active hash operation to clone.
target_operation The operation object to set up. It must be initialized but not active.

Returns: psa_status_t

PSA_SUCCESS Success. target_operation is ready to continue the same hashoperation as source_operation.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The source_operation state is not valid: it must be active.
∙ The target_operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

This function copies the state of an ongoing hash operation to a new operation object. In other words, thisfunction is equivalent to calling psa_hash_setup() on target_operation with the same algorithm that
source_operation was set up for, then psa_hash_update() on target_operation with the same input that thatwas passed to source_operation. After this function returns, the two objects are independent, i.e.subsequent calls involving one of the objects do not affect the other object.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 129

10.2.4 Support macros

PSA_HASH_LENGTH (macro)

The size of the output of psa_hash_compute() and psa_hash_finish(), in bytes.
#define PSA_HASH_LENGTH(alg) /* implementation-defined value */

Parameters

alg A hash algorithm or an HMAC algorithm: a value of type
psa_algorithm_t such that (PSA_ALG_IS_HASH(alg) ||

PSA_ALG_IS_HMAC(alg)) is true.
Returns

The hash length for the specified hash algorithm. If the hash algorithm is not recognized, return 0. Animplementation can return either 0 or the correct size for a hash algorithm that it recognizes, but does notsupport.
Description

This is also the hash length that psa_hash_compare() and psa_hash_verify() expect.
See also PSA_HASH_MAX_SIZE.
PSA_HASH_MAX_SIZE (macro)

Maximum size of a hash.
#define PSA_HASH_MAX_SIZE /* implementation-defined value */

It is recommended that this value is the maximum size of a hash supported by the implementation, inbytes. The value must not be smaller than this maximum.
See also PSA_HASH_LENGTH().
PSA_HASH_SUSPEND_OUTPUT_SIZE (macro)

A sufficient hash suspend state buffer size for psa_hash_suspend(), in bytes.
#define PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) /* specification-defined value */

Parameters

alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(alg) is true.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 130

Returns

A sufficient output size for the algorithm. If the hash algorithm is not recognized, or is not supported by
psa_hash_suspend(), return 0. An implementation can return either 0 or a correct size for a hash algorithmthat it recognizes, but does not support.
For a supported hash algorithm alg, the following expression is true:
PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) == PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH +

PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) +

PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) +

PSA_HASH_BLOCK_LENGTH(alg) - 1

Description

If the size of the hash state buffer is at least this large, it is guaranteed that psa_hash_suspend() will not faildue to an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE.
PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE (macro)

A sufficient hash suspend state buffer size for psa_hash_suspend(), for any supported hash algorithms.
#define PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE /* implementation-defined value */

If the size of the hash state buffer is at least this large, it is guaranteed that psa_hash_suspend() will not faildue to an insufficient buffer size.
See also PSA_HASH_SUSPEND_OUTPUT_SIZE().
PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH (macro)

The size of the algorithm field that is part of the output of psa_hash_suspend(), in bytes.
#define PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH ((size_t)4)

Applications can use this value to unpack the hash suspend state that is output by psa_hash_suspend().
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH (macro)

The size of the input-length field that is part of the output of psa_hash_suspend(), in bytes.
#define PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) \

/* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 131

Parameters

alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(alg) is true.

Returns

The size, in bytes, of the input-length field of the hash suspend state for the specified hash algorithm. If thehash algorithm is not recognized, return 0. An implementation can return either 0 or the correct size for ahash algorithm that it recognizes, but does not support.
The algorithm-specific values are defined in Hash suspend state field sizes on page 134.
Description

Applications can use this value to unpack the hash suspend state that is output by psa_hash_suspend().
PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH (macro)

The size of the hash-state field that is part of the output of psa_hash_suspend(), in bytes.
#define PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) \

/* specification-defined value */

Parameters

alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(alg) is true.

Returns

The size, in bytes, of the hash-state field of the hash suspend state for the specified hash algorithm. If thehash algorithm is not recognized, return 0. An implementation can return either 0 or the correct size for ahash algorithm that it recognizes, but does not support.
The algorithm-specific values are defined in Hash suspend state field sizes on page 134.
Description

Applications can use this value to unpack the hash suspend state that is output by psa_hash_suspend().
PSA_HASH_BLOCK_LENGTH (macro)

The input block size of a hash algorithm, in bytes.
#define PSA_HASH_BLOCK_LENGTH(alg) /* implementation-defined value */

Parameters

alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(alg) is true.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 132

Returns

The block size in bytes for the specified hash algorithm. If the hash algorithm is not recognized, return 0.An implementation can return either 0 or the correct size for a hash algorithm that it recognizes, but doesnot support.
Description

Hash algorithms process their input data in blocks. Hash operations will retain any partial blocks until theyhave enough input to fill the block or until the operation is finished.
This affects the output from psa_hash_suspend().
10.2.5 Hash suspend state

The hash suspend state is output by psa_hash_suspend() and input to psa_hash_resume().
Note:
Hash suspend and resume is not defined for the SM3 algorithm and the SHA3 family of hashalgorithms.

Hash suspend state format

The hash suspend state has the following format:
ℎ𝑎𝑠ℎ_𝑠𝑢𝑠𝑝𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒 = 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 || 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ || ℎ𝑎𝑠ℎ_𝑠𝑡𝑎𝑡𝑒 || 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑖𝑛𝑝𝑢𝑡

The fields in the hash suspend state are defined as follows:
𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 A big-endian 32-bit unsigned integer.

The Crypto API algorithm identifier value.
The byte length of the 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 field can be evaluated using
PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH.

𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎA big-endian unsigned integer
The content of this field is algorithm-specific:

∙ For MD2, this is the number of bytes in 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑖𝑛𝑝𝑢𝑡.
∙ For all other hash algorithms, this is the total number of bytes of input to the hashcomputation. This includes the 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑖𝑛𝑝𝑢𝑡 bytes.

The size of this field is algorithm-specific:
∙ For MD2: 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ is an 8-bit unsigned integer.
∙ For MD4, MD5, RIPEMD-160, SHA-1, SHA-224, and SHA-256: 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ is a64-bit unsigned integer.
∙ For SHA-512/224, SHA-512/256, SHA-384, and SHA-512: 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ is a 128-bitunsigned integer.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 133

The length, in bytes, of the 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ field can be calculated using
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) where alg is a hash algorithm. See Hashsuspend state field sizes.

ℎ𝑎𝑠ℎ_𝑠𝑡𝑎𝑡𝑒 An array of bytes
Algorithm-specific intermediate hash state:

∙ For MD2: 16 bytes of internal checksum, then 48 bytes of intermediate digest.
∙ For MD4 and MD5: 4x 32-bit integers, in little-endian encoding.
∙ For RIPEMD-160: 5x 32-bit integers, in little-endian encoding.
∙ For SHA-1: 5x 32-bit integers, in big-endian encoding.
∙ For SHA-224 and SHA-256: 8x 32-bit integers, in big-endian encoding.
∙ For SHA-512/224, SHA-512/256, SHA-384, and SHA-512: 8x 64-bit integers, inbig-endian encoding.

The length of this field is specific to the algorithm. The length, in bytes, of the ℎ𝑎𝑠ℎ_𝑠𝑡𝑎𝑡𝑒field can be calculated using PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) where alg is ahash algorithm. See Hash suspend state field sizes.
𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑖𝑛𝑝𝑢𝑡

0 to (ℎ𝑎𝑠ℎ_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒− 1) bytes
A partial block of unprocessed input data. This is between zero and ℎ𝑎𝑠ℎ_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒− 1bytes of data, the length can be calculated by:

length(𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑖𝑛𝑝𝑢𝑡) = 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ mod ℎ𝑎𝑠ℎ_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒.
The value of ℎ𝑎𝑠ℎ_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 is specific to the hash algorithm. The size of a hash block canbe calculated using PSA_HASH_BLOCK_LENGTH(alg) where alg is a hash algorithm. See Hashsuspend state field sizes.

Hash suspend state field sizes

The following table defines the algorithm-specific field lengths for the hash suspend state returned by
psa_hash_suspend(). All of the field lengths are in bytes. To compute the field lengths for algorithm alg, usethe following expressions:

∙ PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH returns the length of the 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 field.
∙ PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) returns the length of the 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ field.
∙ PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) returns the length of the ℎ𝑎𝑠ℎ_𝑠𝑡𝑎𝑡𝑒 field.
∙ PSA_HASH_BLOCK_LENGTH(alg) - 1 is the maximum length of the 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑏𝑦𝑡𝑒𝑠 field.
∙ PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) returns the maximum size of the hash suspend state.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 134

Hash algorithm 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ size (bytes) ℎ𝑎𝑠ℎ_𝑠𝑡𝑎𝑡𝑒 length (bytes) 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑏𝑦𝑡𝑒𝑠 length (bytes)

PSA_ALG_MD2 1 64 0 – 15
PSA_ALG_MD4 8 16 0 – 63
PSA_ALG_MD5 8 16 0 – 63
PSA_ALG_RIPEMD160 8 20 0 – 63
PSA_ALG_SHA_1 8 20 0 – 63
PSA_ALG_SHA_224 8 32 0 – 63
PSA_ALG_SHA_256 8 32 0 – 63
PSA_ALG_SHA_512_224 16 64 0 – 127
PSA_ALG_SHA_512_256 16 64 0 – 127
PSA_ALG_SHA_384 16 64 0 – 127
PSA_ALG_SHA_512 16 64 0 – 127

10.3 Message authentication codes (MAC)
The single-part MAC functions are:

∙ psa_mac_compute() to calculate the MAC of a message.
∙ psa_mac_verify() to compare the MAC of a message with a reference value.

The psa_mac_operation_t multi-part operation allows messages to be processed in fragments. A multi-partMAC operation is used as follows:
1. Initialize the psa_mac_operation_t object to zero, or by assigning the value of the associated macro

PSA_MAC_OPERATION_INIT.
2. Call psa_mac_sign_setup() or psa_mac_verify_setup() to specify the algorithm and key.
3. Call the psa_mac_update() function on successive chunks of the message.
4. At the end of the message, call the required finishing function:

∙ To calculate the MAC of the message, call psa_mac_sign_finish().
∙ To verify the MAC of the message against a reference value, call psa_mac_verify_finish().

To abort the operation or recover from an error, call psa_mac_abort().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 135

10.3.1 MAC algorithms

PSA_ALG_HMAC (macro)

Macro to build an HMAC message-authentication-code algorithm from an underlying hash algorithm.
#define PSA_ALG_HMAC(hash_alg) /* specification-defined value */

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.

Returns

The corresponding HMAC algorithm.
Unspecified if hash_alg is not a supported hash algorithm.
Description

For example, PSA_ALG_HMAC(PSA_ALG_SHA_256) is HMAC-SHA-256.
The HMAC construction is defined in HMAC: Keyed-Hashing for Message Authentication [RFC2104].
Compatible key types

PSA_KEY_TYPE_HMAC

PSA_ALG_CBC_MAC (macro)

The CBC-MAC message-authentication-code algorithm, constructed over a block cipher.
#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)

Warning: CBC-MAC is insecure in many cases. A more secure mode, such as PSA_ALG_CMAC, isrecommended.
The CBC-MAC algorithm must be used with a key for a block cipher. For example, one of PSA_KEY_TYPE_AES.
CBC-MAC is defined asMAC Algorithm 1 in ISO/IEC 9797-1:2011 Information technology — Securitytechniques — Message Authentication Codes (MACs) — Part 1: Mechanisms using a block cipher [ISO9797].
Compatible key types

PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 136

PSA_ALG_CMAC (macro)

The CMAC message-authentication-code algorithm, constructed over a block cipher.
#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)

The CMAC algorithm must be used with a key for a block cipher. For example, when used with a key withtype PSA_KEY_TYPE_AES, the resulting operation is AES-CMAC.
CMAC is defined in NIST Special Publication 800-38B: Recommendation for Block Cipher Modes of Operation:the CMAC Mode for Authentication [SP800-38B].
Compatible key types

PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_TRUNCATED_MAC (macro)

Macro to build a truncated MAC algorithm.
#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \

/* specification-defined value */

Parameters

mac_alg A MAC algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_MAC(mac_alg) is true. This can be a truncated oruntruncated MAC algorithm.

mac_length Desired length of the truncated MAC in bytes. This must be at mostthe untruncated length of the MAC and must be at least animplementation-specified minimum. The implementation-specifiedminimum must not be zero.
Returns

The corresponding MAC algorithm with the specified length.
Unspecified if mac_alg is not a supported MAC algorithm or if mac_length is too small or too large for thespecified MAC algorithm.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 137

Description

A truncated MAC algorithm is identical to the corresponding MAC algorithm except that the MAC valuefor the truncated algorithm consists of only the first mac_length bytes of the MAC value for theuntruncated algorithm.
Note:
This macro might allow constructing algorithm identifiers that are not valid, either because thespecified length is larger than the untruncated MAC or because the specified length is smaller thanpermitted by the implementation.

Note:
It is implementation-defined whether a truncated MAC that is truncated to the same length as theMAC of the untruncated algorithm is considered identical to the untruncated algorithm for policycomparison purposes.

The untruncated MAC algorithm can be recovered using PSA_ALG_FULL_LENGTH_MAC().
Compatible key types

The resulting truncated MAC algorithm is compatible with the same key types as the MAC algorithm usedto construct it.
PSA_ALG_FULL_LENGTH_MAC (macro)

Macro to construct the MAC algorithm with an untruncated MAC, from a truncated MAC algorithm.
#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) /* specification-defined value */

Parameters

mac_alg A MAC algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_MAC(mac_alg) is true. This can be a truncated oruntruncated MAC algorithm.

Returns

The corresponding MAC algorithm with an untruncated MAC.
Unspecified if mac_alg is not a supported MAC algorithm.
Compatible key types

The resulting untruncated MAC algorithm is compatible with the same key types as the MAC algorithmused to construct it.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 138

PSA_ALG_AT_LEAST_THIS_LENGTH_MAC (macro)

Macro to build a MAC minimum-MAC-length wildcard algorithm.
#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \

/* specification-defined value */

Parameters

mac_alg A MAC algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_MAC(alg) is true. This can be a truncated or untruncatedMAC algorithm.

min_mac_length Desired minimum length of the message authentication code inbytes. This must be at most the untruncated length of the MAC andmust be at least 1.
Returns

The corresponding MAC wildcard algorithm with the specified minimum MAC length.
Unspecified if mac_alg is not a supported MAC algorithm or if min_mac_length is less than 1 or too large forthe specified MAC algorithm.
Description

A key with a minimum-MAC-length MAC wildcard algorithm as permitted-algorithm policy can be usedwith all MAC algorithms sharing the same base algorithm, and where the (potentially truncated) MAClength of the specific algorithm is equal to or larger then the wildcard algorithm’s minimum MAC length.
Note:
When setting the minimum required MAC length to less than the smallest MAC length permitted bythe base algorithm, this effectively becomes an ‘any-MAC-length-permitted’ policy for that basealgorithm.

The untruncated MAC algorithm can be recovered using PSA_ALG_FULL_LENGTH_MAC().
Compatible key types

The resulting wildcard MAC algorithm is compatible with the same key types as the MAC algorithm usedto construct it.
10.3.2 Single-part MAC functions

psa_mac_compute (function)

Calculate the message authentication code (MAC) of a message.
psa_status_t psa_mac_compute(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 139

(continued from previous page)
uint8_t * mac,

size_t mac_size,

size_t * mac_length);

Parameters

key Identifier of the key to use for the operation. It must permit theusage PSA_KEY_USAGE_SIGN_MESSAGE.
alg The MAC algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_MAC(alg) is true.
input Buffer containing the input message.
input_length Size of the input buffer in bytes.
mac Buffer where the MAC value is to be written.
mac_size Size of the mac buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The exact MAC size is PSA_MAC_LENGTH(key_type, key_bits, alg)where key_type and key_bits are attributes of the key used tocompute the MAC.
∙ PSA_MAC_MAX_SIZE evaluates to the maximum MAC size of anysupported MAC algorithm.

mac_length On success, the number of bytes that make up the MAC value.
Returns: psa_status_t

PSA_SUCCESS Success. The first (*mac_length) bytes of mac contain the MAC value.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_SIGN_MESSAGE flag, or it doesnot permit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the mac buffer is too small. PSA_MAC_LENGTH() or

PSA_MAC_MAX_SIZE can be used to determine a sufficient buffer size.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a MAC algorithm.
∙ key is not compatible with alg.
∙ input_length is too large for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a MAC algorithm.
∙ key is not supported for use with alg.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 140

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

Note:
To verify the MAC of a message against an expected value, use psa_mac_verify() instead. Bewarethat comparing integrity or authenticity data such as MAC values with a function such as memcmp() isrisky because the time taken by the comparison might leak information about the MAC value whichcould allow an attacker to guess a valid MAC and thereby bypass security controls.

psa_mac_verify (function)

Calculate the MAC of a message and compare it with a reference value.
psa_status_t psa_mac_verify(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

const uint8_t * mac,

size_t mac_length);

Parameters

key Identifier of the key to use for the operation. It must permit theusage PSA_KEY_USAGE_VERIFY_MESSAGE.
alg The MAC algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_MAC(alg) is true.
input Buffer containing the input message.
input_length Size of the input buffer in bytes.
mac Buffer containing the expected MAC value.
mac_length Size of the mac buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success. The expected MAC is identical to the actual MAC of theinput.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_MESSAGE flag, or itdoes not permit the requested algorithm.
PSA_ERROR_INVALID_SIGNATURE The calculated MAC of the message does not match the value in mac.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 141

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not a MAC algorithm.
∙ key is not compatible with alg.
∙ input_length is too large for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a MAC algorithm.
∙ key is not supported for use with alg.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

10.3.3 Multi-part MAC operations

psa_mac_operation_t (typedef)

The type of the state object for multi-part MAC operations.
typedef /* implementation-defined type */ psa_mac_operation_t;

Before calling any function on a MAC operation object, the application must initialize it by any of thefollowing means:
∙ Set the object to all-bits-zero, for example:

psa_mac_operation_t operation;

memset(&operation, 0, sizeof(operation));

∙ Initialize the object to logical zero values by declaring the object as static or global without anexplicit initializer, for example:
static psa_mac_operation_t operation;

∙ Initialize the object to the initializer PSA_MAC_OPERATION_INIT, for example:
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;

∙ Assign the result of the function psa_mac_operation_init() to the object, for example:
psa_mac_operation_t operation;

operation = psa_mac_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 142

PSA_MAC_OPERATION_INIT (macro)

This macro returns a suitable initializer for a MAC operation object of type psa_mac_operation_t.
#define PSA_MAC_OPERATION_INIT /* implementation-defined value */

psa_mac_operation_init (function)

Return an initial value for a MAC operation object.
psa_mac_operation_t psa_mac_operation_init(void);

Returns: psa_mac_operation_t

psa_mac_sign_setup (function)

Set up a multi-part MAC calculation operation.
psa_status_t psa_mac_sign_setup(psa_mac_operation_t * operation,

psa_key_id_t key,

psa_algorithm_t alg);

Parameters

operation The operation object to set up. It must have been initialized as perthe documentation for psa_mac_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain validuntil the operation terminates. It must permit the usage

PSA_KEY_USAGE_SIGN_MESSAGE.
alg The MAC algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_MAC(alg) is true.

Returns: psa_status_t

PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_SIGN_MESSAGE flag, or it doesnot permit the requested algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a MAC algorithm.
∙ key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a MAC algorithm.
∙ key is not supported for use with alg.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 143

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function sets up the calculation of the message authentication code (MAC) of a byte string. To verifythe MAC of a message against an expected value, use psa_mac_verify_setup() instead.
The sequence of operations to calculate a MAC is as follows:

1. Allocate a MAC operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_mac_operation_t, e.g. PSA_MAC_OPERATION_INIT.
3. Call psa_mac_sign_setup() to specify the algorithm and key.
4. Call psa_mac_update() zero, one or more times, passing a fragment of the message each time. TheMAC that is calculated is the MAC of the concatenation of these messages in order.
5. At the end of the message, call psa_mac_sign_finish() to finish calculating the MAC value andretrieve it.

After a successful call to psa_mac_sign_setup(), the operation is active, and the application must eventuallyterminate the operation. The following events terminate an operation:
∙ A successful call to psa_mac_sign_finish().
∙ A call to psa_mac_abort().

If psa_mac_sign_setup() returns an error, the operation object is unchanged. If a subsequent function callwith an active operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_mac_abort().
SeeMulti-part operations on page 24.
psa_mac_verify_setup (function)

Set up a multi-part MAC verification operation.
psa_status_t psa_mac_verify_setup(psa_mac_operation_t * operation,

psa_key_id_t key,

psa_algorithm_t alg);

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 144

Parameters

operation The operation object to set up. It must have been initialized as perthe documentation for psa_mac_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain validuntil the operation terminates. It must permit the usage

PSA_KEY_USAGE_VERIFY_MESSAGE.
alg The MAC algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_MAC(alg) is true.

Returns: psa_status_t

PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_MESSAGE flag, or itdoes not permit the requested algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a MAC algorithm.
∙ key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a MAC algorithm.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function sets up the verification of the message authentication code (MAC) of a byte string against anexpected value.
The sequence of operations to verify a MAC is as follows:

1. Allocate a MAC operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_mac_operation_t, e.g. PSA_MAC_OPERATION_INIT.
3. Call psa_mac_verify_setup() to specify the algorithm and key.
4. Call psa_mac_update() zero, one or more times, passing a fragment of the message each time. TheMAC that is calculated is the MAC of the concatenation of these messages in order.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 145

5. At the end of the message, call psa_mac_verify_finish() to finish calculating the actual MAC of themessage and verify it against the expected value.
After a successful call to psa_mac_verify_setup(), the operation is active, and the application musteventually terminate the operation. The following events terminate an operation:

∙ A successful call to psa_mac_verify_finish().
∙ A call to psa_mac_abort().

If psa_mac_verify_setup() returns an error, the operation object is unchanged. If a subsequent function callwith an active operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_mac_abort().
SeeMulti-part operations on page 24.
psa_mac_update (function)

Add a message fragment to a multi-part MAC operation.
psa_status_t psa_mac_update(psa_mac_operation_t * operation,

const uint8_t * input,

size_t input_length);

Parameters

operation Active MAC operation.
input Buffer containing the message fragment to add to the MACcalculation.
input_length Size of the input buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The total input for the operation is too large for the MAC algorithm.
PSA_ERROR_NOT_SUPPORTED The total input for the operation is too large for the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 146

Description

The application must call psa_mac_sign_setup() or psa_mac_verify_setup() before calling this function.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_mac_abort().
psa_mac_sign_finish (function)

Finish the calculation of the MAC of a message.
psa_status_t psa_mac_sign_finish(psa_mac_operation_t * operation,

uint8_t * mac,

size_t mac_size,

size_t * mac_length);

Parameters

operation Active MAC operation.
mac Buffer where the MAC value is to be written.
mac_size Size of the mac buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The exact MAC size is PSA_MAC_LENGTH(key_type, key_bits, alg)where key_type and key_bits are attributes of the key, and alg isthe algorithm used to compute the MAC.
∙ PSA_MAC_MAX_SIZE evaluates to the maximum MAC size of anysupported MAC algorithm.

mac_length On success, the number of bytes that make up the MAC value. This isalways PSA_MAC_LENGTH(key_type, key_bits, alg) where key_type and
key_bits are attributes of the key, and alg is the algorithm used tocompute the MAC.

Returns: psa_status_t

PSA_SUCCESS Success. The first (*mac_length) bytes of mac contain the MAC value.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be an active mac signoperation.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the mac buffer is too small. PSA_MAC_LENGTH() or
PSA_MAC_MAX_SIZE can be used to determine a sufficient buffer size.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 147

Description

The application must call psa_mac_sign_setup() before calling this function. This function calculates theMAC of the message formed by concatenating the inputs passed to preceding calls to psa_mac_update().
When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_mac_abort().
Warning: It is not recommended to use this function when a specific value is expected for the MAC.Call psa_mac_verify_finish() instead with the expected MAC value.
Comparing integrity or authenticity data such as MAC values with a function such as memcmp() is riskybecause the time taken by the comparison might leak information about the hashed data which couldallow an attacker to guess a valid MAC and thereby bypass security controls.

psa_mac_verify_finish (function)

Finish the calculation of the MAC of a message and compare it with an expected value.
psa_status_t psa_mac_verify_finish(psa_mac_operation_t * operation,

const uint8_t * mac,

size_t mac_length);

Parameters

operation Active MAC operation.
mac Buffer containing the expected MAC value.
mac_length Size of the mac buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success. The expected MAC is identical to the actual MAC of themessage.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be an active mac verifyoperation.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_SIGNATURE The calculated MAC of the message does not match the value in mac.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 148

Description

The application must call psa_mac_verify_setup() before calling this function. This function calculates theMAC of the message formed by concatenating the inputs passed to preceding calls to psa_mac_update(). Itthen compares the calculated MAC with the expected MAC passed as a parameter to this function.
When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_mac_abort().

Note:
Implementations must make the best effort to ensure that the comparison between the actual MACand the expected MAC is performed in constant time.

psa_mac_abort (function)

Abort a MAC operation.
psa_status_t psa_mac_abort(psa_mac_operation_t * operation);

Parameters

operation Initialized MAC operation.
Returns: psa_status_t

PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,the operation object can be reused for another operation by calling psa_mac_sign_setup() or
psa_mac_verify_setup() again.
This function can be called any time after the operation object has been initialized by one of the methodsdescribed in psa_mac_operation_t.
In particular, calling psa_mac_abort() after the operation has been terminated by a call to psa_mac_abort(),
psa_mac_sign_finish() or psa_mac_verify_finish() is safe and has no effect.
10.3.4 Support macros

PSA_ALG_IS_HMAC (macro)

Whether the specified algorithm is an HMAC algorithm.
#define PSA_ALG_IS_HMAC(alg) /* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 149

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is an HMAC algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedalgorithm identifier.
Description

HMAC is a family of MAC algorithms that are based on a hash function.
PSA_ALG_IS_BLOCK_CIPHER_MAC (macro)

Whether the specified algorithm is a MAC algorithm based on a block cipher.
#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a MAC algorithm based on a block cipher, 0 otherwise. This macro can return either 0 or 1 if alg isnot a supported algorithm identifier.
PSA_MAC_LENGTH (macro)

The size of the output of psa_mac_compute() and psa_mac_sign_finish(), in bytes.
#define PSA_MAC_LENGTH(key_type, key_bits, alg) \

/* implementation-defined value */

Parameters

key_type The type of the MAC key.
key_bits The size of the MAC key in bits.
alg A MAC algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_MAC(alg) is true.
Returns

The MAC length for the specified algorithm with the specified key parameters.
0 if the MAC algorithm is not recognized.
Either 0 or the correct length for a MAC algorithm that the implementation recognizes, but does notsupport.
Unspecified if the key parameters are not consistent with the algorithm.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 150

Description

If the size of the MAC buffer is at least this large, it is guaranteed that psa_mac_compute() and
psa_mac_sign_finish() will not fail due to an insufficient buffer size.
This is also the MAC length that psa_mac_verify() and psa_mac_verify_finish() expect.
See also PSA_MAC_MAX_SIZE.
PSA_MAC_MAX_SIZE (macro)

A sufficient buffer size for storing the MAC output by psa_mac_verify() and psa_mac_verify_finish(), forany of the supported key types and MAC algorithms.
#define PSA_MAC_MAX_SIZE /* implementation-defined value */

If the size of the MAC buffer is at least this large, it is guaranteed that psa_mac_verify() and
psa_mac_verify_finish() will not fail due to an insufficient buffer size.
See also PSA_MAC_LENGTH().

10.4 Unauthenticated ciphers

Warning: The unauthenticated cipher API is provided to implement legacy protocols and for use caseswhere the data integrity and authenticity is guaranteed by non-cryptographic means.
It is recommended that newer protocols use Authenticated encryption with associated data (AEAD) onpage 178.

The single-part functions for encrypting or decrypting a message using an unauthenticated symmetriccipher are:
∙ psa_cipher_encrypt() to encrypt a message using an unauthenticated symmetric cipher. Theencryption function generates a random initialization vector (IV). Use the multi-part API to provide adeterministic IV: this is not secure in general, but can be secure in some conditions that depend onthe algorithm.
∙ psa_cipher_decrypt() to decrypt a message using an unauthenticated symmetric cipher.

The psa_cipher_operation_t multi-part operation permits alternative initialization parameters and allowsmessages to be processed in fragments. A multi-part cipher operation is used as follows:
1. Initialize the psa_cipher_operation_t object to zero, or by assigning the value of the associated macro

PSA_CIPHER_OPERATION_INIT.
2. Call psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup() to specify the algorithm and key.
3. Provide additional parameters:

∙ When encrypting data, generate or set an IV, nonce, or similar initial value such as an initialcounter value. To generate a random IV, which is recommended in most protocols, call
psa_cipher_generate_iv(). To set the IV, call psa_cipher_set_iv().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 151

∙ When decrypting, set the IV or nonce. To set the IV, call psa_cipher_set_iv().
4. Call the psa_cipher_update() function on successive chunks of the message.
5. Call psa_cipher_finish() to complete the operation and return any final output.

To abort the operation or recover from an error, call psa_cipher_abort().
10.4.1 Cipher algorithms

PSA_ALG_STREAM_CIPHER (macro)

The stream cipher mode of a stream cipher algorithm.
#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)

The underlying stream cipher is determined by the key type. The ARC4, ChaCha20, and XChaCha20ciphers use this algorithm identifier.
ARC4

To use ARC4, use a key type of PSA_KEY_TYPE_ARC4 and algorithm id PSA_ALG_STREAM_CIPHER.
Warning: The ARC4 cipher is weak and deprecated and is only recommended for use in legacyapplications.

The ARC4 cipher does not use an initialization vector (IV). When using a multi-part cipher operation withthe PSA_ALG_STREAM_CIPHER algorithm and an ARC4 key, psa_cipher_generate_iv() and psa_cipher_set_iv()must not be called.
ChaCha20

To use ChaCha20, use a key type of PSA_KEY_TYPE_CHACHA20 and algorithm id PSA_ALG_STREAM_CIPHER.
Implementations must support the variant that is defined in ChaCha20 and Poly1305 for IETF Protocols[RFC8439] §2.4, which has a 96-bit nonce and a 32-bit counter. Implementations can optionally alsosupport the original variant, as defined in ChaCha, a variant of Salsa20 [CHACHA20], which has a 64-bitnonce and a 64-bit counter. Except where noted, the [RFC8439] variant must be used.
ChaCha20 defines a nonce and an initial counter to be provided to the encryption and decryptionoperations. When using a ChaCha20 key with the PSA_ALG_STREAM_CIPHER algorithm, these values areprovided using the initialization vector (IV) functions in the following ways:

∙ A call to psa_cipher_encrypt() will generate a random 12-byte nonce, and set the counter value tozero. The random nonce is output as a 12-byte IV value in the output.
∙ A call to psa_cipher_decrypt() will use first 12 bytes of the input buffer as the nonce and set thecounter value to zero.
∙ A call to psa_cipher_generate_iv() on a multi-part cipher operation will generate and return a random12-byte nonce and set the counter value to zero.
∙ A call to psa_cipher_set_iv() on a multi-part cipher operation can support the following IV sizes:

— 12 bytes: the provided IV is used as the nonce, and the counter value is set to zero.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 152

https://datatracker.ietf.org/doc/html/rfc8439.html#section-2.4

— 16 bytes: the first four bytes of the IV are used as the counter value (encoded as little-endian),and the remaining 12 bytes are used as the nonce.
— 8 bytes: the cipher operation uses the original [CHACHA20] definition of ChaCha20: theprovided IV is used as the 64-bit nonce, and the 64-bit counter value is set to zero.
— It is recommended that implementations do not support other sizes of IV.

XChaCha20

To use XChaCha20, use a key type of PSA_KEY_TYPE_XCHACHA20 and algorithm id PSA_ALG_STREAM_CIPHER.
XChaCha20 is a variation of ChaCha20 that uses a 192-bit nonce and a 64-bit counter. The larger nonceprovides much lower probability of nonce misuse.
When using an XChaCha20 key with the PSA_ALG_STREAM_CIPHER algorithm, the nonce and an initial countervalues are provided using the initialization vector (IV) functions in the following ways:

∙ A call to psa_cipher_encrypt() will generate a random 24-byte nonce, and set the counter value tozero. The random nonce is output as a 24-byte IV value in the output.
∙ A call to psa_cipher_decrypt() will use first 24 bytes of the input buffer as the nonce and set thecounter value to zero.
∙ A call to psa_cipher_generate_iv() on a multi-part cipher operation will generate and return a random24-byte nonce and set the counter value to zero.
∙ A call to psa_cipher_set_iv() on a multi-part cipher operation can support the following IV sizes:

— 24 bytes: the provided IV is used as the nonce, and the counter value is set to zero.
— 32 bytes: the first 8 bytes of the IV are used as the counter value (encoded as little-endian), andthe remaining 24 bytes are used as the nonce.

Other sizes of IV are invalid.
XChaCha20 is defined in XChaCha: eXtended-nonce ChaCha and AEAD_XChaCha20_Poly1305 [XCHACHA].
Compatible key types

PSA_KEY_TYPE_ARC4

PSA_KEY_TYPE_CHACHA20

PSA_KEY_TYPE_XCHACHA20

PSA_ALG_CTR (macro)

A stream cipher built using the Counter (CTR) mode of a block cipher.
#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)

CTR is a stream cipher which is built from a block cipher. The underlying block cipher is determined by thekey type. For example, to use AES-128-CTR, use this algorithm with a key of type PSA_KEY_TYPE_AES and asize of 128 bits (16 bytes).
The CTR block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for BlockCipher Modes of Operation: Methods and Techniques [SP800-38A].
CTR mode operates using a counter block which is the same size as the cipher block length. The counterblock is updated for each block, or a partial final block, that is encrypted or decrypted.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 153

For the PSA_ALG_CTR algorithm, the counter block is initialized from the IV. The counter block is then treatedas a single, big-endian encoded integer, and the counter block is updated by incrementing this integer by 1.
The security of CTR mode depends on using counter block values that are unique across all messagesencrypted using the same key value. This is achieved by using suitable initial counter block values, theappropriate way to do this depends on the application use case:

∙ If the application is using CTR mode to implement a protocol that specifies the construction of theIV, then the application must use a multi-part cipher operation, and call psa_cipher_set_iv() with theappropriate IV for encryption and decryption operations.
Note:
The protocol must use the same counter block update strategy as the one specified here.

∙ If the application is able to construct a unique nonce value for each time the same key is used toencrypt data, then it is recommended that the application uses a multi-part cipher operation, and call
psa_cipher_set_iv() using the nonce as the IV for encryption and decryption operations.
The nonce length, 𝑛 bytes, must satisfy 1 ≤ 𝑛 ≤ 𝑏, where 𝑏 is the cipher block size in bytes. To avoid acounter-block collision with other nonce values, the application must ensure that at most 28(𝑏−𝑛)

blocks of data are encrypted in any single operation.
For example, when using CTR encryption with an AES key, the cipher block size is 16 bytes. Theapplication can provide a 12-byte nonce when setting the IV. This leaves 4 bytes for the counter,allowing up to 232 blocks (64GB) of message data to be encrypted in each message.

∙ Otherwise, it is recommended that the application uses a random IV value when encrypting data,and transmits the IV along with the ciphertext for use when decrypting the data. This can beachieved with either the single-part cipher functions or the multi-part cipher operation:
— In a multi-part cipher encryption operation, call psa_cipher_generate_iv(), which returns the IVvalue. To use the same IV in a multi-part cipher decryption operation, call psa_cipher_set_iv().
— A call to psa_cipher_encrypt() will generate a random counter block value. This is the first blockof output. A call to psa_cipher_decrypt() will use first block of the input buffer as the initialcounter block value.

When using PSA_ALG_CTR, if the IV passed to psa_cipher_set_iv() is shorter than a cipher block, the initialcounter block is formed by padding the end of the IV with zero bytes up to the block length.
Note:
The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 154

Compatible key types

PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_CCM_STAR_NO_TAG (macro)

The CCM* cipher mode without authentication.
#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300)

This is CCM* as specified in IEEE Standard for Low-Rate Wireless Networks [IEEE-CCM] §7, with a tag lengthof 0. For CCM* with a nonzero tag length, use the AEAD algorithm PSA_ALG_CCM.
The underlying block cipher is determined by the key type.
The IV generated or set in the cipher API is used as the nonce in the CCM* operation. An implementationmust support the default IV length of 13. Support for setting a shorter IV is optional.
The maximum message length that can be encrypted is dependent on the length of the IV. See PSA_ALG_CCMfor details of this relationship.
Usage in Zigbee

The Zigbee message encryption algorithm is based on CCM*. This is detailed in zigbee Specification[ZIGBEE] §B.1.1 and §A.
∙ For unauthenticated messages — when tag length𝑀 = 0 — the PSA_ALG_CCM_STAR_NO_TAG algorithm isused with an AES-128 key in a multi-part cipher operation. The 13-byte IV must be constructed asspecified in [ZIGBEE], and provided to the operation using psa_cipher_set_iv().

Note:
An implementation of Zigbee cannot use the single-part psa_cipher_encrypt() function, as thisgenerates a random IV, which is not valid for the Zigbee protocol.

∙ For authenticated messages — when tag length𝑀 ∈ {4, 8, 16} — the
PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, tag_length) algorithm is used with an AES-128 key,where tag_length is the required value of𝑀 . The 13-byte nonce must be constructed as specified in[ZIGBEE].
As the default tag length for CCM is 16, then PSA_ALG_CCM algorithm can be used when𝑀 = 16.

∙ To enable a single AES-128 key to be used for both the PSA_ALG_CCM_STAR_NO_TAG cipher and
PSA_ALG_CCM AEAD algorithm, the key can be defined with the wildcard PSA_ALG_CCM_STAR_ANY_TAGpermitted algorithm.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 155

Compatible key types

PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_CFB (macro)

A stream cipher built using the Cipher Feedback (CFB) mode of a block cipher.
#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)

The underlying block cipher is determined by the key type. This is the variant of CFB where each iterationencrypts or decrypts a segment of the input that is the same length as the cipher block size. For example,using PSA_ALG_CFB with a key of type PSA_KEY_TYPE_AES will result in the AES-CFB-128 cipher.
CFB mode requires an initialization vector (IV) that is the same size as the cipher block length.

Note:
The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The CFB block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block CipherModes of Operation: Methods and Techniques [SP800-38A], using a segment size 𝑠 equal to the block size 𝑏.The definition in [SP800-38A] is extended to allow an incomplete final block of input, in which case thealgorithm discards the final bytes of the key stream when encrypting or decrypting the final partial block.
Compatible key types

PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_OFB (macro)

A stream cipher built using the Output Feedback (OFB) mode of a block cipher.
#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)

The underlying block cipher is determined by the key type.
OFB mode requires an initialization vector (IV) that is the same size as the cipher block length. OFB moderequires that the IV is a nonce, and must be unique for each use of the mode with the same key.

Note:

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 156

The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().
The OFB block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for BlockCipher Modes of Operation: Methods and Techniques [SP800-38A].
Compatible key types

PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_XTS (macro)

The XEX with Ciphertext Stealing (XTS) cipher mode of a block cipher.
#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)

XTS is a cipher mode which is built from a block cipher, designed for use in disk encryption. It requires atleast one full cipher block length of input, but beyond this minimum the input does not need to be a wholenumber of blocks.
XTS mode uses two keys for the underlying block cipher. These are provided by using a key that is twicethe normal key size for the cipher. For example, to use AES-256-XTS the application must create a keywith type PSA_KEY_TYPE_AES and bit size 512.
XTS mode requires an initialization vector (IV) that is the same size as the cipher block length. The IV forXTS is typically defined to be the sector number of the disk block being encrypted or decrypted.
The XTS block cipher mode is defined in 1619-2018 --- IEEE Standard for Cryptographic Protection of Dataon Block-Oriented Storage Devices [IEEE-XTS].
Compatible key types

PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_ECB_NO_PADDING (macro)

The Electronic Codebook (ECB) mode of a block cipher, with no padding.
#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 157

Warning: ECB mode does not protect the confidentiality of the encrypted data except in extremelynarrow circumstances. It is recommended that applications only use ECB if they need to construct anoperating mode that the implementation does not provide. Implementations are encouraged to providethe modes that applications need in preference to supporting direct access to ECB.
The underlying block cipher is determined by the key type.
This symmetric cipher mode can only be used with messages whose lengths are a multiple of the blocksize of the chosen block cipher.
ECB mode does not accept an initialization vector (IV). When using a multi-part cipher operation with thisalgorithm, psa_cipher_generate_iv() and psa_cipher_set_iv() must not be called.

Note:
The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The ECB block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for BlockCipher Modes of Operation: Methods and Techniques [SP800-38A].
Compatible key types

PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_CBC_NO_PADDING (macro)

The Cipher Block Chaining (CBC) mode of a block cipher, with no padding.
#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)

The underlying block cipher is determined by the key type.
This symmetric cipher mode can only be used with messages whose lengths are a multiple of the blocksize of the chosen block cipher.
CBC mode requires an initialization vector (IV) that is the same size as the cipher block length.

Note:
The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The CBC block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for BlockCipher Modes of Operation: Methods and Techniques [SP800-38A].

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 158

Compatible key types

PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_CBC_PKCS7 (macro)

The Cipher Block Chaining (CBC) mode of a block cipher, with PKCS#7 padding.
#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)

The underlying block cipher is determined by the key type.
CBC mode requires an initialization vector (IV) that is the same size as the cipher block length.

Note:
The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The CBC block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for BlockCipher Modes of Operation: Methods and Techniques [SP800-38A]. The padding operation is defined byPKCS #7: Cryptographic Message Syntax Version 1.5 [RFC2315] §10.3.
Compatible key types

PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

10.4.2 Single-part cipher functions

psa_cipher_encrypt (function)

Encrypt a message using a symmetric cipher.
psa_status_t psa_cipher_encrypt(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

uint8_t * output,

size_t output_size,

size_t * output_length);

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 159

https://datatracker.ietf.org/doc/html/rfc2315.html#section-10.3

Parameters

key Identifier of the key to use for the operation. It must permit theusage PSA_KEY_USAGE_ENCRYPT.
alg The cipher algorithm to compute: a value of type psa_algorithm_tsuch that PSA_ALG_IS_CIPHER(alg) is true.
input Buffer containing the message to encrypt.
input_length Size of the input buffer in bytes.
output Buffer where the output is to be written. The output contains the IVfollowed by the ciphertext proper.
output_size Size of the output buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input_length)where key_type is the type of key.

∙ PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input_length) evaluates tothe maximum output size of any supported cipher encryption.
output_length On success, the number of bytes that make up the output.

Returns: psa_status_t

PSA_SUCCESS Success. The first (*output_length) bytes of output contain theencrypted output.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.

PSA_CIPHER_ENCRYPT_OUTPUT_SIZE() or
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE() can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not a cipher algorithm.
∙ key is not compatible with alg.
∙ The input_length is not valid for the algorithm and key type. Forexample, the algorithm is a based on block cipher and requires awhole number of blocks, but the total input size is not a multipleof the block size.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a cipher algorithm.
∙ key is not supported for use with alg.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 160

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function encrypts a message with a random initialization vector (IV). The length of the IV is
PSA_CIPHER_IV_LENGTH(key_type, alg) where key_type is the type of key. The output of psa_cipher_encrypt()is the IV followed by the ciphertext.
Use the multi-part operation interface with a psa_cipher_operation_t object to provide other forms of IV orto manage the IV and ciphertext independently.
psa_cipher_decrypt (function)

Decrypt a message using a symmetric cipher.
psa_status_t psa_cipher_decrypt(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

uint8_t * output,

size_t output_size,

size_t * output_length);

Parameters

key Identifier of the key to use for the operation. It must remain validuntil the operation terminates. It must permit the usage
PSA_KEY_USAGE_DECRYPT.

alg The cipher algorithm to compute: a value of type psa_algorithm_tsuch that PSA_ALG_IS_CIPHER(alg) is true.
input Buffer containing the message to decrypt. This consists of the IVfollowed by the ciphertext proper.
input_length Size of the input buffer in bytes.
output Buffer where the plaintext is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is
PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, input_length)where key_type is the type of key.

∙ PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(input_length) evaluates tothe maximum output size of any supported cipher decryption.
output_length On success, the number of bytes that make up the output.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 161

Returns: psa_status_t

PSA_SUCCESS Success. The first (*output_length) bytes of output contain theplaintext.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.

PSA_CIPHER_DECRYPT_OUTPUT_SIZE() or
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE() can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_PADDING The algorithm uses padding, and the input does not contain validpadding.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a cipher algorithm.
∙ key is not compatible with alg.
∙ The input_length is not valid for the algorithm and key type. Forexample, the algorithm is a based on block cipher and requires awhole number of blocks, but the total input size is not a multipleof the block size.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a cipher algorithm.
∙ key is not supported for use with alg.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function decrypts a message encrypted with a symmetric cipher.
The input to this function must contain the IV followed by the ciphertext, as output by
psa_cipher_encrypt(). The IV must be PSA_CIPHER_IV_LENGTH(key_type, alg) bytes in length, where key_typeis the type of key.
Use the multi-part operation interface with a psa_cipher_operation_t object to decrypt data which is not inthe expected input format.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 162

10.4.3 Multi-part cipher operations

psa_cipher_operation_t (typedef)

The type of the state object for multi-part cipher operations.
typedef /* implementation-defined type */ psa_cipher_operation_t;

Before calling any function on a cipher operation object, the application must initialize it by any of thefollowing means:
∙ Set the object to all-bits-zero, for example:

psa_cipher_operation_t operation;

memset(&operation, 0, sizeof(operation));

∙ Initialize the object to logical zero values by declaring the object as static or global without anexplicit initializer, for example:
static psa_cipher_operation_t operation;

∙ Initialize the object to the initializer PSA_CIPHER_OPERATION_INIT, for example:
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;

∙ Assign the result of the function psa_cipher_operation_init() to the object, for example:
psa_cipher_operation_t operation;

operation = psa_cipher_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.
PSA_CIPHER_OPERATION_INIT (macro)

This macro returns a suitable initializer for a cipher operation object of type psa_cipher_operation_t.
#define PSA_CIPHER_OPERATION_INIT /* implementation-defined value */

psa_cipher_operation_init (function)

Return an initial value for a cipher operation object.
psa_cipher_operation_t psa_cipher_operation_init(void);

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 163

Returns: psa_cipher_operation_t

psa_cipher_encrypt_setup (function)

Set the key for a multi-part symmetric encryption operation.
psa_status_t psa_cipher_encrypt_setup(psa_cipher_operation_t * operation,

psa_key_id_t key,

psa_algorithm_t alg);

Parameters

operation The operation object to set up. It must have been initialized as perthe documentation for psa_cipher_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain validuntil the operation terminates. It must permit the usage

PSA_KEY_USAGE_ENCRYPT.
alg The cipher algorithm to compute: a value of type psa_algorithm_tsuch that PSA_ALG_IS_CIPHER(alg) is true.

Returns: psa_status_t

PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a cipher algorithm.
∙ key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a cipher algorithm.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 164

Description

The sequence of operations to encrypt a message with a symmetric cipher is as follows:
1. Allocate a cipher operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_cipher_operation_t, e.g. PSA_CIPHER_OPERATION_INIT.
3. Call psa_cipher_encrypt_setup() to specify the algorithm and key.
4. Call either psa_cipher_generate_iv() or psa_cipher_set_iv() to generate or set the initializationvector (IV), if the algorithm requires one. It is recommended to use psa_cipher_generate_iv() unlessthe protocol being implemented requires a specific IV value.
5. Call psa_cipher_update() zero, one or more times, passing a fragment of the message each time.
6. Call psa_cipher_finish().

After a successful call to psa_cipher_encrypt_setup(), the operation is active, and the application musteventually terminate the operation. The following events terminate an operation:
∙ A successful call to psa_cipher_finish().
∙ A call to psa_cipher_abort().

If psa_cipher_encrypt_setup() returns an error, the operation object is unchanged. If a subsequent functioncall with an active operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_cipher_abort().
SeeMulti-part operations on page 24.
psa_cipher_decrypt_setup (function)

Set the key for a multi-part symmetric decryption operation.
psa_status_t psa_cipher_decrypt_setup(psa_cipher_operation_t * operation,

psa_key_id_t key,

psa_algorithm_t alg);

Parameters

operation The operation object to set up. It must have been initialized as perthe documentation for psa_cipher_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain validuntil the operation terminates. It must permit the usage

PSA_KEY_USAGE_DECRYPT.
alg The cipher algorithm to compute: a value of type psa_algorithm_tsuch that PSA_ALG_IS_CIPHER(alg) is true.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 165

Returns: psa_status_t

PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a cipher algorithm.
∙ key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a cipher algorithm.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The sequence of operations to decrypt a message with a symmetric cipher is as follows:
1. Allocate a cipher operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_cipher_operation_t, e.g. PSA_CIPHER_OPERATION_INIT.
3. Call psa_cipher_decrypt_setup() to specify the algorithm and key.
4. Call psa_cipher_set_iv() with the initialization vector (IV) for the decryption, if the algorithm requiresone. This must match the IV used for the encryption.
5. Call psa_cipher_update() zero, one or more times, passing a fragment of the message each time.
6. Call psa_cipher_finish().

After a successful call to psa_cipher_decrypt_setup(), the operation is active, and the application musteventually terminate the operation. The following events terminate an operation:
∙ A successful call to psa_cipher_finish().
∙ A call to psa_cipher_abort().

If psa_cipher_decrypt_setup() returns an error, the operation object is unchanged. If a subsequent functioncall with an active operation returns an error, the operation enters an error state.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 166

To abandon an active operation, or reset an operation in an error state, call psa_cipher_abort().
SeeMulti-part operations on page 24.
psa_cipher_generate_iv (function)

Generate an initialization vector (IV) for a symmetric encryption operation.
psa_status_t psa_cipher_generate_iv(psa_cipher_operation_t * operation,

uint8_t * iv,

size_t iv_size,

size_t * iv_length);

Parameters

operation Active cipher operation.
iv Buffer where the generated IV is to be written.
iv_size Size of the iv buffer in bytes. This must be at least

PSA_CIPHER_IV_LENGTH(key_type, alg) where key_type and alg are typeof key and the algorithm respectively that were used to set up thecipher operation.
iv_length On success, the number of bytes of the generated IV.

Returns: psa_status_t

PSA_SUCCESS Success. The first (*iv_length) bytes of iv contain the generated IV.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The cipher algorithm does not use an IV.
∙ The operation state is not valid: it must be active, with no IV set.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the iv buffer is too small. PSA_CIPHER_IV_LENGTH() or
PSA_CIPHER_IV_MAX_SIZE can be used to determine a sufficient buffersize.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 167

Description

This function generates a random IV, nonce or initial counter value for the encryption operation asappropriate for the chosen algorithm, key type and key size.
The generated IV is always the default length for the key and algorithm: PSA_CIPHER_IV_LENGTH(key_type,
alg), where key_type is the type of key and alg is the algorithm that were used to set up the operation. Togenerate different lengths of IV, use psa_generate_random() and psa_cipher_set_iv().
If the cipher algorithm does not use an IV, calling this function returns a PSA_ERROR_BAD_STATE error. Forthese algorithms, PSA_CIPHER_IV_LENGTH(key_type, alg) will be zero.
The application must call psa_cipher_encrypt_setup() before calling this function.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_cipher_abort().
psa_cipher_set_iv (function)

Set the initialization vector (IV) for a symmetric encryption or decryption operation.
psa_status_t psa_cipher_set_iv(psa_cipher_operation_t * operation,

const uint8_t * iv,

size_t iv_length);

Parameters

operation Active cipher operation.
iv Buffer containing the IV to use.
iv_length Size of the IV in bytes.

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The cipher algorithm does not use an IV.
∙ The operation state is not valid: it must be an active cipherencrypt operation, with no IV set.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ The chosen algorithm does not use an IV.
∙ iv_length is not valid for the chosen algorithm.

PSA_ERROR_NOT_SUPPORTED iv_length is not supported for use with the operation’s algorithm andkey.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 168

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function sets the IV, nonce or initial counter value for the encryption or decryption operation.
If the cipher algorithm does not use an IV, calling this function returns a PSA_ERROR_BAD_STATE error. Forthese algorithms, PSA_CIPHER_IV_LENGTH(key_type, alg) will be zero.
The application must call psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup() before calling thisfunction.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_cipher_abort().

Note:
When encrypting, psa_cipher_generate_iv() is recommended instead of using this function, unlessimplementing a protocol that requires a non-random IV.

psa_cipher_update (function)

Encrypt or decrypt a message fragment in an active cipher operation.
psa_status_t psa_cipher_update(psa_cipher_operation_t * operation,

const uint8_t * input,

size_t input_length,

uint8_t * output,

size_t output_size,

size_t * output_length);

Parameters

operation Active cipher operation.
input Buffer containing the message fragment to encrypt or decrypt.
input_length Size of the input buffer in bytes.
output Buffer where the output is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is
PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input_length)where key_type is the type of key and alg is the algorithm thatwere used to set up the operation.

∙ PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input_length) evaluates tothe maximum output size of any supported cipher algorithm.
output_length On success, the number of bytes that make up the returned output.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 169

Returns: psa_status_t

PSA_SUCCESS Success. The first (*output_length) bytes of output contain the outputdata.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, with an IV setif required for the algorithm.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.
PSA_CIPHER_UPDATE_OUTPUT_SIZE() or
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE() can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The total input size passed to this operation is too large for thisparticular algorithm.
PSA_ERROR_NOT_SUPPORTED The total input size passed to this operation is too large for theimplementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The following must occur before calling this function:
1. Call either psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup(). The choice of setup functiondetermines whether this function encrypts or decrypts its input.
2. If the algorithm requires an IV, call psa_cipher_generate_iv() or psa_cipher_set_iv().

psa_cipher_generate_iv() is recommended when encrypting.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_cipher_abort().

Note:
This function does not require the input to be aligned to any particular block boundary. If theimplementation can only process a whole block at a time, it must consume all the input provided, butit might delay the end of the corresponding output until a subsequent call to psa_cipher_update()provides sufficient input, or a subsequent call to psa_cipher_finish() indicates the end of the input.The amount of data that can be delayed in this way is bounded by the associated output size macro:
PSA_CIPHER_UPDATE_OUTPUT_SIZE() or PSA_CIPHER_FINISH_OUTPUT_SIZE().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 170

psa_cipher_finish (function)

Finish encrypting or decrypting a message in a cipher operation.
psa_status_t psa_cipher_finish(psa_cipher_operation_t * operation,

uint8_t * output,

size_t output_size,

size_t * output_length);

Parameters

operation Active cipher operation.
output Buffer where the last part of the output is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is
PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg) where key_type isthe type of key and alg is the algorithm that were used to set upthe operation.

∙ PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE evaluates to the maximumoutput size of any supported cipher algorithm.
output_length On success, the number of bytes that make up the returned output.

Returns: psa_status_t

PSA_SUCCESS Success. The first (*output_length) bytes of output contain the finaloutput.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, with an IV setif required for the algorithm.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.
PSA_CIPHER_FINISH_OUTPUT_SIZE() or
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_PADDING This is a decryption operation for an algorithm that includes padding,and the ciphertext does not contain valid padding.
PSA_ERROR_INVALID_ARGUMENT The total input size passed to this operation is not valid for thisparticular algorithm. For example, the algorithm is a based on blockcipher and requires a whole number of blocks, but the total input sizeis not a multiple of the block size.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 171

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The application must call psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup() before calling thisfunction. The choice of setup function determines whether this function encrypts or decrypts its input.
This function finishes the encryption or decryption of the message formed by concatenating the inputspassed to preceding calls to psa_cipher_update().
When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_cipher_abort().
psa_cipher_abort (function)

Abort a cipher operation.
psa_status_t psa_cipher_abort(psa_cipher_operation_t * operation);

Parameters

operation Initialized cipher operation.
Returns: psa_status_t

PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,the operation object can be reused for another operation by calling psa_cipher_encrypt_setup() or
psa_cipher_decrypt_setup() again.
This function can be called any time after the operation object has been initialized as described in
psa_cipher_operation_t.
In particular, calling psa_cipher_abort() after the operation has been terminated by a call to
psa_cipher_abort() or psa_cipher_finish() is safe and has no effect.
10.4.4 Support macros

PSA_ALG_IS_STREAM_CIPHER (macro)

Whether the specified algorithm is a stream cipher.
#define PSA_ALG_IS_STREAM_CIPHER(alg) /* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 172

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a stream cipher algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported algorithm identifier or if it is not a symmetric cipher algorithm.
Description

A stream cipher is a symmetric cipher that encrypts or decrypts messages by applying a bitwise-xor with astream of bytes that is generated from a key.
PSA_ALG_CCM_STAR_ANY_TAG (macro)

A wildcard algorithm that permits the use of the key with CCM* as both an AEAD and an unauthenticatedcipher algorithm.
#define PSA_ALG_CCM_STAR_ANY_TAG ((psa_algorithm_t)0x04c09300)

If a block-cipher key specifies PSA_ALG_CCM_STAR_ANY_TAG as its permitted algorithm, then the key can beused with the PSA_ALG_CCM_STAR_NO_TAG unauthenticated cipher, the PSA_ALG_CCM AEAD algorithm, andtruncated PSA_ALG_CCM AEAD algorithms.
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE (macro)

A sufficient output buffer size for psa_cipher_encrypt(), in bytes.
#define PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */

Parameters

key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_CIPHER(alg) is true.
input_length Size of the input in bytes.

Returns

A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is notrecognized, or the parameters are incompatible, return 0. An implementation can return either 0 or acorrect size for a key type and cipher algorithm that it recognizes, but does not support.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 173

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_encrypt() will not faildue to an insufficient buffer size. Depending on the algorithm, the actual size of the output might besmaller.
See also PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE.
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_cipher_encrypt(), for any of the supported key types and cipheralgorithms.
#define PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */

Parameters

input_length Size of the input in bytes.
Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_encrypt() will not faildue to an insufficient buffer size.
See also PSA_CIPHER_ENCRYPT_OUTPUT_SIZE().
PSA_CIPHER_DECRYPT_OUTPUT_SIZE (macro)

A sufficient output buffer size for psa_cipher_decrypt(), in bytes.
#define PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */

Parameters

key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_CIPHER(alg) is true.
input_length Size of the input in bytes.

Returns

A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is notrecognized, or the parameters are incompatible, return 0. An implementation can return either 0 or acorrect size for a key type and cipher algorithm that it recognizes, but does not support.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 174

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_decrypt() will not faildue to an insufficient buffer size. Depending on the algorithm, the actual size of the output might besmaller.
See also PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE.
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_cipher_decrypt(), for any of the supported key types and cipheralgorithms.
#define PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */

Parameters

input_length Size of the input in bytes.
Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_decrypt() will not faildue to an insufficient buffer size.
See also PSA_CIPHER_DECRYPT_OUTPUT_SIZE().
PSA_CIPHER_IV_LENGTH (macro)

The default IV size for a cipher algorithm, in bytes.
#define PSA_CIPHER_IV_LENGTH(key_type, alg) /* implementation-defined value */

Parameters

key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_CIPHER(alg) is true.
Returns

The default IV size for the specified key type and algorithm. If the algorithm does not use an IV, return 0. Ifthe key type or cipher algorithm is not recognized, or the parameters are incompatible, return 0. Animplementation can return either 0 or a correct size for a key type and cipher algorithm that it recognizes,but does not support.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 175

Description

The IV that is generated as part of a call to psa_cipher_encrypt() is always the default IV length for thealgorithm.
This macro can be used to allocate a buffer of sufficient size to store the IV output from
psa_cipher_generate_iv() when using a multi-part cipher operation.
See also PSA_CIPHER_IV_MAX_SIZE.
PSA_CIPHER_IV_MAX_SIZE (macro)

A sufficient buffer size for storing the IV generated by psa_cipher_generate_iv(), for any of the supportedkey types and cipher algorithms.
#define PSA_CIPHER_IV_MAX_SIZE /* implementation-defined value */

If the size of the IV buffer is at least this large, it is guaranteed that psa_cipher_generate_iv() will not faildue to an insufficient buffer size.
See also PSA_CIPHER_IV_LENGTH().
PSA_CIPHER_UPDATE_OUTPUT_SIZE (macro)

A sufficient output buffer size for psa_cipher_update(), in bytes.
#define PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */

Parameters

key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_CIPHER(alg) is true.
input_length Size of the input in bytes.

Returns

A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is notrecognized, or the parameters are incompatible, return 0. An implementation can return either 0 or acorrect size for a key type and cipher algorithm that it recognizes, but does not support.
Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_update() will not faildue to an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 176

PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_cipher_update(), for any of the supported key types and cipheralgorithms.
#define PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */

Parameters

input_length Size of the input in bytes.
Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_update() will not faildue to an insufficient buffer size.
See also PSA_CIPHER_UPDATE_OUTPUT_SIZE().
PSA_CIPHER_FINISH_OUTPUT_SIZE (macro)

A sufficient output buffer size for psa_cipher_finish().
#define PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg) \

/* implementation-defined value */

Parameters

key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_CIPHER(alg) is true.
Returns

A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is notrecognized, or the parameters are incompatible, return 0. An implementation can return either 0 or acorrect size for a key type and cipher algorithm that it recognizes, but does not support.
Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_finish() will not faildue to an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE.
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_cipher_finish(), for any of the supported key types and cipheralgorithms.
#define PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE /* implementation-defined value */

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_finish() will not faildue to an insufficient buffer size.
See also PSA_CIPHER_FINISH_OUTPUT_SIZE().
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 177

PSA_BLOCK_CIPHER_BLOCK_LENGTH (macro)

The block size of a block cipher.
#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) /* specification-defined value */

Parameters

type A cipher key type: a value of type psa_key_type_t.
Returns

The block size for a block cipher, or 1 for a stream cipher. The return value is undefined if type is not asupported cipher key type.
Description

Note:
It is possible to build stream cipher algorithms on top of a block cipher, for example CTR mode(PSA_ALG_CTR). This macro only takes the key type into account, so it cannot be used to determine thesize of the data that psa_cipher_update() might buffer for future processing in general.

See also PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE.
PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE (macro)

The maximum block size of a block cipher supported by the implementation.
#define PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE /* implementation-defined value */

See also PSA_BLOCK_CIPHER_BLOCK_LENGTH().

10.5 Authenticated encryption with associated data (AEAD)
The single-part AEAD functions are:

∙ psa_aead_encrypt() to encrypt a message using an authenticated symmetric cipher.
∙ psa_aead_decrypt() to decrypt a message using an authenticated symmetric cipher.

These functions follow the interface recommended by An Interface and Algorithms for AuthenticatedEncryption [RFC5116].
The encryption function requires a nonce to be provided. To generate a random nonce, either call
psa_generate_random() or use the AEAD multi-part API.
The psa_aead_operation_t multi-part operation permits alternative initialization parameters and allowsmessages to be processed in fragments. A multi-part AEAD operation is used as follows:

1. Initialize the psa_aead_operation_t object to zero, or by assigning the value of the associated macro
PSA_AEAD_OPERATION_INIT.

2. Call psa_aead_encrypt_setup() or psa_aead_decrypt_setup() to specify the algorithm and key.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 178

3. Provide additional parameters:
∙ If the algorithm requires it, call psa_aead_set_lengths() to specify the length of thenon-encrypted and encrypted inputs to the operation.
∙ When encrypting, call either psa_aead_generate_nonce() or psa_aead_set_nonce() to generate orset the nonce.
∙ When decrypting, call psa_aead_set_nonce() to set the nonce.

4. Call psa_aead_update_ad() zero or more times with fragments of the non-encrypted additional data.
5. Call psa_aead_update() zero or more times with fragments of the plaintext or ciphertext to encrypt ordecrypt.
6. At the end of the message, call the required finishing function:

∙ To complete an encryption operation, call psa_aead_finish() to compute and returnauthentication tag.
∙ To complete a decryption operation, call psa_aead_verify() to compute the authentication tagand verify it against a reference value.

To abort the operation or recover from an error, call psa_aead_abort().
Note:
Using a multi-part interface to authenticated encryption raises specific issues.

∙ Multi-part authenticated decryption produces intermediate results that are not authenticated.Revealing unauthenticated results, either directly or indirectly through the application’sbehavior, can compromise the confidentiality of all inputs that are encrypted with the same key.See the detailed warning.
∙ For encryption, some common algorithms cannot be processed in a streaming fashion. For SIVmode, the whole plaintext must be known before the encryption can start; the multi-part AEADAPI is not meant to be usable with SIV mode. For CCM mode, the length of the plaintext mustbe known before the encryption can start; the application can call the function

psa_aead_set_lengths() to provide these lengths before providing input.

10.5.1 AEAD algorithms

PSA_ALG_CCM (macro)

The Counter with CBC-MAC (CCM) authenticated encryption algorithm.
#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)

CCM is defined for block ciphers that have a 128-bit block size. The underlying block cipher is determinedby the key type.
To use PSA_ALG_CCM with a multi-part AEAD operation, the application must call psa_aead_set_lengths()before providing the nonce, the additional data and plaintext to the operation.
CCM requires a nonce of between 7 and 13 bytes in length. The length of the nonce affects the maximumlength of the plaintext than can be encrypted or decrypted. If the nonce has length 𝑁 , then the plaintextlength 𝑝𝐿𝑒𝑛 is encoded in 𝐿 = 15−𝑁 octets, this requires that 𝑝𝐿𝑒𝑛 < 28𝐿.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 179

The value for 𝐿 that is used with PSA_ALG_CCM depends on the function used to provide the nonce:
∙ A call to psa_aead_encrypt(), psa_aead_decrypt(), or psa_aead_set_nonce() will set
𝐿 = 15− nonce_length. If the plaintext length cannot be encoded in 𝐿 octets, then a
PSA_ERROR_INVALID_ARGUMENT error is returned.

∙ A call to psa_aead_generate_nonce() on a multi-part cipher operation will select the smallest integer
𝐿 ≥ 2, where 𝑝𝐿𝑒𝑛 < 28𝐿, with 𝑝𝐿𝑒𝑛 being the plaintext_length provided to psa_aead_set_lengths().The call to psa_aead_generate_nonce()will generate and return a random nonce of length 15−𝐿 bytes.

CCM supports authentication tag sizes of 4, 6, 8, 10, 12, 14, and 16 bytes. The default tag length is 16.Shortened tag lengths can be requested using PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, tag_length),where tag_length is a valid CCM tag length.
The CCM block cipher mode is defined in Counter with CBC-MAC (CCM) [RFC3610].
Usage in Zigbee

The CCM* algorithm is required by zigbee Specification [ZIGBEE].
∙ PSA_ALG_CCM, and its truncated variants, can be used to implement CCM* for non-zero tag lengths.
∙ For unauthenticated CCM*, with a zero-length tag, use the PSA_ALG_CCM_STAR_NO_TAG cipher algorithm.

See also Usage in Zigbee under PSA_ALG_CCM_STAR_NO_TAG.
Compatible key types

PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_GCM (macro)

The Galois/Counter Mode (GCM) authenticated encryption algorithm.
#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)

GCM is defined for block ciphers that have a 128-bit block size. The underlying block cipher is determinedby the key type.
GCM requires a nonce of at least 1 byte in length. The maximum supported nonce size is IMPLEMENTATION
DEFINED. Calling psa_aead_generate_nonce() will generate a random 12-byte nonce.
GCM supports authentication tag sizes of 4, 8, 12, 13, 14, 15, and 16 bytes. The default tag length is 16.Shortened tag lengths can be requested using PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_GCM, tag_length),where tag_length is a valid GCM tag length.
The GCM block cipher mode is defined in NIST Special Publication 800-38D: Recommendation for BlockCipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC [SP800-38D].

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 180

Compatible key types

PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_CHACHA20_POLY1305 (macro)

The ChaCha20-Poly1305 AEAD algorithm.
#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)

There are two defined variants of ChaCha20-Poly1305:
∙ An implementation that supports ChaCha20-Poly1305 must support the variant defined byChaCha20 and Poly1305 for IETF Protocols [RFC8439], which has a 96-bit nonce and 32-bit counter.
∙ An implementation can optionally also support the original variant defined by ChaCha, a variant ofSalsa20 [CHACHA20], which has a 64-bit nonce and 64-bit counter.

The variant used for the AEAD encryption or decryption operation, depends on the nonce provided for anAEAD operation using PSA_ALG_CHACHA20_POLY1305:
∙ A nonce provided in a call to psa_aead_encrypt(), psa_aead_decrypt() or psa_aead_set_nonce() must be8 or 12 bytes. The size of nonce will select the appropriate variant of the algorithm.
∙ A nonce generated by a call to psa_aead_generate_nonce() will be 12 bytes, and will use the[RFC8439] variant.

Implementations must support 16-byte tags. It is recommended that truncated tag sizes are rejected.
Compatible key types

PSA_KEY_TYPE_CHACHA20

PSA_ALG_XCHACHA20_POLY1305 (macro)

The XChaCha20-Poly1305 AEAD algorithm.
#define PSA_ALG_XCHACHA20_POLY1305 ((psa_algorithm_t)0x05100600)

XChaCha20-Poly1305 is a variation of the ChaCha20-Poly1305 AEAD algorithm, but uses a 192-bitnonce. The larger nonce provides much lower probability of nonce misuse.
XChaCha20-Poly1305 requires a 24-byte nonce.
Implementations must support 16-byte tags. It is recommended that truncated tag sizes are rejected.
XChaCha20-Poly1305 is defined in XChaCha: eXtended-nonce ChaCha and AEAD_XChaCha20_Poly1305[XCHACHA].

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 181

Compatible key types

PSA_KEY_TYPE_XCHACHA20

PSA_ALG_AEAD_WITH_SHORTENED_TAG (macro)

Macro to build a AEAD algorithm with a shortened tag.
#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \

/* specification-defined value */

Parameters

aead_alg An AEAD algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_AEAD(aead_alg) is true.

tag_length Desired length of the authentication tag in bytes.
Returns

The corresponding AEAD algorithm with the specified tag length.
Unspecified if aead_alg is not a supported AEAD algorithm or if tag_length is not valid for the specifiedAEAD algorithm.
Description

An AEAD algorithm with a shortened tag is similar to the corresponding AEAD algorithm, but has anauthentication tag that consists of fewer bytes. Depending on the algorithm, the tag length might affectthe calculation of the ciphertext.
The AEAD algorithm with a default length tag can be recovered using
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG().
Compatible key types

The resulting AEAD algorithm is compatible with the same key types as the AEAD algorithm used toconstruct it.
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG (macro)

An AEAD algorithm with the default tag length.
#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \

/* specification-defined value */

Parameters

aead_alg An AEAD algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_AEAD(aead_alg) is true.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 182

Returns

The corresponding AEAD algorithm with the default tag length for that algorithm.
Description

This macro can be used to construct the AEAD algorithm with default tag length from an AEAD algorithmwith a shortened tag. See also PSA_ALG_AEAD_WITH_SHORTENED_TAG().
Compatible key types

The resulting AEAD algorithm is compatible with the same key types as the AEAD algorithm used toconstruct it.
PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG (macro)

Macro to build an AEAD minimum-tag-length wildcard algorithm.
#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \

/* specification-defined value */

Parameters

aead_alg An AEAD algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_AEAD(aead_alg) is true.

min_tag_length Desired minimum length of the authentication tag in bytes. This mustbe at least 1 and at most the largest permitted tag length of thealgorithm.
Returns

The corresponding AEAD wildcard algorithm with the specified minimum tag length.
Unspecified if aead_alg is not a supported AEAD algorithm or if min_tag_length is less than 1 or too largefor the specified AEAD algorithm.
Description

A key with a minimum-tag-length AEAD wildcard algorithm as permitted-algorithm policy can be usedwith all AEAD algorithms sharing the same base algorithm, and where the tag length of the specificalgorithm is equal to or larger then the minimum tag length specified by the wildcard algorithm.
Note:
When setting the minimum required tag length to less than the smallest tag length permitted by thebase algorithm, this effectively becomes an ‘any-tag-length-permitted’ policy for that base algorithm.

The AEAD algorithm with a default length tag can be recovered using
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 183

Compatible key types

The resulting wildcard AEAD algorithm is compatible with the same key types as the AEAD algorithm usedto construct it.
10.5.2 Single-part AEAD functions

psa_aead_encrypt (function)

Process an authenticated encryption operation.
psa_status_t psa_aead_encrypt(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * nonce,

size_t nonce_length,

const uint8_t * additional_data,

size_t additional_data_length,

const uint8_t * plaintext,

size_t plaintext_length,

uint8_t * ciphertext,

size_t ciphertext_size,

size_t * ciphertext_length);

Parameters

key Identifier of the key to use for the operation. It must permit theusage PSA_KEY_USAGE_ENCRYPT.
alg The AEAD algorithm to compute: a value of type psa_algorithm_tsuch that PSA_ALG_IS_AEAD(alg) is true.
nonce Nonce or IV to use.
nonce_length Size of the nonce buffer in bytes. This must be appropriate for theselected algorithm. The default nonce size is

PSA_AEAD_NONCE_LENGTH(key_type, alg) where key_type is the type of
key.

additional_data Additional data that will be authenticated but not encrypted.
additional_data_length Size of additional_data in bytes.
plaintext Data that will be authenticated and encrypted.
plaintext_length Size of plaintext in bytes.
ciphertext Output buffer for the authenticated and encrypted data. Theadditional data is not part of this output. For algorithms where theencrypted data and the authentication tag are defined as separateoutputs, the authentication tag is appended to the encrypted data.
ciphertext_size Size of the ciphertext buffer in bytes. This must be appropriate forthe selected algorithm and key:

∙ A sufficient output size is
PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg, plaintext_length)where key_type is the type of key.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 184

∙ PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(plaintext_length) evaluatesto the maximum ciphertext size of any supported AEADencryption.
ciphertext_length On success, the size of the output in the ciphertext buffer.

Returns: psa_status_t

PSA_SUCCESS Success. The first (*ciphertext_length) bytes of ciphertext containthe output.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the ciphertext buffer is too small.

PSA_AEAD_ENCRYPT_OUTPUT_SIZE() or
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE() can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not an AEAD algorithm.
∙ key is not compatible with alg.
∙ nonce_length is not valid for use with alg and key.
∙ additional_data_length or plaintext_length are too large for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not an AEAD algorithm.
∙ key is not supported for use with alg.
∙ nonce_length is not supported for use with alg and key.
∙ additional_data_length or plaintext_length are too large for theimplementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 185

psa_aead_decrypt (function)

Process an authenticated decryption operation.
psa_status_t psa_aead_decrypt(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * nonce,

size_t nonce_length,

const uint8_t * additional_data,

size_t additional_data_length,

const uint8_t * ciphertext,

size_t ciphertext_length,

uint8_t * plaintext,

size_t plaintext_size,

size_t * plaintext_length);

Parameters

key Identifier of the key to use for the operation. It must permit theusage PSA_KEY_USAGE_DECRYPT.
alg The AEAD algorithm to compute: a value of type psa_algorithm_tsuch that PSA_ALG_IS_AEAD(alg) is true.
nonce Nonce or IV to use.
nonce_length Size of the nonce buffer in bytes. This must be appropriate for theselected algorithm. The default nonce size is

PSA_AEAD_NONCE_LENGTH(key_type, alg) where key_type is the type of
key.

additional_data Additional data that has been authenticated but not encrypted.
additional_data_length Size of additional_data in bytes.
ciphertext Data that has been authenticated and encrypted. For algorithmswhere the encrypted data and the authentication tag are defined asseparate inputs, the buffer must contain the encrypted data followedby the authentication tag.
ciphertext_length Size of ciphertext in bytes.
plaintext Output buffer for the decrypted data.
plaintext_size Size of the plaintext buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is
PSA_AEAD_DECRYPT_OUTPUT_SIZE(key_type, alg,

ciphertext_length) where key_type is the type of key.
∙ PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(ciphertext_length) evaluatesto the maximum plaintext size of any supported AEADdecryption.

plaintext_length On success, the size of the output in the plaintext buffer.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 186

Returns: psa_status_t

PSA_SUCCESS Success. The first (*plaintext_length) bytes of plaintext contain theoutput.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_INVALID_SIGNATURE The ciphertext is not authentic.
PSA_ERROR_BUFFER_TOO_SMALL The size of the plaintext buffer is too small.

PSA_AEAD_DECRYPT_OUTPUT_SIZE() or
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE() can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not an AEAD algorithm.
∙ key is not compatible with alg.
∙ nonce_length is not valid for use with alg and key.
∙ additional_data_length or ciphertext_length are too large for

alg.
PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

∙ alg is not supported or is not an AEAD algorithm.
∙ key is not supported for use with alg.
∙ nonce_length is not supported for use with alg and key.
∙ additional_data_length or plaintext_length are too large for theimplementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

10.5.3 Multi-part AEAD operations

Warning: When decrypting using a multi-part AEAD operation, there is no guarantee that the input oroutput is valid until psa_aead_verify() has returned PSA_SUCCESS.
A call to psa_aead_update() or psa_aead_update_ad() returning PSA_SUCCESS does not indicate that theinput and output is valid.
Until an application calls psa_aead_verify() and it has returned PSA_SUCCESS, the following rules apply toinput and output data from a multi-part AEAD operation:

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 187

∙ Do not trust the input. If the application takes any action that depends on the input data, thisaction will need to be undone if the input turns out to be invalid.
∙ Store the output in a confidential location. In particular, the application must not copy the outputto a memory or storage space which is shared.
∙ Do not trust the output. If the application takes any action that depends on the tentativedecrypted data, this action will need to be undone if the input turns out to be invalid.Furthermore, if an adversary can observe that this action took place, for example, through timing,they might be able to use this fact as an oracle to decrypt any message encrypted with the samekey.

An application that does not follow these rules might be vulnerable to maliciously constructed AEADinput data.

psa_aead_operation_t (typedef)

The type of the state object for multi-part AEAD operations.
typedef /* implementation-defined type */ psa_aead_operation_t;

Before calling any function on an AEAD operation object, the application must initialize it by any of thefollowing means:
∙ Set the object to all-bits-zero, for example:

psa_aead_operation_t operation;

memset(&operation, 0, sizeof(operation));

∙ Initialize the object to logical zero values by declaring the object as static or global without anexplicit initializer, for example:
static psa_aead_operation_t operation;

∙ Initialize the object to the initializer PSA_AEAD_OPERATION_INIT, for example:
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;

∙ Assign the result of the function psa_aead_operation_init() to the object, for example:
psa_aead_operation_t operation;

operation = psa_aead_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 188

PSA_AEAD_OPERATION_INIT (macro)

This macro returns a suitable initializer for an AEAD operation object of type psa_aead_operation_t.
#define PSA_AEAD_OPERATION_INIT /* implementation-defined value */

psa_aead_operation_init (function)

Return an initial value for an AEAD operation object.
psa_aead_operation_t psa_aead_operation_init(void);

Returns: psa_aead_operation_t

psa_aead_encrypt_setup (function)

Set the key for a multi-part authenticated encryption operation.
psa_status_t psa_aead_encrypt_setup(psa_aead_operation_t * operation,

psa_key_id_t key,

psa_algorithm_t alg);

Parameters

operation The operation object to set up. It must have been initialized as perthe documentation for psa_aead_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain validuntil the operation terminates. It must permit the usage

PSA_KEY_USAGE_ENCRYPT.
alg The AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
Returns: psa_status_t

PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an AEAD algorithm.
∙ key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not an AEAD algorithm.
∙ key is not supported for use with alg.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 189

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The sequence of operations to encrypt a message with authentication is as follows:
1. Allocate an AEAD operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_aead_operation_t, e.g. PSA_AEAD_OPERATION_INIT.
3. Call psa_aead_encrypt_setup() to specify the algorithm and key.
4. If needed, call psa_aead_set_lengths() to specify the length of the inputs to the subsequent calls to

psa_aead_update_ad() and psa_aead_update(). See the documentation of psa_aead_set_lengths() fordetails.
5. Call either psa_aead_generate_nonce() or psa_aead_set_nonce() to generate or set the nonce. It isrecommended to use psa_aead_generate_nonce() unless the protocol being implemented requires aspecific nonce value.
6. Call psa_aead_update_ad() zero, one or more times, passing a fragment of the non-encryptedadditional authenticated data each time.
7. Call psa_aead_update() zero, one or more times, passing a fragment of the message to encrypt eachtime.
8. Call psa_aead_finish().

After a successful call to psa_aead_encrypt_setup(), the operation is active, and the application musteventually terminate the operation. The following events terminate an operation:
∙ A successful call to psa_aead_finish().
∙ A call to psa_aead_abort().

If psa_aead_encrypt_setup() returns an error, the operation object is unchanged. If a subsequent functioncall with an active operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_aead_abort().
SeeMulti-part operations on page 24.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 190

psa_aead_decrypt_setup (function)

Set the key for a multi-part authenticated decryption operation.
psa_status_t psa_aead_decrypt_setup(psa_aead_operation_t * operation,

psa_key_id_t key,

psa_algorithm_t alg);

Parameters

operation The operation object to set up. It must have been initialized as perthe documentation for psa_aead_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain validuntil the operation terminates. It must permit the usage

PSA_KEY_USAGE_DECRYPT.
alg The AEAD algorithm to compute: a value of type psa_algorithm_tsuch that PSA_ALG_IS_AEAD(alg) is true.

Returns: psa_status_t

PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an AEAD algorithm.
∙ key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not an AEAD algorithm.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 191

Description

The sequence of operations to decrypt a message with authentication is as follows:
1. Allocate an AEAD operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_aead_operation_t, e.g. PSA_AEAD_OPERATION_INIT.
3. Call psa_aead_decrypt_setup() to specify the algorithm and key.
4. If needed, call psa_aead_set_lengths() to specify the length of the inputs to the subsequent calls to

psa_aead_update_ad() and psa_aead_update(). See the documentation of psa_aead_set_lengths() fordetails.
5. Call psa_aead_set_nonce() with the nonce for the decryption.
6. Call psa_aead_update_ad() zero, one or more times, passing a fragment of the non-encryptedadditional authenticated data each time.
7. Call psa_aead_update() zero, one or more times, passing a fragment of the ciphertext to decrypt eachtime.
8. Call psa_aead_verify().

After a successful call to psa_aead_decrypt_setup(), the operation is active, and the application musteventually terminate the operation. The following events terminate an operation:
∙ A successful call to psa_aead_verify().
∙ A call to psa_aead_abort().

If psa_aead_decrypt_setup() returns an error, the operation object is unchanged. If a subsequent functioncall with an active operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_aead_abort().
SeeMulti-part operations on page 24.
psa_aead_set_lengths (function)

Declare the lengths of the message and additional data for AEAD.
psa_status_t psa_aead_set_lengths(psa_aead_operation_t * operation,

size_t ad_length,

size_t plaintext_length);

Parameters

operation Active AEAD operation.
ad_length Size of the non-encrypted additional authenticated data in bytes.
plaintext_length Size of the plaintext to encrypt in bytes.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 192

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, and
psa_aead_set_nonce() and psa_aead_generate_nonce() must nothave been called yet.

∙ The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_ARGUMENT ad_length or plaintext_length are too large for the chosen algorithm.
PSA_ERROR_NOT_SUPPORTED ad_length or plaintext_length are too large for the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

The application must call this function before calling psa_aead_set_nonce() or psa_aead_generate_nonce(), ifthe algorithm for the operation requires it. If the algorithm does not require it, calling this function isoptional, but if this function is called then the implementation must enforce the lengths.
∙ For PSA_ALG_CCM, calling this function is required.
∙ For the other AEAD algorithms defined in this specification, calling this function is not required.
∙ For vendor-defined algorithm, refer to the vendor documentation.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().
psa_aead_generate_nonce (function)

Generate a random nonce for an authenticated encryption operation.
psa_status_t psa_aead_generate_nonce(psa_aead_operation_t * operation,

uint8_t * nonce,

size_t nonce_size,

size_t * nonce_length);

Parameters

operation Active AEAD operation.
nonce Buffer where the generated nonce is to be written.
nonce_size Size of the nonce buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is PSA_AEAD_NONCE_LENGTH(key_type, alg)where key_type is the type of key and alg is the algorithm thatwere used to set up the operation.
∙ PSA_AEAD_NONCE_MAX_SIZE evaluates to a sufficient output size forany supported AEAD algorithm.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 193

nonce_length On success, the number of bytes of the generated nonce.
Returns: psa_status_t

PSA_SUCCESS Success. The first (*nonce_length) bytes of nonce contain thegenerated nonce.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be an active AEADencryption operation, with no nonce set.
∙ The operation state is not valid: this is an algorithm whichrequires psa_aead_set_lengths() to be called before setting thenonce.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the nonce buffer is too small. PSA_AEAD_NONCE_LENGTH() or
PSA_AEAD_NONCE_MAX_SIZE can be used to determine a sufficient buffersize.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function generates a random nonce for the authenticated encryption operation with an appropriatesize for the chosen algorithm, key type and key size.
Most algorithms generate a default-length nonce, as returned by PSA_AEAD_NONCE_LENGTH(). Somealgorithms can return a shorter nonce from psa_aead_generate_nonce(), see the individual algorithmdescriptions for details.
The application must call psa_aead_encrypt_setup() before calling this function. If applicable for thealgorithm, the application must call psa_aead_set_lengths() before calling this function.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().
psa_aead_set_nonce (function)

Set the nonce for an authenticated encryption or decryption operation.
psa_status_t psa_aead_set_nonce(psa_aead_operation_t * operation,

const uint8_t * nonce,

size_t nonce_length);

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 194

Parameters

operation Active AEAD operation.
nonce Buffer containing the nonce to use.
nonce_length Size of the nonce in bytes. This must be a valid nonce size for thechosen algorithm. The default nonce size is

PSA_AEAD_NONCE_LENGTH(key_type, alg) where key_type and alg aretype of key and the algorithm respectively that were used to set upthe AEAD operation.
Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, with no nonceset.
∙ The operation state is not valid: this is an algorithm whichrequires psa_aead_set_lengths() to be called before setting thenonce.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT nonce_length is not valid for the chosen algorithm.
PSA_ERROR_NOT_SUPPORTED nonce_length is not supported for use with the operation’s algorithmand key.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function sets the nonce for the authenticated encryption or decryption operation.
The application must call psa_aead_encrypt_setup() or psa_aead_decrypt_setup() before calling this function.If applicable for the algorithm, the application must call psa_aead_set_lengths() before calling this function.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().

Note:
When encrypting, psa_aead_generate_nonce() is recommended instead of using this function, unlessimplementing a protocol that requires a non-random IV.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 195

psa_aead_update_ad (function)

Pass additional data to an active AEAD operation.
psa_status_t psa_aead_update_ad(psa_aead_operation_t * operation,

const uint8_t * input,

size_t input_length);

Parameters

operation Active AEAD operation.
input Buffer containing the fragment of additional data.
input_length Size of the input buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success.
Warning: When decrypting, do not trust the additional data until
psa_aead_verify() succeeds.
See the detailed warning.

PSA_ERROR_BAD_STATE The following conditions can result in this error:
∙ The operation state is not valid: it must be active, have a nonceset, have lengths set if required by the algorithm, and

psa_aead_update() must not have been called yet.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT Excess additional data: the total input length to psa_aead_update_ad()is greater than the additional data length that was previouslyspecified with psa_aead_set_lengths(), or is too large for the chosenAEAD algorithm.
PSA_ERROR_NOT_SUPPORTED The total additional data length is too large for the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 196

Description

Additional data is authenticated, but not encrypted.
This function can be called multiple times to pass successive fragments of the additional data. Thisfunction must not be called after passing data to encrypt or decrypt with psa_aead_update().
The following must occur before calling this function:

1. Call either psa_aead_encrypt_setup() or psa_aead_decrypt_setup().
2. Set the nonce with psa_aead_generate_nonce() or psa_aead_set_nonce().

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().
psa_aead_update (function)

Encrypt or decrypt a message fragment in an active AEAD operation.
psa_status_t psa_aead_update(psa_aead_operation_t * operation,

const uint8_t * input,

size_t input_length,

uint8_t * output,

size_t output_size,

size_t * output_length);

Parameters

operation Active AEAD operation.
input Buffer containing the message fragment to encrypt or decrypt.
input_length Size of the input buffer in bytes.
output Buffer where the output is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type,
alg, input_length) where key_type is the type of key and alg isthe algorithm that were used to set up the operation.

∙ PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE(input_length) evaluates to themaximum output size of any supported AEAD algorithm.
output_length On success, the number of bytes that make up the returned output.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 197

Returns: psa_status_t

PSA_SUCCESS Success. The first (*output_length) of output contains the outputdata.
Warning: When decrypting, do not use the output until
psa_aead_verify() succeeds.
See the detailed warning.

PSA_ERROR_BAD_STATE The following conditions can result in this error:
∙ The operation state is not valid: it must be active, have a nonceset, and have lengths set if required by the algorithm.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.
PSA_AEAD_UPDATE_OUTPUT_SIZE() or PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE()can be used to determine a sufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ Incomplete additional data: the total length of input to

psa_aead_update_ad() is less than the additional data length thatwas previously specified with psa_aead_set_lengths().
∙ Excess input data: the total length of input to psa_aead_update()is greater than the plaintext length that was previously specifiedwith psa_aead_set_lengths(), or is too large for the specificAEAD algorithm.

PSA_ERROR_NOT_SUPPORTED The total input length is too large for the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The following must occur before calling this function:
1. Call either psa_aead_encrypt_setup() or psa_aead_decrypt_setup(). The choice of setup functiondetermines whether this function encrypts or decrypts its input.
2. Set the nonce with psa_aead_generate_nonce() or psa_aead_set_nonce().
3. Call psa_aead_update_ad() to pass all the additional data.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 198

Note:
This function does not require the input to be aligned to any particular block boundary. If theimplementation can only process a whole block at a time, it must consume all the input provided, butit might delay the end of the corresponding output until a subsequent call to psa_aead_update()provides sufficient input, or a subsequent call to psa_aead_finish() or psa_aead_verify() indicates theend of the input. The amount of data that can be delayed in this way is bounded by the associatedoutput size macro: PSA_AEAD_UPDATE_OUTPUT_SIZE(), PSA_AEAD_FINISH_OUTPUT_SIZE(), or
PSA_AEAD_VERIFY_OUTPUT_SIZE().

psa_aead_finish (function)

Finish encrypting a message in an AEAD operation.
psa_status_t psa_aead_finish(psa_aead_operation_t * operation,

uint8_t * ciphertext,

size_t ciphertext_size,

size_t * ciphertext_length,

uint8_t * tag,

size_t tag_size,

size_t * tag_length);

Parameters

operation Active AEAD operation.
ciphertext Buffer where the last part of the ciphertext is to be written.
ciphertext_size Size of the ciphertext buffer in bytes. This must be appropriate forthe selected algorithm and key:

∙ A sufficient output size is PSA_AEAD_FINISH_OUTPUT_SIZE(key_type,
alg) where key_type is the type of key and alg is the algorithmthat were used to set up the operation.

∙ PSA_AEAD_FINISH_OUTPUT_MAX_SIZE evaluates to the maximumoutput size of any supported AEAD algorithm.
ciphertext_length On success, the number of bytes of returned ciphertext.
tag Buffer where the authentication tag is to be written.
tag_size Size of the tag buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The exact tag size is PSA_AEAD_TAG_LENGTH(key_type, key_bits,

alg) where key_type and key_bits are the type and bit-size ofthe key, and alg is the algorithm that were used in the call to
psa_aead_encrypt_setup().

∙ PSA_AEAD_TAG_MAX_SIZE evaluates to the maximum tag size of anysupported AEAD algorithm.
tag_length On success, the number of bytes that make up the returned tag.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 199

Returns: psa_status_t

PSA_SUCCESS Success. The first (*tag_length) bytes of tag contain theauthentication tag.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be an active encryptionoperation with a nonce set.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the ciphertext or tag buffer is too small.
PSA_AEAD_FINISH_OUTPUT_SIZE() or PSA_AEAD_FINISH_OUTPUT_MAX_SIZEcan be used to determine the required ciphertext buffer size.
PSA_AEAD_TAG_LENGTH() or PSA_AEAD_TAG_MAX_SIZE can be used todetermine the required tag buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ Incomplete additional data: the total length of input to

psa_aead_update_ad() is less than the additional data length thatwas previously specified with psa_aead_set_lengths().
∙ Incomplete plaintext: the total length of input to

psa_aead_update() is less than the plaintext length that waspreviously specified with psa_aead_set_lengths().
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The operation must have been set up with psa_aead_encrypt_setup().
This function finishes the authentication of the additional data formed by concatenating the inputs passedto preceding calls to psa_aead_update_ad() with the plaintext formed by concatenating the inputs passed topreceding calls to psa_aead_update().
This function has two output buffers:

∙ ciphertext contains trailing ciphertext that was buffered from preceding calls to psa_aead_update().
∙ tag contains the authentication tag.

When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_aead_abort().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 200

psa_aead_verify (function)

Finish authenticating and decrypting a message in an AEAD operation.
psa_status_t psa_aead_verify(psa_aead_operation_t * operation,

uint8_t * plaintext,

size_t plaintext_size,

size_t * plaintext_length,

const uint8_t * tag,

size_t tag_length);

Parameters

operation Active AEAD operation.
plaintext Buffer where the last part of the plaintext is to be written. This is theremaining data from previous calls to psa_aead_update() that couldnot be processed until the end of the input.
plaintext_size Size of the plaintext buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is PSA_AEAD_VERIFY_OUTPUT_SIZE(key_type,
alg) where key_type is the type of key and alg is the algorithmthat were used to set up the operation.

∙ PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE evaluates to the maximumoutput size of any supported AEAD algorithm.
plaintext_length On success, the number of bytes of returned plaintext.
tag Buffer containing the expected authentication tag.
tag_length Size of the tag buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success. For a decryption operation, it is now safe to use theadditional data and the plaintext output.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be an active decryptionoperation with a nonce set.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_SIGNATURE The calculated authentication tag does not match the value in tag.
PSA_ERROR_BUFFER_TOO_SMALL The size of the plaintext buffer is too small.

PSA_AEAD_VERIFY_OUTPUT_SIZE() or PSA_AEAD_VERIFY_OUTPUT_MAX_SIZEcan be used to determine a sufficient buffer size.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ Incomplete additional data: the total length of input to
psa_aead_update_ad() is less than the additional data length thatwas previously specified with psa_aead_set_lengths().

∙ Incomplete ciphertext: the total length of input to
psa_aead_update() is less than the plaintext length that was

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 201

previously specified with psa_aead_set_lengths().
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The operation must have been set up with psa_aead_decrypt_setup().
This function finishes the authenticated decryption of the message components:

∙ The additional data consisting of the concatenation of the inputs passed to preceding calls to
psa_aead_update_ad().

∙ The ciphertext consisting of the concatenation of the inputs passed to preceding calls to
psa_aead_update().

∙ The tag passed to this function call.
If the authentication tag is correct, this function outputs any remaining plaintext and reports success. If theauthentication tag is not correct, this function returns PSA_ERROR_INVALID_SIGNATURE.
When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_aead_abort().

Implementation note
Implementations must make the best effort to ensure that the comparison between the actual tagand the expected tag is performed in constant time.

psa_aead_abort (function)

Abort an AEAD operation.
psa_status_t psa_aead_abort(psa_aead_operation_t * operation);

Parameters

operation Initialized AEAD operation.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 202

Returns: psa_status_t

PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,the operation object can be reused for another operation by calling psa_aead_encrypt_setup() or
psa_aead_decrypt_setup() again.
This function can be called any time after the operation object has been initialized as described in
psa_aead_operation_t.
In particular, calling psa_aead_abort() after the operation has been terminated by a call to psa_aead_abort(),
psa_aead_finish() or psa_aead_verify() is safe and has no effect.
10.5.4 Support macros

PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER (macro)

Whether the specified algorithm is an AEAD mode on a block cipher.
#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is an AEAD algorithm which is an AEAD mode based on a block cipher, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
PSA_AEAD_ENCRYPT_OUTPUT_SIZE (macro)

A sufficient ciphertext buffer size for psa_aead_encrypt(), in bytes.
#define PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg, plaintext_length) \

/* implementation-defined value */

Parameters

key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
plaintext_length Size of the plaintext in bytes.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 203

Returns

The AEAD ciphertext size for the specified key type and algorithm. If the key type or AEAD algorithm isnot recognized, or the parameters are incompatible, return 0. An implementation can return either 0 or acorrect size for a key type and AEAD algorithm that it recognizes, but does not support.
Description

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_encrypt() will not faildue to an insufficient buffer size. Depending on the algorithm, the actual size of the ciphertext might besmaller.
See also PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE.
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient ciphertext buffer size for psa_aead_encrypt(), for any of the supported key types and AEADalgorithms.
#define PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(plaintext_length) \

/* implementation-defined value */

Parameters

plaintext_length Size of the plaintext in bytes.
Description

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_encrypt() will not faildue to an insufficient buffer size.
See also PSA_AEAD_ENCRYPT_OUTPUT_SIZE().
PSA_AEAD_DECRYPT_OUTPUT_SIZE (macro)

A sufficient plaintext buffer size for psa_aead_decrypt(), in bytes.
#define PSA_AEAD_DECRYPT_OUTPUT_SIZE(key_type, alg, ciphertext_length) \

/* implementation-defined value */

Parameters

key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
ciphertext_length Size of the ciphertext in bytes.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 204

Returns

The AEAD plaintext size for the specified key type and algorithm. If the key type or AEAD algorithm is notrecognized, or the parameters are incompatible, return 0. An implementation can return either 0 or acorrect size for a key type and AEAD algorithm that it recognizes, but does not support.
Description

If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_decrypt() will not faildue to an insufficient buffer size. Depending on the algorithm, the actual size of the plaintext might besmaller.
See also PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE.
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient plaintext buffer size for psa_aead_decrypt(), for any of the supported key types and AEADalgorithms.
#define PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(ciphertext_length) \

/* implementation-defined value */

Parameters

ciphertext_length Size of the ciphertext in bytes.
Description

If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_decrypt() will not faildue to an insufficient buffer size.
See also PSA_AEAD_DECRYPT_OUTPUT_SIZE().
PSA_AEAD_NONCE_LENGTH (macro)

The default nonce size for an AEAD algorithm, in bytes.
#define PSA_AEAD_NONCE_LENGTH(key_type, alg) /* implementation-defined value */

Parameters

key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
Returns

The default nonce size for the specified key type and algorithm. If the key type or AEAD algorithm is notrecognized, or the parameters are incompatible, return 0. An implementation can return either 0 or acorrect size for a key type and AEAD algorithm that it recognizes, but does not support.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 205

Description

If the size of the nonce buffer is at least this large, it is guaranteed that psa_aead_generate_nonce() will notfail due to an insufficient buffer size.
For most AEAD algorithms, PSA_AEAD_NONCE_LENGTH() evaluates to the exact size of the nonce generated by
psa_aead_generate_nonce().
See also PSA_AEAD_NONCE_MAX_SIZE.
PSA_AEAD_NONCE_MAX_SIZE (macro)

A sufficient buffer size for storing the nonce generated by psa_aead_generate_nonce(), for any of thesupported key types and AEAD algorithms.
#define PSA_AEAD_NONCE_MAX_SIZE /* implementation-defined value */

If the size of the nonce buffer is at least this large, it is guaranteed that psa_aead_generate_nonce() will notfail due to an insufficient buffer size.
See also PSA_AEAD_NONCE_LENGTH().
PSA_AEAD_UPDATE_OUTPUT_SIZE (macro)

A sufficient output buffer size for psa_aead_update().
#define PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */

Parameters

key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
input_length Size of the input in bytes.

Returns

A sufficient output buffer size for the specified key type and algorithm. If the key type or AEAD algorithmis not recognized, or the parameters are incompatible, return 0. An implementation can return either 0 or acorrect size for a key type and AEAD algorithm that it recognizes, but does not support.
Description

If the size of the output buffer is at least this large, it is guaranteed that psa_aead_update() will not fail dueto an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 206

PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_aead_update(), for any of the supported key types and AEADalgorithms.
#define PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */

Parameters

input_length Size of the input in bytes.
Description

If the size of the output buffer is at least this large, it is guaranteed that psa_aead_update() will not fail dueto an insufficient buffer size.
See also PSA_AEAD_UPDATE_OUTPUT_SIZE().
PSA_AEAD_FINISH_OUTPUT_SIZE (macro)

A sufficient ciphertext buffer size for psa_aead_finish().
#define PSA_AEAD_FINISH_OUTPUT_SIZE(key_type, alg) \

/* implementation-defined value */

Parameters

key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
Returns

A sufficient ciphertext buffer size for the specified key type and algorithm. If the key type or AEADalgorithm is not recognized, or the parameters are incompatible, return 0. An implementation can returneither 0 or a correct size for a key type and AEAD algorithm that it recognizes, but does not support.
Description

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_finish() will not faildue to an insufficient ciphertext buffer size. The actual size of the output might be smaller in any given call.
See also PSA_AEAD_FINISH_OUTPUT_MAX_SIZE.
PSA_AEAD_FINISH_OUTPUT_MAX_SIZE (macro)

A sufficient ciphertext buffer size for psa_aead_finish(), for any of the supported key types and AEADalgorithms.
#define PSA_AEAD_FINISH_OUTPUT_MAX_SIZE /* implementation-defined value */

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_finish() will not faildue to an insufficient ciphertext buffer size.
See also PSA_AEAD_FINISH_OUTPUT_SIZE().
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 207

PSA_AEAD_TAG_LENGTH (macro)

The length of a tag for an AEAD algorithm, in bytes.
#define PSA_AEAD_TAG_LENGTH(key_type, key_bits, alg) \

/* implementation-defined value */

Parameters

key_type The type of the AEAD key.
key_bits The size of the AEAD key in bits.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
Returns

The tag length for the specified algorithm and key. If the AEAD algorithm does not have an identified tagthat can be distinguished from the rest of the ciphertext, return 0. If the AEAD algorithm is not recognized,return 0. An implementation can return either 0 or a correct size for an AEAD algorithm that it recognizes,but does not support.
Description

This is the size of the tag output from psa_aead_finish().
If the size of the tag buffer is at least this large, it is guaranteed that psa_aead_finish() will not fail due toan insufficient tag buffer size.
See also PSA_AEAD_TAG_MAX_SIZE.
PSA_AEAD_TAG_MAX_SIZE (macro)

A sufficient buffer size for storing the tag output by psa_aead_finish(), for any of the supported key typesand AEAD algorithms.
#define PSA_AEAD_TAG_MAX_SIZE /* implementation-defined value */

If the size of the tag buffer is at least this large, it is guaranteed that psa_aead_finish() will not fail due toan insufficient buffer size.
See also PSA_AEAD_TAG_LENGTH().
PSA_AEAD_VERIFY_OUTPUT_SIZE (macro)

A sufficient plaintext buffer size for psa_aead_verify(), in bytes.
#define PSA_AEAD_VERIFY_OUTPUT_SIZE(key_type, alg) \

/* implementation-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 208

Parameters

key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
Returns

A sufficient plaintext buffer size for the specified key type and algorithm. If the key type or AEADalgorithm is not recognized, or the parameters are incompatible, return 0. An implementation can returneither 0 or a correct size for a key type and AEAD algorithm that it recognizes, but does not support.
Description

If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_verify() will not faildue to an insufficient plaintext buffer size. The actual size of the output might be smaller in any given call.
See also PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE.
PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE (macro)

A sufficient plaintext buffer size for psa_aead_verify(), for any of the supported key types and AEADalgorithms.
#define PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE /* implementation-defined value */

If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_verify() will not faildue to an insufficient buffer size.
See also PSA_AEAD_VERIFY_OUTPUT_SIZE().

10.6 Key derivation
A key derivation encodes a deterministic method to generate a finite stream of bytes. This data stream iscomputed by the cryptoprocessor and extracted in chunks. If two key derivation operations areconstructed with the same parameters, then they produce the same output.
A key derivation consists of two phases:

1. Input collection. This is sometimes known as extraction: the operation “extracts” information fromthe inputs to generate a pseudorandom intermediate secret value.
2. Output generation. This is sometimes known as expansion: the operation “expands” the intermediatesecret value to the desired output length.

The specification defines a multi-part operation API for key derivation that allows:
∙ Multiple key and non-key outputs to be produced from a single derivation operation object.
∙ Key and non-key outputs can be extracted from the key derivation object, or compared with existingkey and non-key values.
∙ Algorithms that require high-entropy secret inputs. For example PSA_ALG_HKDF.
∙ Algorithms that work with low-entropy secret inputs, or passwords. For example

PSA_ALG_PBKDF2_HMAC().
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 209

An implementation with isolation has the following properties:
∙ The intermediate state of the key derivation is not visible to the caller.
∙ If an output of the derivation is a non-exportable key, then this key cannot be recovered outside theisolation boundary.
∙ If an output of the derivation is compared using psa_key_derivation_verify_bytes() or

psa_key_derivation_verify_key(), then the output is not visible to the caller.
Applications use the psa_key_derivation_operation_t type to create key derivation operations. Theoperation object is used as follows:

1. Initialize a psa_key_derivation_operation_t object to zero or to PSA_KEY_DERIVATION_OPERATION_INIT.
2. Call psa_key_derivation_setup() to select a key derivation algorithm.
3. Call the functions psa_key_derivation_input_key() or psa_key_derivation_key_agreement() to providethe secret inputs, and psa_key_derivation_input_bytes() or psa_key_derivation_input_integer() toprovide the non-secret inputs, to the key derivation algorithm. Many key derivation algorithms takemultiple inputs; the step parameter to these functions indicates which input is being provided. Thedocumentation for each key derivation algorithm describes the expected inputs for that algorithmand in what order to pass them.
4. Optionally, call psa_key_derivation_set_capacity() to set a limit on the amount of data that can beoutput from the key derivation operation.
5. Call an output or verification function:

∙ psa_key_derivation_output_key() to create a derived key.
∙ psa_key_derivation_output_bytes() to export the derived data.
∙ psa_key_derivation_verify_key() to compare a derived key with an existing key value.
∙ psa_key_derivation_verify_bytes() to compare derived data with a buffer.

These functions can be called multiple times to read successive output from the key derivation, untilthe stream is exhausted when its capacity has been reached.
6. Key derivation does not finish in the same way as other multi-part operations. Call

psa_key_derivation_abort() to release the key derivation operation memory when the object is nolonger required.
To recover from an error, call psa_key_derivation_abort() to release the key derivation operation memory.
A key derivation operation cannot be rewound. Once a part of the stream has been output, it cannot beoutput again. This ensures that the same part of the output will not be used for different purposes.
10.6.1 Key derivation algorithms

PSA_ALG_HKDF (macro)

Macro to build an HKDF algorithm.
#define PSA_ALG_HKDF(hash_alg) /* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 210

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.

Returns

The corresponding HKDF algorithm. For example, PSA_ALG_HKDF(PSA_ALG_SHA_256) is HKDF usingHMAC-SHA-256.
Unspecified if hash_alg is not a supported hash algorithm.
Description

This is the HMAC-based Extract-and-Expand Key Derivation Function (HKDF) specified by HMAC-basedExtract-and-Expand Key Derivation Function (HKDF) [RFC5869].
This key derivation algorithm uses the following inputs:

∙ PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the “extract” step. It is optional; if omitted, thederivation uses an empty salt.
∙ PSA_KEY_DERIVATION_INPUT_SECRET is the secret key (input keying material) used in the “extract” step.
∙ PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the “expand” step.

If PSA_KEY_DERIVATION_INPUT_SALT is provided, it must be before PSA_KEY_DERIVATION_INPUT_SECRET.
PSA_KEY_DERIVATION_INPUT_INFO can be provided at any time after setup and before starting to generateoutput.
Warning: HKDF processes the salt as follows: first hash it with hash_alg if the salt is longer than theblock size of the hash algorithm; then pad with null bytes up to the block size. As a result, it is possiblefor distinct salt inputs to result in the same outputs. To ensure unique outputs, it is recommended touse a fixed length for salt values.

Each input may only be passed once.
Compatible key types

PSA_KEY_TYPE_DERIVE (for the secret key)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_HKDF_EXTRACT (macro)

Macro to build an HKDF-Extract algorithm.
#define PSA_ALG_HKDF_EXTRACT(hash_alg) /* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 211

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.

Returns

The corresponding HKDF-Extract algorithm. For example, PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256) isHKDF-Extract using HMAC-SHA-256.
Unspecified if hash_alg is not a supported hash algorithm.
Description

This is the Extract step of HKDF as specified by HMAC-based Extract-and-Expand Key Derivation Function(HKDF) [RFC5869] §2.2.
This key derivation algorithm uses the following inputs:

∙ PSA_KEY_DERIVATION_INPUT_SALT is the salt.
∙ PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the “extract” step.

The inputs are mandatory and must be passed in the order above. Each input may only be passed once.
Warning: HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF should be used instead ifpossible. PSA_ALG_HKDF_EXTRACT is provided as a separate algorithm for the sake of protocols that use itas a building block. It may also be a slight performance optimization in applications that use HKDF withthe same salt and key but many different info strings.

Warning: HKDF processes the salt as follows: first hash it with hash_alg if the salt is longer than theblock size of the hash algorithm; then pad with null bytes up to the block size. As a result, it is possiblefor distinct salt inputs to result in the same outputs. To ensure unique outputs, it is recommended touse a fixed length for salt values.
Compatible key types

PSA_KEY_TYPE_DERIVE (for the input keying material)
PSA_KEY_TYPE_RAW_DATA (for the salt)

PSA_ALG_HKDF_EXPAND (macro)

Macro to build an HKDF-Expand algorithm.
#define PSA_ALG_HKDF_EXPAND(hash_alg) /* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 212

https://datatracker.ietf.org/doc/html/rfc5869.html#section-2.2

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.

Returns

The corresponding HKDF-Expand algorithm. For example, PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256) isHKDF-Expand using HMAC-SHA-256.
Unspecified if hash_alg is not a supported hash algorithm.
Description

This is the Expand step of HKDF as specified by HMAC-based Extract-and-Expand Key Derivation Function(HKDF) [RFC5869] §2.3.
This key derivation algorithm uses the following inputs:

∙ PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
∙ PSA_KEY_DERIVATION_INPUT_INFO is the info string.

The inputs are mandatory and must be passed in the order above. Each input may only be passed once.
Warning: HKDF-Expand is not meant to be used on its own. PSA_ALG_HKDF should be used instead ifpossible. PSA_ALG_HKDF_EXPAND is provided as a separate algorithm for the sake of protocols that use it asa building block. It may also be a slight performance optimization in applications that use HKDF withthe same salt and key but many different info strings.

Compatible key types

PSA_KEY_TYPE_DERIVE (for the pseudorandom key)
PSA_KEY_TYPE_RAW_DATA (for the info string)

PSA_ALG_SP800_108_COUNTER_HMAC (macro)

Macro to build a NIST SP 800-108 conformant, counter-mode KDF algorithm based on HMAC.
#define PSA_ALG_SP800_108_COUNTER_HMAC(hash_alg) \

/* specification-defined value */

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 213

https://datatracker.ietf.org/doc/html/rfc5869.html#section-2.3

Returns

The corresponding key derivation algorithm. For example, the counter-mode KDF using HMAC-SHA-256is PSA_ALG_SP800_108_COUNTER_HMAC(PSA_ALG_SHA_256).
Unspecified if hash_alg is not a supported hash algorithm.
Description

This is an HMAC-based, counter mode key derivation function, using the construction recommended byNIST Special Publication 800-108r1: Recommendation for Key Derivation Using Pseudorandom Functions[SP800-108], §4.1.
This key derivation algorithm uses the following inputs:

∙ PSA_KEY_DERIVATION_INPUT_SECRET is the secret input keying material, 𝐾𝐼𝑁 .
∙ PSA_KEY_DERIVATION_INPUT_LABEL is the 𝐿𝑎𝑏𝑒𝑙. It is optional; if omitted, 𝐿𝑎𝑏𝑒𝑙 is a zero-length string. Ifprovided, it must not contain any null bytes.
∙ PSA_KEY_DERIVATION_INPUT_CONTEXT is the 𝐶𝑜𝑛𝑡𝑒𝑥𝑡. It is optional; if omitted, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 is a zero-lengthstring.

Each input can only be passed once. Inputs must be passed in the order above.
This algorithm uses the output length as part of the derivation process. In the derivation this value is 𝐿, therequired output size in bits. After setup, the initial capacity of the key derivation operation is 229 − 1 bytes(0x1fffffff). The capacity can be set to a lower value by calling psa_key_derivation_set_capacity().
When the first output is requested, the value of 𝐿 is calculated as 𝐿 = 8 * 𝑐𝑎𝑝, where 𝑐𝑎𝑝 is the value of
psa_key_derivation_get_capacity(). Subsequent calls to psa_key_derivation_set_capacity() are notpermitted for this algorithm.
The derivation is constructed as described in [SP800-108] §4.1, with the iteration counter 𝑖 and outputlength 𝐿 encoded as big-endian, 32-bit values. The resulting output stream 𝐾1 || 𝐾2 || 𝐾3 || ... is computedas:

𝐾𝑖 = HMAC(𝐾𝐼𝑁 , [𝑖]4 || 𝐿𝑎𝑏𝑒𝑙 || 0x00 || 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 || [𝐿]4), for 𝑖 = 1, 2, 3, ...

Where [𝑥]𝑛 is the big-endian, 𝑛-byte encoding of the integer 𝑥.
Compatible key types

PSA_KEY_TYPE_HMAC (for the secret key)
PSA_KEY_TYPE_DERIVE (for the secret key)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_SP800_108_COUNTER_CMAC (macro)

Macro to build a NIST SP 800-108 conformant, counter-mode KDF algorithm based on CMAC.
#define PSA_ALG_SP800_108_COUNTER_CMAC ((psa_algorithm_t)0x08000800)

This is a CMAC-based, counter mode key derivation function, using the construction recommended byNIST Special Publication 800-108r1: Recommendation for Key Derivation Using Pseudorandom Functions[SP800-108], §4.1.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 214

This key derivation algorithm uses the following inputs:
∙ PSA_KEY_DERIVATION_INPUT_SECRET is the secret input keying material,𝐾𝐼𝑁 . This must be a block-cipherkey that is compatible with the CMAC algorithm, and must be input using

psa_key_derivation_input_key(). See also PSA_ALG_CMAC.
∙ PSA_KEY_DERIVATION_INPUT_LABEL is the 𝐿𝑎𝑏𝑒𝑙. It is optional; if omitted, 𝐿𝑎𝑏𝑒𝑙 is a zero-length string. Ifprovided, it must not contain any null bytes.
∙ PSA_KEY_DERIVATION_INPUT_CONTEXT is the 𝐶𝑜𝑛𝑡𝑒𝑥𝑡. It is optional; if omitted, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 is a zero-lengthstring.

Each input can only be passed once. Inputs must be passed in the order above.
This algorithm uses the output length as part of the derivation process. In the derivation this value is 𝐿, therequired output size in bits. After setup, the initial capacity of the key derivation operation is 229 − 1 bytes(0x1fffffff). The capacity can be set to a lower value by calling psa_key_derivation_set_capacity().
When the first output is requested, the value of 𝐿 is calculated as 𝐿 = 8 * 𝑐𝑎𝑝, where 𝑐𝑎𝑝 is the value of
psa_key_derivation_get_capacity(). Subsequent calls to psa_key_derivation_set_capacity() are notpermitted for this algorithm.
The derivation is constructed as described in [SP800-108] §4.1, with the following details:

∙ The iteration counter 𝑖 and output length 𝐿 are encoded as big-endian, 32-bit values.
∙ The mitigation to make the CMAC-based construction robust is implemented.

The resulting output stream 𝐾1 || 𝐾2 || 𝐾3 || ... is computed as:
𝐾0 = CMAC(𝐾𝐼𝑁 , 𝐿𝑎𝑏𝑒𝑙 || 0x00 || 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 || [𝐿]4)
𝐾𝑖 = CMAC(𝐾𝐼𝑁 , [𝑖]4 || 𝐿𝑎𝑏𝑒𝑙 || 0x00 || 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 || [𝐿]4 || 𝐾0), for 𝑖 = 1, 2, 3, ...

Where [𝑥]𝑛 is the big-endian, 𝑛-byte encoding of the integer 𝑥.
Compatible key types

PSA_KEY_TYPE_AES (for the secret key)
PSA_KEY_TYPE_ARIA (for the secret key)
PSA_KEY_TYPE_CAMELLIA (for the secret key)
PSA_KEY_TYPE_SM4 (for the secret key)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_TLS12_PRF (macro)

Macro to build a TLS-1.2 PRF algorithm.
#define PSA_ALG_TLS12_PRF(hash_alg) /* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 215

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.

Returns

The corresponding TLS-1.2 PRF algorithm. For example, PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256) representsthe TLS 1.2 PRF using HMAC-SHA-256.
Unspecified if hash_alg is not a supported hash algorithm.
Description

TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule, specified in The Transport LayerSecurity (TLS) Protocol Version 1.2 [RFC5246] §5. It is based on HMAC and can be used with eitherSHA-256 or SHA-384.
This key derivation algorithm uses the following inputs, which must be passed in the order given here:

∙ PSA_KEY_DERIVATION_INPUT_SEED is the seed.
∙ PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
∙ PSA_KEY_DERIVATION_INPUT_LABEL is the label.

Each input may only be passed once.
For the application to TLS-1.2 key expansion:

∙ The seed is the concatenation of ServerHello.Random + ClientHello.Random.
∙ The label is "key expansion".

Compatible key types

PSA_KEY_TYPE_DERIVE (for the secret key)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_TLS12_PSK_TO_MS (macro)

Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) /* specification-defined value */

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 216

https://datatracker.ietf.org/doc/html/rfc5246.html#section-5

Returns

The corresponding TLS-1.2 PSK to MS algorithm. For example, PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)represents the TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
Unspecified if hash_alg is not a supported hash algorithm.
Description

In a pure-PSK handshake in TLS 1.2, the master secret (MS) is derived from the pre-shared key (PSK)through the application of padding (Pre-Shared Key Ciphersuites for Transport Layer Security (TLS) [RFC4279]§2) and the TLS-1.2 PRF (The Transport Layer Security (TLS) Protocol Version 1.2 [RFC5246] §5). The latter isbased on HMAC and can be used with either SHA-256 or SHA-384.
This key derivation algorithm uses the following inputs, which must be passed in the order given here:

∙ PSA_KEY_DERIVATION_INPUT_SEED is the seed.
∙ PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the computation of the premastersecret. This input is optional; if omitted, it defaults to a string of null bytes with the same length asthe secret (PSK) input.
∙ PSA_KEY_DERIVATION_INPUT_SECRET is the PSK. The PSK must not be larger than

PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE.
∙ PSA_KEY_DERIVATION_INPUT_LABEL is the label.

Each input may only be passed once.
For the application to TLS-1.2:

∙ The seed, which is forwarded to the TLS-1.2 PRF, is the concatenation of the ClientHello.Random +

ServerHello.Random.
∙ The other secret depends on the key exchange specified in the cipher suite:

— For a plain PSK cipher suite ([RFC4279] §2), omit PSA_KEY_DERIVATION_INPUT_OTHER_SECRET.
— For a DHE-PSK ([RFC4279] §3) or ECDHE-PSK cipher suite (ECDHE_PSK Cipher Suites forTransport Layer Security (TLS) [RFC5489] §2), the other secret should be the output of the

PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer. The recommended wayto pass this input is to use a key derivation algorithm constructed as
PSA_ALG_KEY_AGREEMENT(ka_alg, PSA_ALG_TLS12_PSK_TO_MS(hash_alg)) and to call
psa_key_derivation_key_agreement(). Alternatively, this input may be an output of
psa_key_agreement() passed with psa_key_derivation_input_key(), or an equivalent input passedwith psa_key_derivation_input_bytes() or psa_key_derivation_input_key().

— For a RSA-PSK cipher suite ([RFC4279] §4), the other secret should be the 48-byte clientchallenge (the PreMasterSecret of [RFC5246] §7.4.7.1) concatenation of the TLS version and a46-byte random string chosen by the client. On the server, this is typically an output of
psa_asymmetric_decrypt() using PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key derivationoperation with psa_key_derivation_input_bytes().

∙ The label is "master secret" or "extended master secret".

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 217

https://datatracker.ietf.org/doc/html/rfc4279.html#section-2
https://datatracker.ietf.org/doc/html/rfc5246.html#section-5
https://datatracker.ietf.org/doc/html/rfc4279.html#section-2
https://datatracker.ietf.org/doc/html/rfc4279.html#section-3
https://datatracker.ietf.org/doc/html/rfc5489.html#section-2
https://datatracker.ietf.org/doc/html/rfc4279.html#section-4
https://datatracker.ietf.org/doc/html/rfc5246.html#section-7.4.7.1

Compatible key types

PSA_KEY_TYPE_DERIVE (for the PSK)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_TLS12_ECJPAKE_TO_PMS (macro)

The TLS 1.2 ECJPAKE-to-PMS key-derivation algorithm.
#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t)0x08000609)

This KDF is defined in Elliptic Curve J-PAKE Cipher Suites for Transport Layer Security (TLS) [TLS-ECJPAKE]§8.7. This specifies the use of a KDF to derive the TLS 1.2 session secrets from the output of EC J-PAKEover the secp256r1 Elliptic curve (the 256-bit curve in PSA_ECC_FAMILY_SECP_R1). EC J-PAKE operations canbe performed using the extension to the Crypto API defined in PSA Certified Crypto API 1.2 PAKE Extension[PSA-PAKE].
This KDF takes the shared secret 𝐾 (an uncompressed EC point in case of EC J-PAKE) and calculatesSHA256(𝐾.𝑥).
This function takes a single input:

∙ PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret 𝐾 from EC J-PAKE. For secp256r1, the input isexactly 65 bytes.
The shared secret can be obtained by calling psa_pake_get_shared_key() on a PAKE operation that isperforming the EC J-PAKE algorithm. These are defined in the PAKE extension API, see [PSA-PAKE].

The 32-byte output has to be read in a single call to either psa_key_derivation_output_bytes() or
psa_key_derivation_output_key(). The size of the output is defined as
PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE.
Compatible key types

PSA_KEY_TYPE_DERIVE — the secret key is extracted from a PAKE operation by calling
psa_pake_get_shared_key().

PSA_ALG_PBKDF2_HMAC (macro)

Macro to build a PBKDF2-HMAC password-hashing or key-stretching algorithm.
#define PSA_ALG_PBKDF2_HMAC(hash_alg) /* specification-defined value */

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 218

Returns

The corresponding PBKDF2-HMAC-XXX algorithm. For example, PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256) isthe algorithm identifier for PBKDF2-HMAC-SHA-256.
Unspecified if hash_alg is not a supported hash algorithm.
Description

PBKDF2 is specified by PKCS #5: Password-Based Cryptography Specification Version 2.1 [RFC8018] §5.2.This macro constructs a PBKDF2 algorithm that uses a pseudo-random function based on HMAC with thespecified hash.
This key derivation algorithm uses the following inputs, which must be provided in the following order:

∙ PSA_KEY_DERIVATION_INPUT_COST is the iteration count. This input step must be used exactly once.
∙ PSA_KEY_DERIVATION_INPUT_SALT is the salt. This input step must be used one or more times; if usedseveral times, the inputs will be concatenated. This can be used to build the final salt from multiplesources, both public and secret (also known as pepper).
∙ PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed. This input step must be usedexactly once.

Compatible key types

PSA_KEY_TYPE_DERIVE (for password input)
PSA_KEY_TYPE_PASSWORD (for password input)
PSA_KEY_TYPE_PEPPER (for salt input)
PSA_KEY_TYPE_RAW_DATA (for salt input)
PSA_KEY_TYPE_PASSWORD_HASH (for key verification)

PSA_ALG_PBKDF2_AES_CMAC_PRF_128 (macro)

The PBKDF2-AES-CMAC-PRF-128 password-hashing or key-stretching algorithm.
#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)

PBKDF2 is specified by PKCS #5: Password-Based Cryptography Specification Version 2.1 [RFC8018] §5.2.This algorithm specifies the PBKDF2 algorithm using the AES-CMAC-PRF-128 pseudo-random functionspecified by [RFC4615]
This key derivation algorithm uses the same inputs as PSA_ALG_PBKDF2_HMAC() with the same constraints.
Compatible key types

PSA_KEY_TYPE_DERIVE (for password input)
PSA_KEY_TYPE_PASSWORD (for password input)
PSA_KEY_TYPE_PEPPER (for salt input)
PSA_KEY_TYPE_RAW_DATA (for salt input)
PSA_KEY_TYPE_PASSWORD_HASH (for key verification)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 219

https://datatracker.ietf.org/doc/html/rfc8018.html#section-5.2
https://datatracker.ietf.org/doc/html/rfc8018.html#section-5.2

10.6.2 Input step types

psa_key_derivation_step_t (typedef)

Encoding of the step of a key derivation.
typedef uint16_t psa_key_derivation_step_t;

Implementation note
It is recommended that the value 0 is not allocated as a valid key derivation step.

PSA_KEY_DERIVATION_INPUT_SECRET (macro)

A high-entropy secret input for key derivation.
#define PSA_KEY_DERIVATION_INPUT_SECRET /* implementation-defined value */

This is typically a key of type PSA_KEY_TYPE_DERIVE passed to psa_key_derivation_input_key(), or the sharedsecret resulting from a key agreement obtained via psa_key_derivation_key_agreement().
For some algorithms, a specific type of key is required. For example, see PSA_ALG_SP800_108_COUNTER_CMAC.
The secret can also be a direct input passed to psa_key_derivation_input_bytes(). In this case, thederivation operation cannot be used to derive keys: the operation will not permit a call to
psa_key_derivation_output_key().
PSA_KEY_DERIVATION_INPUT_OTHER_SECRET (macro)

A high-entropy additional secret input for key derivation.
#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \

/* implementation-defined value */

This is typically the shared secret resulting from a key agreement obtained via
psa_key_derivation_key_agreement(). It may alternatively be a key of type PSA_KEY_TYPE_DERIVE passed to
psa_key_derivation_input_key(), or a direct input passed to psa_key_derivation_input_bytes().
PSA_KEY_DERIVATION_INPUT_PASSWORD (macro)

A low-entropy secret input for password hashing or key stretching.
#define PSA_KEY_DERIVATION_INPUT_PASSWORD /* implementation-defined value */

This is usually a key of type PSA_KEY_TYPE_PASSWORD passed to psa_key_derivation_input_key() or a directinput passed to psa_key_derivation_input_bytes() that is a password or passphrase. It can also behigh-entropy secret, for example, a key of type PSA_KEY_TYPE_DERIVE, or the shared secret resulting from akey agreement.
If the secret is a direct input, the derivation operation cannot be used to derive keys: the operation will notpermit a call to psa_key_derivation_output_key().
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 220

PSA_KEY_DERIVATION_INPUT_LABEL (macro)

A label for key derivation.
#define PSA_KEY_DERIVATION_INPUT_LABEL /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.
PSA_KEY_DERIVATION_INPUT_CONTEXT (macro)

A context for key derivation.
#define PSA_KEY_DERIVATION_INPUT_CONTEXT /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.
PSA_KEY_DERIVATION_INPUT_SALT (macro)

A salt for key derivation.
#define PSA_KEY_DERIVATION_INPUT_SALT /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA or PSA_KEY_TYPE_PEPPER.
PSA_KEY_DERIVATION_INPUT_INFO (macro)

An information string for key derivation.
#define PSA_KEY_DERIVATION_INPUT_INFO /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.
PSA_KEY_DERIVATION_INPUT_SEED (macro)

A seed for key derivation.
#define PSA_KEY_DERIVATION_INPUT_SEED /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.
PSA_KEY_DERIVATION_INPUT_COST (macro)

A cost parameter for password hashing or key stretching.
#define PSA_KEY_DERIVATION_INPUT_COST /* implementation-defined value */

This must be a direct input, passed to psa_key_derivation_input_integer().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 221

10.6.3 Key derivation functions

psa_key_derivation_operation_t (typedef)

The type of the state object for key derivation operations.
typedef /* implementation-defined type */ psa_key_derivation_operation_t;

Before calling any function on a key derivation operation object, the application must initialize it by any ofthe following means:
∙ Set the object to all-bits-zero, for example:

psa_key_derivation_operation_t operation;

memset(&operation, 0, sizeof(operation));

∙ Initialize the object to logical zero values by declaring the object as static or global without anexplicit initializer, for example:
static psa_key_derivation_operation_t operation;

∙ Initialize the object to the initializer PSA_KEY_DERIVATION_OPERATION_INIT, for example:
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;

∙ Assign the result of the function psa_key_derivation_operation_init() to the object, for example:
psa_key_derivation_operation_t operation;

operation = psa_key_derivation_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.
PSA_KEY_DERIVATION_OPERATION_INIT (macro)

This macro returns a suitable initializer for a key derivation operation object of type
psa_key_derivation_operation_t.
#define PSA_KEY_DERIVATION_OPERATION_INIT /* implementation-defined value */

psa_key_derivation_operation_init (function)

Return an initial value for a key derivation operation object.
psa_key_derivation_operation_t psa_key_derivation_operation_init(void);

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 222

Returns: psa_key_derivation_operation_t

psa_key_derivation_setup (function)

Set up a key derivation operation.
psa_status_t psa_key_derivation_setup(psa_key_derivation_operation_t * operation,

psa_algorithm_t alg);

Parameters

operation The key derivation operation object to set up. It must have beeninitialized but not set up yet.
alg The algorithm to compute. This must be one of the following:

∙ A key derivation algorithm: a value of type psa_algorithm_t suchthat PSA_ALG_IS_KEY_DERIVATION(alg) is true.
∙ A key agreement and derivation algorithm: a value of type

psa_algorithm_t such that PSA_ALG_IS_KEY_AGREEMENT(alg) is trueand PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) is false.
Returns: psa_status_t

PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT alg is neither a key derivation algorithm, nor a key agreement andderivation algorithm.
PSA_ERROR_NOT_SUPPORTED alg is not supported or is not a key derivation algorithm, or a keyagreement and derivation algorithm.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

A key derivation algorithm takes some inputs and uses them to generate a byte stream in a deterministicway. This byte stream can be used to produce keys and other cryptographic material.
A key agreement and derivation algorithm uses a key agreement protocol to provide a shared secret whichis used for the key derivation. See psa_key_derivation_key_agreement().
The sequence of operations to derive a key is as follows:

1. Allocate a key derivation operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_key_derivation_operation_t, e.g. PSA_KEY_DERIVATION_OPERATION_INIT.
3. Call psa_key_derivation_setup() to specify the algorithm.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 223

4. Provide the inputs for the key derivation by calling psa_key_derivation_input_bytes() or
psa_key_derivation_input_key() as appropriate. Which inputs are needed, in what order, whetherkeys are permitted, and what type of keys depends on the algorithm.

5. Optionally set the operation’s maximum capacity with psa_key_derivation_set_capacity(). This canbe done before, in the middle of, or after providing inputs. For some algorithms, this step ismandatory because the output depends on the maximum capacity.
6. To derive a key, call psa_key_derivation_output_key(). To derive a byte string for a different purpose,call psa_key_derivation_output_bytes(). Successive calls to these functions use successive outputbytes calculated by the key derivation algorithm.
7. Clean up the key derivation operation object with psa_key_derivation_abort().

After a successful call to psa_key_derivation_setup(), the operation is active, and the application musteventually terminate the operation with a call to psa_key_derivation_abort().
If psa_key_derivation_setup() returns an error, the operation object is unchanged. If a subsequent functioncall with an active operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_key_derivation_abort().
SeeMulti-part operations on page 24.
psa_key_derivation_get_capacity (function)

Retrieve the current capacity of a key derivation operation.
psa_status_t psa_key_derivation_get_capacity(const psa_key_derivation_operation_t * operation,

size_t * capacity);

Parameters

operation The operation to query.
capacity On success, the capacity of the operation.

Returns: psa_status_t

PSA_SUCCESS Success. The maximum number of bytes that this key derivation canreturn is (*capacity).
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 224

Description

The capacity of a key derivation is the maximum number of bytes that it can return. Reading 𝑁 bytes ofoutput from a key derivation operation reduces its capacity by at least 𝑁 . The capacity can be reduced bymore than 𝑁 in the following situations:
∙ Calling psa_key_derivation_output_key() can reduce the capacity by more than the key size,depending on the type of key being generated. See psa_key_derivation_output_key() for details ofthe key derivation process.
∙ When the psa_key_derivation_operation_t object is operating as a deterministic random bitgenerator (DBRG), which reduces capacity in whole blocks, even when less than a block is read.

psa_key_derivation_set_capacity (function)

Set the maximum capacity of a key derivation operation.
psa_status_t psa_key_derivation_set_capacity(psa_key_derivation_operation_t * operation,

size_t capacity);

Parameters

operation The key derivation operation object to modify.
capacity The new capacity of the operation. It must be less or equal to theoperation’s current capacity.

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT capacity is larger than the operation’s current capacity. In this case,the operation object remains valid and its capacity remainsunchanged.
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

The capacity of a key derivation operation is the maximum number of bytes that the key derivationoperation can return from this point onwards.
Note:
For some algorithms, the capacity value can affect the output of the key derivation. For example, see
PSA_ALG_SP800_108_COUNTER_HMAC.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 225

psa_key_derivation_input_bytes (function)

Provide an input for key derivation or key agreement.
psa_status_t psa_key_derivation_input_bytes(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,

const uint8_t * data,

size_t data_length);

Parameters

operation The key derivation operation object to use. It must have been set upwith psa_key_derivation_setup() and must not have produced anyoutput yet.
step Which step the input data is for.
data Input data to use.
data_length Size of the data buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid for this input step. This canhappen if the application provides a step out of order or repeatsa step that may not be repeated.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ step is not compatible with the operation’s algorithm.
∙ step does not permit direct inputs.
∙ data_length is too small or too large for step in this particularalgorithm.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ step is not supported with the operation’s algorithm.
∙ data_length is is not supported for step in this particularalgorithm.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 226

Description

Which inputs are required and in what order depends on the algorithm. Refer to the documentation ofeach key derivation or key agreement algorithm for information.
This function passes direct inputs, which is usually correct for non-secret inputs. To pass a secret input,which is normally in a key object, call psa_key_derivation_input_key() instead of this function. Refer to thedocumentation of individual step types (PSA_KEY_DERIVATION_INPUT_xxx values of type
psa_key_derivation_step_t) for more information.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_key_derivation_abort().
psa_key_derivation_input_integer (function)

Provide a numeric input for key derivation or key agreement.
psa_status_t psa_key_derivation_input_integer(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,

uint64_t value);

Parameters

operation The key derivation operation object to use. It must have been set upwith psa_key_derivation_setup() and must not have produced anyoutput yet.
step Which step the input data is for.
value The value of the numeric input.

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid for this input step. This canhappen if the application provides a step out of order or repeatsa step that may not be repeated.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ step is not compatible with the operation’s algorithm.
∙ step does not permit numerical inputs.
∙ value is not valid for step in the operation’s algorithm.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ step is not supported with the operation’s algorithm.
∙ value is not supported for step in the operation’s algorithm.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 227

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

Which inputs are required and in what order depends on the algorithm. However, when an algorithmrequires a particular order, numeric inputs usually come first as they tend to be configuration parameters.Refer to the documentation of each key derivation or key agreement algorithm for information.
This function is used for inputs which are fixed-size non-negative integers.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_key_derivation_abort().
psa_key_derivation_input_key (function)

Provide an input for key derivation in the form of a key.
psa_status_t psa_key_derivation_input_key(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,

psa_key_id_t key);

Parameters

operation The key derivation operation object to use. It must have been set upwith psa_key_derivation_setup() and must not have produced anyoutput yet.
step Which step the input data is for.
key Identifier of the key. The key must have an appropriate type for step,it must permit the usage PSA_KEY_USAGE_DERIVE or

PSA_KEY_USAGE_VERIFY_DERIVATION (see note), and it must permit thealgorithm used by the operation.
Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid for this input step. This canhappen if the application provides a step out of order or repeatsa step that may not be repeated.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key has neither the PSA_KEY_USAGE_DERIVE nor the

PSA_KEY_USAGE_VERIFY_DERIVATION usage flag, or it does not permit theoperation’s algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ step is not compatible with the operation’s algorithm.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 228

∙ step does not permit key inputs of the given type, or does notpermit key inputs at all.
PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

∙ step is not supported with the operation’s algorithm.
∙ Key inputs of the given type are not supported for step in theoperation’s algorithm.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

Which inputs are required and in what order depends on the algorithm. Refer to the documentation ofeach key derivation or key agreement algorithm for information.
This function obtains input from a key object, which is usually correct for secret inputs or for non-secretpersonalization strings kept in the key store. To pass a non-secret parameter which is not in the key store,call psa_key_derivation_input_bytes() instead of this function. Refer to the documentation of individualstep types (PSA_KEY_DERIVATION_INPUT_xxx values of type psa_key_derivation_step_t) for more information.

Note:
Once all inputs steps are completed, the following operations are permitted:

∙ psa_key_derivation_output_bytes() — if each input was either a direct input or a key with usageflag PSA_KEY_USAGE_DERIVE.
∙ psa_key_derivation_output_key() — if the input for step PSA_KEY_DERIVATION_INPUT_SECRET or

PSA_KEY_DERIVATION_INPUT_PASSWORD was a key with usage flag PSA_KEY_USAGE_DERIVE, and everyother input was either a direct input or a key with usage flag PSA_KEY_USAGE_DERIVE.
∙ psa_key_derivation_verify_bytes() — if each input was either a direct input, a key with usageflag PSA_KEY_USAGE_DERIVE, or a key with usage flag PSA_KEY_USAGE_VERIFY_DERIVATION.
∙ psa_key_derivation_verify_key() — under the same conditions as

psa_key_derivation_verify_bytes().
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_key_derivation_abort().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 229

psa_key_derivation_output_bytes (function)

Read some data from a key derivation operation.
psa_status_t psa_key_derivation_output_bytes(psa_key_derivation_operation_t * operation,

uint8_t * output,

size_t output_length);

Parameters

operation The key derivation operation object to read from.
output Buffer where the output will be written.
output_length Number of bytes to output.

Returns: psa_status_t

PSA_SUCCESS Success. The first output_length bytes of output contain the deriveddata.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, with allrequired input steps complete.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_NOT_PERMITTED One of the inputs was a key whose policy did not permit
PSA_KEY_USAGE_DERIVE.

PSA_ERROR_INSUFFICIENT_DATA The operation’s capacity was less than output_length bytes. In thiscase, the following occurs:
∙ No output is written to the output buffer.
∙ The operation’s capacity is set to zero.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function calculates output bytes from a key derivation algorithm and returns those bytes. If the keyderivation’s output is viewed as a stream of bytes, this function consumes the requested number of bytesfrom the stream and returns them to the caller. The operation’s capacity decreases by the number of bytesread.
A request to extract more data than the remaining capacity — output_length >

psa_key_derivation_get_capacity() — fails with PSA_ERROR_INSUFFICIENT_DATA, and sets the remainingcapacity to zero.
If the operation’s capacity is zero, and output_length is zero, then it is IMPLEMENTATION DEFINED whether thisfunction returns PSA_SUCCESS or PSA_ERROR_INSUFFICIENT_DATA.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 230

If this function returns an error status other than PSA_ERROR_INSUFFICIENT_DATA, the operation enters anerror state and must be aborted by calling psa_key_derivation_abort().
psa_key_derivation_output_key (function)

Derive a key from an ongoing key derivation operation.
psa_status_t psa_key_derivation_output_key(const psa_key_attributes_t * attributes,

psa_key_derivation_operation_t * operation,

psa_key_id_t * key);

Parameters

attributes The attributes for the new key. This function uses the attributes asfollows:
∙ The key type is required. It cannot be an asymmetric public key.
∙ The key size is required. It must be a valid size for the key type.
∙ The key permitted-algorithm policy is required for keys that willbe used for a cryptographic operation, see Permitted algorithmson page 85.If the key type to be created is PSA_KEY_TYPE_PASSWORD_HASH, thenthe permitted-algorithm policy must be the same as the currentoperation’s algorithm.
∙ The key usage flags define what operations are permitted withthe key, see Key usage flags on page 87.
∙ The key lifetime and identifier are required for a persistent key.

Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queriedby calling psa_get_key_attributes() with the key’s identifier.

operation The key derivation operation object to read from.
key On success, an identifier for the newly created key. PSA_KEY_ID_NULLon failure.

Returns: psa_status_t

PSA_SUCCESS Success. If the key is persistent, the key material and the key’smetadata have been saved to persistent storage.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, with allrequired input steps complete.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:
∙ The PSA_KEY_DERIVATION_INPUT_SECRET input step was neitherprovided through a key, nor the result of a key agreement.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 231

∙ One of the inputs was a key whose policy did not permit
PSA_KEY_USAGE_DERIVE.

∙ The implementation does not permit creating a key with thespecified attributes due to some implementation-specific policy.
PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_INSUFFICIENT_DATA There was not enough data to create the desired key. In this case, thefollowing occurs:

∙ No key is generated.
∙ The operation’s capacity is set to zero.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ The key type is invalid, or is an asymmetric public key type.
∙ The key type is PSA_KEY_TYPE_PASSWORD_HASH, and thepermitted-algorithm policy is not the same as the currentoperation’s algorithm.
∙ The key size is not valid for the key type. Implementations mustreject an attempt to derive a key of size 0.
∙ The key lifetime is invalid.
∙ The key identifier is not valid for the key lifetime.
∙ The key usage flags include invalid values.
∙ The key’s permitted-usage algorithm is invalid.
∙ The key attributes, as a whole, are invalid.

PSA_ERROR_NOT_SUPPORTED The key attributes, as a whole, are not supported, either by theimplementation in general or in the specified storage location.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function calculates output bytes from a key derivation algorithm and uses those bytes to generate akey deterministically. The key’s location, policy, type and size are taken from attributes.
If the key derivation’s output is viewed as a stream of bytes, this function consumes the required number ofbytes from the stream. The operation’s capacity decreases by the number of bytes used to derive the key.
A request that needs to extract more data than the remaining capacity fails with
PSA_ERROR_INSUFFICIENT_DATA, and sets the remaining capacity to zero.
If this function returns an error status other than PSA_ERROR_INSUFFICIENT_DATA, the operation enters anerror state and must be aborted by calling psa_key_derivation_abort().
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 232

How much output is produced and consumed from the operation, and how the key is derived, depends onthe key type. Table 9 describes the required key derivation procedures for standard key derivationalgorithms. Implementations can use other methods for implementation-specific algorithms.
Table 9 Standard key derivation process

Key type Key type details and derivation procedure

AES
ARC4
ARIA
CAMELLIA
ChaCha20
SM4
Secrets for derivation
HMAC
Password hashes

PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARC4

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_CHACHA20

PSA_KEY_TYPE_SM4

PSA_KEY_TYPE_DERIVE

PSA_KEY_TYPE_HMAC

PSA_KEY_TYPE_PASSWORD_HASH

For key types for which the key is an arbitrary sequence of bytes of agiven size, this function is functionally equivalent to calling
psa_key_derivation_output_bytes() and passing the resulting output to
psa_import_key(). However, this function has a security benefit: if theimplementation provides an isolation boundary then the key material isnot exposed outside the isolation boundary. As a consequence, for thesekey types, this function always consumes exactly key_bits/8 bytes fromthe operation.

DES PSA_KEY_TYPE_DES, 64 bits.
This function generates a key using the following process:

1. Draw an 8-byte string.
2. Set/clear the parity bits in each byte.
3. If the result is a forbidden weak key, discard the result and return tostep 1.
4. Output the string.

2-key 3DES
3-key 3DES

PSA_KEY_TYPE_DES, 192 bits.
PSA_KEY_TYPE_DES, 128 bits.
The two or three keys are generated by repeated application of theprocess used to generate a DES key.
For example, for 3-key 3DES, if the first 8 bytes specify a weak key andthe next 8 bytes do not, discard the first 8 bytes, use the next 8 bytes asthe first key, and continue reading output from the operation to derivethe other two keys.

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 233

Table 9 – continued from previous page

Key type Key type details and derivation procedure

Finite-field Diffie-Hellmankeys
ECC keys on a Weierstrasselliptic curve

PSA_KEY_TYPE_DH_KEY_PAIR(dh_family) where dh_family designates anyDiffie-Hellman family.
PSA_KEY_TYPE_ECC_KEY_PAIR(ecc_family) where ecc_family designates aWeierstrass curve family.
These key types require the generation of a private key 𝑑 ∈ [1, 𝑁 − 1],where 𝑁 is the boundary of the private key domain: 𝑁 is the prime 𝑝 forDiffie-Hellman, or the order of the curve’s base point for ECC.
Let𝑚 be the bit size of 𝑁 , such that 2𝑚−1 ≤ 𝑁 < 2𝑚. This functiongenerates the private key using the following process:

1. Draw a byte string of length ⌈𝑚/8⌉ bytes.
2. If𝑚 is not a multiple of 8, set the most significant 8 * ⌈𝑚/8⌉ −𝑚bits of the first byte in the string to zero.
3. Convert the string to integer 𝑘 by decoding it as a big-endianbyte-string.
4. If 𝑘 > 𝑁 − 2, discard the result and return to step 1.
5. Output 𝑑 = 𝑘 + 1 as the private key.

This method allows compliance to NIST standards, specifically themethods titled Key-Pair Generation by Testing Candidates in the followingpublications:
∙ NIST Special Publication 800-56A: Recommendation for Pair-WiseKey-Establishment Schemes Using Discrete Logarithm Cryptography[SP800-56A] §5.6.1.1.4 for Diffie-Hellman keys.
∙ [SP800-56A] §5.6.1.2.2 or FIPS Publication 186-4: Digital SignatureStandard (DSS) [FIPS186-4] §B.4.2 for elliptic curve keys.

ECC keys on a Montgomeryelliptic curve PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_MONTGOMERY)

This function always draws a byte string whose length is determined bythe curve, and sets the mandatory bits accordingly. That is:
∙ Curve25519 (PSA_ECC_FAMILY_MONTGOMERY, 255 bits): draw a 32-bytestring and process it as specified in Elliptic Curves for Security[RFC7748] §5.
∙ Curve448 (PSA_ECC_FAMILY_MONTGOMERY, 448 bits): draw a 56-bytestring and process it as specified in [RFC7748] §5.

Other key types This includes PSA_KEY_TYPE_RSA_KEY_PAIR.
The way in which the operation output is consumed isimplementation-defined.

For algorithms that take an input step PSA_KEY_DERIVATION_INPUT_SECRET, the input to that step must be
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 234

https://datatracker.ietf.org/doc/html/rfc7748.html#section-5
https://datatracker.ietf.org/doc/html/rfc7748.html#section-5

provided with psa_key_derivation_input_key(). Future versions of this specification might includeadditional restrictions on the derived key based on the attributes and strength of the secret key.
psa_key_derivation_verify_bytes (function)

Compare output data from a key derivation operation to an expected value.
psa_status_t psa_key_derivation_verify_bytes(psa_key_derivation_operation_t * operation,

const uint8_t *expected_output,

size_t output_length);

Parameters

operation The key derivation operation object to read from.
expected_output Buffer containing the expected derivation output.
output_length Length of the expected output. This is also the number of bytes thatwill be read.

Returns: psa_status_t

PSA_SUCCESS Success. The output of the key derivation operation matches
expected_output.

PSA_ERROR_BAD_STATE The following conditions can result in this error:
∙ The operation state is not valid: it must be active, with allrequired input steps complete.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_NOT_PERMITTED One of the inputs is a key whose policy permits neither
PSA_KEY_USAGE_DERIVE nor PSA_KEY_USAGE_VERIFY_DERIVATION.

PSA_ERROR_INVALID_SIGNATURE The output of the key derivation operation does not match the valuein expected_output.
PSA_ERROR_INSUFFICIENT_DATA The operation’s capacity was less than output_length bytes. In thiscase, the operation’s capacity is set to zero.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 235

Description

This function calculates output bytes from a key derivation algorithm and compares those bytes to anexpected value. If the key derivation’s output is viewed as a stream of bytes, this function destructivelyreads output_length bytes from the stream before comparing them with expected_output. The operation’scapacity decreases by the number of bytes read.
A request to extract more data than the remaining capacity — output_length >

psa_key_derivation_get_capacity() — fails with PSA_ERROR_INSUFFICIENT_DATA, and sets the remainingcapacity to zero.
If the operation’s capacity is zero, and output_length is zero, then it is IMPLEMENTATION DEFINED whether thisfunction returns PSA_SUCCESS or PSA_ERROR_INSUFFICIENT_DATA.
If this function returns an error status other than PSA_ERROR_INSUFFICIENT_DATA, the operation enters anerror state and must be aborted by calling psa_key_derivation_abort().

Note:
A call to psa_key_derivation_verify_bytes() is functionally equivalent to the following code:
uint8_t tmp[output_length];

psa_key_derivation_output_bytes(operation, tmp, output_length);

if (memcmp(expected_output, tmp, output_length) != 0)

return PSA_ERROR_INVALID_SIGNATURE;

However, calling psa_key_derivation_verify_bytes() works even if the key’s policy does not permitoutput of the bytes.

Implementation note
Implementations must make the best effort to ensure that the comparison between the actual keyderivation output and the expected output is performed in constant time.

psa_key_derivation_verify_key (function)

Compare output data from a key derivation operation to an expected value stored in a key.
psa_status_t psa_key_derivation_verify_key(psa_key_derivation_operation_t * operation,

psa_key_id_t expected);

Parameters

operation The key derivation operation object to read from.
expected A key of type PSA_KEY_TYPE_PASSWORD_HASH containing the expectedoutput. The key must permit the usage

PSA_KEY_USAGE_VERIFY_DERIVATION, and the permitted algorithm mustmatch the operation’s algorithm.
The value of this key is typically computed by a previous call topsa_key_derivation_output_key().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 236

Returns: psa_status_t

PSA_SUCCESS Success. The output of the key derivation operation matches the
expected key value.

PSA_ERROR_BAD_STATE The following conditions can result in this error:
∙ The operation state is not valid: it must be active, with allrequired input steps complete.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE expected is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:

∙ The expected key does not have the
PSA_KEY_USAGE_VERIFY_DERIVATION flag, or it does not permit therequested algorithm.

∙ One of the inputs is a key whose policy permits neither
PSA_KEY_USAGE_DERIVE nor PSA_KEY_USAGE_VERIFY_DERIVATION.

PSA_ERROR_INVALID_SIGNATURE The output of the key derivation operation does not match the valueof the expected key.
PSA_ERROR_INSUFFICIENT_DATA The operation’s capacity was less than the length of the expected key.In this case, the operation’s capacity is set to zero.
PSA_ERROR_INVALID_ARGUMENT The key type is not PSA_KEY_TYPE_PASSWORD_HASH.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function calculates output bytes from a key derivation algorithm and compares those bytes to anexpected value, provided as key of type PSA_KEY_TYPE_PASSWORD_HASH. If the key derivation’s output isviewed as a stream of bytes, this function destructively reads the number of bytes corresponding to thelength of the expected key from the stream before comparing them with the key value. The operation’scapacity decreases by the number of bytes read.
A request that needs to extract more data than the remaining capacity fails with
PSA_ERROR_INSUFFICIENT_DATA, and sets the remaining capacity to zero.
If this function returns an error status other than PSA_ERROR_INSUFFICIENT_DATA, the operation enters anerror state and must be aborted by calling psa_key_derivation_abort().

Note:
A call to psa_key_derivation_verify_key() is functionally equivalent to exporting the expected key andcalling psa_key_derivation_verify_bytes() on the result, except that it works when the key cannot be

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 237

exported.

Implementation note
Implementations must make the best effort to ensure that the comparison between the actual keyderivation output and the expected output is performed in constant time.

psa_key_derivation_abort (function)

Abort a key derivation operation.
psa_status_t psa_key_derivation_abort(psa_key_derivation_operation_t * operation);

Parameters

operation The operation to abort.
Returns: psa_status_t

PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,the operation object can be reused for another operation by calling psa_key_derivation_setup() again.
This function can be called at any time after the operation object has been initialized as described in
psa_key_derivation_operation_t.
In particular, it is valid to call psa_key_derivation_abort() twice, or to call psa_key_derivation_abort() on anoperation that has not been set up.
10.6.4 Support macros

PSA_ALG_IS_KEY_DERIVATION_STRETCHING (macro)

Whether the specified algorithm is a key-stretching or password-hashing algorithm.
#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \

/* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 238

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a key-stretching or password-hashing algorithm, 0 otherwise. This macro can return either 0 or 1if alg is not a supported key derivation algorithm algorithm identifier.
Description

A key-stretching or password-hashing algorithm is a key derivation algorithm that is suitable for use with alow-entropy secret such as a password. Equivalently, it’s a key derivation algorithm that uses a
PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
PSA_ALG_IS_HKDF (macro)

Whether the specified algorithm is an HKDF algorithm (PSA_ALG_HKDF(hash_alg)).
#define PSA_ALG_IS_HKDF(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is an HKDF algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supported keyderivation algorithm identifier.
Description

HKDF is a family of key derivation algorithms that are based on a hash function and the HMACconstruction.
PSA_ALG_IS_HKDF_EXTRACT (macro)

Whether the specified algorithm is an HKDF-Extract algorithm (PSA_ALG_HKDF_EXTRACT(hash_alg)).
#define PSA_ALG_IS_HKDF_EXTRACT(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is an HKDF-Extract algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported key derivation algorithm identifier.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 239

PSA_ALG_IS_HKDF_EXPAND (macro)

Whether the specified algorithm is an HKDF-Expand algorithm (PSA_ALG_HKDF_EXPAND(hash_alg)).
#define PSA_ALG_IS_HKDF_EXPAND(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is an HKDF-Expand algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported key derivation algorithm identifier.
PSA_ALG_IS_SP800_108_COUNTER_HMAC (macro)

Whether the specified algorithm is a key derivation algorithm constructed using
PSA_ALG_SP800_108_COUNTER_HMAC(hash_alg).
#define PSA_ALG_IS_SP800_108_COUNTER_HMAC(alg) \

/* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a key derivation algorithm constructed using PSA_ALG_SP800_108_COUNTER_HMAC(), 0 otherwise. Thismacro can return either 0 or 1 if alg is not a supported key derivation algorithm identifier.
PSA_ALG_IS_TLS12_PRF (macro)

Whether the specified algorithm is a TLS-1.2 PRF algorithm.
#define PSA_ALG_IS_TLS12_PRF(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a TLS-1.2 PRF algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedkey derivation algorithm identifier.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 240

PSA_ALG_IS_TLS12_PSK_TO_MS (macro)

Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported key derivation algorithm identifier.
PSA_ALG_IS_PBKDF2_HMAC (macro)

Whether the specified algorithm is a PBKDF2-HMAC algorithm.
#define PSA_ALG_IS_PBKDF2_HMAC(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a PBKDF2-HMAC algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported key derivation algorithm identifier.
PSA_KEY_DERIVATION_UNLIMITED_CAPACITY (macro)

Use the maximum possible capacity for a key derivation operation.
#define PSA_KEY_DERIVATION_UNLIMITED_CAPACITY \

/* implementation-defined value */

Use this value as the capacity argument when setting up a key derivation to specify that the operation willuse the maximum possible capacity. The value of the maximum possible capacity depends on the keyderivation algorithm.
PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE (macro)

This macro returns the maximum supported length of the PSK for the TLS-1.2 PSK-to-MS key derivation.
#define PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE /* implementation-defined value */

This implementation-defined value specifies the maximum length for the PSK input used with a
PSA_ALG_TLS12_PSK_TO_MS() key agreement algorithm.
Quoting Pre-Shared Key Ciphersuites for Transport Layer Security (TLS) [RFC4279] §5.3:

TLS implementations supporting these cipher suites MUST support arbitrary PSK identities upto 128 octets in length, and arbitrary PSKs up to 64 octets in length. Supporting longeridentities and keys is RECOMMENDED.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 241

https://datatracker.ietf.org/doc/html/rfc4279.html#section-5.3

Therefore, it is recommended that implementations define PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE with a valuegreater than or equal to 64.
PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE (macro)

The size of the output from the TLS 1.2 ECJPAKE-to-PMS key-derivation algorithm, in bytes.
#define PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE 32

This value can be used when extracting the result of a key-derivation operation that was set up with the
PSA_ALG_TLS12_ECJPAKE_TO_PMS algorithm.

10.7 Asymmetric signature
There are two pairs of single-part functions for asymmetric signature:

∙ The signature and verification functions psa_sign_message() and psa_verify_message() take a messageas one of their inputs and perform a hash-and-sign algorithm.
∙ The functions psa_sign_hash() and psa_verify_hash() take a message hash as one of their inputs. Thisis useful for signing pre-computed hashes, or for implementing hash-and-sign using a multi-part hashoperation before signing the resulting hash. To determine which hash algorithm to use, call the macro

PSA_ALG_GET_HASH() on the corresponding signature algorithm.
Some hash-and-sign algorithms add padding to the message hash before completing the signingoperation. The format of the padding that is used depends on the algorithm used to construct thesignature, see the description of the specific algorithm for details.

10.7.1 Asymmetric signature algorithms

PSA_ALG_RSA_PKCS1V15_SIGN (macro)

The RSA PKCS#1 v1.5 message signature scheme, with hashing.
#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) /* specification-defined value */

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.

Returns

The corresponding RSA PKCS#1 v1.5 signature algorithm.
Unspecified if hash_alg is not a supported hash algorithm.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 242

Description

This algorithm can be used with both the message and hash signature functions.
This signature scheme is defined by PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC8017] §8.2under the name RSASSA-PKCS1-v1_5.
When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is used as 𝐻 from step2 onwards in the message encoding algorithm EMSA-PKCS1-V1_5-ENCODE() in [RFC8017] §9.2. 𝐻 is themessage digest, computed using the hash_alg hash algorithm.
Compatible key types

PSA_KEY_TYPE_RSA_KEY_PAIR

PSA_KEY_TYPE_RSA_PUBLIC_KEY (signature verification only)

PSA_ALG_RSA_PKCS1V15_SIGN_RAW (macro)

The raw RSA PKCS#1 v1.5 signature algorithm, without hashing.
#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW ((psa_algorithm_t) 0x06000200)

This algorithm can be only used with the psa_sign_hash() and psa_verify_hash() functions.
This signature scheme is defined by PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC8017] §8.2under the name RSASSA-PKCS1-v1_5.
The hash parameter to psa_sign_hash() or psa_verify_hash() is used as 𝑇 from step 3 onwards in themessage encoding algorithm EMSA-PKCS1-V1_5-ENCODE() in [RFC8017] §9.2. 𝑇 is normally the DER encodingof the DigestInfo structure produced by step 2 in the message encoding algorithm, but it can be any bytestring within the available length.
The wildcard key policy PSA_ALG_RSA_PKCS1V15_SIGN(PSA_ALG_ANY_HASH) also permits a key to be used withthe PSA_ALG_RSA_PKCS1V15_SIGN_RAW signature algorithm.
Compatible key types

PSA_KEY_TYPE_RSA_KEY_PAIR

PSA_KEY_TYPE_RSA_PUBLIC_KEY (signature verification only)

PSA_ALG_RSA_PSS (macro)

The RSA PSS message signature scheme, with hashing.
#define PSA_ALG_RSA_PSS(hash_alg) /* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 243

https://datatracker.ietf.org/doc/html/rfc8017.html#section-8.2
https://datatracker.ietf.org/doc/html/rfc8017.html#section-9.2
https://datatracker.ietf.org/doc/html/rfc8017.html#section-8.2
https://datatracker.ietf.org/doc/html/rfc8017.html#section-9.2

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.

Returns

The corresponding RSA PSS signature algorithm.
Unspecified if hash_alg is not a supported hash algorithm.
Description

This algorithm can be used with both the message and hash signature functions.
This algorithm is randomized: each invocation returns a different, equally valid signature.
This is the signature scheme defined by [RFC8017] §8.1 under the name RSASSA-PSS, with the followingoptions:

∙ The mask generation function isMGF1 defined by [RFC8017] Appendix B.
∙ When creating a signature, the salt length is equal to the length of the hash, or the largest possiblesalt length for the algorithm and key size if that is smaller than the hash length.
∙ When verifying a signature, the salt length must be equal to the length of the hash, or the largestpossible salt length for the algorithm and key size if that is smaller than the hash length.
∙ The specified hash algorithm, hash_alg, is used to hash the input message, to create the salted hash,and for the mask generation.

When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is the message digest,computed using the hash_alg hash algorithm.
Note:
The PSA_ALG_RSA_PSS_ANY_SALT() algorithm is equivalent to PSA_ALG_RSA_PSS() when creating asignature, but permits any salt length when verifying a signature.

Compatible key types

PSA_KEY_TYPE_RSA_KEY_PAIR

PSA_KEY_TYPE_RSA_PUBLIC_KEY (signature verification only)

PSA_ALG_RSA_PSS_ANY_SALT (macro)

The RSA PSS message signature scheme, with hashing. This variant permits any salt length for signatureverification.
#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) /* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 244

https://datatracker.ietf.org/doc/html/rfc8017.html#section-8.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.

Returns

The corresponding RSA PSS signature algorithm.
Unspecified if hash_alg is not a supported hash algorithm.
Description

This algorithm can be used with both the message and hash signature functions.
This algorithm is randomized: each invocation returns a different, equally valid signature.
This is the signature scheme defined by [RFC8017] §8.1 under the name RSASSA-PSS, with the followingoptions:

∙ The mask generation function isMGF1 defined by [RFC8017] Appendix B.
∙ When creating a signature, the salt length is equal to the length of the hash, or the largest possiblesalt length for the algorithm and key size if that is smaller than the hash length.
∙ When verifying a signature, any salt length permitted by the RSASSA-PSS signature algorithm isaccepted.
∙ The specified hash algorithm, hash_alg, is used to hash the input message, to create the salted hash,and for the mask generation.

When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is the message digest,computed using the hash_alg hash algorithm.
Note:
The PSA_ALG_RSA_PSS() algorithm is equivalent to PSA_ALG_RSA_PSS_ANY_SALT() when creating asignature, but is strict about the permitted salt length when verifying a signature.

Compatible key types

PSA_KEY_TYPE_RSA_KEY_PAIR

PSA_KEY_TYPE_RSA_PUBLIC_KEY (signature verification only)

PSA_ALG_ECDSA (macro)

The randomized ECDSA signature scheme, with hashing.
#define PSA_ALG_ECDSA(hash_alg) /* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 245

https://datatracker.ietf.org/doc/html/rfc8017.html#section-8.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.

Returns

The corresponding randomized ECDSA signature algorithm.
Unspecified if hash_alg is not a supported hash algorithm.
Description

This algorithm can be used with both the message and hash signature functions.
When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is the message digest,computed using the hash_alg hash algorithm.
This algorithm is randomized: each invocation returns a different, equally valid signature.

Note:
When based on the same hash algorithm, the verification operations for PSA_ALG_ECDSA and
PSA_ALG_DETERMINISTIC_ECDSA are identical. A signature created using PSA_ALG_ECDSA can be verifiedwith the same key using either PSA_ALG_ECDSA or PSA_ALG_DETERMINISTIC_ECDSA. Similarly, a signaturecreated using PSA_ALG_DETERMINISTIC_ECDSA can be verified with the same key using either
PSA_ALG_ECDSA or PSA_ALG_DETERMINISTIC_ECDSA.
In particular, it is impossible to determine whether a signature was produced with deterministicECDSA or with randomized ECDSA: it is only possible to verify that a signature was made withECDSA with the private key corresponding to the public key used for the verification.

This signature scheme is defined by SEC 1: Elliptic Curve Cryptography [SEC1], and also by Public KeyCryptography For The Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA)[X9-62], with a random per-message secret number 𝑘.
The representation of the signature as a byte string consists of the concatenation of the signature values 𝑟and 𝑠. Each of 𝑟 and 𝑠 is encoded as an 𝑁-octet string, where 𝑁 is the length of the base point of the curvein octets. Each value is represented in big-endian order, with the most significant octet first.
Compatible key types

PSA_KEY_TYPE_ECC_KEY_PAIR(family)

PSA_KEY_TYPE_ECC_PUBLIC_KEY(family) (signature verification only)

where family is a Weierstrass Elliptic curve family. That is, one of the following values:
∙ PSA_ECC_FAMILY_SECT_XX

∙ PSA_ECC_FAMILY_SECP_XX

∙ PSA_ECC_FAMILY_FRP

∙ PSA_ECC_FAMILY_BRAINPOOL_P_R1

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 246

PSA_ALG_ECDSA_ANY (macro)

The randomized ECDSA signature scheme, without hashing.
#define PSA_ALG_ECDSA_ANY ((psa_algorithm_t) 0x06000600)

This algorithm can be only used with the psa_sign_hash() and psa_verify_hash() functions.
This algorithm is randomized: each invocation returns a different, equally valid signature.
This is the same signature scheme as PSA_ALG_ECDSA(), but without specifying a hash algorithm, andskipping the message hashing operation.
This algorithm is only recommended to sign or verify a sequence of bytes that are an already-calculatedhash. Note that the input is padded with zeros on the left or truncated on the right as required to fit thecurve size.
This algorithm cannot be used with the wildcard key policy PSA_ALG_ECDSA(PSA_ALG_ANY_HASH). It is onlypermitted when PSA_ALG_ECDSA_ANY is the key’s permitted-algorithm policy.
Compatible key types

PSA_KEY_TYPE_ECC_KEY_PAIR(family)

PSA_KEY_TYPE_ECC_PUBLIC_KEY(family) (signature verification only)

where family is a Weierstrass Elliptic curve family. That is, one of the following values:
∙ PSA_ECC_FAMILY_SECT_XX

∙ PSA_ECC_FAMILY_SECP_XX

∙ PSA_ECC_FAMILY_FRP

∙ PSA_ECC_FAMILY_BRAINPOOL_P_R1

PSA_ALG_DETERMINISTIC_ECDSA (macro)

Deterministic ECDSA signature scheme, with hashing.
#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) /* specification-defined value */

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 247

Returns

The corresponding deterministic ECDSA signature algorithm.
Unspecified if hash_alg is not a supported hash algorithm.
Description

This algorithm can be used with both the message and hash signature functions.
When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is the message digest,computed using the hash_alg hash algorithm.
This is the deterministic ECDSA signature scheme defined by Deterministic Usage of the Digital SignatureAlgorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) [RFC6979].
The representation of a signature is the same as with PSA_ALG_ECDSA().

Note:
When based on the same hash algorithm, the verification operations for PSA_ALG_ECDSA and
PSA_ALG_DETERMINISTIC_ECDSA are identical. A signature created using PSA_ALG_ECDSA can be verifiedwith the same key using either PSA_ALG_ECDSA or PSA_ALG_DETERMINISTIC_ECDSA. Similarly, a signaturecreated using PSA_ALG_DETERMINISTIC_ECDSA can be verified with the same key using either
PSA_ALG_ECDSA or PSA_ALG_DETERMINISTIC_ECDSA.
In particular, it is impossible to determine whether a signature was produced with deterministicECDSA or with randomized ECDSA: it is only possible to verify that a signature was made withECDSA with the private key corresponding to the public key used for the verification.

Compatible key types

PSA_KEY_TYPE_ECC_KEY_PAIR(family)

PSA_KEY_TYPE_ECC_PUBLIC_KEY(family) (signature verification only)

where family is a Weierstrass Elliptic curve family. That is, one of the following values:
∙ PSA_ECC_FAMILY_SECT_XX

∙ PSA_ECC_FAMILY_SECP_XX

∙ PSA_ECC_FAMILY_FRP

∙ PSA_ECC_FAMILY_BRAINPOOL_P_R1

PSA_ALG_PURE_EDDSA (macro)

Edwards-curve digital signature algorithm without prehashing (PureEdDSA), using standard parameters.
#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)

This algorithm can be only used with the psa_sign_message() and psa_verify_message() functions.
This is the PureEdDSA digital signature algorithm defined by Edwards-Curve Digital Signature Algorithm(EdDSA) [RFC8032], using standard parameters.
PureEdDSA requires an elliptic curve key on a twisted Edwards curve. The following curves are supported:
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 248

∙ Edwards25519: the Ed25519 algorithm is computed. The output signature is a 64-byte string: theconcatenation of 𝑅 and 𝑆 as defined by [RFC8032] §5.1.6.
∙ Edwards448: the Ed448 algorithm is computed with an empty string as the context. The outputsignature is a 114-byte string: the concatenation of 𝑅 and 𝑆 as defined by [RFC8032] §5.2.6.

Note:
Contexts are not supported in the current version of this specification because there is no suitablesignature interface that can take the context as a parameter. A future version of this specificationmay add suitable functions and extend this algorithm to support contexts.

Note:
To sign or verify the pre-computed hash of a message using EdDSA, the HashEdDSA algorithms(PSA_ALG_ED25519PH and PSA_ALG_ED448PH) can be used with psa_sign_hash() and psa_verify_hash().
The signature produced by HashEdDSA is distinct from that produced by PureEdDSA.

Compatible key types

PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_TWISTED_EDWARDS)

PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_TWISTED_EDWARDS) (signature verification only)

PSA_ALG_ED25519PH (macro)

Edwards-curve digital signature algorithm with prehashing (HashEdDSA), using the Edwards25519 curve.
#define PSA_ALG_ED25519PH ((psa_algorithm_t) 0x0600090B)

This algorithm can be used with both the message and hash signature functions.
This computes the Ed25519ph algorithm as specified in Edwards-Curve Digital Signature Algorithm (EdDSA)[RFC8032] §5.1, and requires an Edwards25519 curve key. An empty string is used as the context. Theprehash function is SHA-512.
When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is the SHA-512message digest.

Implementation note
When used with psa_sign_hash() or psa_verify_hash(), the hash parameter to the call should be usedas PH(𝑀) in the algorithms defined in [RFC8032] §5.1.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 249

https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.1.6
https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.2.6
https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.1
https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.1

Usage

This is a hash-and-sign algorithm. To calculate a signature, use one of the following approaches:
∙ Call psa_sign_message() with the message.
∙ Calculate the SHA-512 hash of the message with psa_hash_compute(), or with a multi-part hashoperation, using the hash algorithm PSA_ALG_SHA_512. Then sign the calculated hash with

psa_sign_hash().
Verifying a signature is similar, using psa_verify_message() or psa_verify_hash() instead of the signaturefunction.
Compatible key types

PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_TWISTED_EDWARDS)

PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_TWISTED_EDWARDS) (signature verification only)

PSA_ALG_ED448PH (macro)

Edwards-curve digital signature algorithm with prehashing (HashEdDSA), using the Edwards448 curve.
#define PSA_ALG_ED448PH ((psa_algorithm_t) 0x06000915)

This algorithm can be used with both the message and hash signature functions.
This computes the Ed448ph algorithm as specified in Edwards-Curve Digital Signature Algorithm (EdDSA)[RFC8032] §5.2, and requires an Edwards448 curve key. An empty string is used as the context. Theprehash function is the first 64 bytes of the output from SHAKE256.
When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is the truncatedSHAKE256 message digest.

Implementation note
When used with psa_sign_hash() or psa_verify_hash(), the hash parameter to the call should be usedas PH(𝑀) in the algorithms defined in [RFC8032] §5.2.

Usage

This is a hash-and-sign algorithm. To calculate a signature, use one of the following approaches:
∙ Call psa_sign_message() with the message.
∙ Calculate the first 64 bytes of the SHAKE256 output of the message with psa_hash_compute(), orwith a multi-part hash operation, using the hash algorithm PSA_ALG_SHAKE256_512. Then sign thecalculated hash with psa_sign_hash().

Verifying a signature is similar, using psa_verify_message() or psa_verify_hash() instead of the signaturefunction.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 250

https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.2
https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.2

Compatible key types

PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_TWISTED_EDWARDS)

PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_TWISTED_EDWARDS) (signature verification only)

10.7.2 Asymmetric signature functions

psa_sign_message (function)

Sign a message with a private key. For hash-and-sign algorithms, this includes the hashing step.
psa_status_t psa_sign_message(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

uint8_t * signature,

size_t signature_size,

size_t * signature_length);

Parameters

key Identifier of the key to use for the operation. It must be anasymmetric key pair. The key must permit the usage
PSA_KEY_USAGE_SIGN_MESSAGE.

alg An asymmetric signature algorithm: a value of type psa_algorithm_tsuch that PSA_ALG_IS_SIGN_MESSAGE(alg) is true.
input The input message to sign.
input_length Size of the input buffer in bytes.
signature Buffer where the signature is to be written.
signature_size Size of the signature buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The required signature size is PSA_SIGN_OUTPUT_SIZE(key_type,
key_bits, alg) where key_type and key_bits are the type andbit-size respectively of key.

∙ PSA_SIGNATURE_MAX_SIZE evaluates to the maximum signature sizeof any supported signature algorithm.
signature_length On success, the number of bytes that make up the returned signaturevalue.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 251

Returns: psa_status_t

PSA_SUCCESS Success. The first (*signature_length) bytes of signature contain thesignature value.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_SIGN_MESSAGE flag, or it doesnot permit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the signature buffer is too small. PSA_SIGN_OUTPUT_SIZE()or PSA_SIGNATURE_MAX_SIZE can be used to determine a sufficientbuffer size.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an asymmetric signature algorithm.
∙ key is not an asymmetric key pair, that is compatible with alg.
∙ input_length is too large for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not an asymmetric signature algorithm.
∙ key is not supported for use with alg.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

Note:
To perform a multi-part hash-and-sign signature algorithm, first use a multi-part hash operation andthen pass the resulting hash to psa_sign_hash(). PSA_ALG_GET_HASH(alg) can be used to determine thehash algorithm to use.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 252

psa_verify_message (function)

Verify the signature of a message with a public key. For hash-and-sign algorithms, this includes the hashingstep.
psa_status_t psa_verify_message(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

const uint8_t * signature,

size_t signature_length);

Parameters

key Identifier of the key to use for the operation. It must be a public keyor an asymmetric key pair. The key must permit the usage
PSA_KEY_USAGE_VERIFY_MESSAGE.

alg An asymmetric signature algorithm: a value of type psa_algorithm_tsuch that PSA_ALG_IS_SIGN_MESSAGE(alg) is true.
input The message whose signature is to be verified.
input_length Size of the input buffer in bytes.
signature Buffer containing the signature to verify.
signature_length Size of the signature buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success. The signature is valid.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_MESSAGE flag, or itdoes not permit the requested algorithm.
PSA_ERROR_INVALID_SIGNATURE signature is not the result of signing the input message withalgorithm alg using the private key corresponding to key.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an asymmetric signature algorithm.
∙ key is not a public key or an asymmetric key pair, that iscompatible with alg.
∙ input_length is too large for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not an asymmetric signature algorithm.
∙ key is not supported for use with alg.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 253

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

Note:
To perform a multi-part hash-and-sign signature verification algorithm, first use a multi-part hashoperation to hash the message and then pass the resulting hash to psa_verify_hash().
PSA_ALG_GET_HASH(alg) can be used to determine the hash algorithm to use.

psa_sign_hash (function)

Sign an already-calculated hash with a private key.
psa_status_t psa_sign_hash(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * hash,

size_t hash_length,

uint8_t * signature,

size_t signature_size,

size_t * signature_length);

Parameters

key Identifier of the key to use for the operation. It must be anasymmetric key pair. The key must permit the usage
PSA_KEY_USAGE_SIGN_HASH.

alg An asymmetric signature algorithm that separates the hash and signoperations: a value of type psa_algorithm_t such that
PSA_ALG_IS_SIGN_HASH(alg) is true.

hash The input to sign. This is usually the hash of a message.
See the description of this function, or the description of individualsignature algorithms, for details of the acceptable inputs.

hash_length Size of the hash buffer in bytes.
signature Buffer where the signature is to be written.
signature_size Size of the signature buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The required signature size is PSA_SIGN_OUTPUT_SIZE(key_type,
key_bits, alg) where key_type and key_bits are the type andbit-size respectively of key.

∙ PSA_SIGNATURE_MAX_SIZE evaluates to the maximum signature sizeof any supported signature algorithm.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 254

signature_length On success, the number of bytes that make up the returned signaturevalue.
Returns: psa_status_t

PSA_SUCCESS Success. The first (*signature_length) bytes of signature contain thesignature value.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_SIGN_HASH flag, or it doesnot permit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the signature buffer is too small. PSA_SIGN_OUTPUT_SIZE()or PSA_SIGNATURE_MAX_SIZE can be used to determine a sufficientbuffer size.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an asymmetric signature algorithm.
∙ key is not an asymmetric key pair, that is compatible with alg.
∙ hash_length is not valid for the algorithm and key type.
∙ hash is not a valid input value for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not an asymmetric signature algorithm.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

With most signature algorithms that follow the hash-and-sign paradigm, the hash input to this function isthe hash of the message to sign. The algorithm used to compute this hash is encoded in the signaturealgorithm. For such algorithms, hash_length must equal the length of the hash output, and the followingcondition is true:
hash_length == PSA_HASH_LENGTH(PSA_ALG_GET_HASH(alg))

The current version of this specification defines the following signature algorithms with this property:
PSA_ALG_RSA_PKCS1V15_SIGN, PSA_ALG_RSA_PSS, PSA_ALG_ECDSA, PSA_ALG_DETERMINISTIC_ECDSA, PSA_ALG_ED25519PH,and PSA_ALG_ED448PH.
Some hash-and-sign mechanisms apply a padding or encoding to the hash. In such cases, the encodedhash must be passed to this function. The current version of this specification defines one such signature
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 255

algorithm: PSA_ALG_RSA_PKCS1V15_SIGN_RAW.
Note:
To perform a hash-and-sign signature algorithm, the hash must be calculated before passing it to thisfunction. This can be done by calling psa_hash_compute() or with a multi-part hash operation. Thecorrect hash algorithm to use can be determined using PSA_ALG_GET_HASH().
Alternatively, to hash and sign a message in a single call, use psa_sign_message().

psa_verify_hash (function)

Verify the signature of a hash or short message using a public key.
psa_status_t psa_verify_hash(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * hash,

size_t hash_length,

const uint8_t * signature,

size_t signature_length);

Parameters

key Identifier of the key to use for the operation. It must be a public keyor an asymmetric key pair. The key must permit the usage
PSA_KEY_USAGE_VERIFY_HASH.

alg An asymmetric signature algorithm that separates the hash and signoperations: a value of type psa_algorithm_t such that
PSA_ALG_IS_SIGN_HASH(alg) is true.

hash The input whose signature is to be verified. This is usually the hash ofa message.
See the description of this function, or the description of individualsignature algorithms, for details of the acceptable inputs.

hash_length Size of the hash buffer in bytes.
signature Buffer containing the signature to verify.
signature_length Size of the signature buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success. The signature is valid.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_HASH flag, or it doesnot permit the requested algorithm.
PSA_ERROR_INVALID_SIGNATURE signature is not the result of signing hash with algorithm alg using theprivate key corresponding to key.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 256

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not an asymmetric signature algorithm.
∙ key is not a public key or an asymmetric key pair, that iscompatible with alg.
∙ hash_length is not valid for the algorithm and key type.
∙ hash is not a valid input value for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not an asymmetric signature algorithm.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

With most signature algorithms that follow the hash-and-sign paradigm, the hash input to this function isthe hash of the message to verify. The algorithm used to compute this hash is encoded in the signaturealgorithm. For such algorithms, hash_length must equal the length of the hash output, and the followingcondition is true:
hash_length == PSA_HASH_LENGTH(PSA_ALG_GET_HASH(alg))

The current version of this specification defines the following signature algorithms with this property:
PSA_ALG_RSA_PKCS1V15_SIGN, PSA_ALG_RSA_PSS, PSA_ALG_ECDSA, PSA_ALG_DETERMINISTIC_ECDSA, PSA_ALG_ED25519PH,and PSA_ALG_ED448PH.
Some hash-and-sign mechanisms apply a padding or encoding to the hash. In such cases, the encodedhash must be passed to this function. The current version of this specification defines one such signaturealgorithm: PSA_ALG_RSA_PKCS1V15_SIGN_RAW.

Note:
To perform a hash-and-sign verification algorithm, the hash must be calculated before passing it tothis function. This can be done by calling psa_hash_compute() or with a multi-part hash operation. Thecorrect hash algorithm to use can be determined using PSA_ALG_GET_HASH().
Alternatively, to hash and verify a message in a single call, use psa_verify_message().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 257

10.7.3 Support macros

PSA_ALG_IS_SIGN_MESSAGE (macro)

Whether the specified algorithm is a signature algorithm that can be used with psa_sign_message() and
psa_verify_message().
#define PSA_ALG_IS_SIGN_MESSAGE(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a signature algorithm that can be used to sign a message. 0 if alg is a signature algorithm that canonly be used to sign an already-calculated hash. 0 if alg is not a signature algorithm. This macro can returneither 0 or 1 if alg is not a supported algorithm identifier.
PSA_ALG_IS_SIGN_HASH (macro)

Whether the specified algorithm is a signature algorithm that can be used with psa_sign_hash() and
psa_verify_hash().
#define PSA_ALG_IS_SIGN_HASH(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a signature algorithm that can be used to sign a hash. 0 if alg is a signature algorithm that canonly be used to sign a message. 0 if alg is not a signature algorithm. This macro can return either 0 or 1 if
alg is not a supported algorithm identifier.
Description

This includes all algorithms such that PSA_ALG_IS_HASH_AND_SIGN() is true, as well as signature algorithms forwhich the input to psa_sign_hash() or psa_verify_hash() is not directly a hash, such as
PSA_ALG_IS_RSA_PKCS1V15_SIGN.
PSA_ALG_IS_RSA_PKCS1V15_SIGN (macro)

Whether the specified algorithm is an RSA PKCS#1 v1.5 signature algorithm.
#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) /* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 258

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is an RSA PKCS#1 v1.5 signature algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
PSA_ALG_IS_RSA_PSS (macro)

Whether the specified algorithm is an RSA PSS signature algorithm.
#define PSA_ALG_IS_RSA_PSS(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is an RSA PSS signature algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description

This macro returns 1 for algorithms constructed using either PSA_ALG_RSA_PSS() or
PSA_ALG_RSA_PSS_ANY_SALT().
PSA_ALG_IS_RSA_PSS_ANY_SALT (macro)

Whether the specified algorithm is an RSA PSS signature algorithm that permits any salt length.
#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is an RSA PSS signature algorithm that permits any salt length, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description

An RSA PSS signature algorithm that permits any salt length is constructed using
PSA_ALG_RSA_PSS_ANY_SALT().
See also PSA_ALG_IS_RSA_PSS() and PSA_ALG_IS_RSA_PSS_STANDARD_SALT().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 259

PSA_ALG_IS_RSA_PSS_STANDARD_SALT (macro)

Whether the specified algorithm is an RSA PSS signature algorithm that requires the standard salt length.
#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is an RSA PSS signature algorithm that requires the standard salt length, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description

An RSA PSS signature algorithm that requires the standard salt length is constructed using
PSA_ALG_RSA_PSS().
See also PSA_ALG_IS_RSA_PSS() and PSA_ALG_IS_RSA_PSS_ANY_SALT().
PSA_ALG_IS_ECDSA (macro)

Whether the specified algorithm is ECDSA.
#define PSA_ALG_IS_ECDSA(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is an ECDSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
PSA_ALG_IS_DETERMINISTIC_ECDSA (macro)

Whether the specified algorithm is deterministic ECDSA.
#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 260

Returns

1 if alg is a deterministic ECDSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description

See also PSA_ALG_IS_ECDSA() and PSA_ALG_IS_RANDOMIZED_ECDSA().
PSA_ALG_IS_RANDOMIZED_ECDSA (macro)

Whether the specified algorithm is randomized ECDSA.
#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a randomized ECDSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description

See also PSA_ALG_IS_ECDSA() and PSA_ALG_IS_DETERMINISTIC_ECDSA().
PSA_ALG_IS_HASH_EDDSA (macro)

Whether the specified algorithm is HashEdDSA.
#define PSA_ALG_IS_HASH_EDDSA(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a HashEdDSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
PSA_ALG_IS_HASH_AND_SIGN (macro)

Whether the specified algorithm is a hash-and-sign algorithm that signs exactly the hash value.
#define PSA_ALG_IS_HASH_AND_SIGN(alg) /* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 261

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a hash-and-sign algorithm that signs exactly the hash value, 0 otherwise. This macro can returneither 0 or 1 if alg is not a supported algorithm identifier.
A wildcard signature algorithm policy, using PSA_ALG_ANY_HASH, returns the same value as the signaturealgorithm parameterised with a valid hash algorithm.
Description

This macro identifies algorithms that can be used with psa_sign_hash() that use the exact message hashvalue as an input the signature operation. For example, if PSA_ALG_IS_HASH_AND_SIGN(alg) is true, thefollowing call sequence is equivalent to psa_sign_message(key, alg, msg, msg_len, ...):
psa_hash_operation_t op = {0};

uint8_t hash[PSA_HASH_MAX_SIZE];

size_t hash_len;

psa_hash_setup(&op, PSA_ALG_GET_HASH(alg));

psa_hash_update(&op, msg, msg_len);

psa_hash_finish(&op, hash, sizeof(hash), &hash_len);

psa_sign_hash(key, alg, hash, hash_len, ...);

This excludes hash-and-sign algorithms that require a encoded or modified hash for the signature step inthe algorithm, such as PSA_ALG_RSA_PKCS1V15_SIGN_RAW. For such algorithms, PSA_ALG_IS_SIGN_HASH() is truebut PSA_ALG_IS_HASH_AND_SIGN() is false.
PSA_ALG_ANY_HASH (macro)

When setting a hash-and-sign algorithm in a key policy, permit any hash algorithm.
#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)

This value can be used to form the permitted-algorithm attribute of a key policy for a signature algorithmthat is parametrized by a hash. A key with this policy can then be used to perform operations using thesame signature algorithm parametrized with any supported hash. A signature algorithm created using thismacro is a wildcard algorithm, and PSA_ALG_IS_WILDCARD() will return true.
This value must not be used to build other algorithms that are parametrized over a hash. For any valid useof this macro to build an algorithm alg, PSA_ALG_IS_HASH_AND_SIGN(alg) is true.
This value cannot be used to build an algorithm specification to perform an operation. If used in this way,the operation will fail with an error.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 262

Usage

For example, suppose that PSA_xxx_SIGNATURE is one of the following macros:
∙ PSA_ALG_RSA_PKCS1V15_SIGN

∙ PSA_ALG_RSA_PSS

∙ PSA_ALG_RSA_PSS_ANY_SALT

∙ PSA_ALG_ECDSA

∙ PSA_ALG_DETERMINISTIC_ECDSA

The following sequence of operations shows how PSA_ALG_ANY_HASH can be used in a key policy:
1. Set the key usage flags using PSA_ALG_ANY_HASH, for example:

psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_MESSAGE); // or VERIFY_MESSAGE

psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));

2. Import or generate key material.
3. Call psa_sign_message() or psa_verify_message(), passing an algorithm built from PSA_xxx_SIGNATUREand a specific hash. Each call to sign or verify a message can use a different hash algorithm.

psa_sign_message(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);

psa_sign_message(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);

psa_sign_message(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);

PSA_SIGN_OUTPUT_SIZE (macro)

Sufficient signature buffer size for psa_sign_message() and psa_sign_hash().
#define PSA_SIGN_OUTPUT_SIZE(key_type, key_bits, alg) \

/* implementation-defined value */

Parameters

key_type An asymmetric key type. This can be a key pair type or a public keytype.
key_bits The size of the key in bits.
alg The signature algorithm.

Returns

A sufficient signature buffer size for the specified asymmetric signature algorithm and key parameters. Animplementation can return either 0 or a correct size for an asymmetric signature algorithm and keyparameters that it recognizes, but does not support. If the parameters are not valid, the return value isunspecified.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 263

Description

If the size of the signature buffer is at least this large, it is guaranteed that psa_sign_message() and
psa_sign_hash() will not fail due to an insufficient buffer size. The actual size of the output might besmaller in any given call.
See also PSA_SIGNATURE_MAX_SIZE.
PSA_SIGNATURE_MAX_SIZE (macro)

A sufficient signature buffer size for psa_sign_message() and psa_sign_hash(), for any of the supported keytypes and asymmetric signature algorithms.
#define PSA_SIGNATURE_MAX_SIZE /* implementation-defined value */

If the size of the signature buffer is at least this large, it is guaranteed that psa_sign_message() and
psa_sign_hash() will not fail due to an insufficient buffer size.
See also PSA_SIGN_OUTPUT_SIZE().

10.8 Asymmetric encryption
Asymmetric encryption is provided through the functions psa_asymmetric_encrypt() and
psa_asymmetric_decrypt().
10.8.1 Asymmetric encryption algorithms

PSA_ALG_RSA_PKCS1V15_CRYPT (macro)

The RSA PKCS#1 v1.5 asymmetric encryption algorithm.
#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)

This encryption scheme is defined by PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC8017] §7.2under the name RSAES-PKCS-v1_5.
Compatible key types

PSA_KEY_TYPE_RSA_KEY_PAIR

PSA_KEY_TYPE_RSA_PUBLIC_KEY (asymmetric encryption only)

PSA_ALG_RSA_OAEP (macro)

The RSA OAEP asymmetric encryption algorithm.
#define PSA_ALG_RSA_OAEP(hash_alg) /* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 264

https://datatracker.ietf.org/doc/html/rfc8017.html#section-7.2

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. The hash algorithm is used forMGF1.

Returns

The corresponding RSA OAEP encryption algorithm.
Unspecified if hash_alg is not a supported hash algorithm.
Description

This encryption scheme is defined by [RFC8017] §7.1 under the name RSAES-OAEP, with the followingoptions:
∙ The mask generation functionMGF1 defined in [RFC8017] Appendix B.2.1.
∙ The specified hash algorithm is used to hash the label, and for the mask generation function.

Compatible key types

PSA_KEY_TYPE_RSA_KEY_PAIR

PSA_KEY_TYPE_RSA_PUBLIC_KEY (asymmetric encryption only)

10.8.2 Asymmetric encryption functions

psa_asymmetric_encrypt (function)

Encrypt a short message with a public key.
psa_status_t psa_asymmetric_encrypt(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

const uint8_t * salt,

size_t salt_length,

uint8_t * output,

size_t output_size,

size_t * output_length);

Parameters

key Identifer of the key to use for the operation. It must be a public keyor an asymmetric key pair. It must permit the usage
PSA_KEY_USAGE_ENCRYPT.

alg The asymmetric encryption algorithm to compute: a value of type
psa_algorithm_t such that PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) istrue.

input The message to encrypt.
input_length Size of the input buffer in bytes.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 265

https://datatracker.ietf.org/doc/html/rfc8017.html#section-7.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B.2.1

salt A salt or label, if supported by the encryption algorithm. If thealgorithm does not support a salt, pass NULL. If the algorithm supportsan optional salt, pass NULL to indicate that there is no salt.
salt_length Size of the salt buffer in bytes. If salt is NULL, pass 0.
output Buffer where the encrypted message is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The required output size is
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits, alg)where key_type and key_bits are the type and bit-sizerespectively of key.

∙ PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE evaluates to themaximum output size of any supported asymmetric encryption.
output_length On success, the number of bytes that make up the returned output.

Returns: psa_status_t

PSA_SUCCESS Success. The first (*output_length) bytes of output contain theencrypted output.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.

PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE() or
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not an asymmetric encryption algorithm.
∙ key is not a public key or an asymmetric key pair, that iscompatible with alg.
∙ input_length is not valid for the algorithm and key type.
∙ salt_length is not valid for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not an asymmetric encryptionalgorithm.
∙ key is not supported for use with alg.
∙ input_length or salt_length are too large for theimplementation.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 266

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

∙ For PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is supported.
psa_asymmetric_decrypt (function)

Decrypt a short message with a private key.
psa_status_t psa_asymmetric_decrypt(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

const uint8_t * salt,

size_t salt_length,

uint8_t * output,

size_t output_size,

size_t * output_length);

Parameters

key Identifier of the key to use for the operation. It must be anasymmetric key pair. It must permit the usage PSA_KEY_USAGE_DECRYPT.
alg The asymmetric encryption algorithm to compute: a value of type

psa_algorithm_t such that PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) istrue.
input The message to decrypt.
input_length Size of the input buffer in bytes.
salt A salt or label, if supported by the encryption algorithm. If thealgorithm does not support a salt, pass NULL. If the algorithm supportsan optional salt, pass NULL to indicate that there is no salt.
salt_length Size of the salt buffer in bytes. If salt is NULL, pass 0.
output Buffer where the decrypted message is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The required output size is
PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg)where key_type and key_bits are the type and bit-sizerespectively of key.

∙ PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE evaluates to themaximum output size of any supported asymmetric decryption.
output_length On success, the number of bytes that make up the returned output.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 267

Returns: psa_status_t

PSA_SUCCESS Success. The first (*output_length) bytes of output contain thedecrypted output.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.

PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE() or
PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_PADDING The algorithm uses padding, and the input does not contain validpadding.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an asymmetric encryption algorithm.
∙ key is not an asymmetric key pair, that is compatible with alg.
∙ input_length is not valid for the algorithm and key type.
∙ salt_length is not valid for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not an asymmetric encryptionalgorithm.
∙ key is not supported for use with alg.
∙ input_length or salt_length are too large for theimplementation.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 268

Description

∙ For PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is supported.
10.8.3 Support macros

PSA_ALG_IS_RSA_OAEP (macro)

Whether the specified algorithm is an RSA OAEP encryption algorithm.
#define PSA_ALG_IS_RSA_OAEP(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is an RSA OAEP algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE (macro)

Sufficient output buffer size for psa_asymmetric_encrypt().
#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \

/* implementation-defined value */

Parameters

key_type An asymmetric key type, either a key pair or a public key.
key_bits The size of the key in bits.
alg An asymmetric encryption algorithm: a value of type psa_algorithm_tsuch that PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) is true.

Returns

A sufficient output buffer size for the specified asymmetric encryption algorithm and key parameters. Animplementation can return either 0 or a correct size for an asymmetric encryption algorithm and keyparameters that it recognizes, but does not support. If the parameters are not valid, the return value isunspecified.
Description

If the size of the output buffer is at least this large, it is guaranteed that psa_asymmetric_encrypt() will notfail due to an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 269

PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_asymmetric_encrypt(), for any of the supported key types andasymmetric encryption algorithms.
#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE \

/* implementation-defined value */

If the size of the output buffer is at least this large, it is guaranteed that psa_asymmetric_encrypt() will notfail due to an insufficient buffer size.
See also PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE().
PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE (macro)

Sufficient output buffer size for psa_asymmetric_decrypt().
#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \

/* implementation-defined value */

Parameters

key_type An asymmetric key type, either a key pair or a public key.
key_bits The size of the key in bits.
alg An asymmetric encryption algorithm: a value of type psa_algorithm_tsuch that PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) is true.

Returns

A sufficient output buffer size for the specified asymmetric encryption algorithm and key parameters. Animplementation can return either 0 or a correct size for an asymmetric encryption algorithm and keyparameters that it recognizes, but does not support. If the parameters are not valid, the return value isunspecified.
Description

If the size of the output buffer is at least this large, it is guaranteed that psa_asymmetric_decrypt() will notfail due to an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE.
PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_asymmetric_decrypt(), for any of the supported key types andasymmetric encryption algorithms.
#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE \

/* implementation-defined value */

If the size of the output buffer is at least this large, it is guaranteed that psa_asymmetric_decrypt() will notfail due to an insufficient buffer size.
See also PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE().
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 270

10.9 Key agreement
Three functions are provided for a Diffie-Hellman-style key agreement where each party combines its ownprivate key with the peer’s public key, to produce a shared secret value:

∙ A call to psa_key_agreement() will compute the shared secret and store the result in a new derivationkey.
∙ If the resulting shared secret will be used for a single key derivation, a key derivation operation canbe used with the psa_key_derivation_key_agreement() input function. This calculates the sharedsecret and inputs it directly to the key derivation operation.
∙ Where an application needs direct access to the shared secret, it can call psa_raw_key_agreement()instead.

Using psa_key_agreement() or psa_key_derivation_key_agreement() is recommended, as these do not exposethe shared secret to the application.
Note:
In general the shared secret is not directly suitable for use as a key because it is biased.

10.9.1 Key agreement algorithms

PSA_ALG_FFDH (macro)

The finite-field Diffie-Hellman (DH) key agreement algorithm.
#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)

This standalone key agreement algorithm can be used directly in a call to psa_key_agreement() or
psa_raw_key_agreement(), or combined with a key derivation operation using PSA_ALG_KEY_AGREEMENT() foruse with psa_key_derivation_key_agreement().
When used as a key’s permitted-algorithm policy, the following uses are permitted:

∙ In a call to psa_key_agreement() or psa_raw_key_agreement(), with algorithm PSA_ALG_FFDH.
∙ In a call to psa_key_derivation_key_agreement(), with any combined key agreement and key derivationalgorithm constructed with PSA_ALG_FFDH.

When used as part of a multi-part key derivation operation, this implements a Diffie-Hellman keyagreement scheme using a single Diffie-Hellman key-pair for each participant. This includes the dhEphem,dhOneFlow, and dhStatic schemes. The input step PSA_KEY_DERIVATION_INPUT_SECRET is used when providingthe secret and peer keys to the operation.
The shared secret produced by this key agreement algorithm is 𝑔𝑎𝑏 in big-endian format. It is ⌈(𝑚/8)⌉ byteslong where𝑚 is the size of the prime 𝑝 in bits.
This key agreement scheme is defined by NIST Special Publication 800-56A: Recommendation for Pair-WiseKey-Establishment Schemes Using Discrete Logarithm Cryptography [SP800-56A] §5.7.1.1 under the nameFFC DH.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 271

Compatible key types

PSA_KEY_TYPE_DH_KEY_PAIR()

PSA_ALG_ECDH (macro)

The elliptic curve Diffie-Hellman (ECDH) key agreement algorithm.
#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)

This standalone key agreement algorithm can be used directly in a call to psa_key_agreement() or
psa_raw_key_agreement(), or combined with a key derivation operation using PSA_ALG_KEY_AGREEMENT() foruse with psa_key_derivation_key_agreement().
When used as a key’s permitted-algorithm policy, the following uses are permitted:

∙ In a call to psa_key_agreement() or psa_raw_key_agreement(), with algorithm PSA_ALG_ECDH.
∙ In a call to psa_key_derivation_key_agreement(), with any combined key agreement and key derivationalgorithm constructed with PSA_ALG_ECDH.

When used as part of a multi-part key derivation operation, this implements a Diffie-Hellman keyagreement scheme using a single elliptic curve key-pair for each participant. This includes the Ephemeralunified model, the Static unified model, and the One-pass Diffie-Hellman schemes. The input step
PSA_KEY_DERIVATION_INPUT_SECRET is used when providing the secret and peer keys to the operation.
The shared secret produced by key agreement is the x-coordinate of the shared secret point. It is always
⌈(𝑚/8)⌉ bytes long where𝑚 is the bit size associated with the curve, i.e. the bit size of the order of thecurve’s coordinate field. When𝑚 is not a multiple of 8, the byte containing the most significant bit of theshared secret is padded with zero bits. The byte order is either little-endian or big-endian depending onthe curve type.

∙ For Montgomery curves (curve family PSA_ECC_FAMILY_MONTGOMERY), the shared secret is thex-coordinate of 𝑍 = 𝑑𝐴𝑄𝐵 = 𝑑𝐵𝑄𝐴 in little-endian byte order.
— For Curve25519, this is the X25519 function defined in Curve25519: new Diffie-Hellman speedrecords [Curve25519]. The bit size𝑚 is 255.
— For Curve448, this is the X448 function defined in Ed448-Goldilocks, a new elliptic curve[Curve448]. The bit size𝑚 is 448.

∙ For Weierstrass curves (curve families PSA_ECC_FAMILY_SECP_XX, PSA_ECC_FAMILY_SECT_XX,
PSA_ECC_FAMILY_BRAINPOOL_P_R1 and PSA_ECC_FAMILY_FRP) the shared secret is the x-coordinate of
𝑍 = ℎ𝑑𝐴𝑄𝐵 = ℎ𝑑𝐵𝑄𝐴 in big-endian byte order. This is the Elliptic Curve Cryptography CofactorDiffie-Hellman primitive defined by SEC 1: Elliptic Curve Cryptography [SEC1] §3.3.2 as, and also asECC CDH by NIST Special Publication 800-56A: Recommendation for Pair-Wise Key-EstablishmentSchemes Using Discrete Logarithm Cryptography [SP800-56A] §5.7.1.2.
— Over prime fields (curve families PSA_ECC_FAMILY_SECP_XX, PSA_ECC_FAMILY_BRAINPOOL_P_R1 and

PSA_ECC_FAMILY_FRP), the bit size is𝑚 = ⌈log2(𝑝)⌉ for the field F𝑝.— Over binary fields (curve families PSA_ECC_FAMILY_SECT_XX), the bit size is𝑚 for the field F2𝑚 .
Note:

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 272

The cofactor Diffie-Hellman primitive is equivalent to the standard elliptic curveDiffie-Hellman calculation 𝑍 = 𝑑𝐴𝑄𝐵 = 𝑑𝐵𝑄𝐴 ([SEC1] §3.3.1) for curves where the cofactor ℎis 1. This is true for all curves in the PSA_ECC_FAMILY_SECP_XX, PSA_ECC_FAMILY_BRAINPOOL_P_R1,and PSA_ECC_FAMILY_FRP families.
Compatible key types

PSA_KEY_TYPE_ECC_KEY_PAIR(family)

where family is a Weierstrass or Montgomery Elliptic curve family. That is, one of the following values:
∙ PSA_ECC_FAMILY_SECT_XX

∙ PSA_ECC_FAMILY_SECP_XX

∙ PSA_ECC_FAMILY_FRP

∙ PSA_ECC_FAMILY_BRAINPOOL_P_R1

∙ PSA_ECC_FAMILY_MONTGOMERY

PSA_ALG_KEY_AGREEMENT (macro)

Macro to build a combined algorithm that chains a key agreement with a key derivation.
#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \

/* specification-defined value */

Parameters

ka_alg A key agreement algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_KEY_AGREEMENT(ka_alg) is true.

kdf_alg A key derivation algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_KEY_DERIVATION(kdf_alg) is true.

Returns

The corresponding key agreement and derivation algorithm.
Unspecified if ka_alg is not a supported key agreement algorithm or kdf_alg is not a supported keyderivation algorithm.
Description

A combined key agreement algorithm is used with a multi-part key derivation operation, using a call to
psa_key_derivation_key_agreement().
The component parts of a key agreement algorithm can be extracted using
PSA_ALG_KEY_AGREEMENT_GET_BASE() and PSA_ALG_KEY_AGREEMENT_GET_KDF().

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 273

Compatible key types

The resulting combined key agreement algorithm is compatible with the same key types as the standalonekey agreement algorithm used to construct it.
10.9.2 Standalone key agreement

psa_key_agreement (function)

Perform a key agreement and return the shared secret as a derivation key.
psa_status_t psa_key_agreement(psa_key_id_t private_key,

const uint8_t * peer_key,

size_t peer_key_length,

psa_algorithm_t alg,

const psa_key_attributes_t * attributes,

psa_key_id_t * key);

Parameters

private_key Identifier of the private key to use. It must permit the usage
PSA_KEY_USAGE_DERIVE.

peer_key Public key of the peer. The peer key data is parsed with the type
PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) where type is the type of
private_key, and with the same bit-size as private_key. The peer keymust be in the format that psa_import_key() accepts for this publickey type. These formats are described in Key formats on page 105.

peer_key_length Size of peer_key in bytes.
alg The standalone key agreement algorithm to compute: a value of type

psa_algorithm_t such that PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg)is true.
attributes The attributes for the new key. This function uses the attributes asfollows:

∙ The key type must be one of PSA_KEY_TYPE_DERIVE,
PSA_KEY_TYPE_RAW_DATA, PSA_KEY_TYPE_HMAC, or
PSA_KEY_TYPE_PASSWORD.Implementations must support the PSA_KEY_TYPE_DERIVE and
PSA_KEY_TYPE_RAW_DATA key types.

∙ The size of the returned key is always the bit-size of the sharedsecret, rounded up to a whole number of bytes. The key size in
attributes can be zero; if it is nonzero, it must be equal to theoutput size of the key agreement, in bits.The output size, in bits, of the key agreement is 8 *

PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(type, bits), where type and
bits are the type and bit-size of private_key.

∙ The key permitted-algorithm policy is required for keys that willbe used for a cryptographic operation, see Permitted algorithmson page 85.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 274

∙ The key usage flags define what operations are permitted withthe key, see Key usage flags on page 87.
∙ The key lifetime and identifier are required for a persistent key.

Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queriedby calling psa_get_key_attributes() with the key’s identifier.

key On success, an identifier for the newly created key. PSA_KEY_ID_NULLon failure.
Returns: psa_status_t

PSA_SUCCESS Success. The new key contains the share secret. If the key ispersistent, the key material and the key’s metadata have been savedto persistent storage.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE private_key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:

∙ private_key does not have the PSA_KEY_USAGE_DERIVE flag, or itdoes not permit the requested algorithm.
∙ The implementation does not permit creating a key with thespecified attributes due to some implementation-specific policy.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a key agreement algorithm.
∙ private_key is not compatible with alg.
∙ peer_key is not a valid public key corresponding to private_key.
∙ The output key attributes in attributes are not valid :

— The key type is not valid for key agreement output.
— The key size is nonzero, and is not the size of the sharedsecret.
— The key lifetime is invalid.
— The key identifier is not valid for the key lifetime.
— The key usage flags include invalid values.
— The key’s permitted-usage algorithm is invalid.
— The key attributes, as a whole, are invalid.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a key agreement algorithm.
∙ private_key is not supported for use with alg.
∙ The output key attributes, as a whole, are not supported, either

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 275

by the implementation in general or in the specified storagelocation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

A key agreement algorithm takes two inputs: a private key private_key, and a public key peer_key. Theresult of this function is a shared secret, returned as a derivation key. This key can be input to a keyderivation operation using psa_key_derivation_input_key().
Warning: The shared secret resulting from a key agreement algorithm such as finite-fieldDiffie-Hellman or elliptic curve Diffie-Hellman has biases. This makes it unsuitable for use as keymaterial, for example, as an AES key. Instead, it is recommended that a key derivation algorithm isapplied to the result, to derive unbiased cryptographic keys.

psa_raw_key_agreement (function)

Perform a key agreement and return the shared secret.
psa_status_t psa_raw_key_agreement(psa_algorithm_t alg,

psa_key_id_t private_key,

const uint8_t * peer_key,

size_t peer_key_length,

uint8_t * output,

size_t output_size,

size_t * output_length);

Parameters

alg The standalone key agreement algorithm to compute: a value of type
psa_algorithm_t such that PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg)is true.

private_key Identifier of the private key to use. It must permit the usage
PSA_KEY_USAGE_DERIVE.

peer_key Public key of the peer. The peer key data is parsed with the type
PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) where type is the type of
private_key, and with the same bit-size as private_key. The peer keymust be in the format that psa_import_key() accepts for this publickey type. These formats are described in Key formats on page 105.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 276

peer_key_length Size of peer_key in bytes.
output Buffer where the shared secret is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for thekeys:

∙ The required output size is
PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(type, bits), where type and
bits are the type and bit-size of private_key.

∙ PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE evaluates to themaximum output size of any supported standalone keyagreement algorithm.
output_length On success, the number of bytes that make up the returned output.

Returns: psa_status_t

PSA_SUCCESS Success. The first (*output_length) bytes of output contain the sharedsecret.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE private_key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED private_key does not have the PSA_KEY_USAGE_DERIVE flag, or it doesnot permit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.

PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE() or
PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not a key agreement algorithm.
∙ private_key is not compatible with alg.
∙ peer_key is not a valid public key corresponding to private_key.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a key agreement algorithm.
∙ private_key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 277

Description

A key agreement algorithm takes two inputs: a private key private_key, and a public key peer_key. Theresult of this function is a shared secret, returned in the output buffer.
Warning: The result of a key agreement algorithm such as finite-field Diffie-Hellman or elliptic curveDiffie-Hellman has biases, and is not suitable for direct use as key material, for example, as an AES key.Instead it is recommended that the result is used as input to a key derivation algorithm.
To chain a key agreement with a key derivation, either use psa_key_agreement() to obtain the result ofthe key agreement as a derivation key, or use psa_key_derivation_key_agreement() and other functionsfrom the key derivation interface.

10.9.3 Combining key agreement and key derivation

psa_key_derivation_key_agreement (function)

Perform a key agreement and use the shared secret as input to a key derivation.
psa_status_t psa_key_derivation_key_agreement(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,

psa_key_id_t private_key,

const uint8_t * peer_key,

size_t peer_key_length);

Parameters

operation The key derivation operation object to use. It must have been set upwith psa_key_derivation_setup() with a combined key agreement andderivation algorithm alg: a value of type psa_algorithm_t such that
PSA_ALG_IS_KEY_AGREEMENT(alg) is true and
PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg) is false.
The operation must be ready for an input of the type given by step.

step Which step the input data is for.
private_key Identifier of the private key to use. It must permit the usage

PSA_KEY_USAGE_DERIVE.
peer_key Public key of the peer. The peer key data is parsed with the type

PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) where type is the type of
private_key, and with the same bit-size as private_key. The peer keymust be in the format that psa_import_key() accepts for this publickey type. These formats are described in Key formats on page 105.

peer_key_length Size of peer_key in bytes.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 278

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid for this key agreement step.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE private_key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED private_key does not have the PSA_KEY_USAGE_DERIVE flag, or it doesnot permit the operation’s algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ The operation’s algorithm is not a key agreement algorithm.
∙ step does not permit an input resulting from a key agreement.
∙ private_key is not compatible with the operation’s algorithm.
∙ peer_key is not a valid public key corresponding to private_key.

PSA_ERROR_NOT_SUPPORTED private_key is not supported for use with the operation’s algorithm.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

A key agreement algorithm takes two inputs: a private key private_key, and a public key peer_key. Theresult of this function is a shared secret, which is directly input to the key derivation operation. Outputfrom the key derivation operation can then be used as keys and other cryptographic material.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_key_derivation_abort().

Note:
This function cannot be used when the resulting shared secret is required for multiple keyderivations.
Instead, the application can call psa_key_agreement() to obtain the shared secret as a derivation key.This key can be used as input to as many key derivation operations as required.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 279

10.9.4 Support macros

PSA_ALG_KEY_AGREEMENT_GET_BASE (macro)

Get the standalone key agreement algorithm from a combined key agreement and key derivation algorithm.
#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) /* specification-defined value */

Parameters

alg A key agreement algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_KEY_AGREEMENT(alg) is true.

Returns

The underlying standalone key agreement algorithm if alg is a key agreement algorithm.
Unspecified if alg is not a key agreement algorithm or if it is not supported by the implementation.
Description

See also PSA_ALG_KEY_AGREEMENT() and PSA_ALG_KEY_AGREEMENT_GET_KDF().
PSA_ALG_KEY_AGREEMENT_GET_KDF (macro)

Get the key derivation algorithm used in a combined key agreement and key derivation algorithm.
#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) /* specification-defined value */

Parameters

alg A key agreement algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_KEY_AGREEMENT(alg) is true.

Returns

The underlying key derivation algorithm if alg is a key agreement algorithm.
Unspecified if alg is not a key agreement algorithm or if it is not supported by the implementation.
Description

See also PSA_ALG_KEY_AGREEMENT() and PSA_ALG_KEY_AGREEMENT_GET_BASE().
PSA_ALG_IS_STANDALONE_KEY_AGREEMENT (macro)

Whether the specified algorithm is a standalone key agreement algorithm.
#define PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg) \

/* specification-defined value */

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 280

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a standalone key agreement algorithm, 0 otherwise. This macro can return either 0 or 1 if alg isnot a supported algorithm identifier.
Description

A standalone key agreement algorithm is one that does not specify a key derivation function. Usually,standalone key agreement algorithms are constructed directly with a PSA_ALG_xxx macro while combinedkey agreement algorithms are constructed with PSA_ALG_KEY_AGREEMENT().
The standalone key agreement algorithm can be extracted from a combined key agreement algorithmidentifier using PSA_ALG_KEY_AGREEMENT_GET_BASE().
PSA_ALG_IS_RAW_KEY_AGREEMENT (macro)

Whether the specified algorithm is a standalone key agreement algorithm.
#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \

PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg)

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Description

This is the original API name for PSA_ALG_IS_STANDALONE_KEY_AGREEMENT().
PSA_ALG_IS_FFDH (macro)

Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
#define PSA_ALG_IS_FFDH(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is a finite field Diffie-Hellman algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is nota supported key agreement algorithm identifier.
Description

This includes the standalone finite field Diffie-Hellman algorithm, as well as finite-field Diffie-Hellmancombined with any supported key derivation algorithm.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 281

PSA_ALG_IS_ECDH (macro)

Whether the specified algorithm is an elliptic curve Diffie-Hellman algorithm.
#define PSA_ALG_IS_ECDH(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns

1 if alg is an elliptic curve Diffie-Hellman algorithm, 0 otherwise. This macro can return either 0 or 1 if alg isnot a supported key agreement algorithm identifier.
Description

This includes the standalone elliptic curve Diffie-Hellman algorithm, as well as elliptic curve Diffie-Hellmancombined with any supported key derivation algorithm.
PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE (macro)

Sufficient output buffer size for psa_raw_key_agreement().
#define PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(key_type, key_bits) \

/* implementation-defined value */

Parameters

key_type A supported key type.
key_bits The size of the key in bits.

Returns

A sufficient output buffer size for the specified key type and size. An implementation can return either 0 ora correct size for a key type and size that it recognizes, but does not support. If the parameters are notvalid, the return value is unspecified.
Description

If the size of the output buffer is at least this large, it is guaranteed that psa_raw_key_agreement() will notfail due to an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE.
PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE (macro)

Sufficient output buffer size for psa_raw_key_agreement(), for any of the supported key types and keyagreement algorithms.
#define PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE \

/* implementation-defined value */

If the size of the output buffer is at least this large, it is guaranteed that psa_raw_key_agreement() will notfail due to an insufficient buffer size.
See also PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE().
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 282

10.10 Other cryptographic services
10.10.1 Random number generation

psa_generate_random (function)

Generate random bytes.
psa_status_t psa_generate_random(uint8_t * output,

size_t output_size);

Parameters

output Output buffer for the generated data.
output_size Number of bytes to generate and output.

Returns: psa_status_t

PSA_SUCCESS Success. output contains output_size bytes of generated random data.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Warning: This function can fail! Callers MUST check the return status and MUST NOT use the contentof the output buffer if the return status is not PSA_SUCCESS.

Note:
To generate a key, use psa_generate_key() instead.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 283

Appendix A: Example header file
Each implementation of the Crypto API must provide a header file named psa/crypto.h, in which the APIelements in this specification are defined.
This appendix provides a example of the psa/crypto.h header file with all of the API elements. This can beused as a starting point or reference for an implementation.

Note:
Not all of the API elements are fully defined. An implementation must provide the full definition.
The header will not compile without these missing definitions, and might require reordering tosatisfy C compilation rules.

A.1 psa/crypto.h

/* This file is a reference template for implementation of the

* PSA Certified Crypto API v1.2
*/

#ifndef PSA_CRYPTO_H

#define PSA_CRYPTO_H

#include <stddef.h>

#include <stdint.h>

#include "psa/error.h"

#ifdef __cplusplus

extern "C" {

#endif

#define PSA_CRYPTO_API_VERSION_MAJOR 1

#define PSA_CRYPTO_API_VERSION_MINOR 2

psa_status_t psa_crypto_init(void);

#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)

#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)

typedef uint32_t psa_key_id_t;

typedef /* implementation-defined type */ psa_key_attributes_t;

#define PSA_KEY_ATTRIBUTES_INIT /* implementation-defined value */

psa_key_attributes_t psa_key_attributes_init(void);

psa_status_t psa_get_key_attributes(psa_key_id_t key,

psa_key_attributes_t * attributes);

void psa_reset_key_attributes(psa_key_attributes_t * attributes);

typedef uint16_t psa_key_type_t;

#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 284

(continued from previous page)
#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) /* specification-defined value */

#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) /* specification-defined value */

#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) /* specification-defined value */

#define PSA_KEY_TYPE_IS_KEY_PAIR(type) /* specification-defined value */

#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)

#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)

#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)

#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)

#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)

#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)

#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)

#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)

#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)

#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)

#define PSA_KEY_TYPE_SM4 ((psa_key_type_t)0x2405)

#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)

#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)

#define PSA_KEY_TYPE_XCHACHA20 ((psa_key_type_t)0x2007)

#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)

#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)

#define PSA_KEY_TYPE_IS_RSA(type) /* specification-defined value */

typedef uint8_t psa_ecc_family_t;

#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) /* specification-defined value */

#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) /* specification-defined value */

#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)

#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)

#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)

#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)

#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)

#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)

#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)

#define PSA_ECC_FAMILY_FRP ((psa_ecc_family_t) 0x33)

#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)

#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)

#define PSA_KEY_TYPE_IS_ECC(type) /* specification-defined value */

#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) /* specification-defined value */

#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) /* specification-defined value */

#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) /* specification-defined value */

typedef uint8_t psa_dh_family_t;

#define PSA_KEY_TYPE_DH_KEY_PAIR(group) /* specification-defined value */

#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) /* specification-defined value */

#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)

#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \

/* specification-defined value */

#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \

/* specification-defined value */

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 285

(continued from previous page)
#define PSA_KEY_TYPE_IS_DH(type) /* specification-defined value */

#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) /* specification-defined value */

#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) /* specification-defined value */

#define PSA_KEY_TYPE_DH_GET_FAMILY(type) /* specification-defined value */

void psa_set_key_type(psa_key_attributes_t * attributes,

psa_key_type_t type);

psa_key_type_t psa_get_key_type(const psa_key_attributes_t * attributes);

size_t psa_get_key_bits(const psa_key_attributes_t * attributes);

void psa_set_key_bits(psa_key_attributes_t * attributes,

size_t bits);

typedef uint32_t psa_key_lifetime_t;

typedef uint8_t psa_key_persistence_t;

typedef uint32_t psa_key_location_t;

#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)

#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)

#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)

#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)

#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)

#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)

#define PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT ((psa_key_location_t) 0x000001)

void psa_set_key_lifetime(psa_key_attributes_t * attributes,

psa_key_lifetime_t lifetime);

psa_key_lifetime_t psa_get_key_lifetime(const psa_key_attributes_t * attributes);

#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \

((psa_key_persistence_t) ((lifetime) & 0x000000ff))

#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \

((psa_key_location_t) ((lifetime) >> 8))

#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \

(PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == PSA_KEY_PERSISTENCE_VOLATILE)

#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \

((location) << 8 | (persistence))

#define PSA_KEY_ID_NULL ((psa_key_id_t)0)

#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)

#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)

#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)

#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)

void psa_set_key_id(psa_key_attributes_t * attributes,

psa_key_id_t id);

psa_key_id_t psa_get_key_id(const psa_key_attributes_t * attributes);

typedef uint32_t psa_algorithm_t;

void psa_set_key_algorithm(psa_key_attributes_t * attributes,

psa_algorithm_t alg);

psa_algorithm_t psa_get_key_algorithm(const psa_key_attributes_t * attributes);

typedef uint32_t psa_key_usage_t;

#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)

#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 286

(continued from previous page)
#define PSA_KEY_USAGE_CACHE ((psa_key_usage_t)0x00000004)

#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)

#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)

#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)

#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)

#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)

#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)

#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)

#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)

void psa_set_key_usage_flags(psa_key_attributes_t * attributes,

psa_key_usage_t usage_flags);

psa_key_usage_t psa_get_key_usage_flags(const psa_key_attributes_t * attributes);

psa_status_t psa_import_key(const psa_key_attributes_t * attributes,

const uint8_t * data,

size_t data_length,

psa_key_id_t * key);

psa_status_t psa_generate_key(const psa_key_attributes_t * attributes,

psa_key_id_t * key);

psa_status_t psa_copy_key(psa_key_id_t source_key,

const psa_key_attributes_t * attributes,

psa_key_id_t * target_key);

psa_status_t psa_destroy_key(psa_key_id_t key);

psa_status_t psa_purge_key(psa_key_id_t key);

psa_status_t psa_export_key(psa_key_id_t key,

uint8_t * data,

size_t data_size,

size_t * data_length);

psa_status_t psa_export_public_key(psa_key_id_t key,

uint8_t * data,

size_t data_size,

size_t * data_length);

#define PSA_EXPORT_KEY_OUTPUT_SIZE(key_type, key_bits) \

/* implementation-defined value */

#define PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(key_type, key_bits) \

/* implementation-defined value */

#define PSA_EXPORT_KEY_PAIR_MAX_SIZE /* implementation-defined value */

#define PSA_EXPORT_PUBLIC_KEY_MAX_SIZE /* implementation-defined value */

#define PSA_ALG_NONE ((psa_algorithm_t)0)

#define PSA_ALG_IS_HASH(alg) /* specification-defined value */

#define PSA_ALG_IS_MAC(alg) /* specification-defined value */

#define PSA_ALG_IS_CIPHER(alg) /* specification-defined value */

#define PSA_ALG_IS_AEAD(alg) /* specification-defined value */

#define PSA_ALG_IS_SIGN(alg) /* specification-defined value */

#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) /* specification-defined value */

#define PSA_ALG_IS_KEY_AGREEMENT(alg) /* specification-defined value */

#define PSA_ALG_IS_KEY_DERIVATION(alg) /* specification-defined value */

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 287

(continued from previous page)
#define PSA_ALG_IS_WILDCARD(alg) /* specification-defined value */

#define PSA_ALG_GET_HASH(alg) /* specification-defined value */

#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)

#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)

#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)

#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)

#define PSA_ALG_AES_MMO_ZIGBEE ((psa_algorithm_t)0x02000007)

#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)

#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)

#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)

#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)

#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)

#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)

#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)

#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)

#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)

#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)

#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)

#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)

#define PSA_ALG_SM3 ((psa_algorithm_t)0x02000014)

psa_status_t psa_hash_compute(psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

uint8_t * hash,

size_t hash_size,

size_t * hash_length);

psa_status_t psa_hash_compare(psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

const uint8_t * hash,

size_t hash_length);

typedef /* implementation-defined type */ psa_hash_operation_t;

#define PSA_HASH_OPERATION_INIT /* implementation-defined value */

psa_hash_operation_t psa_hash_operation_init(void);

psa_status_t psa_hash_setup(psa_hash_operation_t * operation,

psa_algorithm_t alg);

psa_status_t psa_hash_update(psa_hash_operation_t * operation,

const uint8_t * input,

size_t input_length);

psa_status_t psa_hash_finish(psa_hash_operation_t * operation,

uint8_t * hash,

size_t hash_size,

size_t * hash_length);

psa_status_t psa_hash_verify(psa_hash_operation_t * operation,

const uint8_t * hash,

size_t hash_length);

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 288

(continued from previous page)
psa_status_t psa_hash_abort(psa_hash_operation_t * operation);

psa_status_t psa_hash_suspend(psa_hash_operation_t * operation,

uint8_t * hash_state,

size_t hash_state_size,

size_t * hash_state_length);

psa_status_t psa_hash_resume(psa_hash_operation_t * operation,

const uint8_t * hash_state,

size_t hash_state_length);

psa_status_t psa_hash_clone(const psa_hash_operation_t * source_operation,

psa_hash_operation_t * target_operation);

#define PSA_HASH_LENGTH(alg) /* implementation-defined value */

#define PSA_HASH_MAX_SIZE /* implementation-defined value */

#define PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) /* specification-defined value */

#define PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE /* implementation-defined value */

#define PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH ((size_t)4)

#define PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) \

/* specification-defined value */

#define PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) \

/* specification-defined value */

#define PSA_HASH_BLOCK_LENGTH(alg) /* implementation-defined value */

#define PSA_ALG_HMAC(hash_alg) /* specification-defined value */

#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)

#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)

#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \

/* specification-defined value */

#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) /* specification-defined value */

#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \

/* specification-defined value */

psa_status_t psa_mac_compute(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

uint8_t * mac,

size_t mac_size,

size_t * mac_length);

psa_status_t psa_mac_verify(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

const uint8_t * mac,

size_t mac_length);

typedef /* implementation-defined type */ psa_mac_operation_t;

#define PSA_MAC_OPERATION_INIT /* implementation-defined value */

psa_mac_operation_t psa_mac_operation_init(void);

psa_status_t psa_mac_sign_setup(psa_mac_operation_t * operation,

psa_key_id_t key,

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 289

(continued from previous page)
psa_algorithm_t alg);

psa_status_t psa_mac_verify_setup(psa_mac_operation_t * operation,

psa_key_id_t key,

psa_algorithm_t alg);

psa_status_t psa_mac_update(psa_mac_operation_t * operation,

const uint8_t * input,

size_t input_length);

psa_status_t psa_mac_sign_finish(psa_mac_operation_t * operation,

uint8_t * mac,

size_t mac_size,

size_t * mac_length);

psa_status_t psa_mac_verify_finish(psa_mac_operation_t * operation,

const uint8_t * mac,

size_t mac_length);

psa_status_t psa_mac_abort(psa_mac_operation_t * operation);

#define PSA_ALG_IS_HMAC(alg) /* specification-defined value */

#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) /* specification-defined value */

#define PSA_MAC_LENGTH(key_type, key_bits, alg) \

/* implementation-defined value */

#define PSA_MAC_MAX_SIZE /* implementation-defined value */

#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)

#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)

#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300)

#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)

#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)

#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)

#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)

#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)

#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)

psa_status_t psa_cipher_encrypt(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

uint8_t * output,

size_t output_size,

size_t * output_length);

psa_status_t psa_cipher_decrypt(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

uint8_t * output,

size_t output_size,

size_t * output_length);

typedef /* implementation-defined type */ psa_cipher_operation_t;

#define PSA_CIPHER_OPERATION_INIT /* implementation-defined value */

psa_cipher_operation_t psa_cipher_operation_init(void);

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 290

(continued from previous page)
psa_status_t psa_cipher_encrypt_setup(psa_cipher_operation_t * operation,

psa_key_id_t key,

psa_algorithm_t alg);

psa_status_t psa_cipher_decrypt_setup(psa_cipher_operation_t * operation,

psa_key_id_t key,

psa_algorithm_t alg);

psa_status_t psa_cipher_generate_iv(psa_cipher_operation_t * operation,

uint8_t * iv,

size_t iv_size,

size_t * iv_length);

psa_status_t psa_cipher_set_iv(psa_cipher_operation_t * operation,

const uint8_t * iv,

size_t iv_length);

psa_status_t psa_cipher_update(psa_cipher_operation_t * operation,

const uint8_t * input,

size_t input_length,

uint8_t * output,

size_t output_size,

size_t * output_length);

psa_status_t psa_cipher_finish(psa_cipher_operation_t * operation,

uint8_t * output,

size_t output_size,

size_t * output_length);

psa_status_t psa_cipher_abort(psa_cipher_operation_t * operation);

#define PSA_ALG_IS_STREAM_CIPHER(alg) /* specification-defined value */

#define PSA_ALG_CCM_STAR_ANY_TAG ((psa_algorithm_t)0x04c09300)

#define PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */

#define PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */

#define PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */

#define PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */

#define PSA_CIPHER_IV_LENGTH(key_type, alg) /* implementation-defined value */

#define PSA_CIPHER_IV_MAX_SIZE /* implementation-defined value */

#define PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */

#define PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */

#define PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg) \

/* implementation-defined value */

#define PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE /* implementation-defined value */

#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) /* specification-defined value */

#define PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE /* implementation-defined value */

#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 291

(continued from previous page)
#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)

#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)

#define PSA_ALG_XCHACHA20_POLY1305 ((psa_algorithm_t)0x05100600)

#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \

/* specification-defined value */

#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \

/* specification-defined value */

#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \

/* specification-defined value */

psa_status_t psa_aead_encrypt(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * nonce,

size_t nonce_length,

const uint8_t * additional_data,

size_t additional_data_length,

const uint8_t * plaintext,

size_t plaintext_length,

uint8_t * ciphertext,

size_t ciphertext_size,

size_t * ciphertext_length);

psa_status_t psa_aead_decrypt(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * nonce,

size_t nonce_length,

const uint8_t * additional_data,

size_t additional_data_length,

const uint8_t * ciphertext,

size_t ciphertext_length,

uint8_t * plaintext,

size_t plaintext_size,

size_t * plaintext_length);

typedef /* implementation-defined type */ psa_aead_operation_t;

#define PSA_AEAD_OPERATION_INIT /* implementation-defined value */

psa_aead_operation_t psa_aead_operation_init(void);

psa_status_t psa_aead_encrypt_setup(psa_aead_operation_t * operation,

psa_key_id_t key,

psa_algorithm_t alg);

psa_status_t psa_aead_decrypt_setup(psa_aead_operation_t * operation,

psa_key_id_t key,

psa_algorithm_t alg);

psa_status_t psa_aead_set_lengths(psa_aead_operation_t * operation,

size_t ad_length,

size_t plaintext_length);

psa_status_t psa_aead_generate_nonce(psa_aead_operation_t * operation,

uint8_t * nonce,

size_t nonce_size,

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 292

(continued from previous page)
size_t * nonce_length);

psa_status_t psa_aead_set_nonce(psa_aead_operation_t * operation,

const uint8_t * nonce,

size_t nonce_length);

psa_status_t psa_aead_update_ad(psa_aead_operation_t * operation,

const uint8_t * input,

size_t input_length);

psa_status_t psa_aead_update(psa_aead_operation_t * operation,

const uint8_t * input,

size_t input_length,

uint8_t * output,

size_t output_size,

size_t * output_length);

psa_status_t psa_aead_finish(psa_aead_operation_t * operation,

uint8_t * ciphertext,

size_t ciphertext_size,

size_t * ciphertext_length,

uint8_t * tag,

size_t tag_size,

size_t * tag_length);

psa_status_t psa_aead_verify(psa_aead_operation_t * operation,

uint8_t * plaintext,

size_t plaintext_size,

size_t * plaintext_length,

const uint8_t * tag,

size_t tag_length);

psa_status_t psa_aead_abort(psa_aead_operation_t * operation);

#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) /* specification-defined value */

#define PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg, plaintext_length) \

/* implementation-defined value */

#define PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(plaintext_length) \

/* implementation-defined value */

#define PSA_AEAD_DECRYPT_OUTPUT_SIZE(key_type, alg, ciphertext_length) \

/* implementation-defined value */

#define PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(ciphertext_length) \

/* implementation-defined value */

#define PSA_AEAD_NONCE_LENGTH(key_type, alg) /* implementation-defined value */

#define PSA_AEAD_NONCE_MAX_SIZE /* implementation-defined value */

#define PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */

#define PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */

#define PSA_AEAD_FINISH_OUTPUT_SIZE(key_type, alg) \

/* implementation-defined value */

#define PSA_AEAD_FINISH_OUTPUT_MAX_SIZE /* implementation-defined value */

#define PSA_AEAD_TAG_LENGTH(key_type, key_bits, alg) \

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 293

(continued from previous page)
/* implementation-defined value */

#define PSA_AEAD_TAG_MAX_SIZE /* implementation-defined value */

#define PSA_AEAD_VERIFY_OUTPUT_SIZE(key_type, alg) \

/* implementation-defined value */

#define PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE /* implementation-defined value */

#define PSA_ALG_HKDF(hash_alg) /* specification-defined value */

#define PSA_ALG_HKDF_EXTRACT(hash_alg) /* specification-defined value */

#define PSA_ALG_HKDF_EXPAND(hash_alg) /* specification-defined value */

#define PSA_ALG_SP800_108_COUNTER_HMAC(hash_alg) \

/* specification-defined value */

#define PSA_ALG_SP800_108_COUNTER_CMAC ((psa_algorithm_t)0x08000800)

#define PSA_ALG_TLS12_PRF(hash_alg) /* specification-defined value */

#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) /* specification-defined value */

#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t)0x08000609)

#define PSA_ALG_PBKDF2_HMAC(hash_alg) /* specification-defined value */

#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)

typedef uint16_t psa_key_derivation_step_t;

#define PSA_KEY_DERIVATION_INPUT_SECRET /* implementation-defined value */

#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \

/* implementation-defined value */

#define PSA_KEY_DERIVATION_INPUT_PASSWORD /* implementation-defined value */

#define PSA_KEY_DERIVATION_INPUT_LABEL /* implementation-defined value */

#define PSA_KEY_DERIVATION_INPUT_CONTEXT /* implementation-defined value */

#define PSA_KEY_DERIVATION_INPUT_SALT /* implementation-defined value */

#define PSA_KEY_DERIVATION_INPUT_INFO /* implementation-defined value */

#define PSA_KEY_DERIVATION_INPUT_SEED /* implementation-defined value */

#define PSA_KEY_DERIVATION_INPUT_COST /* implementation-defined value */

typedef /* implementation-defined type */ psa_key_derivation_operation_t;

#define PSA_KEY_DERIVATION_OPERATION_INIT /* implementation-defined value */

psa_key_derivation_operation_t psa_key_derivation_operation_init(void);

psa_status_t psa_key_derivation_setup(psa_key_derivation_operation_t * operation,

psa_algorithm_t alg);

psa_status_t psa_key_derivation_get_capacity(const psa_key_derivation_operation_t * operation,

size_t * capacity);

psa_status_t psa_key_derivation_set_capacity(psa_key_derivation_operation_t * operation,

size_t capacity);

psa_status_t psa_key_derivation_input_bytes(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,

const uint8_t * data,

size_t data_length);

psa_status_t psa_key_derivation_input_integer(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,

uint64_t value);

psa_status_t psa_key_derivation_input_key(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,

psa_key_id_t key);

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 294

(continued from previous page)
psa_status_t psa_key_derivation_output_bytes(psa_key_derivation_operation_t * operation,

uint8_t * output,

size_t output_length);

psa_status_t psa_key_derivation_output_key(const psa_key_attributes_t * attributes,

psa_key_derivation_operation_t * operation,

psa_key_id_t * key);

psa_status_t psa_key_derivation_verify_bytes(psa_key_derivation_operation_t * operation,

const uint8_t *expected_output,

size_t output_length);

psa_status_t psa_key_derivation_verify_key(psa_key_derivation_operation_t * operation,

psa_key_id_t expected);

psa_status_t psa_key_derivation_abort(psa_key_derivation_operation_t * operation);

#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \

/* specification-defined value */

#define PSA_ALG_IS_HKDF(alg) /* specification-defined value */

#define PSA_ALG_IS_HKDF_EXTRACT(alg) /* specification-defined value */

#define PSA_ALG_IS_HKDF_EXPAND(alg) /* specification-defined value */

#define PSA_ALG_IS_SP800_108_COUNTER_HMAC(alg) \

/* specification-defined value */

#define PSA_ALG_IS_TLS12_PRF(alg) /* specification-defined value */

#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) /* specification-defined value */

#define PSA_ALG_IS_PBKDF2_HMAC(alg) /* specification-defined value */

#define PSA_KEY_DERIVATION_UNLIMITED_CAPACITY \

/* implementation-defined value */

#define PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE /* implementation-defined value */

#define PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE 32

#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) /* specification-defined value */

#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW ((psa_algorithm_t) 0x06000200)

#define PSA_ALG_RSA_PSS(hash_alg) /* specification-defined value */

#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) /* specification-defined value */

#define PSA_ALG_ECDSA(hash_alg) /* specification-defined value */

#define PSA_ALG_ECDSA_ANY ((psa_algorithm_t) 0x06000600)

#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) /* specification-defined value */

#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)

#define PSA_ALG_ED25519PH ((psa_algorithm_t) 0x0600090B)

#define PSA_ALG_ED448PH ((psa_algorithm_t) 0x06000915)

psa_status_t psa_sign_message(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

uint8_t * signature,

size_t signature_size,

size_t * signature_length);

psa_status_t psa_verify_message(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 295

(continued from previous page)
size_t input_length,

const uint8_t * signature,

size_t signature_length);

psa_status_t psa_sign_hash(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * hash,

size_t hash_length,

uint8_t * signature,

size_t signature_size,

size_t * signature_length);

psa_status_t psa_verify_hash(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * hash,

size_t hash_length,

const uint8_t * signature,

size_t signature_length);

#define PSA_ALG_IS_SIGN_MESSAGE(alg) /* specification-defined value */

#define PSA_ALG_IS_SIGN_HASH(alg) /* specification-defined value */

#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) /* specification-defined value */

#define PSA_ALG_IS_RSA_PSS(alg) /* specification-defined value */

#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) /* specification-defined value */

#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) /* specification-defined value */

#define PSA_ALG_IS_ECDSA(alg) /* specification-defined value */

#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) /* specification-defined value */

#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) /* specification-defined value */

#define PSA_ALG_IS_HASH_EDDSA(alg) /* specification-defined value */

#define PSA_ALG_IS_HASH_AND_SIGN(alg) /* specification-defined value */

#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)

#define PSA_SIGN_OUTPUT_SIZE(key_type, key_bits, alg) \

/* implementation-defined value */

#define PSA_SIGNATURE_MAX_SIZE /* implementation-defined value */

#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)

#define PSA_ALG_RSA_OAEP(hash_alg) /* specification-defined value */

psa_status_t psa_asymmetric_encrypt(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

const uint8_t * salt,

size_t salt_length,

uint8_t * output,

size_t output_size,

size_t * output_length);

psa_status_t psa_asymmetric_decrypt(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,

size_t input_length,

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 296

(continued from previous page)
const uint8_t * salt,

size_t salt_length,

uint8_t * output,

size_t output_size,

size_t * output_length);

#define PSA_ALG_IS_RSA_OAEP(alg) /* specification-defined value */

#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \

/* implementation-defined value */

#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE \

/* implementation-defined value */

#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \

/* implementation-defined value */

#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE \

/* implementation-defined value */

#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)

#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)

#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \

/* specification-defined value */

psa_status_t psa_key_agreement(psa_key_id_t private_key,

const uint8_t * peer_key,

size_t peer_key_length,

psa_algorithm_t alg,

const psa_key_attributes_t * attributes,

psa_key_id_t * key);

psa_status_t psa_raw_key_agreement(psa_algorithm_t alg,

psa_key_id_t private_key,

const uint8_t * peer_key,

size_t peer_key_length,

uint8_t * output,

size_t output_size,

size_t * output_length);

psa_status_t psa_key_derivation_key_agreement(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,

psa_key_id_t private_key,

const uint8_t * peer_key,

size_t peer_key_length);

#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) /* specification-defined value */

#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) /* specification-defined value */

#define PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg) \

/* specification-defined value */

#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \

PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg)

#define PSA_ALG_IS_FFDH(alg) /* specification-defined value */

#define PSA_ALG_IS_ECDH(alg) /* specification-defined value */

#define PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(key_type, key_bits) \

/* implementation-defined value */

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 297

(continued from previous page)
#define PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE \

/* implementation-defined value */

psa_status_t psa_generate_random(uint8_t * output,

size_t output_size);

#ifdef __cplusplus

}

#endif

#endif // PSA_CRYPTO_H

Appendix B: Algorithm and key type encoding
Algorithm identifiers (psa_algorithm_t) and key types (psa_key_type_t) in the Crypto API are structuredinteger values.

∙ Algorithm identifier encoding describes the encoding scheme for algorithm identifiers
∙ Key type encoding on page 306 describes the encoding scheme for key types

B.1 Algorithm identifier encoding
Algorithm identifiers are 32-bit integer values of the type psa_algorithm_t. Algorithm identifier values havethe structure shown in Figure 2.

0781516212223243031

HT1LEN/T2BSCATV

Figure 2 Encoding of psa_algorithm_t
Table 10 on page 299 describes the meaning of the bit-fields — some of the bit-fields are used in differentways by different algorithm categories.

Table 10 Bit fields in an algorithm identifier

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 298

Field Bits Description

V [31] Flag to indicate an implementation-defined algorithm identifier, when V=1.
Algorithm identifiers defined by this specification always have V=0.

CAT [30:24] Algorithm category. See Algorithm categories.
S [23] For a cipher algorithm, this flag indicates a stream cipher when S=1.

For a key derivation algorithm, this flag indicates a key-stretching orpassword-hashing algorithm when S=1.
B [22] Flag to indicate an algorithm built on a block cipher, when B=1.
LEN/T2 [21:16] LEN is the length of a MAC or AEAD tag, T2 is a key agreement algorithm sub-type.
T1 [15:8] Algorithm sub-type for most algorithm categories.
H [7:0] Hash algorithm sub-type, also used in any algorithm that is parameterized by a hash.

B.1.1 Algorithm categories

The CAT field in an algorithm identifier takes the values shown in Table 11.
Table 11 Algorithm identifier categories

Algorithm category CAT Category details

None 0x00 See PSA_ALG_NONE

Hash 0x02 See Hash algorithm encoding
MAC 0x03 SeeMAC algorithm encoding on page 300
Cipher 0x04 See Cipher algorithm encoding on page 301
AEAD 0x05 See AEAD algorithm encoding on page 302
Key derivation 0x08 See Key derivation algorithm encoding on page 303
Asymmetric signature 0x06 See Asymmetric signature algorithm encoding on page 304
Asymmetric encryption 0x07 See Asymmetric encryption algorithm encoding on page 305
Key agreement 0x09 See Key agreement algorithm encoding on page 305

B.1.2 Hash algorithm encoding

The algorithm identifier for hash algorithms defined in this specification are encoded as shown in Figure 3.
0781516212223243031

HASH-TYPE00000x020

Figure 3 Hash algorithm encoding
The defined values for HASH-TYPE are shown in Table 12 on page 300.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 299

Table 12 Hash algorithm sub-type values
Hash algorithm HASH-TYPE Algorithm identifier Algorithm value

MD2 0x01 PSA_ALG_MD2 0x02000001

MD4 0x02 PSA_ALG_MD4 0x02000002

MD5 0x03 PSA_ALG_MD5 0x02000003

RIPEMD-160 0x04 PSA_ALG_RIPEMD160 0x02000004

SHA1 0x05 PSA_ALG_SHA_1 0x02000005

AES-MMO (Zigbee) 0x07 PSA_ALG_AES_MMO_ZIGBEE 0x02000007

SHA-224 0x08 PSA_ALG_SHA_224 0x02000008

SHA-256 0x09 PSA_ALG_SHA_256 0x02000009

SHA-384 0x0A PSA_ALG_SHA_384 0x0200000A

SHA-512 0x0B PSA_ALG_SHA_512 0x0200000B

SHA-512/224 0x0C PSA_ALG_SHA_512_224 0x0200000C

SHA-512/256 0x0D PSA_ALG_SHA_512_256 0x0200000D

SHA3-224 0x10 PSA_ALG_SHA3_224 0x02000010

SHA3-256 0x11 PSA_ALG_SHA3_256 0x02000011

SHA3-384 0x12 PSA_ALG_SHA3_384 0x02000012

SHA3-512 0x13 PSA_ALG_SHA3_512 0x02000013

SM3 0x14 PSA_ALG_SM3 0x02000014

SHAKE256-512 0x15 PSA_ALG_SHAKE256_512 0x02000015

wildcard a 0xFF PSA_ALG_ANY_HASH 0x020000FF

a. The wildcard hash PSA_ALG_ANY_HASH can be used to parameterize a signature algorithm which definesa key usage policy, permitting any hash algorithm to be specified in a signature operation using thekey.
B.1.3 MAC algorithm encoding

The algorithm identifier for MAC algorithms defined in this specification are encoded as shown in Figure 4.
078141516212223243031

HASH-TYPE or 0MAC-TYPEWLENB10x030

Figure 4MAC algorithm encoding
The defined values for B and MAC-TYPE are shown in Table 13 on page 301.
LEN = 0 specifies a default length output MAC, other values for LEN specify a truncated MAC.
W is a flag to indicate a wildcard permitted-algorithm policy:

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 300

∙ W = 0 indicates a specific MAC algorithm and MAC length.
∙ W = 1 indicates a wildcard key usage policy, which permits the MAC algorithm with a MAC length ofat least LEN to be specified in a MAC operation using the key. LEN must not be zero.

H = HASH-TYPE (see Table 12 on page 300) for hash-based MAC algorithms, otherwise H = 0.
Table 13MAC algorithm sub-type values

MAC algorithm B MAC-TYPE Algorithm identifier Algorithm value

HMAC 0 0x00 PSA_ALG_HMAC(hash_alg) 0x038000hh a b
CBC-MAC c 1 0x01 PSA_ALG_CBC_MAC 0x03c00100 a
CMAC c 1 0x02 PSA_ALG_CMAC 0x03c00200 a

a. This is the default algorithm identifier, specifying a standard length tag. PSA_ALG_TRUNCATED_MAC()generates identifiers with non-default LEN values. PSA_ALG_AT_LEAST_THIS_LENGTH_MAC() generatespermitted-algorithm policies with W = 1.
b. hh is the HASH-TYPE for the hash algorithm, hash_alg, used to construct the MAC algorithm.
c. This is a MAC constructed using an underlying block cipher. The block cipher is determined by thekey type that is provided to the MAC operation.

B.1.4 Cipher algorithm encoding

The algorithm identifier for CIPHER algorithms defined in this specification are encoded as shown inFigure 5.
0781516212223243031

0CIPHER-TYPE0BS0x040

Figure 5 CIPHER algorithm encoding
The defined values for S, B, and CIPHER-TYPE are shown in Table 14 on page 302.

Table 14 Cipher algorithm sub-type values

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 301

Cipher algorithm S B CIPHER-TYPE Algorithm identifier Algorithm value

Stream cipher a 1 0 0x01 PSA_ALG_STREAM_CIPHER 0x04800100

CTR mode b 1 1 0x10 PSA_ALG_CTR 0x04C01000

CFB mode b 1 1 0x11 PSA_ALG_CFB 0x04C01100

OFB mode b 1 1 0x12 PSA_ALG_OFB 0x04C01200

CCM* with zero-length tag b 1 1 0x13 PSA_ALG_CCM_STAR_NO_TAG 0x04C01300

CCM* wildcard c 1 1 0x93 PSA_ALG_CCM_STAR_ANY_TAG 0x04c09300

XTS mode b 0 1 0xFF PSA_ALG_XTS 0x0440FF00

CBC mode without padding b 0 1 0x40 PSA_ALG_CBC_NO_PADDING 0x04404000

CBC mode with PKCS#7 padding b 0 1 0x41 PSA_ALG_CBC_PKCS7 0x04404100

ECB mode without padding b 0 1 0x44 PSA_ALG_ECB_NO_PADDING 0x04404400

a. The stream cipher algorithm identifier PSA_ALG_STREAM_CIPHER is used with specific stream cipher keytypes, such as PSA_KEY_TYPE_CHACHA20.
b. This is a cipher mode of an underlying block cipher. The block cipher is determined by the key typethat is provided to the cipher operation.
c. The wildcard algorithm PSA_ALG_CCM_STAR_ANY_TAG permits a key to be used with any CCM* algorithm:unauthenticated cipher PSA_ALG_CCM_STAR_NO_TAG, and AEAD algorithm PSA_ALG_CCM.

B.1.5 AEAD algorithm encoding

The algorithm identifier for AEAD algorithms defined in this specification are encoded as shown in Figure6.
078141516212223243031

0AEAD-TYPEWLENB00x050

Figure 6 AEAD algorithm encoding
The defined values for B and AEAD-TYPE are shown in Table 15 on page 303.
LEN = 1..31 specifies the output tag length.
W is a flag to indicate a wildcard permitted-algorithm policy:

∙ W = 0 indicates a specific AEAD algorithm and tag length.
∙ W = 1 indicates a wildcard key usage policy, which permits the AEAD algorithm with a tag length ofat least LEN to be specified in an AEAD operation using the key.

Table 15 AEAD algorithm sub-type values

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 302

AEAD algorithm B AEAD-TYPE Algorithm identifier Algorithm value

CCM a 1 0x01 PSA_ALG_CCM 0x05500100 b
GCM a 1 0x02 PSA_ALG_GCM 0x05500200 b
ChaCha20-Poly1305 0 0x05 PSA_ALG_CHACHA20_POLY1305 0x05100500 b
XChaCha20-Poly1305 0 0x06 PSA_ALG_XCHACHA20_POLY1305 0x05100600 b

a. This is an AEAD mode of an underlying block cipher. The block cipher is determined by the key typethat is provided to the AEAD operation.
b. This is the default algorithm identifier, specifying the default tag length for the algorithm.

PSA_ALG_AEAD_WITH_SHORTENED_TAG() generates identifiers with alternative LEN values.
PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG() generates wildcard permitted-algorithm policies withW = 1.

B.1.6 Key derivation algorithm encoding
The algorithm identifier for key derivation algorithms defined in this specification are encoded as shown inFigure 7.

0781516212223243031

HASH-TYPEKDF-TYPE00S0x080

Figure 7 Key derivation algorithm encoding
The defined values for S and KDF-TYPE are shown in Table 16.
The permitted values of HASH-TYPE (see Table 12 on page 300) depend on the specific KDF algorithm.

Table 16 Key derivation algorithm sub-type values
Key derivation algorithm S KDF-

TYPE
Algorithm identifier Algorithm

value

HKDF 0 0x01 PSA_ALG_HKDF(hash) 0x080001hh a
TLS-1.2 PRF 0 0x02 PSA_ALG_TLS12_PRF(hash) 0x080002hh a
TLS-1.2 PSK-to-MasterSecret 0 0x03 PSA_ALG_TLS12_PSK_TO_MS(hash) 0x080003hh a
HKDF-Extract 0 0x04 PSA_ALG_HKDF_EXTRACT(hash) 0x080004hh a
HKDF-Expand 0 0x05 PSA_ALG_HKDF_EXPAND(hash) 0x080005hh a
TLS 1.2 ECJPAKE-to-PMS 0 0x06 PSA_ALG_TLS12_ECJPAKE_TO_PMS 0x08000609

SP 800-108 Counter HMAC 0 0x07 PSA_ALG_SP800_108_COUNTER_HMAC(hash) 0x080007hh a
SP 800-108 Counter CMAC 0 0x08 PSA_ALG_SP800_108_COUNTER_CMAC 0x08000800

PBKDF2-HMAC 1 0x01 PSA_ALG_PBKDF2_HMAC(hash) 0x088001hh a
PBKDF2-AES-CMAC-PRF-128 1 0x02 PSA_ALG_PBKDF2_AES_CMAC_PRF_128 0x08800200

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 303

a. hh is the HASH-TYPE for the hash algorithm, hash, used to construct the key derivation algorithm.
B.1.7 Asymmetric signature algorithm encoding

The algorithm identifier for asymmetric signature algorithms defined in this specification are encoded asshown in Figure 8.
0781516212223243031

HASH-TYPE or 0SIGN-TYPE0000x060

Figure 8 Asymmetric signature algorithm encoding
The defined values for SIGN-TYPE are shown in Table 17.
H = HASH-TYPE (see Table 12 on page 300) for message signature algorithms that are parameterized by ahash algorithm, otherwise H = 0.

Table 17 Asymmetric signature algorithm sub-type values
Signature algorithm SIGN-TYPE Algorithm identifier Algorithm value

RSA PKCS#1 v1.5 0x02 PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) 0x060002hh a
RSA PKCS#1 v1.5 no hash b 0x02 PSA_ALG_RSA_PKCS1V15_SIGN_RAW 0x06000200

RSA PSS 0x03 PSA_ALG_RSA_PSS(hash_alg) 0x060003hh a
RSA PSS any salt length 0x13 PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) 0x060013hh a
Randomized ECDSA 0x06 PSA_ALG_ECDSA(hash_alg) 0x060006hh a
Randomized ECDSA no hash b 0x06 PSA_ALG_ECDSA_ANY 0x06000600

Deterministic ECDSA 0x07 PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) 0x060007hh a
PureEdDSA 0x08 PSA_ALG_PURE_EDDSA 0x06000800

HashEdDSA 0x09 PSA_ALG_ED25519PH and PSA_ALG_ED448PH 0x060009hh c

a. hh is the HASH-TYPE for the hash algorithm, hash_alg, used to construct the signature algorithm.
b. Asymmetric signature algorithms without hashing can only be used with psa_sign_hash() and

psa_verify_hash().
c. The HASH-TYPE for HashEdDSA is determined by the curve. SHA-512 is used for Ed25519ph, andthe first 64 bytes of output from SHAKE256 is used for Ed448ph.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 304

B.1.8 Asymmetric encryption algorithm encoding
The algorithm identifier for asymmetric encryption algorithms defined in this specification are encoded asshown in Figure 9.

0781516212223243031

HASH-TYPE or 0ENCRYPT-TYPE0000x070

Figure 9 Asymmetric encryption algorithm encoding
The defined values for ENCRYPT-TYPE are shown in Table 18.
H = HASH-TYPE (see Table 12 on page 300) for asymmetric encryption algorithms that are parameterizedby a hash algorithm, otherwise H = 0.

Table 18 Asymmetric encryption algorithm sub-type values
Asymmetric encryption algorithm ENCRYPT-TYPE Algorithm identifier Algorithm value

RSA PKCS#1 v1.5 0x02 PSA_ALG_RSA_PKCS1V15_CRYPT 0x07000200

RSA OAEP 0x03 PSA_ALG_RSA_OAEP(hash_alg) 0x070003hh a

a. hh is the HASH-TYPE for the hash algorithm, hash_alg, used to construct the encryption algorithm.
B.1.9 Key agreement algorithm encoding
A key agreement algorithm identifier can either be for the standalone key agreement algorithm, or for acombined key agreement with key derivation algorithm. The former can only be used with
psa_key_agreement() and psa_raw_key_agreement(), while the latter are used with
psa_key_derivation_key_agreement().
The algorithm identifier for standalone key agreement algorithms defined in this specification are encodedas shown in Figure 10.

0781516212223243031

00KA-TYPE000x090

Figure 10 Standalone key agreement algorithm encoding
The defined values for KA-TYPE are shown in Table 19.

Table 19 Key agreement algorithm sub-type values
Key agreement algorithm KA-TYPE Algorithm identifier Algorithm value

FFDH 0x01 PSA_ALG_FFDH 0x09010000

ECDH 0x02 PSA_ALG_ECDH 0x09020000

A combined key agreement is constructed by a bitwise OR of the standalone key agreement algorithmidentifier and the key derivation algorithm identifier. This operation is provided by the
PSA_ALG_KEY_AGREEMENT() macro.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 305

0781516212223243031

HASH-TYPEKDF-TYPEKA-TYPE000x090

Figure 11 Combined key agreement algorithm encoding
The underlying standalone key agreement algorithm can be extracted from the KA-TYPE field, and the keyderivation algorithm from the KDF-TYPE and HASH-TYPE fields.

B.2 Key type encoding
Key types are 16-bit integer values of the type psa_key_type_t. Key type values have the structure shownin Figure 12.

011112131415

Pcategory-specific typeCATAV

Figure 12 Encoding of psa_key_type_t
Table 20 describes the meaning of the bit-fields — some of bit-fields are used in different ways by differentkey type categories.

Table 20 Bit fields in a key type
Field Bits Description

V [15] Flag to indicate an implementation-defined key type, when V=1.
Key types defined by this specification always have V=0.

A [14] Flag to indicate an asymmetric key type, when A=1.
CAT [13:12] Key type category. See Key type categories.
category-specific type [11:1] The meaning of this field is specific to each key category.
P [0] Parity bit. Valid key type values have even parity.

B.2.1 Key type categories
The A and CAT fields in a key type take the values shown in Table 21.

Table 21 Key type categories
Key type category A CAT Category details

None 0 0 See PSA_KEY_TYPE_NONE

Raw data 0 1 See Raw key encoding on page 307
Symmetric key 0 2 See Symmetric key encoding on page 307
Asymmetric public key 1 0 See Asymmetric key encoding on page 308
Asymmetric key pair 1 3 See Asymmetric key encoding on page 308

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 306

B.2.2 Raw key encoding

The key type for raw keys defined in this specification are encoded as shown in Figure 13.
01781112131415

PSUB-TYPERAW-TYPE100

Figure 13 Raw key encoding
The defined values for RAW-TYPE, SUB-TYPE, and P are shown in Table 22.

Table 22 Raw key sub-type values
Raw key type RAW-TYPE SUB-TYPE P Key type Key type value

Raw data 0 0 1 PSA_KEY_TYPE_RAW_DATA 0x1001

HMAC 1 0 0 PSA_KEY_TYPE_HMAC 0x1100

Derivation secret 2 0 0 PSA_KEY_TYPE_DERIVE 0x1200

Password 2 1 1 PSA_KEY_TYPE_PASSWORD 0x1203

Password hash 2 2 1 PSA_KEY_TYPE_PASSWORD_HASH 0x1205

Derivation pepper 2 3 0 PSA_KEY_TYPE_PEPPER 0x1206

B.2.3 Symmetric key encoding

The key type for symmetric keys defined in this specification are encoded as shown in Figure 14.
0178101112131415

PSYM-TYPEBLK0200

Figure 14 Symmetric key encoding
For block-based cipher keys, the block size for the cipher algorithm is 2BLK.
The defined values for BLK, SYM-TYPE and P are shown in Table 23 on page 308.

Table 23 Symmetric key sub-type values

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 307

Symmetric key type BLK SYM-TYPE P Key type Key type value

ARC4 0 1 0 PSA_KEY_TYPE_ARC4 0x2002

ChaCha20 0 2 0 PSA_KEY_TYPE_CHACHA20 0x2004

XChaCha20 0 3 1 PSA_KEY_TYPE_XCHACHA20 0x2007

DES 3 0 1 PSA_KEY_TYPE_DES 0x2301

AES 4 0 0 PSA_KEY_TYPE_AES 0x2400

CAMELLIA 4 1 1 PSA_KEY_TYPE_CAMELLIA 0x2403

SM4 4 2 1 PSA_KEY_TYPE_SM4 0x2405

ARIA 4 3 0 PSA_KEY_TYPE_ARIA 0x2406

B.2.4 Asymmetric key encoding

The key type for asymmetric keys defined in this specification are encoded as shown in Figure 15.
01781112131415

PFAMILYASYM-TYPEPAIR10

Figure 15 Asymmetric key encoding
PAIR is either 0 for a public key, or 3 for a key pair.
The defined values for ASYM-TYPE are shown in Table 24.

Table 24 Asymmetric key sub-type values
Asymmetric key type ASYM-TYPE Details

RSA 0 See RSA key encoding
Elliptic Curve 1 See Elliptic Curve key encoding on page 309
Diffie-Hellman 2 See Diffie Hellman key encoding on page 310

RSA key encoding

The key type for RSA keys defined in this specification are encoded as shown in Figure 16.
01781112131415

100PAIR10

Figure 16 RSA key encoding
PAIR is either 0 for a public key, or 3 for a key pair.
The defined values for RSA keys are shown in Table 25 on page 309.

Table 25 RSA key values
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 308

RSA key type Key type Key type value

Public key PSA_KEY_TYPE_RSA_PUBLIC_KEY 0x4001

Key pair PSA_KEY_TYPE_RSA_KEY_PAIR 0x7001

Elliptic Curve key encoding

The key type for Elliptic Curve keys defined in this specification are encoded as shown in Figure 17.
01781112131415

PECC-FAMILY1PAIR10

Figure 17 Elliptic Curve key encoding
PAIR is either 0 for a public key, or 3 for a key pair.
The defined values for ECC-FAMILY and P are shown in Table 26.

Table 26 ECC key family values
ECC key family ECC-FAMILY P ECC family a Public key value Key pair value

SECP K1 0x0B 1 PSA_ECC_FAMILY_SECP_K1 0x4117 0x7117

SECP R1 0x09 0 PSA_ECC_FAMILY_SECP_R1 0x4112 0x7112

SECP R2 0x0D 1 PSA_ECC_FAMILY_SECP_R2 0x411B 0x711B

SECT K1 0x13 1 PSA_ECC_FAMILY_SECT_K1 0x4127 0x7127

SECT R1 0x11 0 PSA_ECC_FAMILY_SECT_R1 0x4122 0x7122

SECT R2 0x15 1 PSA_ECC_FAMILY_SECT_R2 0x412B 0x712B

Brainpool-P R1 0x18 0 PSA_ECC_FAMILY_BRAINPOOL_P_R1 0x4130 0x7130

FRP 0x19 1 PSA_ECC_FAMILY_FRP 0x4133 0x7133

Montgomery 0x20 1 PSA_ECC_FAMILY_MONTGOMERY 0x4141 0x7141

Twisted Edwards 0x21 0 PSA_ECC_FAMILY_TWISTED_EDWARDS 0x4142 0x7142

a. The key type value is constructed from the Elliptic Curve family using either
PSA_KEY_TYPE_ECC_PUBLIC_KEY(family) or PSA_KEY_TYPE_ECC_KEY_PAIR(family) as required.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 309

Diffie Hellman key encoding

The key type for Diffie Hellman keys defined in this specification are encoded as shown in Figure 18.
01781112131415

PDH-FAMILY2PAIR10

Figure 18 Diffie Hellman key encoding
PAIR is either 0 for a public key, or 3 for a key pair.
The defined values for DH-FAMILY and P are shown in Table 27.

Table 27 Diffie Hellman key group values
DH key group DH-FAMILY P DH group a Public key value Key pair value

RFC7919 0x01 1 PSA_DH_FAMILY_RFC7919 0x4203 0x7203

a. The key type value is constructed from the Diffie Hellman family using either
PSA_KEY_TYPE_DH_PUBLIC_KEY(family) or PSA_KEY_TYPE_DH_KEY_PAIR(family) as required.

Appendix C: Example macro implementations
This appendix provides example implementations of the function-like macros that havespecification-defined values.

Note:
In a future version of this specification, these example implementations will be replaced with apseudo-code representation of the macro’s computation in the macro description.

The examples here provide correct results for the valid inputs defined by each API, for an implementationthat supports all of the defined algorithms and key types. An implementation can provide alternativedefinitions of these macros:
∙ If the implementation does not support all of the algorithms or key types, it can provide a simplerdefinition of applicable macros.
∙ If the implementation provides vendor-specific algorithms or key types, it needs to extend thedefinitions of applicable macros.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 310

C.1 Algorithm macros

#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \

((((aead_alg) & ~0x003f8000) == 0x05400100) ? PSA_ALG_CCM : \

(((aead_alg) & ~0x003f8000) == 0x05400200) ? PSA_ALG_GCM : \

(((aead_alg) & ~0x003f8000) == 0x05000500) ? PSA_ALG_CHACHA20_POLY1305 : \

PSA_ALG_NONE)

#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \

(PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | 0x00008000)

#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \

((psa_algorithm_t) (((aead_alg) & ~0x003f8000) | (((tag_length) & 0x3f) << 16)))

#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \

(PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | 0x00008000)

#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \

((psa_algorithm_t) (0x06000700 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_ECDSA(hash_alg) \

((psa_algorithm_t) (0x06000600 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \

((psa_algorithm_t) ((mac_alg) & ~0x003f8000))

#define PSA_ALG_GET_HASH(alg) \

(((alg) & 0x000000ff) == 0 ? PSA_ALG_NONE : 0x02000000 | ((alg) & 0x000000ff))

#define PSA_ALG_HKDF(hash_alg) \

((psa_algorithm_t) (0x08000100 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HKDF_EXPAND(hash_alg) \

((psa_algorithm_t) (0x08000500 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HKDF_EXTRACT(hash_alg) \

((psa_algorithm_t) (0x08000400 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HMAC(hash_alg) \

((psa_algorithm_t) (0x03800000 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_IS_AEAD(alg) \

(((alg) & 0x7f000000) == 0x05000000)

#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \

(((alg) & 0x7f400000) == 0x05400000)

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 311

(continued from previous page)
#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \

(((alg) & 0x7f000000) == 0x07000000)

#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \

(((alg) & 0x7fc00000) == 0x03c00000)

#define PSA_ALG_IS_CIPHER(alg) \

(((alg) & 0x7f000000) == 0x04000000)

#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \

(((alg) & ~0x000000ff) == 0x06000700)

#define PSA_ALG_IS_ECDH(alg) \

(((alg) & 0x7fff0000) == 0x09020000)

#define PSA_ALG_IS_ECDSA(alg) \

(((alg) & ~0x000001ff) == 0x06000600)

#define PSA_ALG_IS_FFDH(alg) \

(((alg) & 0x7fff0000) == 0x09010000)

#define PSA_ALG_IS_HASH(alg) \

(((alg) & 0x7f000000) == 0x02000000)

#define PSA_ALG_IS_HASH_AND_SIGN(alg) \

(PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \

PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg))

#define PSA_ALG_IS_HASH_EDDSA(alg) \

(((alg) & ~0x000000ff) == 0x06000900)

#define PSA_ALG_IS_HKDF(alg) \

(((alg) & ~0x000000ff) == 0x08000100)

#define PSA_ALG_IS_HKDF_EXPAND(alg) \

(((alg) & ~0x000000ff) == 0x08000500)

#define PSA_ALG_IS_HKDF_EXTRACT(alg) \

(((alg) & ~0x000000ff) == 0x08000400)

#define PSA_ALG_IS_HMAC(alg) \

(((alg) & 0x7fc0ff00) == 0x03800000)

#define PSA_ALG_IS_KEY_AGREEMENT(alg) \

(((alg) & 0x7f000000) == 0x09000000)

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 312

(continued from previous page)
#define PSA_ALG_IS_KEY_DERIVATION(alg) \

(((alg) & 0x7f000000) == 0x08000000)

#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \

(((alg) & 0x7f800000) == 0x08800000)

#define PSA_ALG_IS_MAC(alg) \

(((alg) & 0x7f000000) == 0x03000000)

#define PSA_ALG_IS_PBKDF2_HMAC(alg) \

(((alg) & ~0x000000ff) == 0x08800100)

#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \

(((alg) & ~0x000000ff) == 0x06000600)

#define PSA_ALG_IS_RSA_OAEP(alg) \

(((alg) & ~0x000000ff) == 0x07000300)

#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \

(((alg) & ~0x000000ff) == 0x06000200)

#define PSA_ALG_IS_RSA_PSS(alg) \

(((alg) & ~0x000010ff) == 0x06000300)

#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \

(((alg) & ~0x000000ff) == 0x06001300)

#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \

(((alg) & ~0x000000ff) == 0x06000300)

#define PSA_ALG_IS_SIGN(alg) \

(((alg) & 0x7f000000) == 0x06000000)

#define PSA_ALG_IS_SIGN_HASH(alg) \

PSA_ALG_IS_SIGN(alg)

#define PSA_ALG_IS_SIGN_MESSAGE(alg) \

(PSA_ALG_IS_SIGN(alg) && \

(alg) != PSA_ALG_ECDSA_ANY && (alg) != PSA_ALG_RSA_PKCS1V15_SIGN_RAW)

#define PSA_ALG_IS_SP800_108_COUNTER_HMAC(alg) \

(((alg) & ~0x000000ff) == 0x08000700)

#define PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg) \

(((alg) & 0x7f00ffff) == 0x09000000)

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 313

(continued from previous page)
#define PSA_ALG_IS_STREAM_CIPHER(alg) \

(((alg) & 0x7f800000) == 0x04800000)

#define PSA_ALG_IS_TLS12_PRF(alg) \

(((alg) & ~0x000000ff) == 0x08000200)

#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \

(((alg) & ~0x000000ff) == 0x08000300)

#define PSA_ALG_IS_WILDCARD(alg) \

((PSA_ALG_GET_HASH(alg) == PSA_ALG_ANY_HASH) || \

(((alg) & 0x7f008000) == 0x03008000) || \

(((alg) & 0x7f008000) == 0x05008000))

#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \

((ka_alg) | (kdf_alg))

#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \

((psa_algorithm_t)((alg) & 0xff7f0000))

#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \

((psa_algorithm_t)((alg) & 0xfe80ffff))

#define PSA_ALG_PBKDF2_HMAC(hash_alg) \

((psa_algorithm_t)(0x08800100 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_RSA_OAEP(hash_alg) \

((psa_algorithm_t)(0x07000300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \

((psa_algorithm_t)(0x06000200 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_RSA_PSS(hash_alg) \

((psa_algorithm_t)(0x06000300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \

((psa_algorithm_t)(0x06001300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_SP800_108_COUNTER_HMAC(hash_alg) \

((psa_algorithm_t) (0x08000700 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_TLS12_PRF(hash_alg) \

((psa_algorithm_t) (0x08000200 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \

((psa_algorithm_t) (0x08000300 | ((hash_alg) & 0x000000ff)))

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 314

(continued from previous page)
#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \

((psa_algorithm_t) (((mac_alg) & ~0x003f8000) | (((mac_length) & 0x3f) << 16)))

C.2 Key type macros

#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \

(1u << (((type) >> 8) & 7))

#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \

((psa_dh_family_t) ((type) & 0x00ff))

#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \

((psa_key_type_t) (0x7200 | (group)))

#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \

((psa_key_type_t) (0x4200 | (group)))

#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \

((psa_ecc_family_t) ((type) & 0x00ff))

#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \

((psa_key_type_t) (0x7100 | (curve)))

#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \

((psa_key_type_t) (0x4100 | (curve)))

#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \

(((type) & 0x4000) == 0x4000)

#define PSA_KEY_TYPE_IS_DH(type) \

((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & 0xff00) == 0x4200)

#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \

(((type) & 0xff00) == 0x7200)

#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \

(((type) & 0xff00) == 0x4200)

#define PSA_KEY_TYPE_IS_ECC(type) \

((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & 0xff00) == 0x4100)

#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \

(((type) & 0xff00) == 0x7100)

(continues on next page)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 315

(continued from previous page)
#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \

(((type) & 0xff00) == 0x4100)

#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \

(((type) & 0x7000) == 0x7000)

#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \

(((type) & 0x7000) == 0x4000)

#define PSA_KEY_TYPE_IS_RSA(type) \

(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == 0x4001)

#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \

(((type) & 0x7000) == 0x1000 || ((type) & 0x7000) == 0x2000)

#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \

((psa_key_type_t) ((type) | 0x3000))

#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \

((psa_key_type_t) ((type) & ~0x3000))

C.3 Hash suspend state macros

#define PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) \

((alg)==PSA_ALG_MD2 ? 64 : \

(alg)==PSA_ALG_MD4 || (alg)==PSA_ALG_MD5 ? 16 : \

(alg)==PSA_ALG_RIPEMD160 || (alg)==PSA_ALG_SHA_1 ? 20 : \

(alg)==PSA_ALG_SHA_224 || (alg)==PSA_ALG_SHA_256 ? 32 : \

(alg)==PSA_ALG_SHA_512 || (alg)==PSA_ALG_SHA_384 || \

(alg)==PSA_ALG_SHA_512_224 || (alg)==PSA_ALG_SHA_512_256 ? 64 : \

0)

#define PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) \

((alg)==PSA_ALG_MD2 ? 1 : \

(alg)==PSA_ALG_MD4 || (alg)==PSA_ALG_MD5 || (alg)==PSA_ALG_RIPEMD160 || \

(alg)==PSA_ALG_SHA_1 || (alg)==PSA_ALG_SHA_224 || (alg)==PSA_ALG_SHA_256 ? 8 : \

(alg)==PSA_ALG_SHA_512 || (alg)==PSA_ALG_SHA_384 || \

(alg)==PSA_ALG_SHA_512_224 || (alg)==PSA_ALG_SHA_512_256 ? 16 : \

0)

#define PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) \

(PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH + \

PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) + \

PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) + \

PSA_HASH_BLOCK_LENGTH(alg) - 1)

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 316

Appendix D: Security Risk Assessment
This Security Risk Assessment (SRA) analyses the security of the Crypto API itself, not of any specificimplementation of the API, or any specific use of the API. However, the security of an implementation ofthe Crypto API depends on the implementation design, the capabilities of the system in which it isdeployed, and the need to address some of the threats identified in this assessment.
To enable the Crypto API to be suitable for a wider range of security use cases, this SRA considers a broadrange of adversarial models and threats to the application and the implementation, as well as to the API.
This approach allows the assessment to identify API design requirements that affect the ability for animplementation to mitigate threats that do not directly attack the API.
The scope is described in Adversarial models on page 320.

D.1 Architecture
D.1.1 System definition

Figure 19 shows the Crypto API as the defined interface that an Application uses to interact with theCryptoprocessor.

Crypto API

Application Cryptoprocessor
call

Figure 19 Crypto API

Assumptions, constraints, and interacting entities

This SRA makes the following assumptions about the Crypto API design:
∙ The API does not provide arguments that identify the caller, because they can be spoofed easily, andcannot be relied upon. It is assumed that the implementation of the API can determine the calleridentity, where this is required. See Optional isolation on page 18.
∙ The API does not prevent the use of mitigations that are required by an implementation of the API.See Implementation remediations on page 329.
∙ The API follows best-practices for C interface design, reducing the risk of exploitable errors in theapplication and implementation code. See Ease of use on page 20.

Trust boundaries and information flow

The Crypto API is the interface available to the programmer, and is the main attack surface that is analyzedhere. However, to ensure that the API enables the mitigation of other threats to an implementation, wealso consider the system context in which the Crypto API is used.
Figure 20 on page 318 shows the data flow for a typical application usage of the Crypto API, for example,to exchange ciphertext with an external system, or for at rest protection in system non-volatile storage.The Application uses the Crypto API to interact with the Cryptoprocessor. The Cryptoprocessor storespersistent keys in a Key Store.
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 317

«System boundary»

Application Cryptoprocessor
Key Store

NVM

External system
ciphertext Crypto API call

response

store key

load key

ciphertext

Figure 20 Crypto API dataflow diagram for an implementation with no isolation

For some adversarial models, Cryptoprocessor isolation or Caller isolation is required in the implementationto achieve the security goals. See Security goals on page 320, and remediations R.1 and R.2 inImplementation remediations on page 329.
The Cryptoprocessor can optionally include a trust boundary within its implementation of the API. Thetrust boundary shown in Figure 21 corresponds to Cryptoprocessor isolation. The Cryptoprocessorboundary protects the confidentiality and integrity of the Cryptoprocessor and Key Store state fromsystem components that are outside of the boundary.

«System boundary»

«Cryptoprocessor boundary»

Application

NVM

Cryptoprocessor
Key Store

External system
ciphertext Crypto API call

response

store key

load key

ciphertext

Figure 21 Crypto API dataflow diagram for an implementation with cryptoprocessor isolation
If the implementation supports multiple, independent client Applications within the system, eachApplication has its own view of the Cryptoprocessor and key store. The additional trust boundariesrequired for a caller isolated implementation are shown in Figure 22 on page 319. The Applicationboundary restricts the capabilities of the Application, and protects the confidentiality and integrity ofsystem state from the Application.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 318

«System boundary»

«Application boundary»

«Application boundary»

«Cryptoprocessor boundary»

NVM

Application

Other application

Cryptoprocessor
Key Store

External system

External system

ciphertext

ciphertext

ciphertext

ciphertext

Crypto API
call

response

store key

load key

Crypto API
call

response

Figure 22 Crypto API dataflow diagram for an implementation with caller isolation

D.1.2 Assets and stakeholders

1. Cryptographic keys and key-related assets. This includes the key properties, such as the key type,identity and policies.
Stakeholders can include the SiP, the OEM, the system or application owner. Owners of a key needto be able to use the key for cryptographic operations, such as encryption or signature, and wherepermitted, delete, copy or extract the key.
Disclosure of the cryptographic key material to an attacker defeats the protection that the use ofcryptography provides. Modification of cryptographic key material or key properties by an attackerhas the same end result. These allow an attacker access to the assets that are protected by the key.

2. Other cryptographic assets, for example, intermediate calculation values and RNG state.
Disclosure or modification of these assets can enable recovery of cryptographic keys, and loss ofcryptographic protection.

3. Application input/output data and cryptographic operation state.
Application data is only provided to the Cryptoprocessor for cryptographic operations, and itsstakeholder is the application owner.
Disclosure of this data — whether it is plaintext, or other data or state — to an attacker defeats theprotection that the use of cryptography provides. Modification of this data can have the same effect.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 319

D.1.3 Security goals

Cryptography is used as a mitigation to the risk of disclosure or tampering with data assets that requireprotection, where isolation of the attacker from the data asset is unavailable or inadequate. Usingcryptography introduces new threats related to the incorrect use of cryptography and mismanagement ofcryptographic keys. Table 28 lists the security goals for the Crypto API to address these threats.
Table 28 Security goals

Id Description

G.1 An attacker shall not be able to disclose the plaintext corresponding to a ciphertext for whichthey do not own the correct key.
G.2 An attacker shall not be able to generate authenticated material for which they do not ownthe correct key.
G.3 An attacker shall not be able to exfiltrate keys or other private information stored by theCrypto API.
G.4 An attacker shall not be able to alter any state held by the implementation of the Crypto API,such as internal keys or other private information (for example, certificates, signatures, etc.).

D.2 Threat Model
D.2.1 Adversarial models

The API itself has limited ability to mitigate threats. However, mitigation of some of the threats within thecryptoprocessor can place requirements on the API design. This analysis considers a broad attack surface,to also identify requirements that enable the mitigation of specific threats within a cryptoprocessorimplementation.
Table 29 on page 321 describes the adversarial models that are considered in this assessment.
A specific implementation of the Crypto API might not include all of these adversarial models within itsown threat model. In this case, the related threats, risks, and mitigations might not be required for thatimplementation.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 320

Table 29 Adversarial models
Id Description

M.0 The Adversary is capable of accessing data that is outside the Security Perimeter of thesystem and on commonly accessible channels, such as messages in transit or data in storage.
This includes, but is not limited to:

∙ Read any input and output.
∙ Provide, forge, replay or modify input.
∙ Attempt to gain read/write access to external storage devices.
∙ Perform timings on the operations being done by the target machine, either in normaloperation or as a response to crafted inputs. For example, timing attacks on webservers.

Once access to data is obtained, we do not make a further case distinction of the AdversarialModel depending on other capabilities. For example, the ability to perform cryptanalysis onintercepted ciphertext.
M.1 The Adversary is capable of mounting attacks from software.

This includes, but is not limited to:
∙ Software exploitation.
∙ Side channel analysis that that relies on software-exposed, built-in hardware features toperform physical unit and time measurements.
∙ Attacks that exploit access to any memory mapped configuration, monitoring, debugregister.
∙ Software-induced glitching of resources, for example Row hammer, or crashing theCPU by running intensive tasks.

M.2 The Adversary is capable of mounting simple, passive hardware attacks. This Adversary hasphysical access to the hardware.
This includes, but is not limited to:

∙ Side channel analyses that require external measurement devices. For example, this canutilize leakage sources such as EM emissions, power consumption, photonic emission,or acoustic channels.
∙ Plugging malicious hardware into an unmodified system.
∙ Passive SoC or memory interposition.

Adversarial models that are outside the scope of this assessment are shown in Table 30 on page 322.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 321

Table 30 Adversarial models that are outside the scope of this SRA
Id Description

M.3 The Adversary is capable of mounting sophisticated and active physical attacks.
This includes, but is not limited to:

∙ Interposing memory and blocking, replaying, and injecting transactions, this requires amuch more precise timing than passive eavesdropping.
∙ Replacing or adding chips on the motherboard.

M.4 The Adversary is capable of performing invasive silicon microsurgery.

D.2.2 Threats and attacks

Table 31 describes threats to the Security Goals, and provides examples of corresponding attacks. Thistable identifies which Security goals are affected by the attacks, and which Adversarial model or modelsare required to execute the attack.
See Risk assessment on page 324 for an evaluation of the risks posed by these threats,Mitigations onpage 325 for mitigation requirements in the API design, and Implementation remediations on page 329 formitigation recommendations in the cryptoprocessor implementation.

Table 31 Threats and attacks
Threat Attack (Examples)

Id Description Goals Mod-
els

Id: Description

T.1 Use of insecure orincorrectlyimplementedcryptography

G.1G.2 M.0 A.C1: Using a cryptographic algorithm that is notadequately secure for the application use case canpermit an attacker to recover the application plaintextfrom attacker-accessible data.
A.C2: Using a cryptographic algorithm that is notadequately secure for the application use case canpermit an attacker to inject forged authenticatedmaterial into application data in transit or in storage.
A.C3: Using an insecure cryptographic algorithm, or onethat is incorrectly implemented can permit an attacker torecover the cryptographic key. Key recovery enables theattacker to reveal encrypted plaintexts, and inject forgedauthenticated data.

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 322

Table 31 – continued from previous page

Threat Attack (Examples)

Id Description Goals Mod-
els

Id: Description

T.2 Misuse ofcryptographicalgorithms
G.1G.2 M.0 A.C4: Reusing a cryptographic key with differentalgorithms can result in cryptanalysis attacks on theciphertexts or signatures which enable an attacker torecover the plaintext, or the key itself.

T.3 Recovernon-extractablekey through theAPI

G.3 M.1 A.C5: The attacker uses an indirect mechanism providedby the API to extract a key that is not intended to beextractable.
A.C6: The attacker uses a mechanism provided by theAPI to enable brute-force recovery of a non-extractablekey. For example, On the Security of PKCS #11 [CLULOW]describes various flaws in the design of the PKCS #11interface standard that enable an attacker to recoversecret and non-extractable keys.

T.4 Illegal inputs tothe API G.3G.4 M.1 A.60: Using a pointer to memory that does not belong tothe application, in an attempt to make thecryptoprocessor read or write memory that isinaccessible to the application.
A.70: Passing out-of-range values, or incorrectlyformatted data, to provoke incorrect behavior in thecryptoprocessor.
A.61: Providing invalid buffer lengths to causeout-of-bounds read or write access within thecryptoprocessor.
A.62: Call API functions in an invalid sequence toprovoke incorrect operation of the cryptoprocessor.

T.5 Direct access tocryptoprocessorstate
G.3G.4 M.1 A.C7: Without a cryptoprocessor boundary, an attackercan directly access the cryptoprocessor state from anapplication. See Figure 20 on page 318.

A.C8: A misconfigured cryptoprocessor boundary canallow an attacker to directly access the cryptoprocessorstate from an Application.
T.6 Access and useanotherapplication’sassets

G.1G.2 M.1 A.C9: Without application boundaries, thecryptoprocessor provides a unified view of theapplication assets. All keys are accessible to all callers ofthe Crypto API. See Figure 22 on page 319.
A.C10: The attacker can spoof the application identitywithin a caller-isolated implementation to gain access toanother application’s assets.

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 323

Table 31 – continued from previous page

Threat Attack (Examples)

Id Description Goals Mod-
els

Id: Description

T.7 Data-dependenttiming G.1G.3 M.1 A.C11Measuring the time for operations in thecryptoprocessor or the application, and using thedifferential in results to assist in recovery of the key orplaintext.
T.8 Memorymanipulation G.4 M.2 A.19: Corrupt application or cryptoprocessor state via afault, causing incorrect operation of the cryptoprocessor.

M.1 A.59: Modifying function parameters in memory, whilethe cryptoprocessor is accessing the parameter memory,to cause incorrect operation of the cryptoprocessor.
T.9 Side channels G.1G.3 M.2 A.C12 Taking measurements from physical side-channelsduring cryptoprocessor operation, and using this data torecover keys or plaintext. For example, using power orEM measurements.

M.1 A.C13 Taking measurements from shared-resourceside-channels during cryptoprocessor operation, andusing this data to recover keys or plaintext. For example,attacks using a shared cache.

D.2.3 Risk assessment

The risk ratings in Table 32 follow a version of the risk assessment scheme in NIST Special Publication800-30 Revision 1: Guide for Conducting Risk Assessments [SP800-30]. Likelihood of an attack and its impactare evaluated independently, and then they are combined to obtain the overall risk of the attack.
The risk assessment is used to prioritize the threats that require mitigation. This helps to identify themitigations that have the highest priority for implementation. Mitigations are described inMitigations onpage 325 and Implementation remediations on page 329.
It is recommended that this assessment is repeated for a specific implementation or product, taking intoconsideration the Adversarial models that are within scope, and re-evaluating the impact based on theassets at risk. Table 32 repeats the association in Table 31 on page 322 between an Adversarial model andthe Threats that it enables. This aids filtering of the assessment based on the models that are in scope for aspecific implementation.

Table 32 Risk assessment
Adversarial Model Threat/Attack Likelihood Impact a Risk

M.0 T.1 High Medium Medium
M.0 T.2 High Medium Medium

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 324

Table 32 – continued from previous page

Adversarial Model Threat/Attack Likelihood Impact a Risk

M.1 T.3 Medium High Medium
M.1 T.4 High Medium Medium
M.1 T.5 High Very high Very high
M.1 T.6 High High High
M.1 T.7 Medium Medium Medium
M.1 T.8/A.59 Medium Medium Medium
M.2 T.8/A.19 Low Medium Low
M.2 T.9/A.C12 Low High Medium
M.1 T.9/A.C13 Medium High Medium
a. The impact of an attack is dependent on the impact of the disclosure or modification of theapplication data that is cryptographically protected. This is ultimately determined by therequirements and risk assessment for the product which is using the Crypto API. Table 32 onpage 324 allocates the impact as follows:

∙ ‘Medium’ if unspecified cryptoprocessor state or application data assets are affected.
∙ ‘High’ if an application’s cryptographic assets are affected.
∙ ‘Very High’ if all cryptoprocessor assets are affected.

D.3 Mitigations
D.3.1 Objectives

The objectives in Table 33 are a high-level description of what the design must achieve in order to mitigatethe threats. Detailed requirements that describe how the API or cryptoprocessor implementation candeliver the objectives are provided in Requirements on page 326 and Implementation remediations onpage 329.
Table 33Mitigation objectives

Id Description Threats addressed

O.1 Hide keys from the application
Keys are never directly manipulated by applicationsoftware. Instead keys are referred to by handle,removing the need to deal with sensitive key materialinside applications. This form of API is also suitable forsecure elements, based on tamper-resistant hardware,that never reveal cryptographic keys.

T.1 T.2 T.3 — see A keystore interfaceon page 18.
T.5 T.6 — to mitigate T.5 and T.6, theimplementation must provide someform of isolation. See Optionalisolation on page 18.

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 325

Table 33 – continued from previous page

Id Description Threats addressed

O.2 Limit key usage
Associate each key with a policy that limits the use ofthe key. The policy is defined by the application whenthe key is created, after which it is immutable.

T.2 T.3 — see Key policies on page 85.

O.3 Best-practice cryptography
An application developer-oriented API to achievepractical cryptography: the Crypto API offers servicesthat are oriented towards the application ofcryptographic methods like encrypt, sign, verify. Thisenables the implementation to focus on best-practiceimplementation of the cryptographic primitive, and theapplication developer on correct selection and use ofthose primitives.

T.1 T.2 T.7 T.8 — see Ease of use onpage 20.

O.4 Algorithm agility
Cryptographic functions are not tied to a specificcryptographic algorithm. Primitives are designated atrun-time. This simplifies updating an application to usea more secure algorithm, and makes it easier toimplement dynamic selection of cryptographicalgorithms within an application.

T.1 — see Choice of algorithms onpage 19.

D.3.2 Requirements

The design of the API can mitigate, or enable a cryptoprocessor to mitigate, some of the identified attacks.Table 34 describes these mitigations. Mitigations that are delegated to the cryptoprocessor or applicationare described in Implementation remediations on page 329.
Table 34 Security requirements

Id Description API impact Threats/attacks addressed

SR.1(O.1) Key values are not exposedby the API, except whenimporting or exporting a key.
The full key policy must beprovided at the time a key iscreated. See Key managementon page 21.

T.3/A.C5 — key values arehidden by the API.

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 326

Table 34 – continued from previous page

Id Description API impact Threats/attacks addressed

SR.2(O.2) The policy for a key must beset when the key is created,and be immutable afterward.
The full key policy must beprovided at the time a key iscreated. See
psa_key_attributes_t.

T.3/A.C5 — once created, thekey usage permissions cannotbe changed to permit export.
T.2/A.C4— once created, akey cannot be repurposed bychanging its policy.

SR.3(O.2) The key policy must controlthe algorithms that the keycan be used with, and thefunctions of the API that thekey can be used with.

The key policy must includeusage permissions, andpermitted-algorithmattributes. See Key policies onpage 85.

T.2/A.C4 — a key cannot bereused with differentalgorithms.

SR.4(O.1) Key export must be controlledby the key policy. See PSA_KEY_USAGE_EXPORT. T.3/A.C5 — a key can only beextracted from thecryptoprocessor if explicitlypermitted by the key creator.
SR.5(O.1) The policy of a copied keymust not provide rights thatare not permitted by theoriginal key policy.

See psa_copy_key(). T.3/A.C5 — a copy of a keycannot be exported if theoriginal could not beexported.
T.3/A.C4 — a copy of a keycannot be used in differentalgorithm to the original.

SR.6(O.3) Unless explicitly required bythe use case, the API mustnot define cryptographicalgorithms with knownsecurity weaknesses. Ifpossible, deprecatedalgorithms should not beincluded.

Algorithm inclusion is basedon use cases. Warnings areprovided for algorithms andoperations with knownsecurity weaknesses, andrecommendations made touse alternative algorithms.

T.1/A.C1 A.C2 A.C3

SR.7(O.4) The API design must make iteasy to change to a differentalgorithm of the same type.
Cryptographic operationfunctions select the specificalgorithm based onparameters passed at runtime.See Key types on page 51 andAlgorithms on page 108.

T.1/A.C1 A.C2 A.C3

SR.8(O.1) Key derivation functions thatexpose part of the key value,or make part of the key valueeasily recoverable, must notbe provided in the API.

T.3/A.C6

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 327

Table 34 – continued from previous page

Id Description API impact Threats/attacks addressed

SR.9(O.3) Constant values defined bythe API must be designed toresist bit faults.
Key type values explicitlyconsider single-bit faults, seeKey type encoding onpage 306. a
Success and error statuscodes differ by multiple bits,see Status codes on page 42. b

T.8/A.19 — enablement only,mitigation is delegated to theimplementation.

SR.10(O.3) The API design must permitthe implementation ofoperations withdata-independent timing.

Provision of comparisonfunctions for MAC, hash andkey derivation operations.
T.7/A.C11 — enablementonly, mitigation is delegatedto the implementation.

SR.11(O.3) Specify behavior for memoryshared between theapplication andcryptoprocessor, includingwhere multiple parametersoverlap.

Standardize the result whenparameters overlap, seeOverlap between parameterson page 34.

T.8/A.59 — enablement only,mitigation is delegated to theimplementation.

SR.12(O.1)(O.2)
The API must permit theimplementation to isolate thecryptoprocessor, to preventaccess to keys without usingthe API.

No use of shared memorybetween application andcryptoprocessor, except asfunction parameters.

T.5/A.C7 — enablement only,mitigation is delegated to theimplementation.

SR.13(O.3) The API design must permitthe implementation ofoperations using mitigationtechniques that resistside-channel attacks.

Operations that use randomblinding to resist side-channelattacks, can returnRNG-specific error codes.
See also SR.12, which enablesthe cryptoprocessor to befully isolated, andimplemented within aseparate security processor.

T.9 — enablement only,mitigation is delegated to theimplementation.

a. Limited resistance to bit faults is still valuable in systems where memory may be susceptible tosingle-bit flip attacks, for example, Rowhammer on some types of DRAM.
b. Unlike key type values, algorithm identifiers used in cryptographic operations are verified against athe permitted-algorithm in the key policy. This provides a mitigation for a bit fault in an algorithmidentifier value, without requiring error detection within the algorithm identifier itself.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 328

D.4 Remediation & residual risk
D.4.1 Implementation remediations

Table 35 includes all recommended remediations for an implementation, assuming the full adversarialmodel described in Adversarial models on page 320. When an implementation has a subset of theadversarial models, then individual remediations can be excluded from an implementation, if theassociated threat is not relevant for that implementation.
Table 35 Implementation remediations

Id Identified gap Suggested remediation

R.1(O.1)(O.3)
T.5 — direct access tocryptoprocessor state. The cryptoprocessor implementation provides cryptoprocessorisolation or caller isolation, to isolate the application from thecryptoprocessor state, and from volatile and persistent keymaterial.

R.2(O.1)(O.3)
T.6 — access and use anotherapplication’s assets. The cryptoprocessor implementation provides caller isolation,and maintains separate cryptoprocessor state for eachapplication. Each application must only be able to access itsown keys and ongoing operations.

Caller isolation requires that the implementation can securelyidentify the caller of the Crypto API.
R.3(O.3) T.4/A.60 A.61 — using illegalmemory inputs. The cryptoprocessor implementation validates that memorybuffers provided by the application are accessible by theapplication.
R.4(O.3) T.4/A.70 — providing invalidformatted data. The cryptoprocessor implementation checks that imported keydata is valid before use.
R.5(O.3) T.4/A.62 — call the API in aninvalid operation sequence. The cryptoprocessor implementation enforces the correctsequencing of calls in multi-part operations. SeeMulti-partoperations on page 24.
R.6(O.1)(O.3)

T.3/A.C5 A.C6 — indirect keydisclosure via the API. Cryptoprocessor implementation-specific extensions to theAPI must avoid providing mechanisms that can extract orrecover key values, such as trivial key derivation algorithms.
R.8(O.3) T.8/A.59 — concurrentmodification of parametermemory.

The cryptoprocessor implementation treats applicationmemory as untrusted and volatile, typically by not reading thesame memory location twice. See Stability of parameters onpage 34.
R.9(O.3) T.2/A.C4 — incorrectcryptographic parameters. The cryptoprocessor implementation validates the keyattributes and other parameters used for a cryptographicoperation, to ensure these conform to the API specificationand to the specification of the algorithm itself.

continues on next page

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 329

Table 35 – continued from previous page

Id Identified gap Suggested remediation

R.10(O.3) T.1/A.C1 A.C2 A.C3 —insecure cryptographicalgorithms.
The cryptoprocessor does not support deprecatedcryptographic algorithms, unless justified by specific use caserequirements.

R.11(O.3) T.7/A.C11 —data-independent timing. The cryptoprocessor implements cryptographic operationswith data-independent timing.
R.12(O.3) T.9 — side-channels. The cryptoprocessor implements resistance to side-channels.

D.4.2 Residual risk

Threats T.2-T.4, and T.7-T.9 are fully mitigated in the API design, as described inMitigations on page 325,or the cryptoprocessor implementation, as described in Implementation remediations on page 329.
Table 36 describes the remaining risks related to T.1, T.5, and T.6 that cannot be mitigated fully by the APIor cryptoprocessor implementation. Responsibility for managing these risks lies with the applicationdevelopers and system integrators.

Table 36 Residual risk
Id Threat/attack Suggested remediations

RR.1 T.1 Selection of appropriately secure protocols, algorithms and keysizes is the responsibility of the application developer.
RR.2 T.5 Correct isolation of the cryptoprocessor is the responsibility ofthe cryptoprocessor and system implementation.
RR.3 T.6 Correct identification of the application client is theresponsibility of the cryptoprocessor and systemimplementation.

Appendix E: Changes to the API
E.1 Document change history
This section provides the detailed changes made between published version of the document.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 330

E.1.1 Changes between 1.2.0 and 1.2.1

Clarifications and fixes

∙ Fix the example implementation of PSA_ALG_KEY_AGREEMENT_GET_BASE() and
PSA_ALG_KEY_AGREEMENT_GET_KDF() in Example macro implementations on page 310, to give correctresults for key agreements combined with PBKDF2.

∙ Remove the dependency on the underlying hash algorithm in definition of HMAC keys, and theirbehavior on import and export. Transferred the responsibility for truncating over-sized HMAC keysto the application. See PSA_KEY_TYPE_HMAC.
∙ Rewrite the description of PSA_ALG_CTR, to clarify how to use the API to set the appropriate IV fordifferent application use cases.

E.1.2 Changes between 1.1.2 and 1.2.0

Changes to the API

∙ Added psa_key_agreement() for standalone key agreement that outputs to a new key object. Alsoadded PSA_ALG_IS_STANDALONE_KEY_AGREEMENT() as a synonym for PSA_ALG_IS_RAW_KEY_AGREEMENT().
∙ Added support for the XChaCha20 cipher and XChaCha20-Poly1305 AEAD algorithms. See

PSA_KEY_TYPE_XCHACHA20 and PSA_ALG_XCHACHA20_POLY1305.
∙ Added support for zigbee Specification [ZIGBEE] cryptographic algorithms. See

PSA_ALG_AES_MMO_ZIGBEE and PSA_ALG_CCM_STAR_NO_TAG.
∙ Defined key derivation algorithms based on the Counter mode recommendations in NIST SpecialPublication 800-108r1: Recommendation for Key Derivation Using Pseudorandom Functions[SP800-108]. See PSA_ALG_SP800_108_COUNTER_HMAC() and PSA_ALG_SP800_108_COUNTER_CMAC.
∙ Added support for TLS 1.2 ECJPAKE-to-PMS key-derivation. See PSA_ALG_TLS12_ECJPAKE_TO_PMS.
∙ Changed the policy for psa_key_derivation_verify_bytes() and psa_key_derivation_verify_key(), sothat these functions are also permitted when an input key has the PSA_KEY_USAGE_DERIVE usage flag.
∙ Removed the special treatment of PSA_ERROR_INVALID_SIGNATURE for key derivation operations. Averification failure in psa_key_derivation_verify_bytes() and psa_key_derivation_verify_key() nowputs the operation into an error state.

Clarifications and fixes

∙ Clarified the behavior of a key derivation operation when there is insufficient capacity for a call to
psa_key_derivation_output_bytes(), psa_key_derivation_output_key(),
psa_key_derivation_verify_bytes(), or psa_key_derivation_verify_key().

∙ Reserved the value 0 for most enum-like integral types.
∙ Changed terminology for clarification: a ‘raw key agreement’ algorithm is now a ‘standalone keyagreement’, and a ‘full key agreement’ is a ‘combined key agreement’.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 331

E.1.3 Changes between 1.1.1 and 1.1.2

Clarifications and fixes

∙ Clarified the requirements on the hash parameter in the psa_sign_hash() and psa_verify_hash()functions.
∙ Explicitly described the handling of input and output in psa_cipher_update(), consistent with thedocumentation of psa_aead_update().
∙ Clarified the behavior of operation objects following a call to a setup function. Provided a diagram toillustrate multi-part operation states.
∙ Clarified the key policy requirement for PSA_ALG_ECDSA_ANY.
∙ Clarified PSA_KEY_USAGE_EXPORT: “it permits moving a key outside of its current security boundary”.This improves understanding of why it is not only required for psa_export_key(), but can also berequired for psa_copy_key() in some situations.

Other changes

∙ Moved the documentation of supported key import/export formats to a separate section of thespecification. See Key formats on page 105.
E.1.4 Changes between 1.1.0 and 1.1.1

Changes to the API

∙ Extended PSA_ALG_TLS12_PSK_TO_MS to support TLS cipher suites that mix a key exchange with apre-shared key.
∙ Added a new key derivation input step PSA_KEY_DERIVATION_INPUT_OTHER_SECRET.
∙ Added new algorithm families PSA_ALG_HKDF_EXTRACT and PSA_ALG_HKDF_EXPAND for protocols thatrequire the two parts of HKDF separately.

Other changes

∙ Relicensed the document under Attribution-ShareAlike 4.0 International with a patent licensederived from Apache License 2.0. See License on page viii.
∙ Adopted a standard set of Adversarial models for the Security Risk Assessment. See Adversarialmodels on page 320.

E.1.5 Changes between 1.0.1 and 1.1.0

Changes to the API

∙ Relaxation when a raw key agreement is used as a key’s permitted-algorithm policy. This now alsopermits the key agreement to be combined with any key derivation algorithm. See PSA_ALG_FFDH and
PSA_ALG_ECDH.

∙ Provide wildcard permitted-algorithm polices for MAC and AEAD that can specify a minimum MACor tag length. The following elements are added to the API:
IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 332

— PSA_ALG_AT_LEAST_THIS_LENGTH_MAC()

— PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG()

∙ Added support for password-hashing and key-stretching algorithms, as key derivation operations.
— Added key types PSA_KEY_TYPE_PASSWORD, PSA_KEY_TYPE_PASSWORD_HASH and PSA_KEY_TYPE_PEPPER, tosupport use of these new types of algorithm.
— Add key derivation input steps PSA_KEY_DERIVATION_INPUT_PASSWORD and

PSA_KEY_DERIVATION_INPUT_COST.
— Added psa_key_derivation_input_integer() to support numerical inputs to a key derivationoperation.
— Added functions psa_key_derivation_verify_bytes() and psa_key_derivation_verify_key() tocompare derivation output data within the cryptoprocessor.
— Added usage flag PSA_KEY_USAGE_VERIFY_DERIVATION for using keys with the new verificationfunctions.
— Modified the description of existing key derivation APIs to enable the use of key derivationfunctionality.

∙ Added algorithms PSA_ALG_PBKDF2_HMAC() and PSA_ALG_PBKDF2_AES_CMAC_PRF_128 to implement thePBKDF2 password-hashing algorithm.
∙ Add support for twisted Edwards Elliptic curve keys, and the associated EdDSA signature algorithms.The following elements are added to the API:

— PSA_ECC_FAMILY_TWISTED_EDWARDS

— PSA_ALG_PURE_EDDSA

— PSA_ALG_ED25519PH

— PSA_ALG_ED448PH

— PSA_ALG_SHAKE256_512

— PSA_ALG_IS_HASH_EDDSA()

∙ Added an identifier for PSA_KEY_TYPE_ARIA.
∙ Added PSA_ALG_RSA_PSS_ANY_SALT(), which creates the same signatures as PSA_ALG_RSA_PSS(), butpermits any salt length when verifying a signature. Also added the helper macros

PSA_ALG_IS_RSA_PSS_ANY_SALT() and PSA_ALG_IS_RSA_PSS_STANDARD_SALT(), and extended
PSA_ALG_IS_RSA_PSS() to detect both variants of the RSA-PSS algorithm.

Clarifications and fixes

∙ Described the use of header files and the general API conventions. See Library conventions onpage 29.
∙ Added details for SHA-512/224 to the hash suspend state. See Hash suspend state on page 133.
∙ Removed ambiguities from support macros that provide buffer sizes, and improved consistency ofparameter domain definition.
∙ Clarified the length of salt used for creating PSA_ALG_RSA_PSS() signatures, and that verificationrequires the same length of salt in the signature.
∙ Documented the use of PSA_ERROR_INVALID_ARGUMENT when the input data to an operation exceeds thelimit specified by the algorithm.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 333

∙ Clarified how the PSA_ALG_RSA_OAEP() algorithm uses the hash algorithm parameter.
∙ Fixed error in psa_key_derivation_setup() documentation: combined key agreement and keyderivation algorithms are valid for the Crypto API.
∙ Added and clarified documentation for error conditions across the API.
∙ Clarified the distinction between PSA_ALG_IS_HASH_AND_SIGN() and PSA_ALG_IS_SIGN_HASH().
∙ Clarified the behavior of PSA_ALG_IS_HASH_AND_SIGN() with a wildcard algorithm policy parameter.
∙ Documented the use of PSA_ALG_RSA_PKCS1V15_SIGN_RAW with the

PSA_ALG_RSA_PKCS1V15_SIGN(PSA_ALG_ANY_HASH) wildcard policy.
∙ Clarified the way that PSA_ALG_CCM determines the value of the CCM configuration parameter L.Clarified that nonces generated by psa_aead_generate_nonce() can be shorter than the default noncelength provided by PSA_AEAD_NONCE_LENGTH().

Other changes

∙ Add new appendix describing the encoding of algorithm identifiers and key types. See Algorithm andkey type encoding on page 298.
∙ Migrated cryptographic operation summaries to the start of the appropriate operation section, andout of the Functionality overview on page 21.
∙ Included a Security Risk Assessment for the Crypto API.

E.1.6 Changes between 1.0.0 and 1.0.1

Changes to the API

∙ Added subtypes psa_key_persistence_t and psa_key_location_t for key lifetimes, and definedstandard values for these attributes.
∙ Added identifiers for PSA_ALG_SM3 and PSA_KEY_TYPE_SM4.

Clarifications and fixes

∙ Provided citation references for all cryptographic algorithms in the specification.
∙ Provided precise key size information for all key types.
∙ Permitted implementations to store and export long HMAC keys in hashed form.
∙ Provided details for initialization vectors in all unauthenticated cipher algorithms.
∙ Provided details for nonces in all AEAD algorithms.
∙ Clarified the input steps for HKDF.
∙ Provided details of signature algorithms, include requirements when using with psa_sign_hash() and

psa_verify_hash().
∙ Provided details of key agreement algorithms, and how to use them.
∙ Aligned terminology relating to key policies, to clarify the combination of the usage flags andpermitted algorithm in the policy.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 334

∙ Clarified the use of the individual key attributes for all of the key creation functions.
∙ Restructured the description for psa_key_derivation_output_key(), to clarify the handling of theexcess bits in ECC key generation when needing a string of bits whose length is not a multiple of 8.
∙ Referenced the correct buffer size macros for psa_export_key().
∙ Removed the use of the PSA_ERROR_DOES_NOT_EXIST error.
∙ Clarified concurrency rules.
∙ Document that psa_key_derivation_output_key() does not return PSA_ERROR_NOT_PERMITTED if thesecret input is the result of a key agreement. This matches what was already documented for

PSA_KEY_DERIVATION_INPUT_SECRET.
∙ Relax the requirement to use the defined key derivation methods in

psa_key_derivation_output_key(): implementation-specific KDF algorithms can useimplementation-defined methods to derive the key material.
∙ Clarify the requirements for implementations that support concurrent execution of API calls.

Other changes

∙ Provided a glossary of terms.
∙ Provided a table of references.
∙ Restructured the Key management reference on page 47 chapter.

— Moved individual attribute types, values and accessor functions into their own sections.
— Placed permitted algorithms and usage flags into Key policies on page 85.
— Moved most introductory material from the Functionality overview on page 21 into the relevantAPI sections.

E.1.7 Changes between 1.0 beta 3 and 1.0.0

Changes to the API

∙ Added PSA_CRYPTO_API_VERSION_MAJOR and PSA_CRYPTO_API_VERSION_MINOR to report the Crypto APIversion.
∙ Removed PSA_ALG_GMAC algorithm identifier.
∙ Removed internal implementation macros from the API specification:

— PSA_AEAD_TAG_LENGTH_OFFSET

— PSA_ALG_AEAD_FROM_BLOCK_FLAG

— PSA_ALG_AEAD_TAG_LENGTH_MASK

— PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE

— PSA_ALG_CATEGORY_AEAD

— PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION

— PSA_ALG_CATEGORY_CIPHER

— PSA_ALG_CATEGORY_HASH

— PSA_ALG_CATEGORY_KEY_AGREEMENT

— PSA_ALG_CATEGORY_KEY_DERIVATION

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 335

— PSA_ALG_CATEGORY_MAC

— PSA_ALG_CATEGORY_MASK

— PSA_ALG_CATEGORY_SIGN

— PSA_ALG_CIPHER_FROM_BLOCK_FLAG

— PSA_ALG_CIPHER_MAC_BASE

— PSA_ALG_CIPHER_STREAM_FLAG

— PSA_ALG_DETERMINISTIC_ECDSA_BASE

— PSA_ALG_ECDSA_BASE

— PSA_ALG_ECDSA_IS_DETERMINISTIC

— PSA_ALG_HASH_MASK

— PSA_ALG_HKDF_BASE

— PSA_ALG_HMAC_BASE

— PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT

— PSA_ALG_IS_VENDOR_DEFINED

— PSA_ALG_KEY_AGREEMENT_MASK

— PSA_ALG_KEY_DERIVATION_MASK

— PSA_ALG_MAC_SUBCATEGORY_MASK

— PSA_ALG_MAC_TRUNCATION_MASK

— PSA_ALG_RSA_OAEP_BASE

— PSA_ALG_RSA_PKCS1V15_SIGN_BASE

— PSA_ALG_RSA_PSS_BASE

— PSA_ALG_TLS12_PRF_BASE

— PSA_ALG_TLS12_PSK_TO_MS_BASE

— PSA_ALG_VENDOR_FLAG

— PSA_BITS_TO_BYTES

— PSA_BYTES_TO_BITS

— PSA_ECDSA_SIGNATURE_SIZE

— PSA_HMAC_MAX_HASH_BLOCK_SIZE

— PSA_KEY_EXPORT_ASN1_INTEGER_MAX_SIZE

— PSA_KEY_EXPORT_DSA_KEY_PAIR_MAX_SIZE

— PSA_KEY_EXPORT_DSA_PUBLIC_KEY_MAX_SIZE

— PSA_KEY_EXPORT_ECC_KEY_PAIR_MAX_SIZE

— PSA_KEY_EXPORT_ECC_PUBLIC_KEY_MAX_SIZE

— PSA_KEY_EXPORT_RSA_KEY_PAIR_MAX_SIZE

— PSA_KEY_EXPORT_RSA_PUBLIC_KEY_MAX_SIZE

— PSA_KEY_TYPE_CATEGORY_FLAG_PAIR

— PSA_KEY_TYPE_CATEGORY_KEY_PAIR

— PSA_KEY_TYPE_CATEGORY_MASK

— PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY

— PSA_KEY_TYPE_CATEGORY_RAW

— PSA_KEY_TYPE_CATEGORY_SYMMETRIC

— PSA_KEY_TYPE_DH_GROUP_MASK

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 336

— PSA_KEY_TYPE_DH_KEY_PAIR_BASE

— PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE

— PSA_KEY_TYPE_ECC_CURVE_MASK

— PSA_KEY_TYPE_ECC_KEY_PAIR_BASE

— PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE

— PSA_KEY_TYPE_IS_VENDOR_DEFINED

— PSA_KEY_TYPE_VENDOR_FLAG

— PSA_MAC_TRUNCATED_LENGTH

— PSA_MAC_TRUNCATION_OFFSET

— PSA_ROUND_UP_TO_MULTIPLE

— PSA_RSA_MINIMUM_PADDING_SIZE

— PSA_VENDOR_ECC_MAX_CURVE_BITS

— PSA_VENDOR_RSA_MAX_KEY_BITS

∙ Remove the definition of implementation-defined macros from the specification, and clarified theimplementation requirements for these macros in Implementation-specific macros on page 37.
— Macros with implementation-defined values are indicated by /* implementation-defined value

*/ in the API prototype. The implementation must provide the implementation.
— Macros for algorithm and key type construction and inspection have specification-definedvalues. This is indicated by /* specification-defined value */ in the API prototype. Exampledefinitions of these macros is provided in Example macro implementations on page 310.

∙ Changed the semantics of multi-part operations.
— Formalize the standard pattern for multi-part operations.
— Require all errors to result in an error state, requiring a call to psa_xxx_abort() to reset the object.
— Define behavior in illegal and impossible operation states, and for copying and reusingoperation objects.

Although the API signatures have not changed, this change requires modifications to applicationflows that handle error conditions in multi-part operations.
∙ Merge the key identifier and key handle concepts in the API.

— Replaced all references to key handles with key identifiers, or something similar.
— Replaced all uses of psa_key_handle_t with psa_key_id_t in the API, and removes the

psa_key_handle_t type.
— Removed psa_open_key and psa_close_key.
— Added PSA_KEY_ID_NULL for the never valid zero key identifier.
— Document rules related to destroying keys whilst in use.
— Added the PSA_KEY_USAGE_CACHE usage flag and the related psa_purge_key() API.
— Added clarification about caching keys to non-volatile memory.

∙ Renamed PSA_ALG_TLS12_PSK_TO_MS_MAX_PSK_LEN to PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE.
∙ Relax definition of implementation-defined types.

— This is indicated in the specification by /* implementation-defined type */ in the type definition.
— The specification only defines the name of implementation-defined types, and does not requirethat the implementation is a C struct.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 337

∙ Zero-length keys are not permitted. Attempting to create one will now result in an error.
∙ Relax the constraints on inputs to key derivation:

— psa_key_derivation_input_bytes() can be used for secret input steps. This is necessary if azero-length input is required by the application.
— psa_key_derivation_input_key() can be used for non-secret input steps.

∙ Multi-part cipher operations now require that the IV is passed using psa_cipher_set_iv(), the optionto provide this as part of the input to psa_cipher_update() has been removed.
The format of the output from psa_cipher_encrypt(), and input to psa_cipher_decrypt(), isdocumented.

∙ Support macros to calculate the size of output buffers, IVs and nonces.
— Macros to calculate a key and/or algorithm specific result are provided for all output buffers.The new macros are:

∘ PSA_AEAD_NONCE_LENGTH()

∘ PSA_CIPHER_ENCRYPT_OUTPUT_SIZE()

∘ PSA_CIPHER_DECRYPT_OUTPUT_SIZE()

∘ PSA_CIPHER_UPDATE_OUTPUT_SIZE()

∘ PSA_CIPHER_FINISH_OUTPUT_SIZE()

∘ PSA_CIPHER_IV_LENGTH()

∘ PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE()

∘ PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE()

— Macros that evaluate to a maximum type-independent buffer size are provided. The newmacros are:
∘ PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE()

∘ PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE()

∘ PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE()

∘ PSA_AEAD_FINISH_OUTPUT_MAX_SIZE

∘ PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE

∘ PSA_AEAD_NONCE_MAX_SIZE

∘ PSA_AEAD_TAG_MAX_SIZE

∘ PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE

∘ PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE

∘ PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE()

∘ PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE()

∘ PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE()

∘ PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE

∘ PSA_CIPHER_IV_MAX_SIZE

∘ PSA_EXPORT_KEY_PAIR_MAX_SIZE

∘ PSA_EXPORT_PUBLIC_KEY_MAX_SIZE

∘ PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE

— AEAD output buffer size macros are now parameterized on the key type as well as thealgorithm:
∘ PSA_AEAD_ENCRYPT_OUTPUT_SIZE()

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 338

∘ PSA_AEAD_DECRYPT_OUTPUT_SIZE()

∘ PSA_AEAD_UPDATE_OUTPUT_SIZE()

∘ PSA_AEAD_FINISH_OUTPUT_SIZE()

∘ PSA_AEAD_TAG_LENGTH()

∘ PSA_AEAD_VERIFY_OUTPUT_SIZE()

— Some existing macros have been renamed to ensure that the name of the support macros areconsistent. The following macros have been renamed:
∘ PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH() → PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG()

∘ PSA_ALG_AEAD_WITH_TAG_LENGTH() → PSA_ALG_AEAD_WITH_SHORTENED_TAG()

∘ PSA_KEY_EXPORT_MAX_SIZE() → PSA_EXPORT_KEY_OUTPUT_SIZE()

∘ PSA_HASH_SIZE() → PSA_HASH_LENGTH()

∘ PSA_MAC_FINAL_SIZE() → PSA_MAC_LENGTH()

∘ PSA_BLOCK_CIPHER_BLOCK_SIZE() → PSA_BLOCK_CIPHER_BLOCK_LENGTH()

∘ PSA_MAX_BLOCK_CIPHER_BLOCK_SIZE → PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE

— Documentation of the macros and of related APIs has been updated to reference the relatedAPI elements.
∙ Provide hash-and-sign operations as well as sign-the-hash operations. The API for asymmetricsignature has been changed to clarify the use of the new functions.

— The existing asymmetric signature API has been renamed to clarify that this is for signing a hashthat is already computed:
∘ PSA_KEY_USAGE_SIGN → PSA_KEY_USAGE_SIGN_HASH

∘ PSA_KEY_USAGE_VERIFY → PSA_KEY_USAGE_VERIFY_HASH

∘ psa_asymmetric_sign() → psa_sign_hash()

∘ psa_asymmetric_verify() → psa_verify_hash()

— New APIs added to provide the complete message signing operation:
∘ PSA_KEY_USAGE_SIGN_MESSAGE

∘ PSA_KEY_USAGE_VERIFY_MESSAGE

∘ psa_sign_message()

∘ psa_verify_message()

— New Support macros to identify which algorithms can be used in which signing API:
∘ PSA_ALG_IS_SIGN_HASH()

∘ PSA_ALG_IS_SIGN_MESSAGE()

— Renamed support macros that apply to both signing APIs:
∘ PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE() → PSA_SIGN_OUTPUT_SIZE()

∘ PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE → PSA_SIGNATURE_MAX_SIZE

— The usage flag values have been changed, including for PSA_KEY_USAGE_DERIVE.
∙ Restructure psa_key_type_t and reassign all key type values.

— psa_key_type_t changes from 32-bit to 16-bit integer.
— Reassigned the key type categories.
— Add a parity bit to the key type to ensure that valid key type values differ by at least 2 bits.
— 16-bit elliptic curve ids (psa_ecc_curve_t) replaced by 8-bit ECC curve family ids

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 339

(psa_ecc_family_t). 16-bit Diffie-Hellman group ids (psa_dh_group_t) replaced by 8-bit DH groupfamily ids (psa_dh_family_t).
∘ These ids are no longer related to the IANA Group Registry specification.
∘ The new key type values do not encode the key size for ECC curves or DH groups. The keybit size from the key attributes identify a specific ECC curve or DH group within the family.

— The following macros have been removed:
∘ PSA_DH_GROUP_FFDHE2048

∘ PSA_DH_GROUP_FFDHE3072

∘ PSA_DH_GROUP_FFDHE4096

∘ PSA_DH_GROUP_FFDHE6144

∘ PSA_DH_GROUP_FFDHE8192

∘ PSA_ECC_CURVE_BITS

∘ PSA_ECC_CURVE_BRAINPOOL_P256R1

∘ PSA_ECC_CURVE_BRAINPOOL_P384R1

∘ PSA_ECC_CURVE_BRAINPOOL_P512R1

∘ PSA_ECC_CURVE_CURVE25519

∘ PSA_ECC_CURVE_CURVE448

∘ PSA_ECC_CURVE_SECP160K1

∘ PSA_ECC_CURVE_SECP160R1

∘ PSA_ECC_CURVE_SECP160R2

∘ PSA_ECC_CURVE_SECP192K1

∘ PSA_ECC_CURVE_SECP192R1

∘ PSA_ECC_CURVE_SECP224K1

∘ PSA_ECC_CURVE_SECP224R1

∘ PSA_ECC_CURVE_SECP256K1

∘ PSA_ECC_CURVE_SECP256R1

∘ PSA_ECC_CURVE_SECP384R1

∘ PSA_ECC_CURVE_SECP521R1

∘ PSA_ECC_CURVE_SECT163K1

∘ PSA_ECC_CURVE_SECT163R1

∘ PSA_ECC_CURVE_SECT163R2

∘ PSA_ECC_CURVE_SECT193R1

∘ PSA_ECC_CURVE_SECT193R2

∘ PSA_ECC_CURVE_SECT233K1

∘ PSA_ECC_CURVE_SECT233R1

∘ PSA_ECC_CURVE_SECT239K1

∘ PSA_ECC_CURVE_SECT283K1

∘ PSA_ECC_CURVE_SECT283R1

∘ PSA_ECC_CURVE_SECT409K1

∘ PSA_ECC_CURVE_SECT409R1

∘ PSA_ECC_CURVE_SECT571K1

∘ PSA_ECC_CURVE_SECT571R1

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 340

∘ PSA_KEY_TYPE_GET_CURVE

∘ PSA_KEY_TYPE_GET_GROUP

— The following macros have been added:
∘ PSA_DH_FAMILY_RFC7919

∘ PSA_ECC_FAMILY_BRAINPOOL_P_R1

∘ PSA_ECC_FAMILY_SECP_K1

∘ PSA_ECC_FAMILY_SECP_R1

∘ PSA_ECC_FAMILY_SECP_R2

∘ PSA_ECC_FAMILY_SECT_K1

∘ PSA_ECC_FAMILY_SECT_R1

∘ PSA_ECC_FAMILY_SECT_R2

∘ PSA_ECC_FAMILY_MONTGOMERY

∘ PSA_KEY_TYPE_DH_GET_FAMILY

∘ PSA_KEY_TYPE_ECC_GET_FAMILY

— The following macros have new values:
∘ PSA_KEY_TYPE_AES

∘ PSA_KEY_TYPE_ARC4

∘ PSA_KEY_TYPE_CAMELLIA

∘ PSA_KEY_TYPE_CHACHA20

∘ PSA_KEY_TYPE_DERIVE

∘ PSA_KEY_TYPE_DES

∘ PSA_KEY_TYPE_HMAC

∘ PSA_KEY_TYPE_NONE

∘ PSA_KEY_TYPE_RAW_DATA

∘ PSA_KEY_TYPE_RSA_KEY_PAIR

∘ PSA_KEY_TYPE_RSA_PUBLIC_KEY

— The following macros with specification-defined values have new example implementations:
∘ PSA_BLOCK_CIPHER_BLOCK_LENGTH

∘ PSA_KEY_TYPE_DH_KEY_PAIR

∘ PSA_KEY_TYPE_DH_PUBLIC_KEY

∘ PSA_KEY_TYPE_ECC_KEY_PAIR

∘ PSA_KEY_TYPE_ECC_PUBLIC_KEY

∘ PSA_KEY_TYPE_IS_ASYMMETRIC

∘ PSA_KEY_TYPE_IS_DH

∘ PSA_KEY_TYPE_IS_DH_KEY_PAIR

∘ PSA_KEY_TYPE_IS_DH_PUBLIC_KEY

∘ PSA_KEY_TYPE_IS_ECC

∘ PSA_KEY_TYPE_IS_ECC_KEY_PAIR

∘ PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY

∘ PSA_KEY_TYPE_IS_KEY_PAIR

∘ PSA_KEY_TYPE_IS_PUBLIC_KEY

∘ PSA_KEY_TYPE_IS_RSA

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 341

∘ PSA_KEY_TYPE_IS_UNSTRUCTURED

∘ PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY

∘ PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR

∙ Add ECC family PSA_ECC_FAMILY_FRP for the FRP256v1 curve.
∙ Restructure psa_algorithm_t encoding, to increase consistency across algorithm categories.

— Algorithms that include a hash operation all use the same structure to encode the hashalgorithm. The following PSA_ALG_XXXX_GET_HASH() macros have all been replaced by a singlemacro PSA_ALG_GET_HASH():
∘ PSA_ALG_HKDF_GET_HASH()

∘ PSA_ALG_HMAC_GET_HASH()

∘ PSA_ALG_RSA_OAEP_GET_HASH()

∘ PSA_ALG_SIGN_GET_HASH()

∘ PSA_ALG_TLS12_PRF_GET_HASH()

∘ PSA_ALG_TLS12_PSK_TO_MS_GET_HASH()

— Stream cipher algorithm macros have been removed; the key type indicates which cipher to use.Instead of PSA_ALG_ARC4 and PSA_ALG_CHACHA20, use PSA_ALG_STREAM_CIPHER.
All of the other PSA_ALG_XXX macros have updated values or updated example implementations.
— The following macros have new values:

∘ PSA_ALG_ANY_HASH

∘ PSA_ALG_CBC_MAC

∘ PSA_ALG_CBC_NO_PADDING

∘ PSA_ALG_CBC_PKCS7

∘ PSA_ALG_CCM

∘ PSA_ALG_CFB

∘ PSA_ALG_CHACHA20_POLY1305

∘ PSA_ALG_CMAC

∘ PSA_ALG_CTR

∘ PSA_ALG_ECDH

∘ PSA_ALG_ECDSA_ANY

∘ PSA_ALG_FFDH

∘ PSA_ALG_GCM

∘ PSA_ALG_MD2

∘ PSA_ALG_MD4

∘ PSA_ALG_MD5

∘ PSA_ALG_OFB

∘ PSA_ALG_RIPEMD160

∘ PSA_ALG_RSA_PKCS1V15_CRYPT

∘ PSA_ALG_RSA_PKCS1V15_SIGN_RAW

∘ PSA_ALG_SHA_1

∘ PSA_ALG_SHA_224

∘ PSA_ALG_SHA_256

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 342

∘ PSA_ALG_SHA_384

∘ PSA_ALG_SHA_512

∘ PSA_ALG_SHA_512_224

∘ PSA_ALG_SHA_512_256

∘ PSA_ALG_SHA3_224

∘ PSA_ALG_SHA3_256

∘ PSA_ALG_SHA3_384

∘ PSA_ALG_SHA3_512

∘ PSA_ALG_XTS

— The following macros with specification-defined values have new example implementations:
∘ PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG()

∘ PSA_ALG_AEAD_WITH_SHORTENED_TAG()

∘ PSA_ALG_DETERMINISTIC_ECDSA()

∘ PSA_ALG_ECDSA()

∘ PSA_ALG_FULL_LENGTH_MAC()

∘ PSA_ALG_HKDF()

∘ PSA_ALG_HMAC()

∘ PSA_ALG_IS_AEAD()

∘ PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER()

∘ PSA_ALG_IS_ASYMMETRIC_ENCRYPTION()

∘ PSA_ALG_IS_BLOCK_CIPHER_MAC()

∘ PSA_ALG_IS_CIPHER()

∘ PSA_ALG_IS_DETERMINISTIC_ECDSA()

∘ PSA_ALG_IS_ECDH()

∘ PSA_ALG_IS_ECDSA()

∘ PSA_ALG_IS_FFDH()

∘ PSA_ALG_IS_HASH()

∘ PSA_ALG_IS_HASH_AND_SIGN()

∘ PSA_ALG_IS_HKDF()

∘ PSA_ALG_IS_HMAC()

∘ PSA_ALG_IS_KEY_AGREEMENT()

∘ PSA_ALG_IS_KEY_DERIVATION()

∘ PSA_ALG_IS_MAC()

∘ PSA_ALG_IS_RANDOMIZED_ECDSA()

∘ PSA_ALG_IS_RAW_KEY_AGREEMENT()

∘ PSA_ALG_IS_RSA_OAEP()

∘ PSA_ALG_IS_RSA_PKCS1V15_SIGN()

∘ PSA_ALG_IS_RSA_PSS()

∘ PSA_ALG_IS_SIGN()

∘ PSA_ALG_IS_SIGN_MESSAGE()

∘ PSA_ALG_IS_STREAM_CIPHER()

∘ PSA_ALG_IS_TLS12_PRF()

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 343

∘ PSA_ALG_IS_TLS12_PSK_TO_MS()

∘ PSA_ALG_IS_WILDCARD()

∘ PSA_ALG_KEY_AGREEMENT()

∘ PSA_ALG_KEY_AGREEMENT_GET_BASE()

∘ PSA_ALG_KEY_AGREEMENT_GET_KDF()

∘ PSA_ALG_RSA_OAEP()

∘ PSA_ALG_RSA_PKCS1V15_SIGN()

∘ PSA_ALG_RSA_PSS()

∘ PSA_ALG_TLS12_PRF()

∘ PSA_ALG_TLS12_PSK_TO_MS()

∘ PSA_ALG_TRUNCATED_MAC()

∙ Added ECB block cipher mode, with no padding, as PSA_ALG_ECB_NO_PADDING.
∙ Add functions to suspend and resume hash operations:

— psa_hash_suspend() halts the current operation and outputs a hash suspend state.
— psa_hash_resume() continues a previously suspended hash operation.

The format of the hash suspend state is documented in Hash suspend state on page 133, andsupporting macros are provided for using the Crypto API:
— PSA_HASH_SUSPEND_OUTPUT_SIZE()

— PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE

— PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH

— PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH()

— PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH()

— PSA_HASH_BLOCK_LENGTH()

∙ Complement PSA_ERROR_STORAGE_FAILURE with new error codes PSA_ERROR_DATA_CORRUPT and
PSA_ERROR_DATA_INVALID. These permit an implementation to distinguish different causes of failurewhen reading from key storage.

∙ Added input step PSA_KEY_DERIVATION_INPUT_CONTEXT for key derivation, supporting obvious mappingfrom the step identifiers to common KDF constructions.
Clarifications

∙ Clarified rules regarding modification of parameters in concurrent environments.
∙ Guarantee that psa_destroy_key(PSA_KEY_ID_NULL) always returns PSA_SUCCESS.
∙ Clarified the TLS PSK to MS key agreement algorithm.
∙ Document the key policy requirements for all APIs that accept a key parameter.
∙ Document more of the error codes for each function.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 344

Other changes

∙ Require C99 for this specification instead of C89.
∙ Removed references to non-standard mbed-crypto header files. The only header file thatapplications need to include is psa/crypto.h.
∙ Reorganized the API reference, grouping the elements in a more natural way.
∙ Improved the cross referencing between all of the document sections, and from code snippets to APIelement descriptions.

E.1.8 Changes between 1.0 beta 2 and 1.0 beta 3

Changes to the API

∙ Change the value of error codes, and some names, to align with other PSA Certified APIs. The namechanges are:
— PSA_ERROR_UNKNOWN_ERROR → PSA_ERROR_GENERIC_ERROR

— PSA_ERROR_OCCUPIED_SLOT → PSA_ERROR_ALREADY_EXISTS

— PSA_ERROR_EMPTY_SLOT → PSA_ERROR_DOES_NOT_EXIST

— PSA_ERROR_INSUFFICIENT_CAPACITY → PSA_ERROR_INSUFFICIENT_DATA

— PSA_ERROR_TAMPERING_DETECTED → PSA_ERROR_CORRUPTION_DETECTED

∙ Change the way keys are created to avoid “half-filled” handles that contained key metadata, but nokey material. Now, to create a key, first fill in a data structure containing its attributes, then pass thisstructure to a function that both allocates resources for the key and fills in the key material. Thisaffects the following functions:
— psa_import_key(), psa_generate_key(), psa_generator_import_key() and psa_copy_key() now takean attribute structure, as a pointer to psa_key_attributes_t, to specify key metadata. Thisreplaces the previous method of passing arguments to psa_create_key() or to the key materialcreation function or calling psa_set_key_policy().
— psa_key_policy_t and functions operating on that type no longer exist. A key’s policy is nowaccessible as part of its attributes.
— psa_get_key_information() is also replaced by accessing the key’s attributes, retrieved with

psa_get_key_attributes().
— psa_create_key() no longer exists. Instead, set the key id attribute and the lifetime attributebefore creating the key material.

∙ Allow psa_aead_update() to buffer data.
∙ New buffer size calculation macros.
∙ Key identifiers are no longer specific to a given lifetime value. psa_open_key() no longer takes a

lifetime parameter.
∙ Define a range of key identifiers for use by applications and a separate range for use byimplementations.
∙ Avoid the unusual terminology “generator”: call them “key derivation operations” instead. Rename anumber of functions and other identifiers related to for clarity and consistency:

— psa_crypto_generator_t → psa_key_derivation_operation_t

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 345

— PSA_CRYPTO_GENERATOR_INIT → PSA_KEY_DERIVATION_OPERATION_INIT

— psa_crypto_generator_init() → psa_key_derivation_operation_init()

— PSA_GENERATOR_UNBRIDLED_CAPACITY → PSA_KEY_DERIVATION_UNLIMITED_CAPACITY

— psa_set_generator_capacity() → psa_key_derivation_set_capacity()

— psa_get_generator_capacity() → psa_key_derivation_get_capacity()

— psa_key_agreement() → psa_key_derivation_key_agreement()

— psa_generator_read() → psa_key_derivation_output_bytes()

— psa_generate_derived_key() → psa_key_derivation_output_key()

— psa_generator_abort() → psa_key_derivation_abort()

— psa_key_agreement_raw_shared_secret() → psa_raw_key_agreement()

— PSA_KDF_STEP_xxx → PSA_KEY_DERIVATION_INPUT_xxx

— PSA_xxx_KEYPAIR → PSA_xxx_KEY_PAIR

∙ Convert TLS1.2 KDF descriptions to multi-part key derivation.
Clarifications

∙ Specify psa_generator_import_key() for most key types.
∙ Clarify the behavior in various corner cases.
∙ Document more error conditions.

E.1.9 Changes between 1.0 beta 1 and 1.0 beta 2

Changes to the API

∙ Remove obsolete definition PSA_ALG_IS_KEY_SELECTION.
∙ PSA_AEAD_FINISH_OUTPUT_SIZE: remove spurious parameter plaintext_length.

Clarifications

∙ psa_key_agreement(): document alg parameter.
Other changes

∙ Document formatting improvements.

E.2 Planned changes for version 1.2.x
Future versions of this specification that use a 1.2.x version will describe the same API as thisspecification. Any changes will not affect application compatibility and will not introduce major features.These updates are intended to add minor requirements on implementations, introduce optional definitions,make corrections, clarify potential or actual ambiguities, or improve the documentation.
These are the changes that might be included in a version 1.2.x:

∙ Declare identifiers for additional cryptographic algorithms.
∙ Mandate certain checks when importing some types of asymmetric keys.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 346

∙ Specify the computation of algorithm and key type values.
∙ Further clarifications on API usage and implementation.

E.3 Future additions
Major additions to the API will be defined in future drafts and editions of a 1.x or 2.x version of thisspecification. Features that are being considered include:

∙ Multi-part operations for hybrid cryptography. For example, this includes hash-and-sign for EdDSA,and hybrid encryption for ECIES.
∙ Key wrapping mechanisms to extract and import keys in an encrypted and authenticated form.
∙ Key discovery mechanisms. This would enable an application to locate a key by its name or attributes.
∙ Implementation capability description. This would enable an application to determine the algorithms,key types and storage lifetimes that the implementation provides.
∙ An ownership and access control mechanism allowing a multi-client implementation to haveprivileged clients that are able to manage keys of other clients.

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 347

Index of API elements

PSA_A
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE, 205
PSA_AEAD_DECRYPT_OUTPUT_SIZE, 204
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE, 204
PSA_AEAD_ENCRYPT_OUTPUT_SIZE, 203
PSA_AEAD_FINISH_OUTPUT_MAX_SIZE, 207
PSA_AEAD_FINISH_OUTPUT_SIZE, 207
PSA_AEAD_NONCE_LENGTH, 205
PSA_AEAD_NONCE_MAX_SIZE, 206
PSA_AEAD_OPERATION_INIT, 189
PSA_AEAD_TAG_LENGTH, 208
PSA_AEAD_TAG_MAX_SIZE, 208
PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE, 207
PSA_AEAD_UPDATE_OUTPUT_SIZE, 206
PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE, 209
PSA_AEAD_VERIFY_OUTPUT_SIZE, 208
PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG, 183
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG, 182
PSA_ALG_AEAD_WITH_SHORTENED_TAG, 182
PSA_ALG_AES_MMO_ZIGBEE, 116
PSA_ALG_ANY_HASH, 262
PSA_ALG_AT_LEAST_THIS_LENGTH_MAC, 139
PSA_ALG_CBC_MAC, 136
PSA_ALG_CBC_NO_PADDING, 158
PSA_ALG_CBC_PKCS7, 159
PSA_ALG_CCM, 179
PSA_ALG_CCM_STAR_ANY_TAG, 173
PSA_ALG_CCM_STAR_NO_TAG, 155
PSA_ALG_CFB, 156
PSA_ALG_CHACHA20_POLY1305, 181
PSA_ALG_CMAC, 137
PSA_ALG_CTR, 153
PSA_ALG_DETERMINISTIC_ECDSA, 247
PSA_ALG_ECB_NO_PADDING, 157
PSA_ALG_ECDH, 272
PSA_ALG_ECDSA, 245
PSA_ALG_ECDSA_ANY, 247
PSA_ALG_ED25519PH, 249
PSA_ALG_ED448PH, 250
PSA_ALG_FFDH, 271

PSA_ALG_FULL_LENGTH_MAC, 138
PSA_ALG_GCM, 180
PSA_ALG_GET_HASH, 113
PSA_ALG_HKDF, 210
PSA_ALG_HKDF_EXPAND, 212
PSA_ALG_HKDF_EXTRACT, 211
PSA_ALG_HMAC, 136
PSA_ALG_IS_AEAD, 111
PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER, 203
PSA_ALG_IS_ASYMMETRIC_ENCRYPTION, 112
PSA_ALG_IS_BLOCK_CIPHER_MAC, 150
PSA_ALG_IS_CIPHER, 111
PSA_ALG_IS_DETERMINISTIC_ECDSA, 260
PSA_ALG_IS_ECDH, 282
PSA_ALG_IS_ECDSA, 260
PSA_ALG_IS_FFDH, 281
PSA_ALG_IS_HASH, 110
PSA_ALG_IS_HASH_AND_SIGN, 261
PSA_ALG_IS_HASH_EDDSA, 261
PSA_ALG_IS_HKDF, 239
PSA_ALG_IS_HKDF_EXPAND, 240
PSA_ALG_IS_HKDF_EXTRACT, 239
PSA_ALG_IS_HMAC, 149
PSA_ALG_IS_KEY_AGREEMENT, 112
PSA_ALG_IS_KEY_DERIVATION, 113
PSA_ALG_IS_KEY_DERIVATION_STRETCHING, 238
PSA_ALG_IS_MAC, 110
PSA_ALG_IS_PBKDF2_HMAC, 241
PSA_ALG_IS_RANDOMIZED_ECDSA, 261
PSA_ALG_IS_RAW_KEY_AGREEMENT, 281
PSA_ALG_IS_RSA_OAEP, 269
PSA_ALG_IS_RSA_PKCS1V15_SIGN, 258
PSA_ALG_IS_RSA_PSS, 259
PSA_ALG_IS_RSA_PSS_ANY_SALT, 259
PSA_ALG_IS_RSA_PSS_STANDARD_SALT, 260
PSA_ALG_IS_SIGN, 111
PSA_ALG_IS_SIGN_HASH, 258
PSA_ALG_IS_SIGN_MESSAGE, 258
PSA_ALG_IS_SP800_108_COUNTER_HMAC, 240
PSA_ALG_IS_STANDALONE_KEY_AGREEMENT, 280

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 348

PSA_ALG_IS_STREAM_CIPHER, 172
PSA_ALG_IS_TLS12_PRF, 240
PSA_ALG_IS_TLS12_PSK_TO_MS, 241
PSA_ALG_IS_WILDCARD, 113
PSA_ALG_KEY_AGREEMENT, 273
PSA_ALG_KEY_AGREEMENT_GET_BASE, 280
PSA_ALG_KEY_AGREEMENT_GET_KDF, 280
PSA_ALG_MD2, 115
PSA_ALG_MD4, 115
PSA_ALG_MD5, 115
PSA_ALG_NONE, 110
PSA_ALG_OFB, 156
PSA_ALG_PBKDF2_AES_CMAC_PRF_128, 219
PSA_ALG_PBKDF2_HMAC, 218
PSA_ALG_PURE_EDDSA, 248
PSA_ALG_RIPEMD160, 116
PSA_ALG_RSA_OAEP, 264
PSA_ALG_RSA_PKCS1V15_CRYPT, 264
PSA_ALG_RSA_PKCS1V15_SIGN, 242
PSA_ALG_RSA_PKCS1V15_SIGN_RAW, 243
PSA_ALG_RSA_PSS, 243
PSA_ALG_RSA_PSS_ANY_SALT, 244
PSA_ALG_SHA3_224, 117
PSA_ALG_SHA3_256, 118
PSA_ALG_SHA3_384, 118
PSA_ALG_SHA3_512, 118
PSA_ALG_SHAKE256_512, 118
PSA_ALG_SHA_1, 116
PSA_ALG_SHA_224, 116
PSA_ALG_SHA_256, 117
PSA_ALG_SHA_384, 117
PSA_ALG_SHA_512, 117
PSA_ALG_SHA_512_224, 117
PSA_ALG_SHA_512_256, 117
PSA_ALG_SM3, 118
PSA_ALG_SP800_108_COUNTER_CMAC, 214
PSA_ALG_SP800_108_COUNTER_HMAC, 213
PSA_ALG_STREAM_CIPHER, 152
PSA_ALG_TLS12_ECJPAKE_TO_PMS, 218
PSA_ALG_TLS12_PRF, 215
PSA_ALG_TLS12_PSK_TO_MS, 216
PSA_ALG_TRUNCATED_MAC, 137
PSA_ALG_XCHACHA20_POLY1305, 181
PSA_ALG_XTS, 157
PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE, 270
PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE, 270
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE, 270
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE, 269

psa_aead_abort, 202
psa_aead_decrypt, 186
psa_aead_decrypt_setup, 191
psa_aead_encrypt, 184
psa_aead_encrypt_setup, 189
psa_aead_finish, 199
psa_aead_generate_nonce, 193
psa_aead_operation_init, 189
psa_aead_operation_t, 188
psa_aead_set_lengths, 192
psa_aead_set_nonce, 194
psa_aead_update, 197
psa_aead_update_ad, 196
psa_aead_verify, 201
psa_algorithm_t, 109
psa_asymmetric_decrypt, 267
psa_asymmetric_encrypt, 265
PSA_B
PSA_BLOCK_CIPHER_BLOCK_LENGTH, 178
PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE, 178
PSA_C
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE, 175
PSA_CIPHER_DECRYPT_OUTPUT_SIZE, 174
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE, 174
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE, 173
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE, 177
PSA_CIPHER_FINISH_OUTPUT_SIZE, 177
PSA_CIPHER_IV_LENGTH, 175
PSA_CIPHER_IV_MAX_SIZE, 176
PSA_CIPHER_OPERATION_INIT, 163
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE, 177
PSA_CIPHER_UPDATE_OUTPUT_SIZE, 176
PSA_CRYPTO_API_VERSION_MAJOR, 45
PSA_CRYPTO_API_VERSION_MINOR, 45
psa_cipher_abort, 172
psa_cipher_decrypt, 161
psa_cipher_decrypt_setup, 165
psa_cipher_encrypt, 159
psa_cipher_encrypt_setup, 164
psa_cipher_finish, 171
psa_cipher_generate_iv, 167
psa_cipher_operation_init, 163
psa_cipher_operation_t, 163
psa_cipher_set_iv, 168
psa_cipher_update, 169
psa_copy_key, 96

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 349

psa_crypto_init, 45
PSA_D
PSA_DH_FAMILY_RFC7919, 70
psa_destroy_key, 98
psa_dh_family_t, 69
PSA_E
PSA_ECC_FAMILY_BRAINPOOL_P_R1, 66
PSA_ECC_FAMILY_FRP, 67
PSA_ECC_FAMILY_MONTGOMERY, 67
PSA_ECC_FAMILY_SECP_K1, 63
PSA_ECC_FAMILY_SECP_R1, 64
PSA_ECC_FAMILY_SECP_R2, 64
PSA_ECC_FAMILY_SECT_K1, 65
PSA_ECC_FAMILY_SECT_R1, 65
PSA_ECC_FAMILY_SECT_R2, 66
PSA_ECC_FAMILY_TWISTED_EDWARDS, 68
PSA_ERROR_INSUFFICIENT_ENTROPY, 44
PSA_ERROR_INVALID_PADDING, 45
PSA_EXPORT_KEY_OUTPUT_SIZE, 103
PSA_EXPORT_KEY_PAIR_MAX_SIZE, 105
PSA_EXPORT_PUBLIC_KEY_MAX_SIZE, 105
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE, 104
psa_ecc_family_t, 62
psa_export_key, 100
psa_export_public_key, 102
PSA_G
psa_generate_key, 95
psa_generate_random, 283
psa_get_key_algorithm, 86
psa_get_key_attributes, 50
psa_get_key_bits, 73
psa_get_key_id, 85
psa_get_key_lifetime, 81
psa_get_key_type, 73
psa_get_key_usage_flags, 92
PSA_H
PSA_HASH_BLOCK_LENGTH, 132
PSA_HASH_LENGTH, 130
PSA_HASH_MAX_SIZE, 130
PSA_HASH_OPERATION_INIT, 121
PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH, 131
PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH, 132
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH, 131
PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE, 131

PSA_HASH_SUSPEND_OUTPUT_SIZE, 130
psa_hash_abort, 126
psa_hash_clone, 129
psa_hash_compare, 120
psa_hash_compute, 119
psa_hash_finish, 123
psa_hash_operation_init, 121
psa_hash_operation_t, 121
psa_hash_resume, 128
psa_hash_setup, 122
psa_hash_suspend, 126
psa_hash_update, 123
psa_hash_verify, 125
PSA_I
psa_import_key, 93
PSA_K
PSA_KEY_ATTRIBUTES_INIT, 50
PSA_KEY_DERIVATION_INPUT_CONTEXT, 221
PSA_KEY_DERIVATION_INPUT_COST, 221
PSA_KEY_DERIVATION_INPUT_INFO, 221
PSA_KEY_DERIVATION_INPUT_LABEL, 221
PSA_KEY_DERIVATION_INPUT_OTHER_SECRET, 220
PSA_KEY_DERIVATION_INPUT_PASSWORD, 220
PSA_KEY_DERIVATION_INPUT_SALT, 221
PSA_KEY_DERIVATION_INPUT_SECRET, 220
PSA_KEY_DERIVATION_INPUT_SEED, 221
PSA_KEY_DERIVATION_OPERATION_INIT, 222
PSA_KEY_DERIVATION_UNLIMITED_CAPACITY, 241
PSA_KEY_ID_NULL, 83
PSA_KEY_ID_USER_MAX, 83
PSA_KEY_ID_USER_MIN, 83
PSA_KEY_ID_VENDOR_MAX, 84
PSA_KEY_ID_VENDOR_MIN, 84
PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION, 82
PSA_KEY_LIFETIME_GET_LOCATION, 81
PSA_KEY_LIFETIME_GET_PERSISTENCE, 81
PSA_KEY_LIFETIME_IS_VOLATILE, 82
PSA_KEY_LIFETIME_PERSISTENT, 79
PSA_KEY_LIFETIME_VOLATILE, 78
PSA_KEY_LOCATION_LOCAL_STORAGE, 79
PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT, 80
PSA_KEY_PERSISTENCE_DEFAULT, 79
PSA_KEY_PERSISTENCE_READ_ONLY, 79
PSA_KEY_PERSISTENCE_VOLATILE, 79
PSA_KEY_TYPE_AES, 56
PSA_KEY_TYPE_ARC4, 60

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 350

PSA_KEY_TYPE_ARIA, 57
PSA_KEY_TYPE_CAMELLIA, 58
PSA_KEY_TYPE_CHACHA20, 60
PSA_KEY_TYPE_DERIVE, 54
PSA_KEY_TYPE_DES, 57
PSA_KEY_TYPE_DH_GET_FAMILY, 72
PSA_KEY_TYPE_DH_KEY_PAIR, 70
PSA_KEY_TYPE_DH_PUBLIC_KEY, 70
PSA_KEY_TYPE_ECC_GET_FAMILY, 69
PSA_KEY_TYPE_ECC_KEY_PAIR, 62
PSA_KEY_TYPE_ECC_PUBLIC_KEY, 63
PSA_KEY_TYPE_HMAC, 53
PSA_KEY_TYPE_IS_ASYMMETRIC, 52
PSA_KEY_TYPE_IS_DH, 71
PSA_KEY_TYPE_IS_DH_KEY_PAIR, 71
PSA_KEY_TYPE_IS_DH_PUBLIC_KEY, 72
PSA_KEY_TYPE_IS_ECC, 68
PSA_KEY_TYPE_IS_ECC_KEY_PAIR, 68
PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY, 69
PSA_KEY_TYPE_IS_KEY_PAIR, 53
PSA_KEY_TYPE_IS_PUBLIC_KEY, 52
PSA_KEY_TYPE_IS_RSA, 62
PSA_KEY_TYPE_IS_UNSTRUCTURED, 52
PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY, 70
PSA_KEY_TYPE_NONE, 52
PSA_KEY_TYPE_PASSWORD, 55
PSA_KEY_TYPE_PASSWORD_HASH, 55
PSA_KEY_TYPE_PEPPER, 55
PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR, 71
PSA_KEY_TYPE_RAW_DATA, 53
PSA_KEY_TYPE_RSA_KEY_PAIR, 61
PSA_KEY_TYPE_RSA_PUBLIC_KEY, 61
PSA_KEY_TYPE_SM4, 59
PSA_KEY_TYPE_XCHACHA20, 60
PSA_KEY_USAGE_CACHE, 88
PSA_KEY_USAGE_COPY, 88
PSA_KEY_USAGE_DECRYPT, 89
PSA_KEY_USAGE_DERIVE, 91
PSA_KEY_USAGE_ENCRYPT, 88
PSA_KEY_USAGE_EXPORT, 87
PSA_KEY_USAGE_SIGN_HASH, 90
PSA_KEY_USAGE_SIGN_MESSAGE, 89
PSA_KEY_USAGE_VERIFY_DERIVATION, 91
PSA_KEY_USAGE_VERIFY_HASH, 90
PSA_KEY_USAGE_VERIFY_MESSAGE, 90
psa_key_agreement, 274
psa_key_attributes_init, 50
psa_key_attributes_t, 47

psa_key_derivation_abort, 238
psa_key_derivation_get_capacity, 224
psa_key_derivation_input_bytes, 226
psa_key_derivation_input_integer, 227
psa_key_derivation_input_key, 228
psa_key_derivation_key_agreement, 278
psa_key_derivation_operation_init, 222
psa_key_derivation_operation_t, 222
psa_key_derivation_output_bytes, 230
psa_key_derivation_output_key, 231
psa_key_derivation_set_capacity, 225
psa_key_derivation_setup, 223
psa_key_derivation_step_t, 220
psa_key_derivation_verify_bytes, 235
psa_key_derivation_verify_key, 236
psa_key_id_t, 83
psa_key_lifetime_t, 75
psa_key_location_t, 77
psa_key_persistence_t, 76
psa_key_type_t, 51
psa_key_usage_t, 87
PSA_M
PSA_MAC_LENGTH, 150
PSA_MAC_MAX_SIZE, 151
PSA_MAC_OPERATION_INIT, 143
psa_mac_abort, 149
psa_mac_compute, 139
psa_mac_operation_init, 143
psa_mac_operation_t, 142
psa_mac_sign_finish, 147
psa_mac_sign_setup, 143
psa_mac_update, 146
psa_mac_verify, 141
psa_mac_verify_finish, 148
psa_mac_verify_setup, 144
PSA_P
psa_purge_key, 100
PSA_R
PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE, 282
PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE, 282
psa_raw_key_agreement, 276
psa_reset_key_attributes, 51
PSA_S
PSA_SIGNATURE_MAX_SIZE, 264

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 351

PSA_SIGN_OUTPUT_SIZE, 263
psa_set_key_algorithm, 86
psa_set_key_bits, 73
psa_set_key_id, 84
psa_set_key_lifetime, 80
psa_set_key_type, 72
psa_set_key_usage_flags, 91
psa_sign_hash, 254
psa_sign_message, 251
PSA_T
PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE, 242
PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE, 241
PSA_V
psa_verify_hash, 256
psa_verify_message, 253

IHI 00861.2.1 Copyright© 2018-2024 Arm Limited and/or its affiliatesNon-confidential Page 352

	About this document
	Release information
	License
	References
	Terms and abbreviations
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Feedback

	1 Introduction
	1.1 About Platform Security Architecture
	1.2 About the Crypto API

	2 Design goals
	2.1 Suitable for constrained devices
	2.2 A keystore interface
	2.3 Optional isolation
	2.4 Choice of algorithms
	2.5 Ease of use
	2.6 Example use cases
	2.6.1 Network Security (TLS)
	2.6.2 Secure Storage
	2.6.3 Network Credentials
	2.6.4 Device Pairing
	2.6.5 Secure Boot
	2.6.6 Attestation
	2.6.7 Factory Provisioning

	3 Functionality overview
	3.1 Library management
	3.2 Key management
	3.2.1 Key types
	3.2.2 Key identifiers
	3.2.3 Key lifetimes
	3.2.4 Key policies
	3.2.5 Recommendations of minimum standards for key management

	3.3 Symmetric cryptography
	3.3.1 Single-part Functions
	3.3.2 Multi-part operations
	3.3.3 Example of the symmetric cryptography API

	3.4 Asymmetric cryptography
	3.5 Randomness and key generation

	4 Sample architectures
	4.1 Single-partition architecture
	4.2 Cryptographic token and single-application processor
	4.3 Cryptoprocessor with no key storage
	4.4 Multi-client cryptoprocessor
	4.5 Multi-cryptoprocessor architecture

	5 Library conventions
	5.1 Header files
	5.2 API conventions
	5.2.1 Identifier names
	5.2.2 Basic types
	5.2.3 Data types
	5.2.4 Constants
	5.2.5 Function-like macros
	5.2.6 Functions

	5.3 Error handling
	5.3.1 Return status
	5.3.2 Behavior on error

	5.4 Parameter conventions
	5.4.1 Pointer conventions
	5.4.2 Input buffer sizes
	5.4.3 Output buffer sizes
	5.4.4 Overlap between parameters
	5.4.5 Stability of parameters

	5.5 Key types and algorithms
	5.5.1 Structure of key types and algorithms

	5.6 Concurrent calls

	6 Implementation considerations
	6.1 Implementation-specific aspects of the interface
	6.1.1 Implementation profile
	6.1.2 Implementation-specific types
	6.1.3 Implementation-specific macros

	6.2 Porting to a platform
	6.2.1 Platform assumptions
	6.2.2 Platform-specific types
	6.2.3 Cryptographic hardware support

	6.3 Security requirements and recommendations
	6.3.1 Error detection
	6.3.2 Indirect object references
	6.3.3 Memory cleanup
	6.3.4 Managing key material
	6.3.5 Safe outputs on error
	6.3.6 Attack resistance

	6.4 Other implementation considerations
	6.4.1 Philosophy of resource management

	7 Usage considerations
	7.1 Security recommendations
	7.1.1 Always check for errors
	7.1.2 Shared memory and concurrency
	7.1.3 Cleaning up after use

	8 Library management reference
	8.1 Status codes
	8.1.1 Common error codes
	8.1.2 Error codes specific to the Crypto API
	PSA_ERROR_INSUFFICIENT_ENTROPY (macro)
	PSA_ERROR_INVALID_PADDING (macro)

	8.2 Crypto API library
	8.2.1 API version
	PSA_CRYPTO_API_VERSION_MAJOR (macro)
	PSA_CRYPTO_API_VERSION_MINOR (macro)

	8.2.2 Library initialization
	psa_crypto_init (function)

	9 Key management reference
	9.1 Key attributes
	9.1.1 Managing key attributes
	psa_key_attributes_t (typedef)
	PSA_KEY_ATTRIBUTES_INIT (macro)
	psa_key_attributes_init (function)
	psa_get_key_attributes (function)
	psa_reset_key_attributes (function)

	9.2 Key types
	9.2.1 Key type encoding
	psa_key_type_t (typedef)
	PSA_KEY_TYPE_NONE (macro)

	9.2.2 Key categories
	PSA_KEY_TYPE_IS_UNSTRUCTURED (macro)
	PSA_KEY_TYPE_IS_ASYMMETRIC (macro)
	PSA_KEY_TYPE_IS_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_KEY_PAIR (macro)

	9.2.3 Symmetric keys
	PSA_KEY_TYPE_RAW_DATA (macro)
	PSA_KEY_TYPE_HMAC (macro)
	PSA_KEY_TYPE_DERIVE (macro)
	PSA_KEY_TYPE_PASSWORD (macro)
	PSA_KEY_TYPE_PASSWORD_HASH (macro)
	PSA_KEY_TYPE_PEPPER (macro)
	PSA_KEY_TYPE_AES (macro)
	PSA_KEY_TYPE_ARIA (macro)
	PSA_KEY_TYPE_DES (macro)
	PSA_KEY_TYPE_CAMELLIA (macro)
	PSA_KEY_TYPE_SM4 (macro)
	PSA_KEY_TYPE_ARC4 (macro)
	PSA_KEY_TYPE_CHACHA20 (macro)
	PSA_KEY_TYPE_XCHACHA20 (macro)

	9.2.4 RSA keys
	PSA_KEY_TYPE_RSA_KEY_PAIR (macro)
	PSA_KEY_TYPE_RSA_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_RSA (macro)

	9.2.5 Elliptic Curve keys
	psa_ecc_family_t (typedef)
	PSA_KEY_TYPE_ECC_KEY_PAIR (macro)
	PSA_KEY_TYPE_ECC_PUBLIC_KEY (macro)
	PSA_ECC_FAMILY_SECP_K1 (macro)
	PSA_ECC_FAMILY_SECP_R1 (macro)
	PSA_ECC_FAMILY_SECP_R2 (macro)
	PSA_ECC_FAMILY_SECT_K1 (macro)
	PSA_ECC_FAMILY_SECT_R1 (macro)
	PSA_ECC_FAMILY_SECT_R2 (macro)
	PSA_ECC_FAMILY_BRAINPOOL_P_R1 (macro)
	PSA_ECC_FAMILY_FRP (macro)
	PSA_ECC_FAMILY_MONTGOMERY (macro)
	PSA_ECC_FAMILY_TWISTED_EDWARDS (macro)
	PSA_KEY_TYPE_IS_ECC (macro)
	PSA_KEY_TYPE_IS_ECC_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_ECC_GET_FAMILY (macro)

	9.2.6 Diffie Hellman keys
	psa_dh_family_t (typedef)
	PSA_KEY_TYPE_DH_KEY_PAIR (macro)
	PSA_KEY_TYPE_DH_PUBLIC_KEY (macro)
	PSA_DH_FAMILY_RFC7919 (macro)
	PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_DH (macro)
	PSA_KEY_TYPE_IS_DH_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_DH_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_DH_GET_FAMILY (macro)

	9.2.7 Attribute accessors
	psa_set_key_type (function)
	psa_get_key_type (function)
	psa_get_key_bits (function)
	psa_set_key_bits (function)

	9.3 Key lifetimes
	9.3.1 Volatile keys
	9.3.2 Persistent keys
	9.3.3 Lifetime encodings
	psa_key_lifetime_t (typedef)
	psa_key_persistence_t (typedef)
	psa_key_location_t (typedef)

	9.3.4 Lifetime values
	PSA_KEY_LIFETIME_VOLATILE (macro)
	PSA_KEY_LIFETIME_PERSISTENT (macro)
	PSA_KEY_PERSISTENCE_VOLATILE (macro)
	PSA_KEY_PERSISTENCE_DEFAULT (macro)
	PSA_KEY_PERSISTENCE_READ_ONLY (macro)
	PSA_KEY_LOCATION_LOCAL_STORAGE (macro)
	PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT (macro)

	9.3.5 Attribute accessors
	psa_set_key_lifetime (function)
	psa_get_key_lifetime (function)

	9.3.6 Support macros
	PSA_KEY_LIFETIME_GET_PERSISTENCE (macro)
	PSA_KEY_LIFETIME_GET_LOCATION (macro)
	PSA_KEY_LIFETIME_IS_VOLATILE (macro)
	PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION (macro)

	9.4 Key identifiers
	9.4.1 Key identifier type
	psa_key_id_t (typedef)
	PSA_KEY_ID_NULL (macro)
	PSA_KEY_ID_USER_MIN (macro)
	PSA_KEY_ID_USER_MAX (macro)
	PSA_KEY_ID_VENDOR_MIN (macro)
	PSA_KEY_ID_VENDOR_MAX (macro)

	9.4.2 Attribute accessors
	psa_set_key_id (function)
	psa_get_key_id (function)

	9.5 Key policies
	9.5.1 Permitted algorithms
	psa_set_key_algorithm (function)
	psa_get_key_algorithm (function)

	9.5.2 Key usage flags
	psa_key_usage_t (typedef)
	PSA_KEY_USAGE_EXPORT (macro)
	PSA_KEY_USAGE_COPY (macro)
	PSA_KEY_USAGE_CACHE (macro)
	PSA_KEY_USAGE_ENCRYPT (macro)
	PSA_KEY_USAGE_DECRYPT (macro)
	PSA_KEY_USAGE_SIGN_MESSAGE (macro)
	PSA_KEY_USAGE_VERIFY_MESSAGE (macro)
	PSA_KEY_USAGE_SIGN_HASH (macro)
	PSA_KEY_USAGE_VERIFY_HASH (macro)
	PSA_KEY_USAGE_DERIVE (macro)
	PSA_KEY_USAGE_VERIFY_DERIVATION (macro)
	psa_set_key_usage_flags (function)
	psa_get_key_usage_flags (function)

	9.6 Key management functions
	9.6.1 Key creation
	psa_import_key (function)
	psa_generate_key (function)
	psa_copy_key (function)

	9.6.2 Key destruction
	psa_destroy_key (function)
	psa_purge_key (function)

	9.6.3 Key export
	psa_export_key (function)
	psa_export_public_key (function)
	PSA_EXPORT_KEY_OUTPUT_SIZE (macro)
	PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE (macro)
	PSA_EXPORT_KEY_PAIR_MAX_SIZE (macro)
	PSA_EXPORT_PUBLIC_KEY_MAX_SIZE (macro)

	9.6.4 Key formats

	10 Cryptographic operation reference
	10.1 Algorithms
	10.1.1 Algorithm encoding
	psa_algorithm_t (typedef)
	PSA_ALG_NONE (macro)

	10.1.2 Algorithm categories
	PSA_ALG_IS_HASH (macro)
	PSA_ALG_IS_MAC (macro)
	PSA_ALG_IS_CIPHER (macro)
	PSA_ALG_IS_AEAD (macro)
	PSA_ALG_IS_SIGN (macro)
	PSA_ALG_IS_ASYMMETRIC_ENCRYPTION (macro)
	PSA_ALG_IS_KEY_AGREEMENT (macro)
	PSA_ALG_IS_KEY_DERIVATION (macro)
	PSA_ALG_IS_WILDCARD (macro)
	PSA_ALG_GET_HASH (macro)

	10.2 Message digests (Hashes)
	10.2.1 Hash algorithms
	PSA_ALG_MD2 (macro)
	PSA_ALG_MD4 (macro)
	PSA_ALG_MD5 (macro)
	PSA_ALG_RIPEMD160 (macro)
	PSA_ALG_AES_MMO_ZIGBEE (macro)
	PSA_ALG_SHA_1 (macro)
	PSA_ALG_SHA_224 (macro)
	PSA_ALG_SHA_256 (macro)
	PSA_ALG_SHA_384 (macro)
	PSA_ALG_SHA_512 (macro)
	PSA_ALG_SHA_512_224 (macro)
	PSA_ALG_SHA_512_256 (macro)
	PSA_ALG_SHA3_224 (macro)
	PSA_ALG_SHA3_256 (macro)
	PSA_ALG_SHA3_384 (macro)
	PSA_ALG_SHA3_512 (macro)
	PSA_ALG_SHAKE256_512 (macro)
	PSA_ALG_SM3 (macro)

	10.2.2 Single-part hashing functions
	psa_hash_compute (function)
	psa_hash_compare (function)

	10.2.3 Multi-part hashing operations
	psa_hash_operation_t (typedef)
	PSA_HASH_OPERATION_INIT (macro)
	psa_hash_operation_init (function)
	psa_hash_setup (function)
	psa_hash_update (function)
	psa_hash_finish (function)
	psa_hash_verify (function)
	psa_hash_abort (function)
	psa_hash_suspend (function)
	psa_hash_resume (function)
	psa_hash_clone (function)

	10.2.4 Support macros
	PSA_HASH_LENGTH (macro)
	PSA_HASH_MAX_SIZE (macro)
	PSA_HASH_SUSPEND_OUTPUT_SIZE (macro)
	PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE (macro)
	PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH (macro)
	PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH (macro)
	PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH (macro)
	PSA_HASH_BLOCK_LENGTH (macro)

	10.2.5 Hash suspend state
	Hash suspend state format
	Hash suspend state field sizes

	10.3 Message authentication codes (MAC)
	10.3.1 MAC algorithms
	PSA_ALG_HMAC (macro)
	PSA_ALG_CBC_MAC (macro)
	PSA_ALG_CMAC (macro)
	PSA_ALG_TRUNCATED_MAC (macro)
	PSA_ALG_FULL_LENGTH_MAC (macro)
	PSA_ALG_AT_LEAST_THIS_LENGTH_MAC (macro)

	10.3.2 Single-part MAC functions
	psa_mac_compute (function)
	psa_mac_verify (function)

	10.3.3 Multi-part MAC operations
	psa_mac_operation_t (typedef)
	PSA_MAC_OPERATION_INIT (macro)
	psa_mac_operation_init (function)
	psa_mac_sign_setup (function)
	psa_mac_verify_setup (function)
	psa_mac_update (function)
	psa_mac_sign_finish (function)
	psa_mac_verify_finish (function)
	psa_mac_abort (function)

	10.3.4 Support macros
	PSA_ALG_IS_HMAC (macro)
	PSA_ALG_IS_BLOCK_CIPHER_MAC (macro)
	PSA_MAC_LENGTH (macro)
	PSA_MAC_MAX_SIZE (macro)

	10.4 Unauthenticated ciphers
	10.4.1 Cipher algorithms
	PSA_ALG_STREAM_CIPHER (macro)
	PSA_ALG_CTR (macro)
	PSA_ALG_CCM_STAR_NO_TAG (macro)
	PSA_ALG_CFB (macro)
	PSA_ALG_OFB (macro)
	PSA_ALG_XTS (macro)
	PSA_ALG_ECB_NO_PADDING (macro)
	PSA_ALG_CBC_NO_PADDING (macro)
	PSA_ALG_CBC_PKCS7 (macro)

	10.4.2 Single-part cipher functions
	psa_cipher_encrypt (function)
	psa_cipher_decrypt (function)

	10.4.3 Multi-part cipher operations
	psa_cipher_operation_t (typedef)
	PSA_CIPHER_OPERATION_INIT (macro)
	psa_cipher_operation_init (function)
	psa_cipher_encrypt_setup (function)
	psa_cipher_decrypt_setup (function)
	psa_cipher_generate_iv (function)
	psa_cipher_set_iv (function)
	psa_cipher_update (function)
	psa_cipher_finish (function)
	psa_cipher_abort (function)

	10.4.4 Support macros
	PSA_ALG_IS_STREAM_CIPHER (macro)
	PSA_ALG_CCM_STAR_ANY_TAG (macro)
	PSA_CIPHER_ENCRYPT_OUTPUT_SIZE (macro)
	PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_CIPHER_DECRYPT_OUTPUT_SIZE (macro)
	PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_CIPHER_IV_LENGTH (macro)
	PSA_CIPHER_IV_MAX_SIZE (macro)
	PSA_CIPHER_UPDATE_OUTPUT_SIZE (macro)
	PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE (macro)
	PSA_CIPHER_FINISH_OUTPUT_SIZE (macro)
	PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE (macro)
	PSA_BLOCK_CIPHER_BLOCK_LENGTH (macro)
	PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE (macro)

	10.5 Authenticated encryption with associated data (AEAD)
	10.5.1 AEAD algorithms
	PSA_ALG_CCM (macro)
	PSA_ALG_GCM (macro)
	PSA_ALG_CHACHA20_POLY1305 (macro)
	PSA_ALG_XCHACHA20_POLY1305 (macro)
	PSA_ALG_AEAD_WITH_SHORTENED_TAG (macro)
	PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG (macro)
	PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG (macro)

	10.5.2 Single-part AEAD functions
	psa_aead_encrypt (function)
	psa_aead_decrypt (function)

	10.5.3 Multi-part AEAD operations
	psa_aead_operation_t (typedef)
	PSA_AEAD_OPERATION_INIT (macro)
	psa_aead_operation_init (function)
	psa_aead_encrypt_setup (function)
	psa_aead_decrypt_setup (function)
	psa_aead_set_lengths (function)
	psa_aead_generate_nonce (function)
	psa_aead_set_nonce (function)
	psa_aead_update_ad (function)
	psa_aead_update (function)
	psa_aead_finish (function)
	psa_aead_verify (function)
	psa_aead_abort (function)

	10.5.4 Support macros
	PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER (macro)
	PSA_AEAD_ENCRYPT_OUTPUT_SIZE (macro)
	PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_DECRYPT_OUTPUT_SIZE (macro)
	PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_NONCE_LENGTH (macro)
	PSA_AEAD_NONCE_MAX_SIZE (macro)
	PSA_AEAD_UPDATE_OUTPUT_SIZE (macro)
	PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_FINISH_OUTPUT_SIZE (macro)
	PSA_AEAD_FINISH_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_TAG_LENGTH (macro)
	PSA_AEAD_TAG_MAX_SIZE (macro)
	PSA_AEAD_VERIFY_OUTPUT_SIZE (macro)
	PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE (macro)

	10.6 Key derivation
	10.6.1 Key derivation algorithms
	PSA_ALG_HKDF (macro)
	PSA_ALG_HKDF_EXTRACT (macro)
	PSA_ALG_HKDF_EXPAND (macro)
	PSA_ALG_SP800_108_COUNTER_HMAC (macro)
	PSA_ALG_SP800_108_COUNTER_CMAC (macro)
	PSA_ALG_TLS12_PRF (macro)
	PSA_ALG_TLS12_PSK_TO_MS (macro)
	PSA_ALG_TLS12_ECJPAKE_TO_PMS (macro)
	PSA_ALG_PBKDF2_HMAC (macro)
	PSA_ALG_PBKDF2_AES_CMAC_PRF_128 (macro)

	10.6.2 Input step types
	psa_key_derivation_step_t (typedef)
	PSA_KEY_DERIVATION_INPUT_SECRET (macro)
	PSA_KEY_DERIVATION_INPUT_OTHER_SECRET (macro)
	PSA_KEY_DERIVATION_INPUT_PASSWORD (macro)
	PSA_KEY_DERIVATION_INPUT_LABEL (macro)
	PSA_KEY_DERIVATION_INPUT_CONTEXT (macro)
	PSA_KEY_DERIVATION_INPUT_SALT (macro)
	PSA_KEY_DERIVATION_INPUT_INFO (macro)
	PSA_KEY_DERIVATION_INPUT_SEED (macro)
	PSA_KEY_DERIVATION_INPUT_COST (macro)

	10.6.3 Key derivation functions
	psa_key_derivation_operation_t (typedef)
	PSA_KEY_DERIVATION_OPERATION_INIT (macro)
	psa_key_derivation_operation_init (function)
	psa_key_derivation_setup (function)
	psa_key_derivation_get_capacity (function)
	psa_key_derivation_set_capacity (function)
	psa_key_derivation_input_bytes (function)
	psa_key_derivation_input_integer (function)
	psa_key_derivation_input_key (function)
	psa_key_derivation_output_bytes (function)
	psa_key_derivation_output_key (function)
	psa_key_derivation_verify_bytes (function)
	psa_key_derivation_verify_key (function)
	psa_key_derivation_abort (function)

	10.6.4 Support macros
	PSA_ALG_IS_KEY_DERIVATION_STRETCHING (macro)
	PSA_ALG_IS_HKDF (macro)
	PSA_ALG_IS_HKDF_EXTRACT (macro)
	PSA_ALG_IS_HKDF_EXPAND (macro)
	PSA_ALG_IS_SP800_108_COUNTER_HMAC (macro)
	PSA_ALG_IS_TLS12_PRF (macro)
	PSA_ALG_IS_TLS12_PSK_TO_MS (macro)
	PSA_ALG_IS_PBKDF2_HMAC (macro)
	PSA_KEY_DERIVATION_UNLIMITED_CAPACITY (macro)
	PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE (macro)
	PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE (macro)

	10.7 Asymmetric signature
	10.7.1 Asymmetric signature algorithms
	PSA_ALG_RSA_PKCS1V15_SIGN (macro)
	PSA_ALG_RSA_PKCS1V15_SIGN_RAW (macro)
	PSA_ALG_RSA_PSS (macro)
	PSA_ALG_RSA_PSS_ANY_SALT (macro)
	PSA_ALG_ECDSA (macro)
	PSA_ALG_ECDSA_ANY (macro)
	PSA_ALG_DETERMINISTIC_ECDSA (macro)
	PSA_ALG_PURE_EDDSA (macro)
	PSA_ALG_ED25519PH (macro)
	PSA_ALG_ED448PH (macro)

	10.7.2 Asymmetric signature functions
	psa_sign_message (function)
	psa_verify_message (function)
	psa_sign_hash (function)
	psa_verify_hash (function)

	10.7.3 Support macros
	PSA_ALG_IS_SIGN_MESSAGE (macro)
	PSA_ALG_IS_SIGN_HASH (macro)
	PSA_ALG_IS_RSA_PKCS1V15_SIGN (macro)
	PSA_ALG_IS_RSA_PSS (macro)
	PSA_ALG_IS_RSA_PSS_ANY_SALT (macro)
	PSA_ALG_IS_RSA_PSS_STANDARD_SALT (macro)
	PSA_ALG_IS_ECDSA (macro)
	PSA_ALG_IS_DETERMINISTIC_ECDSA (macro)
	PSA_ALG_IS_RANDOMIZED_ECDSA (macro)
	PSA_ALG_IS_HASH_EDDSA (macro)
	PSA_ALG_IS_HASH_AND_SIGN (macro)
	PSA_ALG_ANY_HASH (macro)
	PSA_SIGN_OUTPUT_SIZE (macro)
	PSA_SIGNATURE_MAX_SIZE (macro)

	10.8 Asymmetric encryption
	10.8.1 Asymmetric encryption algorithms
	PSA_ALG_RSA_PKCS1V15_CRYPT (macro)
	PSA_ALG_RSA_OAEP (macro)

	10.8.2 Asymmetric encryption functions
	psa_asymmetric_encrypt (function)
	psa_asymmetric_decrypt (function)

	10.8.3 Support macros
	PSA_ALG_IS_RSA_OAEP (macro)
	PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE (macro)
	PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE (macro)
	PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE (macro)

	10.9 Key agreement
	10.9.1 Key agreement algorithms
	PSA_ALG_FFDH (macro)
	PSA_ALG_ECDH (macro)
	PSA_ALG_KEY_AGREEMENT (macro)

	10.9.2 Standalone key agreement
	psa_key_agreement (function)
	psa_raw_key_agreement (function)

	10.9.3 Combining key agreement and key derivation
	psa_key_derivation_key_agreement (function)

	10.9.4 Support macros
	PSA_ALG_KEY_AGREEMENT_GET_BASE (macro)
	PSA_ALG_KEY_AGREEMENT_GET_KDF (macro)
	PSA_ALG_IS_STANDALONE_KEY_AGREEMENT (macro)
	PSA_ALG_IS_RAW_KEY_AGREEMENT (macro)
	PSA_ALG_IS_FFDH (macro)
	PSA_ALG_IS_ECDH (macro)
	PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE (macro)
	PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE (macro)

	10.10 Other cryptographic services
	10.10.1 Random number generation
	psa_generate_random (function)

	A Example header file
	A.1 psa/crypto.h

	B Algorithm and key type encoding
	B.1 Algorithm identifier encoding
	B.1.1 Algorithm categories
	B.1.2 Hash algorithm encoding
	B.1.3 MAC algorithm encoding
	B.1.4 Cipher algorithm encoding
	B.1.5 AEAD algorithm encoding
	B.1.6 Key derivation algorithm encoding
	B.1.7 Asymmetric signature algorithm encoding
	B.1.8 Asymmetric encryption algorithm encoding
	B.1.9 Key agreement algorithm encoding

	B.2 Key type encoding
	B.2.1 Key type categories
	B.2.2 Raw key encoding
	B.2.3 Symmetric key encoding
	B.2.4 Asymmetric key encoding
	RSA key encoding
	Elliptic Curve key encoding
	Diffie Hellman key encoding

	C Example macro implementations
	C.1 Algorithm macros
	C.2 Key type macros
	C.3 Hash suspend state macros

	D Security Risk Assessment
	D.1 Architecture
	D.1.1 System definition
	Assumptions, constraints, and interacting entities
	Trust boundaries and information flow

	D.1.2 Assets and stakeholders
	D.1.3 Security goals

	D.2 Threat Model
	D.2.1 Adversarial models
	D.2.2 Threats and attacks
	D.2.3 Risk assessment

	D.3 Mitigations
	D.3.1 Objectives
	D.3.2 Requirements

	D.4 Remediation & residual risk
	D.4.1 Implementation remediations
	D.4.2 Residual risk

	E Changes to the API
	E.1 Document change history
	E.1.1 Changes between 1.2.0 and 1.2.1
	Clarifications and fixes

	E.1.2 Changes between 1.1.2 and 1.2.0
	Changes to the API
	Clarifications and fixes

	E.1.3 Changes between 1.1.1 and 1.1.2
	Clarifications and fixes
	Other changes

	E.1.4 Changes between 1.1.0 and 1.1.1
	Changes to the API
	Other changes

	E.1.5 Changes between 1.0.1 and 1.1.0
	Changes to the API
	Clarifications and fixes
	Other changes

	E.1.6 Changes between 1.0.0 and 1.0.1
	Changes to the API
	Clarifications and fixes
	Other changes

	E.1.7 Changes between 1.0 beta 3 and 1.0.0
	Changes to the API
	Clarifications
	Other changes

	E.1.8 Changes between 1.0 beta 2 and 1.0 beta 3
	Changes to the API
	Clarifications

	E.1.9 Changes between 1.0 beta 1 and 1.0 beta 2
	Changes to the API
	Clarifications
	Other changes

	E.2 Planned changes for version 1.2.x
	E.3 Future additions

	Index of API elements

