
PSA Certified
Crypto API 1.4

Document number: IHI 0086
Release Quality: Final
Issue Number: 0
Confidentiality: Non-confidential
Date of Issue: 17/11/2025

Copyright © 2018-2025 Arm Limited and/or its affiliates

Abstract
This document is part of the PSA Certified API specifications. It defines interfaces to provide cryptographicoperations and key storage services.

Contents

About this document ix
Release information ix
License x
References xi
Terms and abbreviations xv
Potential for change xviii
Conventions xviii
Typographical conventions xviiiNumbers xviii
Feedback xviii

1 Introduction 20
1.1 About Platform Security Architecture 20
1.2 About the Crypto API 20
2 Design goals 21
2.1 Suitable for constrained devices 21
2.2 A keystore interface 21
2.3 Optional isolation 21
2.4 Choice of algorithms 22
2.5 Ease of use 22
2.6 Example use cases 23

2.6.1 Network Security (TLS) 232.6.2 Secure Storage 232.6.3 Network Credentials 232.6.4 Device Pairing 232.6.5 Secure Boot 232.6.6 Attestation 232.6.7 Factory Provisioning 24
3 Functionality overview 24
3.1 Library management 24
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page i

3.2 Key management 24
3.2.1 Key types 253.2.2 Key identifiers 253.2.3 Key lifetimes 253.2.4 Key policies 263.2.5 Recommendations of minimum standards for key management 26

3.3 Cryptographic operations 26
3.3.1 Single-part Functions 263.3.2 Multi-part operations 273.3.3 Symmetric cryptography 293.3.4 Asymmetric cryptography 30

3.4 Randomness and key generation 30
4 Sample architectures 30
4.1 Single-partition architecture 30
4.2 Cryptographic token and single-application processor 31
4.3 Cryptoprocessor with no key storage 31
4.4 Multi-client cryptoprocessor 32
4.5 Multi-cryptoprocessor architecture 32
5 Library conventions 32
5.1 Header files 32
5.2 API conventions 33

5.2.1 Identifier names 335.2.2 Basic types 335.2.3 Data types 335.2.4 Constants 335.2.5 Function-like macros 345.2.6 Functions 34
5.3 Error handling 34

5.3.1 Return status 345.3.2 Behavior on error 35
5.4 Parameter conventions 36

5.4.1 Pointer conventions 365.4.2 Input buffer sizes 365.4.3 Output buffer sizes 365.4.4 Overlap between parameters 375.4.5 Stability of parameters 37

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page ii

5.5 Key types and algorithms 38
5.5.1 Structure of key types and algorithms 38

5.6 Concurrent calls 38
6 Implementation considerations 39
6.1 Implementation-specific aspects of the interface 39

6.1.1 Implementation profile 396.1.2 Implementation-specific types 396.1.3 Implementation-specific macros 40
6.2 Porting to a platform 41

6.2.1 Platform assumptions 416.2.2 Platform-specific types 416.2.3 Cryptographic hardware support 41
6.3 Security requirements and recommendations 41

6.3.1 Error detection 416.3.2 Indirect object references 416.3.3 Memory cleanup 426.3.4 Managing key material 426.3.5 Safe outputs on error 426.3.6 Attack resistance 43
6.4 Other implementation considerations 43

6.4.1 Philosophy of resource management 43
7 Usage considerations 43
7.1 Security recommendations 43

7.1.1 Always check for errors 437.1.2 Shared memory and concurrency 447.1.3 Cleaning up after use 44
8 Library management reference 45
8.1 Status codes 45

8.1.1 Common error codes 458.1.2 Error codes specific to the Crypto API 47
8.2 Crypto API library 47

8.2.1 API version 478.2.2 Library initialization 48
9 Key management reference 49
9.1 Key attributes 49

9.1.1 Managing key attributes 49
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page iii

9.2 Key types 53
9.2.1 Key type encoding 539.2.2 Key categories 549.2.3 Elliptic curve families 559.2.4 Finite field Diffie-Hellman families 599.2.5 Attribute accessors 61

9.3 Unstructured key types 62
9.3.1 Non-key data 629.3.2 Symmetric cryptographic keys 65

9.4 Structured key types 72
9.4.1 WPA3-SAE password tokens 72

9.5 Asymmetric key types 76
9.5.1 RSA keys 769.5.2 Elliptic Curve keys 789.5.3 Diffie Hellman keys 849.5.4 SPAKE2+ keys 869.5.5 Support macros 89

9.6 Key lifetimes 90
9.6.1 Volatile keys 909.6.2 Persistent keys 919.6.3 Key lifetime encoding 919.6.4 Lifetime values 949.6.5 Attribute accessors 969.6.6 Support macros 97

9.7 Key identifiers 98
9.7.1 Key identifier type 989.7.2 Attribute accessors 99

9.8 Key policies 100
9.8.1 Permitted algorithms 1019.8.2 Key usage flags 102

9.9 Key management functions 110
9.9.1 Key creation 1109.9.2 Key destruction 1239.9.3 Key export 125

10 Cryptographic operation reference 130
10.1 Algorithms 130

10.1.1 Algorithm encoding 13110.1.2 Algorithm categories 13210.1.3 Support macros 136

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page iv

10.2 Message digests (Hashes) 137
10.2.1 Hash algorithms 13810.2.2 Single-part hashing functions 14210.2.3 Multi-part hashing operations 14410.2.4 Support macros 15210.2.5 Hash suspend state 155

10.3 Extendable-output functions (XOF) 157
10.3.1 XOF algorithms 15810.3.2 Multi-part XOF operations 15910.3.3 Support macros 164

10.4 Message authentication codes (MAC) 165
10.4.1 MAC algorithms 16510.4.2 Single-part MAC functions 17010.4.3 Multi-part MAC operations 17210.4.4 Support macros 180

10.5 Unauthenticated ciphers 181
10.5.1 Cipher algorithms 18210.5.2 Single-part cipher functions 18910.5.3 Multi-part cipher operations 19210.5.4 Support macros 202

10.6 Authenticated encryption with associated data (AEAD) 207
10.6.1 AEAD algorithms 20810.6.2 Single-part AEAD functions 21310.6.3 Multi-part AEAD operations 21610.6.4 Support macros 231

10.7 Key wrapping 237
10.7.1 Key-wrapping algorithms 23710.7.2 Key wrapping functions 23810.7.3 Support macros 243

10.8 Key derivation 244
10.8.1 Key-derivation algorithms 24510.8.2 Input step types 25510.8.3 Key-derivation functions 25710.8.4 Support macros 274

10.9 Asymmetric signature 278
10.9.1 RSA signature algorithms 28010.9.2 ECDSA signature algorithms 28510.9.3 EdDSA signature algorithms 28910.9.4 Asymmetric signature functions 29410.9.5 Support macros 307

10.10 Asymmetric encryption 311
10.10.1 Asymmetric encryption algorithms 31110.10.2 Asymmetric encryption functions 312

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page v

10.10.3 Support macros 315
10.11 Key agreement 317

10.11.1 Key-agreement algorithms 31710.11.2 Standalone key agreement 32010.11.3 Combining key agreement and key derivation 32410.11.4 Support macros 326
10.12 Key encapsulation 329

10.12.1 Elliptic Curve Integrated Encryption Scheme 32910.12.2 Key-encapsulation functions 33110.12.3 Support macros 337
10.13 Password-authenticated key exchange (PAKE) 338

10.13.1 Common API for PAKE 33810.13.2 PAKE primitives 33810.13.3 PAKE cipher suites 34210.13.4 PAKE roles 34710.13.5 PAKE step types 34910.13.6 Multi-part PAKE operations 35210.13.7 PAKE support macros 36410.13.8 The J-PAKE protocol 36610.13.9 J-PAKE algorithms 37010.13.10The SPAKE2+ protocol 37110.13.11SPAKE2+ algorithms 37810.13.12The WPA3-SAE protocol 38110.13.13WPA3-SAE algorithms 388
10.14 Other cryptographic services 391

10.14.1 Random number generation 391
A Example header file 392
A.1 psa/crypto.h 392
B Algorithm and key type encoding 410
B.1 Algorithm identifier encoding 410

B.1.1 Algorithm categories 411B.1.2 Hash algorithm encoding 412B.1.3 XOF algorithm encoding 413B.1.4 MAC algorithm encoding 414B.1.5 Cipher algorithm encoding 415B.1.6 AEAD algorithm encoding 415B.1.7 Key-wrapping algorithm encoding 416B.1.8 Key-derivation algorithm encoding 417B.1.9 Asymmetric signature algorithm encoding 417B.1.10 Asymmetric encryption algorithm encoding 418B.1.11 Key-agreement algorithm encoding 419B.1.12 Key-encapsulation algorithm encoding 419
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page vi

B.1.13 PAKE algorithm encoding 420
B.2 Key type encoding 421

B.2.1 Key type categories 421B.2.2 Raw key encoding 421B.2.3 Symmetric key encoding 422B.2.4 Structured key encoding 423B.2.5 Asymmetric key encoding 424
C Example macro implementations 427
C.1 Algorithm macros 428
C.2 Key type macros 433
C.3 Hash suspend state macros 435
D Security Risk Assessment 436
D.1 Architecture 436

D.1.1 System definition 436D.1.2 Assets and stakeholders 437D.1.3 Security goals 439
D.2 Threat Model 439

D.2.1 Adversarial models 439D.2.2 Threats and attacks 441D.2.3 Risk assessment 443
D.3 Mitigations 444

D.3.1 Objectives 444D.3.2 Requirements 445
D.4 Remediation & residual risk 447

D.4.1 Implementation remediations 447D.4.2 Residual risk 449
E Changes to the API 449
E.1 Document change history 449

E.1.1 Changes between 1.3.2 and 1.4.0 449E.1.2 Changes between 1.3.1 and 1.3.2 450E.1.3 Changes between 1.3.0 and 1.3.1 450E.1.4 Changes between 1.2.1 and 1.3.0 451E.1.5 Changes between 1.2.0 and 1.2.1 452E.1.6 Changes between 1.1.2 and 1.2.0 452E.1.7 Changes between 1.1.1 and 1.1.2 453E.1.8 Changes between 1.1.0 and 1.1.1 453E.1.9 Changes between 1.0.1 and 1.1.0 453E.1.10 Changes between 1.0.0 and 1.0.1 455
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page vii

E.1.11 Changes between 1.0 beta 3 and 1.0.0 456E.1.12 Changes between 1.0 beta 2 and 1.0 beta 3 465E.1.13 Changes between 1.0 beta 1 and 1.0 beta 2 467
E.2 Planned changes for version 1.4.x 467
E.3 Future additions 467

Index of API elements 468

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page viii

About this document
Release information
The change history table lists the changes that have been made to this document.

Table 1 Document revision history
Date Version Confidentiality Change

January 2019 1.0 Beta 1 Non-confidential First public beta release.
February 2019 1.0 Beta 2 Non-confidential Update for release with other PSA CertifiedAPI specifications.
May 2019 1.0 Beta 3 Non-confidential Update for release with other PSA CertifiedAPI specifications.
February 2020 1.0 Final Non-confidential 1.0 API finalized.
August 2020 1.0.1 Final Non-confidential Update to fix errors and provide clarifications.
February 2022 1.1.0 Final Non-confidential New API for EdDSA, password hashing andkey stretching.

Many significant clarifications andimprovements across the documentation.
October 2022 1.1.1 Final Non-confidential Relicensed as open source under CC BY-SA4.0.

Improve support for TLS.
March 2023 1.1.2 Final Non-confidential Clarifications and fixes
February 2024 1.2.0 Final Non-confidential Better support for key agreement.

New algorithms for Zigbee, XChaCha, TLS1.2, and key derivation.
March 2024 1.2.1 Final Non-confidential Clarifications and fixes
March 2025 1.3.0 Final Non-confidential Integrated the PAKE extension.

New API for key encapsulation.
Support for additional key generationparameters.

June 2025 1.3.1 Final Non-confidential Clarifications and fixes
September 2025 1.3.2 Final Non-confidential GlobalPlatform governance of PSA Certifiedevaluation scheme.
November 2025 1.4.0 Final Non-confidential New algorithms for signatures with context,eXtended Output Functions, key wrapping,WPA3-SAE, and Ascon.

Added key query and key registrationfunctions.
The detailed changes in each release are described in Document change history on page 449.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page ix

PSA Certified Crypto API
Copyright © 2018-2025 Arm Limited and/or its affiliates. The copyright statement reflects the fact thatsome draft issues of this document have been released, to a limited circulation.

License
Text and illustrations
Text and illustrations in this work are licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy of thelicense, visit creativecommons.org/licenses/by-sa/4.0.
Grant of patent license. Subject to the terms and conditions of this license (both the CC BY-SA 4.0 Public License and this PatentLicense), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except asstated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Licensed Material,where such license applies only to those patent claims licensable by such Licensor that are necessarily infringed by theircontribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such contribution(s) wassubmitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that theLicensed Material or a contribution incorporated within the Licensed Material constitutes direct or contributory patent infringement,then any licenses granted to You under this license for that Licensed Material shall terminate as of the date such litigation is filed.
The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/orelsewhere. All rights reserved. Please visit arm.com/company/policies/trademarks for more information about Arm’s trademarks.
About the license
The language in the additional patent license is largely identical to that in section 3 of the Apache License, Version 2.0 (Apache 2.0),with two exceptions:

1. Changes are made related to the defined terms, to align those defined terms with the terminology in CC BY-SA 4.0 ratherthan Apache 2.0 (for example, changing “Work” to “Licensed Material”).
2. The scope of the defensive termination clause is changed from “any patent licenses granted to You” to “any licenses grantedto You”. This change is intended to help maintain a healthy ecosystem by providing additional protection to the communityagainst patent litigation claims.

To view the full text of the Apache 2.0 license, visit apache.org/licenses/LICENSE-2.0.
Source code
Source code samples in this work are licensed under the Apache License, Version 2.0 (the “License”); you may not use such samplesexcept in compliance with the License. You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS,WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page x

https://creativecommons.org/licenses/by-sa/4.0
https://arm.com/company/policies/trademarks
https://apache.org/licenses/LICENSE-2.0
https://apache.org/licenses/LICENSE-2.0

References
This document refers to the following documents.

Table 2 Arm documents referenced by this document
Ref Document Number Title

[PSM] ARM DEN 0128 Platform Security Model.developer.arm.com/documentation/den0128
[PSA-FFM] ARM DEN 0063 Arm® Platform Security Architecture Firmware Framework.developer.arm.com/documentation/den0063
[PSA-STAT] ARM IHI 0097 PSA Certified Status code API.arm-software.github.io/psa-api/status-code
[PSA-PQC] ARM AES 0119 PSA Certified Crypto API 1.4 PQC Extension.arm-software.github.io/psa-api/crypto

Table 3 Other documents referenced by this document
Ref Title

[C99] ISO/IEC, ISO/IEC 9899:1999 — Programming Languages — C, December 1999.www.iso.org/standard/29237.html
[CHACHA20] Bernstein, D., ChaCha, a variant of Salsa20, January 2008.http://cr.yp.to/chacha/chacha-20080128.pdf
[CLULOW] Clulow, Jolyon, On the Security of PKCS #11, 2003.link.springer.com/chapter/10.1007/978-3-540-45238-6_32
[CSTC0002] Cryptography Standardization Technical Committee, GM/T 0002-2012: SM4 blockcipher algorithm, March 2012.
[CSTC0004] Cryptography Standardization Technical Committee, GM/T 0004-2012: SM3cryptographic hash algorithm, March 2012.
[Curve25519] Bernstein et al., Curve25519: new Diffie-Hellman speed records, LNCS 3958, 2006.www.iacr.org/archive/pkc2006/39580209/39580209.pdf
[Curve448] Hamburg, Ed448-Goldilocks, a new elliptic curve, NIST ECC Workshop, 2015.eprint.iacr.org/2015/625.pdf
[Ed25519] Bernstein et al., Twisted Edwards curves, Africacrypt, 2008.eprint.iacr.org/2008/013.pdf
[Ed448] Hamburg, Ed448-Goldilocks, a new elliptic curve, NIST ECC Workshop, 2015.eprint.iacr.org/2015/625.pdf
[FIPS180-4] NIST, FIPS Publication 180-4: Secure Hash Standard (SHS), August 2015.doi.org/10.6028/NIST.FIPS.180-4

continues on next page

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page xi

https://developer.arm.com/documentation/den0128
https://developer.arm.com/documentation/den0063
https://arm-software.github.io/psa-api/status-code
https://arm-software.github.io/psa-api/crypto
https://www.iso.org/standard/29237.html
http://cr.yp.to/chacha/chacha-20080128.pdf
https://link.springer.com/chapter/10.1007/978-3-540-45238-6_32
https://www.iacr.org/archive/pkc2006/39580209/39580209.pdf
https://eprint.iacr.org/2015/625.pdf
https://eprint.iacr.org/2008/013.pdf
https://eprint.iacr.org/2015/625.pdf
https://doi.org/10.6028/NIST.FIPS.180-4

Table 3 – continued from previous page

Ref Title

[FIPS186-4] NIST, FIPS Publication 186-4: Digital Signature Standard (DSS), July 2013.doi.org/10.6028/NIST.FIPS.186-4
[FIPS197] NIST, FIPS Publication 197: Advanced Encryption Standard (AES), November 2001.doi.org/10.6028/NIST.FIPS.197
[FIPS202] NIST, FIPS Publication 202: SHA-3 Standard: Permutation-Based Hash andExtendable-Output Functions, August 2015. doi.org/10.6028/NIST.FIPS.202
[FRP] Agence nationale de la sécurité des systèmes d’information, Publication d’unparamétrage de courbe elliptique visant des applications de passeport électronique et del’administration électronique française, 21 November 2011.www.ssi.gouv.fr/agence/rayonnement-scientifique/publications-scientifiques/articles-ouvrages-actes
[IEEE-802.11] IEEE, IEEE 802.11-2024: Wireless LAN Medium Access Control (MAC) and PhysicalLayer (PHY) Specifications, 2024. standards.ieee.org/ieee/802.11/10548/
[IEEE-CCM] IEEE, IEEE Standard for Low-Rate Wireless Networks, 2020.standards.ieee.org/ieee/802.15.4/7029/
[IEEE-XTS] IEEE, 1619-2018 — IEEE Standard for Cryptographic Protection of Data onBlock-Oriented Storage Devices, January 2019.ieeexplore.ieee.org/servlet/opac?punumber=8637986
[ISO10118] ISO/IEC, ISO/IEC 10118-3:2018 IT Security techniques — Hash-functions — Part 3:Dedicated hash-functions, October 2018. www.iso.org/standard/67116.html
[ISO9797] ISO/IEC, ISO/IEC 9797-1:2011 Information technology — Security techniques —Message Authentication Codes (MACs) — Part 1: Mechanisms using a block cipher, March2011. www.iso.org/standard/50375.html
[MATTER] CSA,Matter Specification, Version 1.2, October 2023. csa-iot.org/all-solutions/matter/
[NTT-CAM] NTT Corporation and Mitsubishi Electric Corporation, Specification of Camellia — a128-bit Block Cipher, September 2001.info.isl.ntt.co.jp/crypt/eng/camellia/specifications
[RFC1319] IETF, The MD2 Message-Digest Algorithm, April 1992. tools.ietf.org/html/rfc1319.html
[RFC1320] IETF, The MD4 Message-Digest Algorithm, April 1992. tools.ietf.org/html/rfc1320.html
[RFC1321] IETF, The MD5 Message-Digest Algorithm, April 1992. tools.ietf.org/html/rfc1321.html
[RFC2104] IETF, HMAC: Keyed-Hashing for Message Authentication, February 1997.tools.ietf.org/html/rfc2104.html
[RFC2315] IETF, PKCS #7: Cryptographic Message Syntax Version 1.5, March 1998.tools.ietf.org/html/rfc2315.html
[RFC3279] IETF, Algorithms and Identifiers for the Internet X.509 Public Key InfrastructureCertificate and Certificate Revocation List (CRL) Profile, April 2002.tools.ietf.org/html/rfc3279.html

continues on next page

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page xii

https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.202
https://www.ssi.gouv.fr/agence/rayonnement-scientifique/publications-scientifiques/articles-ouvrages-actes
https://www.ssi.gouv.fr/agence/rayonnement-scientifique/publications-scientifiques/articles-ouvrages-actes
https://standards.ieee.org/ieee/802.11/10548/
https://standards.ieee.org/ieee/802.15.4/7029/
https://ieeexplore.ieee.org/servlet/opac?punumber=8637986
https://www.iso.org/standard/67116.html
https://www.iso.org/standard/50375.html
https://csa-iot.org/all-solutions/matter/
https://info.isl.ntt.co.jp/crypt/eng/camellia/specifications
https://tools.ietf.org/html/rfc1319.html
https://tools.ietf.org/html/rfc1320.html
https://tools.ietf.org/html/rfc1321.html
https://tools.ietf.org/html/rfc2104.html
https://tools.ietf.org/html/rfc2315.html
https://tools.ietf.org/html/rfc3279.html

Table 3 – continued from previous page

Ref Title

[RFC3394] IETF, Advanced Encryption Standard (AES) Key Wrap Algorithm, September 2002.tools.ietf.org/html/rfc3394.html
[RFC3526] IETF, More Modular Exponential (MODP) Diffie-Hellman groups for Internet KeyExchange (IKE), May 2003. tools.ietf.org/html/rfc3526.html
[RFC3610] IETF, Counter with CBC-MAC (CCM), September 2003. tools.ietf.org/html/rfc3610
[RFC3713] IETF, A Description of the Camellia Encryption Algorithm, April 2004.tools.ietf.org/html/rfc3713
[RFC4279] IETF, Pre-Shared Key Ciphersuites for Transport Layer Security (TLS), December 2005.tools.ietf.org/html/rfc4279.html
[RFC4615] IETF, The Advanced Encryption Standard-Cipher-based Message AuthenticationCode-Pseudo-Random Function-128 (AES-CMAC-PRF-128) Algorithm for the InternetKey Exchange Protocol (IKE), August 2006. tools.ietf.org/html/rfc4615.html
[RFC5116] IETF, An Interface and Algorithms for Authenticated Encryption, January 2008.tools.ietf.org/html/rfc5116.html
[RFC5246] IETF, The Transport Layer Security (TLS) Protocol Version 1.2, August 2008.tools.ietf.org/html/rfc5246.html
[RFC5489] IETF, ECDHE_PSK Cipher Suites for Transport Layer Security (TLS), March 2009.tools.ietf.org/html/rfc5489.html
[RFC5639] IETF, Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation,March 2010. tools.ietf.org/html/rfc5639.html
[RFC5649] IETF, Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm, August2009. tools.ietf.org/html/rfc5649.html
[RFC5794] IETF, A Description of the ARIA Encryption Algorithm, March 2010.datatracker.ietf.org/doc/html/rfc5794
[RFC5869] IETF, HMAC-based Extract-and-Expand Key Derivation Function (HKDF), May 2010.tools.ietf.org/html/rfc5869.html
[RFC5915] IETF, Elliptic Curve Private Key Structure, June 2010. tools.ietf.org/html/rfc5915.html
[RFC5958] IETF, Asymmetric Key Packages, August 2010. tools.ietf.org/html/rfc5958.html
[RFC6979] IETF, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic CurveDigital Signature Algorithm (ECDSA), August 2013. tools.ietf.org/html/rfc6979.html
[RFC7748] IETF, Elliptic Curves for Security, January 2016. tools.ietf.org/html/rfc7748.html
[RFC7919] IETF, Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport LayerSecurity (TLS), August 2016. tools.ietf.org/html/rfc7919.html
[RFC8017] IETF, PKCS #1: RSA Cryptography Specifications Version 2.2, November 2016.tools.ietf.org/html/rfc8017.html
[RFC8018] IETF, PKCS #5: Password-Based Cryptography Specification Version 2.1, January 2017.tools.ietf.org/html/rfc8018.html

continues on next page

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page xiii

https://tools.ietf.org/html/rfc3394.html
https://tools.ietf.org/html/rfc3526.html
https://tools.ietf.org/html/rfc3610
https://tools.ietf.org/html/rfc3713
https://tools.ietf.org/html/rfc4279.html
https://tools.ietf.org/html/rfc4615.html
https://tools.ietf.org/html/rfc5116.html
https://tools.ietf.org/html/rfc5246.html
https://tools.ietf.org/html/rfc5489.html
https://tools.ietf.org/html/rfc5639.html
https://tools.ietf.org/html/rfc5649.html
https://datatracker.ietf.org/doc/html/rfc5794
https://tools.ietf.org/html/rfc5869.html
https://tools.ietf.org/html/rfc5915.html
https://tools.ietf.org/html/rfc5958.html
https://tools.ietf.org/html/rfc6979.html
https://tools.ietf.org/html/rfc7748.html
https://tools.ietf.org/html/rfc7919.html
https://tools.ietf.org/html/rfc8017.html
https://tools.ietf.org/html/rfc8018.html

Table 3 – continued from previous page

Ref Title

[RFC8032] IRTF, Edwards-Curve Digital Signature Algorithm (EdDSA), January 2017.tools.ietf.org/html/rfc8032.html
[RFC8235] IETF, Schnorr Non-interactive Zero-Knowledge Proof, September 2017.tools.ietf.org/html/rfc8235.html
[RFC8236] IETF, J-PAKE: Password-Authenticated Key Exchange by Juggling, September 2017.tools.ietf.org/html/rfc8236.html
[RFC8439] IRTF, ChaCha20 and Poly1305 for IETF Protocols, June 2018.tools.ietf.org/html/rfc8439.html
[RFC9383] IETF, SPAKE2+, an Augmented Password-Authenticated Key Exchange (PAKE) Protocol,September 2023. tools.ietf.org/html/rfc9383.html
[RIPEMD] Dobbertin, Bosselaers and Preneel, RIPEMD-160: A Strengthened Version of RIPEMD,April 1996. homes.esat.kuleuven.be/~bosselae/ripemd160.html
[SEC1] Standards for Efficient Cryptography, SEC 1: Elliptic Curve Cryptography, May 2009.www.secg.org/sec1-v2.pdf
[SEC2] Standards for Efficient Cryptography, SEC 2: Recommended Elliptic Curve DomainParameters, January 2010. www.secg.org/sec2-v2.pdf
[SEC2v1] Standards for Efficient Cryptography, SEC 2: Recommended Elliptic Curve DomainParameters, Version 1.0, September 2000. www.secg.org/SEC2-Ver-1.0.pdf
[SP800-108] NIST, NIST Special Publication 800-108r1: Recommendation for Key Derivation UsingPseudorandom Functions, August 2022. doi.org/10.6028/NIST.SP.800-108r1
[SP800-232] NIST, NIST Special Publication 800-232: Ascon-Based Lightweight CryptographyStandards for Constrained Devices, August 2025. doi.org/10.6028/NIST.SP.800-232
[SP800-30] NIST, NIST Special Publication 800-30 Revision 1: Guide for Conducting RiskAssessments, September 2012. doi.org/10.6028/NIST.SP.800-30r1
[SP800-38A] NIST, NIST Special Publication 800-38A: Recommendation for Block Cipher Modes ofOperation: Methods and Techniques, December 2001.doi.org/10.6028/NIST.SP.800-38A
[SP800-38B] NIST, NIST Special Publication 800-38B: Recommendation for Block Cipher Modes ofOperation: the CMAC Mode for Authentication, May 2005.doi.org/10.6028/NIST.SP.800-38B
[SP800-38D] NIST, NIST Special Publication 800-38D: Recommendation for Block Cipher Modes ofOperation: Galois/Counter Mode (GCM) and GMAC, November 2007.doi.org/10.6028/NIST.SP.800-38D
[SP800-38F] NIST, NIST Special Publication 800-38F: Recommendation for Block Cipher Modes ofOperation: Methods for Key Wrapping, December 2012.doi.org/10.6028/NIST.SP.800-38F

continues on next page

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page xiv

https://tools.ietf.org/html/rfc8032.html
https://tools.ietf.org/html/rfc8235.html
https://tools.ietf.org/html/rfc8236.html
https://tools.ietf.org/html/rfc8439.html
https://tools.ietf.org/html/rfc9383.html
https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec2-v2.pdf
https://www.secg.org/SEC2-Ver-1.0.pdf
https://doi.org/10.6028/NIST.SP.800-108r1
https://doi.org/10.6028/NIST.SP.800-232
https://doi.org/10.6028/NIST.SP.800-30r1
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-38F

Table 3 – continued from previous page

Ref Title

[SP800-56A] NIST, NIST Special Publication 800-56A: Recommendation for Pair-WiseKey-Establishment Schemes Using Discrete Logarithm Cryptography, April 2018.doi.org/10.6028/NIST.SP.800-56Ar3
[SP800-67] NIST, NIST Special Publication 800-67: Recommendation for the Triple Data EncryptionAlgorithm (TDEA) Block Cipher, November 2017. doi.org/10.6028/NIST.SP.800-67r2
[SPAKE2P-2] IETF, SPAKE2+, an Augmented PAKE (Draft 02), December 2020.datatracker.ietf.org/doc/draft-bar-cfrg-spake2plus-02
[THREAD] Thread Group, Thread Specification 1.3.0, July 2022.www.threadgroup.org/ThreadSpec
[TLS-ECJPAKE] Cragie, Hao, Elliptic Curve J-PAKE Cipher Suites for Transport Layer Security (TLS), June2016. datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01
[X9-62] ANSI, Public Key Cryptography For The Financial Services Industry: The Elliptic CurveDigital Signature Algorithm (ECDSA).standards.globalspec.com/std/1955141/ANSI%20X9.62
[XCHACHA] Arciszewski, XChaCha: eXtended-nonce ChaCha and AEAD_XChaCha20_Poly1305,January 2020. datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha-03
[ZIGBEE] zigbee alliance, zigbee Specification, April 2017. csa-iot.org/wp-content/uploads/2022/01/docs-05-3474-22-0csg-zigbee-specification-1.pdf

Terms and abbreviations
This document uses the following terms and abbreviations.

Table 4 Terms and abbreviations
Term Meaning

AEAD See Authenticated Encryption with Associated Data.
Algorithm A finite sequence of steps to perform a particular operation.

In this specification, an algorithm is a cipher or a related function. Other textscall this a cryptographic mechanism.
API Application Programming Interface.
Asymmetric See Public-key cryptography.
AuthenticatedEncryption withAssociated Data (AEAD)

A type of encryption that provides confidentiality and authenticity of datausing symmetric keys.
Byte In this specification, a unit of storage comprising eight bits, also called an octet.

continues on next page

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page xv

https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-67r2
https://datatracker.ietf.org/doc/draft-bar-cfrg-spake2plus-02
https://www.threadgroup.org/ThreadSpec
https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01
https://standards.globalspec.com/std/1955141/ANSI%20X9.62
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha-03
https://csa-iot.org/wp-content/uploads/2022/01/docs-05-3474-22-0csg-zigbee-specification-1.pdf
https://csa-iot.org/wp-content/uploads/2022/01/docs-05-3474-22-0csg-zigbee-specification-1.pdf

Table 4 – continued from previous page

Term Meaning

Caller isolation Property of an implementation in which there are multiple applicationinstances, with a security boundary between the application instances, as wellas between the cryptoprocessor and the application instances.
See Optional isolation on page 21.

Cipher An algorithm used for encryption or decryption with a symmetric key.
Cryptoprocessor The component that performs cryptographic operations. A cryptoprocessormight contain a keystore and countermeasures against a range of physical andtiming attacks.
Cryptoprocessorisolation Property of an implementation in which there is a security boundary betweenthe application and the cryptoprocessor, but the cryptoprocessor does notcommunicate with other applications.

See Optional isolation on page 21.
Hash A cryptographic hash function, or the value returned by such a function.
HMAC A type of MAC that uses a cryptographic key with a hash function.
IMPLEMENTATION DEFINED Behavior that is not defined by the architecture, but is defined anddocumented by individual implementations.
Initialization vector (IV) An additional input that is not part of the message. It is used to prevent anattacker from making any correlation between cipher text and plain text.

This specification uses the term for such initial inputs in all contexts. Forexample, the initial counter in CTR mode is called the IV.
Isolation Property of an implementation in which there is a security boundary betweenthe application and the cryptoprocessor.

See Optional isolation on page 21.
IV See Initialization vector.
KDF See Key Derivation Function.
Key agreement An algorithm for two or more parties to establish a common secret key.
Key Derivation Function(KDF) Key Derivation Function. An algorithm for deriving keys from secret material.
Key identifier A reference to a cryptographic key. Key identifiers in the Crypto API are 32-bitintegers.
Key policy Key metadata that describes and restricts what a key can be used for.
Key size The size of a key as defined by common conventions for each key type. Forkeys that are built from several numbers of strings, this is the size of aparticular one of these numbers or strings.

This specification expresses key sizes in bits.
Key type Key metadata that describes the structure and content of a key.

continues on next page

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page xvi

Table 4 – continued from previous page

Term Meaning

Keystore A hardware or software component that protects, stores, and managescryptographic keys.
Lifetime Key metadata that describes when a key is destroyed.
MAC See Message Authentication Code.
Message AuthenticationCode (MAC) A short piece of information used to authenticate a message. It is created andverified using a symmetric key.
Message digest A hash of a message. Used to determine if a message has been tampered.
Multi-part operation An API which splits a single cryptographic operation into a sequence ofseparate steps.
No isolation Property of an implementation in which there is no security boundarybetween the application and the cryptoprocessor.

See Optional isolation on page 21.
Non-extractable key A key with a key policy that prevents it from being read by ordinary means.
Nonce Used as an input for certain AEAD algorithms. Nonces must not be reusedwith the same key because this can break a cryptographic protocol.
Persistent key A key that is stored in protected non-volatile memory.

See Key lifetimes on page 90.
Post-QuantumCryptography (PQC) A cryptographic scheme that relies on mathematical problems that do nothave efficient algorithms for either classical or quantum computing.
PQC See Post-Quantum Cryptography.
PSA Platform Security Architecture
Public-key cryptography A type of cryptographic system that uses key pairs. A keypair consists of a(secret) private key and a public key (not secret). A public-key cryptographicalgorithm can be used for key distribution and for digital signatures.
Salt Used as an input for certain algorithms, such as key derivations.
Signature The output of a digital signature scheme that uses an asymmetric keypair.Used to establish who produced a message.
Single-part function An API that implements the cryptographic operation in a single function call.
SPECIFICATION DEFINED Behavior that is defined by this specification.
Symmetric A type of cryptographic algorithm that uses a single key. A symmetric key canbe used with a block cipher or a stream cipher.
Volatile key A key that has a short lifespan and is guaranteed not to exist after a restart ofan application instance.

See Key lifetimes on page 90.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page xvii

Potential for change
The contents of this specification are stable for version 1.4.
The following may change in updates to the version 1.4 specification:

∙ Small optional feature additions.
∙ Clarifications.

Significant additions, or any changes that affect the compatibility of the interfaces defined in thisspecification will only be included in a new major or minor version of the specification.

Conventions
Typographical conventions
The typographical conventions are:
italic Introduces special terminology, and denotes citations.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other itemsappearing in assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALSUsed for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Termsand abbreviations.
Red text Indicates an open issue.
Blue text Indicates a link. This can be

∙ A cross-reference to another location within the document
∙ A URL, for example example.com

Numbers
Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by
0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.To improve readability, long numbers can be written with an underscore separator between every fourcharacters, for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of anumber.

Feedback
We welcome feedback on the PSA Certified API documentation.
If you have comments on the content of this book, visit github.com/arm-software/psa-api/issues to create anew issue at the PSA Certified API GitHub project. Give:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page xviii

https://example.com
https://github.com/arm-software/psa-api/issues

∙ The title (Crypto API).
∙ The number and issue (IHI 0086 1.4.0).
∙ The location in the document to which your comments apply.
∙ A concise explanation of your comments.

We also welcome general suggestions for additions and improvements.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page xix

1 Introduction
1.1 About Platform Security Architecture
This document is one of a set of resources provided by Arm that can help organizations develop productsthat meet the security requirements of GlobalPlatform’s PSA Certified evaluation scheme on Arm-basedplatforms. The PSA Certified scheme provides a framework and methodology that helps siliconmanufacturers, system software providers and OEMs to develop more secure products. Arm resources thatsupport PSA Certified range from threat models, standard architectures that simplify development andincrease portability, and open-source partnerships that provide ready-to-use software. You can read moreabout PSA Certified here at www.psacertified.org and find more Arm resources here atdeveloper.arm.com/platform-security-resources and www.trustedfirmware.org.

1.2 About the Crypto API
The interface described in this document is a PSA Certified API, that provides a portable programminginterface to cryptographic operations, and key storage functionality, on a wide range of hardware.
The interface is user-friendly, while still providing access to the low-level primitives used in moderncryptography. It does not require that the user has access to the key material. Instead, it uses opaque keyidentifiers.
You can find additional resources relating to the Crypto API here at arm-software.github.io/psa-api/crypto,and find other PSA Certified APIs here at arm-software.github.io/psa-api.
This document includes:

∙ A rationale for the design. See Design goals on page 21.
∙ A high-level overview of the functionality provided by the interface. See Functionality overview onpage 24.
∙ A description of typical architectures of implementations for this specification. See Samplearchitectures on page 30.
∙ General considerations for implementers of this specification, and for applications that use theinterface defined in this specification. See Implementation considerations on page 39 and Usageconsiderations on page 43.
∙ A detailed definition of the API. See Library management reference on page 45, Key managementreference on page 49, and Cryptographic operation reference on page 130.

PSA Certified Crypto API 1.4 PQC Extension [PSA-PQC] is a companion document for version 1.4 of thisspecification. [PSA-PQC] defines an API for Post-Quantum Cryptography (PQC) algorithms. The PQC API isnow at FINAL status, and will be included in a future version of the Crypto API specification.
In future, companion documents will define profiles for this specification. A profile is a minimum mandatorysubset of the interface that a compliant implementation must provide.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 20

https://www.psacertified.org
https://developer.arm.com/platform-security-resources
https://www.trustedfirmware.org
https://arm-software.github.io/psa-api/crypto
https://arm-software.github.io/psa-api

2 Design goals
2.1 Suitable for constrained devices
The interface is suitable for a vast range of devices: from special-purpose cryptographic processors thatprocess data with a built-in key, to constrained devices running custom application code, such asmicrocontrollers, and multi-application devices, such as servers. Consequentially, the interface is scalableand modular.

∙ Scalable: devices only need to implement the functionality that they will use.
∙ Modular: larger devices implement larger subsets of the same interface, rather than differentinterfaces.

In this interface, all operations on unbounded amounts of data allow multi-part processing, as long as thecalculations on the data are performed in a streaming manner. This means that the application does notneed to store the whole message in memory at one time. As a result, this specification is suitable for veryconstrained devices, including those where memory is very limited.
Memory outside the keystore boundary is managed by the application. An implementation of the interfaceis not required to retain any state between function calls, apart from the content of the keystore and otherdata that must be kept inside the keystore security boundary.
The interface does not expose the representation of keys and intermediate data, except when required forinterchange. This allows each implementation to choose optimal data representations. Implementations withmultiple components are also free to choose which memory area to use for internal data.

2.2 A keystore interface
The specification allows cryptographic operations to be performed on a key to which the application doesnot have direct access. Except where required for interchange, applications access all keys indirectly, by anidentifier. The key material corresponding to that identifier can reside inside a security boundary thatprevents it from being extracted, except as permitted by a policy that is defined when the key is created.

2.3 Optional isolation
Implementations can isolate the cryptoprocessor from the calling application, and can further isolatemultiple calling applications. The interface allows the implementation to be separated between a frontendand a backend. In an isolated implementation, the frontend is the part of the implementation that is locatedin the same isolation boundary as the application, which the application accesses by function calls. Thebackend is the part of the implementation that is located in a different environment, which is protectedfrom the frontend. Various technologies can provide protection, for example:

∙ Process isolation in an operating system.
∙ Partition isolation, either with a virtual machine or a partition manager.
∙ Physical separation between devices.

Communication between the frontend and backend is beyond the scope of this specification.
In an isolated implementation, the backend can serve more than one implementation instance. In this case, asingle backend communicates with multiple instances of the frontend. The backend must enforce caller
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 21

isolation: it must ensure that assets of one frontend are not visible to any other frontend. The mechanismfor identifying callers is beyond the scope of this specification. An implementation that provides callerisolation must document the identification mechanism. An implementation that provides caller isolationmust document any implementation-specific extension of the API that enables frontend instances to sharedata in any form.
An isolated implementation that only has a single frontend provides cryptoprocessor isolation.
In summary, there are three types of implementation:

∙ No isolation: there is no security boundary between the application and the cryptoprocessor. Forexample, a statically or dynamically linked library is an implementation with no isolation.
∙ Cryptoprocessor isolation: there is a security boundary between the application and thecryptoprocessor, but the cryptoprocessor does not communicate with other applications. Forexample, a cryptoprocessor chip that is a companion to an application processor is an implementationwith cryptoprocessor isolation.
∙ Caller isolation: there are multiple application instances, with a security boundary between theapplication instances among themselves, as well as between the cryptoprocessor and the applicationinstances. For example, a cryptography service in a multiprocess environment is an implementationwith caller and cryptoprocessor isolation.

2.4 Choice of algorithms
The specification defines a low-level cryptographic interface, where the caller explicitly chooses whichalgorithm and which security parameters they use. This is necessary to implement protocols that areinescapable in various use cases. The design of the interface enables applications to implement widely-usedprotocols and data exchange formats, as well as custom ones.
As a consequence, all cryptographic functionality operates according to the precise algorithm specified bythe caller. However, this does not apply to device-internal functionality, which does not involve any form ofinteroperability, such as random number generation. The specification does not include generic higher-levelinterfaces, where the implementation chooses the best algorithm for a purpose. However, higher-levellibraries can be built on top of the Crypto API.
Another consequence is that the specification permits the use of algorithms, key sizes and other parametersthat, while known to be insecure, might be necessary to support legacy protocols or legacy data. Wheremajor weaknesses are known, the algorithm descriptions give applicable warnings. However, the lack of awarning both does not and cannot indicate that an algorithm is secure in all circumstances. Applicationdevelopers need to research the security of the protocols and algorithms that they plan to use to determineif these meet their requirements.
The interface facilitates algorithm agility. As a consequence, cryptographic primitives are presented throughgeneric functions with a parameter indicating the specific choice of algorithm. For example, there is a singlefunction to calculate a message digest, which takes a parameter that identifies the specific hash algorithm.

2.5 Ease of use
The interface is designed to be as user-friendly as possible, given the aforementioned constraints onsuitability for various types of devices and on the freedom to choose algorithms.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 22

In particular, the code flows are designed to reduce the risk of dangerous misuse. The interface is designedin part to make it harder to misuse. Where possible, it is designed so that typical mistakes result in testfailures, rather than subtle security issues. Implementations avoid leaking data when a function is calledwith invalid parameters, to the extent allowed by the C language and by implementation size constraints.

2.6 Example use cases
This section lists some of the use cases that were considered during the design of the Crypto API. This list isnot exhaustive, nor are all implementations required to support all use cases.

2.6.1 Network Security (TLS)
The API provides all of the cryptographic primitives needed to establish TLS connections.

2.6.2 Secure Storage
The API provides all primitives related to storage encryption, block or file-based, with master encryptionkeys stored inside a key store.

2.6.3 Network Credentials
The API provides network credential management inside a key store, for example, for X.509-basedauthentication or pre-shared keys on enterprise networks.

2.6.4 Device Pairing
The API provides support for key-agreement protocols that are often used for secure pairing of devices overwireless channels. For example, the pairing of an NFC token or a Bluetooth device might use key-agreementprotocols upon first use.

2.6.5 Secure Boot
The API provides primitives for use during firmware integrity and authenticity validation, during a secure ortrusted boot process.

2.6.6 Attestation
The API provides primitives used in attestation activities. Attestation is the ability for a device to sign anarray of bytes with a device private key and return the result to the caller. There are several use cases;ranging from attestation of the device state, to the ability to generate a key pair and prove that it has beengenerated inside a secure key store. The API provides access to the algorithms commonly used forattestation.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 23

2.6.7 Factory Provisioning
Most IoT devices receive a unique identity during the factory provisioning process, or once they have beendeployed to the field. This API provides the APIs necessary for populating a device with keys that representthat identity.

3 Functionality overview
This section provides a high-level overview of the functionality provided by the interface defined in thisspecification. Refer to the API definition for a detailed description, which begins with Library managementreference on page 45.
Future additions on page 467 describes features that might be included in future versions of thisspecification.
Due to the modularity of the interface, almost every part of the library is optional. The only mandatoryfunction is psa_crypto_init().

3.1 Library management
Applications must call psa_crypto_init() to initialize the library before using any other function.

3.2 Key management
Applications always access keys indirectly via an identifier, and can perform operations using a key withoutaccessing the key material. This allows keys to be non-extractable, where an application can use a key but isnot permitted to obtain the key material. Non-extractable keys are bound to the device, can be rate-limitedand can have their usage restricted by policies.
Each key has a set of attributes that describe the key and the policy for using the key. A
psa_key_attributes_t object contains all of the attributes, which is used when creating a key and whenquerying key attributes.
The key attributes include:

∙ A type and size that describe the key material. See Key types on page 25.
∙ The key identifier that the application uses to refer to the key. See Key identifiers on page 25.
∙ A lifetime that determines when the key material is destroyed, and where it is stored. See Key lifetimeson page 25.
∙ A policy that determines how the key can be used. See Key policies on page 26.

Keys are created using one of the key creation functions:
∙ psa_import_key()

∙ psa_generate_key()

∙ psa_generate_key_custom()

∙ psa_key_derivation_output_key()

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 24

∙ psa_key_derivation_output_key_custom()

∙ psa_key_agreement()

∙ psa_encapsulate()

∙ psa_decapsulate()

∙ psa_pake_get_shared_key()

∙ psa_copy_key()

∙ psa_attach_key()

These output the key identifier, that is used to access the key in all other parts of the API.
All of the key attributes are set when the key is created and cannot be changed without destroying the keyfirst. If the original key permits copying, then the application can specify a different lifetime or restrictedpolicy for the copy of the key.
A call to psa_destroy_key() destroys the key material, and will cause any active operations that are using thekey to fail. Therefore an application must not destroy a key while an operation using that key is in progress,unless the application is prepared to handle a failure of the operation.

3.2.1 Key types
Each cryptographic algorithm requires a key that has the right form, in terms of the size of the key materialand its numerical properties. The key type and key size encode that information about a key, and determinewhether the key is compatible with a cryptographic algorithm.
Additional non-cryptographic key types enable applications to store other secret values in the keystore.
See Key types on page 53.

3.2.2 Key identifiers
Key identifiers are integral values that act as permanent names for persistent keys, or as transientreferences to volatile keys. Key identifiers are defined by the application for persistent keys, and by theimplementation for volatile keys and for built-in keys.
Key identifiers are output from a successful call to one of the key creation functions.
Valid key identifiers must have distinct values within the same application. If the implementation providescaller isolation, then key identifiers are local to each application.
See Key identifiers on page 98.

3.2.3 Key lifetimes
The lifetime of a key indicates where it is stored and which application and system actions will create anddestroy it.
There are two main types of lifetimes: volatile and persistent.
Volatile keys are automatically destroyed when the application instance terminates or on a power reset ofthe device. Volatile key identifiers are allocated by the implementation when the key is created. Volatile keyscan be explicitly destroyed with a call to psa_destroy_key().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 25

Persistent keys are preserved until the application explicitly destroys them or until animplementation-specific device management event occurs, for example, a factory reset. The key identifierfor a persistent key is set by the application when creating the key, and remains valid throughout thelifetime of the key, even if the application instance that created the key terminates.
See Key lifetimes on page 90.

3.2.4 Key policies
All keys have an associated policy that regulates which operations are permitted on the key. Each key policyis a set of usage flags and a specific algorithm that is permitted with the key. See Key policies on page 100.

3.2.5 Recommendations of minimum standards for key management
Most implementations provide the following functions:

∙ psa_import_key(). The exceptions are implementations that only give access to a key or keys that areprovisioned by proprietary means, and do not allow the main application to use its own cryptographicmaterial.
∙ psa_get_key_attributes() and the psa_get_key_xxx() accessor functions. They are easy to implement,and it is difficult to write applications and to diagnose issues without being able to check the metadata.
∙ psa_export_public_key(). This function is usually provided if the implementation supports anyasymmetric algorithm, since public-key cryptography often requires the delivery of a public key that isassociated with a protected private key.
∙ psa_export_key(). However, highly constrained implementations that are designed to work only withshort-term keys, or only with long-term non-extractable keys, do not need to provide this function.

3.3 Cryptographic operations
The API supports cryptographic operations through two kinds of interfaces:

∙ A single-part function performs a whole operation in a single function call. For example, compute,verify, encrypt or decrypt. See Single-part Functions.
∙ A multi-part operation is a set of functions that work with a stored operation state. This provides morecontrol over operation configuration, piecewise processing of large input data, or handling formulti-step processes. See Multi-part operations on page 27.

Depending on the mechanism, one or both kind of interfaces may be provided.

3.3.1 Single-part Functions
Single-part functions are APIs that implement the cryptographic operation in a single function call. This isthe easiest API to use when all of the inputs and outputs fit into the application memory.
Single-part functions do not meet the needs of all use cases:

∙ Some use cases involve messages that are too large to be assembled in memory, or requirenon-default configuration of the algorithm. These use cases require the use of a multi-part operation.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 26

3.3.2 Multi-part operations
Multi-part operations are APIs which split a single cryptographic operation into a sequence of separatesteps. This enables fine control over the configuration of the cryptographic operation, and allows themessage data to be processed in fragments instead of all at once. For example, the following situationsrequire the use of a multi-part operation:

∙ Processing messages that cannot be assembled in memory.
∙ Using a deterministic IV for unauthenticated encryption.
∙ Providing the IV separately for unauthenticated encryption or decryption.
∙ Separating the AEAD authentication tag from the cipher text.
∙ Password-authenticated key exchange (PAKE) is a multi-step process.

Each multi-part operation defines a specific object type to maintain the state of the operation. These typesare implementation-defined.
All multi-part operations follow the same pattern of use, which is shown in Figure 1.

inactive

active

error

Operation object starts as
uninitialised memory

Initialize

Setup Finish Abort

Update Abort

Setup
fails

Update
fails

Finish
fails

——— Solid lines show successful operation
--- Dashed lines show error flows
……… Dotted lines show operation cancellation

Figure 1 General state model for a multi-part operation
The typical sequence of actions with a multi-part operation is as follows:
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 27

1. Allocate: Allocate memory for an operation object of the appropriate type. The application can useany allocation strategy: stack, heap, static, etc.
2. Initialize: Initialize or assign the operation object by one of the following methods:

∙ Set it to logical zero. This is automatic for static and global variables. Explicit initialization mustuse the associated PSA_xxx_OPERATION_INIT macro as the type is implementation-defined.
∙ Set it to all-bits zero. This is automatic if the object was allocated with calloc().
∙ Assign the value of the associated macro PSA_xxx_OPERATION_INIT.
∙ Assign the result of calling the associated function psa_xxx_operation_init().

The resulting object is now inactive.
It is an error to initialize an operation object that is in active or error states. This can leak memory orother resources.

3. Setup: Start a new multi-part operation on an inactive operation object. Each operation object willdefine one or more setup functions to start a specific operation.
On success, a setup function will put an operation object into an active state. On failure, the operationobject will remain inactive.

4. Update: Update an active operation object. Each operation object defines one or more updatefunctions, which are used to provide additional parameters, supply data for processing or generateoutputs.
On success, the operation object remains active. On failure, the operation object will enter an errorstate.

5. Finish: To end the operation, call the applicable finishing function. This will take any final inputs,produce any final outputs, and then release any resources associated with the operation.
On success, the operation object returns to the inactive state. On failure, the operation object willenter an error state.

6. Abort: An operation can be aborted at any stage during its use by calling the associated
psa_xxx_abort() function. This will release any resources associated with the operation and return theoperation object to the inactive state.
Any error that occurs to an operation while it is in an active state will result in the operation enteringan error state. The application must call the associated psa_xxx_abort() function to release theoperation resources and return the object to the inactive state.
psa_xxx_abort() can be called on an inactive operation, and this has no effect.

Once an operation object is returned to the inactive state, it can be reused by calling one of the applicablesetup functions again.
If a multi-part operation object is not initialized before use, the behavior is undefined.
If a multi-part operation function determines that the operation object is not in any valid state, it can return
PSA_ERROR_CORRUPTION_DETECTED.
If a multi-part operation function is called with an operation object in the wrong state, the function willreturn PSA_ERROR_BAD_STATE and the operation object will enter the error state.
It is safe to move a multi-part operation object to a different memory location, for example, using a bitwisecopy, and then to use the object in the new location. For example, an application can allocate an operationobject on the stack and return it, or the operation object can be allocated within memory managed by agarbage collector. However, this does not permit the following behaviors:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 28

∙ Moving the object while a function is being called on the object. This is not safe. See also Concurrentcalls on page 38.
∙ Working with both the original and the copied operation objects. This requires cloning the operation,which is only available for hash operations using psa_hash_clone().

Each type of multi-part operation can have multiple active states. Documentation for the specific operationdescribes the configuration and update functions, and any requirements about their usage and ordering.

3.3.3 Symmetric cryptography
This specification defines interfaces for the following types of symmetric cryptographic operation:

∙ Message digests, commonly known as hash functions. See Message digests (Hashes) on page 137.
∙ Message authentication codes (MAC). See Message authentication codes (MAC) on page 165.
∙ Symmetric ciphers. See Unauthenticated ciphers on page 181.
∙ Authenticated encryption with associated data (AEAD). See Authenticated encryption with associateddata (AEAD) on page 207.
∙ Key derivation. See Key derivation on page 244.

Key derivation only provides multi-part operation, to support the flexibility required by these type ofalgorithms.
Example of the symmetric cryptography API
Here is an example of a use case where a master key is used to generate both a message encryption keyand an IV for the encryption, and the derived key and IV are then used to encrypt a message.

1. Derive the message encryption material from the master key.
a. Initialize a psa_key_derivation_operation_t object to zero or to

PSA_KEY_DERIVATION_OPERATION_INIT.
b. Call psa_key_derivation_setup() with PSA_ALG_HKDF as the algorithm.
c. Call psa_key_derivation_input_key() with the step PSA_KEY_DERIVATION_INPUT_SECRET and themaster key.
d. Call psa_key_derivation_input_bytes() with the step PSA_KEY_DERIVATION_INPUT_INFO and a publicvalue that uniquely identifies the message.
e. Populate a psa_key_attributes_t object with the derived message encryption key’s attributes.
f. Call psa_key_derivation_output_key() to create the derived message key.
g. Call psa_key_derivation_output_bytes() to generate the derived IV.
h. Call psa_key_derivation_abort() to release the key-derivation operation memory.

2. Encrypt the message with the derived material.
a. Initialize a psa_cipher_operation_t object to zero or to PSA_CIPHER_OPERATION_INIT.
b. Call psa_cipher_encrypt_setup() with the derived message encryption key.
c. Call psa_cipher_set_iv() using the derived IV retrieved above.
d. Call psa_cipher_update() one or more times to encrypt the message.
e. Call psa_cipher_finish() at the end of the message.

3. Call psa_destroy_key() to clear the generated key.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 29

3.3.4 Asymmetric cryptography
This specification defines interfaces for the following types of asymmetric cryptographic operation:

∙ Asymmetric encryption (also known as public-key encryption). See Asymmetric encryption on page 311.
∙ Asymmetric signature. See Asymmetric signature on page 278.
∙ Two-way key agreement (also known as key establishment). See Key agreement on page 317.
∙ Key encapsulation. See Key encapsulation on page 329.
∙ Password-authenticated key exchange (PAKE). See Password-authenticated key exchange (PAKE) onpage 338.

For asymmetric encryption, the API provides single-part functions.
For asymmetric signature, the API provides single-part functions.
For key agreement, the API provides single-part functions and an additional input method for akey-derivation operation.
For key encapsulation, the API provides single-part functions.
For PAKE, the API provides a multi-part operation.

3.4 Randomness and key generation
We strongly recommended that implementations include a random generator, consisting of acryptographically secure pseudorandom generator (CSPRNG), which is adequately seeded with acryptographic-quality hardware entropy source, commonly referred to as a true random number generator(TRNG). Constrained implementations can omit the random generation functionality if they do notimplement any algorithm that requires randomness internally, and they do not provide a key-generationfunctionality. For example, a special-purpose component for signature verification can omit this.
It is recommended that applications use psa_generate_key(), psa_cipher_generate_iv() or
psa_aead_generate_nonce() to generate suitably-formatted random data, as applicable. In addition, the APIincludes a function psa_generate_random() to generate and extract arbitrary random data.

4 Sample architectures
This section describes some example architectures that can be used for implementations of the interfacedescribed in this specification. This list is not exhaustive and the section is entirely non-normative.

4.1 Single-partition architecture
In the single-partition architecture, there is no security boundary inside the system. The application codecan access all the system memory, including the memory used by the cryptographic services described inthis specification. Thus, the architecture provides no isolation.
This architecture does not conform to the Arm Platform Security Architecture Security Model. However, it isuseful for providing cryptographic services that use the same interface, even on devices that cannot

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 30

support any security boundary. So, while this architecture is not the primary design goal of the API definedin the present specification, it is supported.
The functions in this specification simply execute the underlying algorithmic code. Security checks can bekept to a minimum, since the cryptoprocessor cannot defend against a malicious application. Key import andexport copy data inside the same memory space.
This architecture also describes a subset of some larger systems, where the cryptographic services areimplemented inside a high-security partition, separate from the code of the main application, though itshares this high-security partition with other platform security services.

4.2 Cryptographic token and single-application processor
This system is composed of two partitions: one is a cryptoprocessor and the other partition runs anapplication. There is a security boundary between the two partitions, so that the application cannot accessthe cryptoprocessor, except through its public interface. Thus, the architecture provides cryptoprocessorisolation. The cryptoprocessor has some non-volatile storage, a TRNG, and possibly, some cryptographicaccelerators.
There are a number of potential physical realizations: the cryptoprocessor might be a separate chip, aseparate processor on the same chip, or a logical partition using a combination of hardware and software toprovide the isolation. These realizations are functionally equivalent in terms of the offered softwareinterface, but they would typically offer different levels of security guarantees.
The Crypto API in the application processor consists of a thin layer of code that translates function calls toremote procedure calls in the cryptoprocessor. All cryptographic computations are, therefore, performedinside the cryptoprocessor. Non-volatile keys are stored inside the cryptoprocessor.

4.3 Cryptoprocessor with no key storage
As in the Cryptographic token and single-application processor architecture, this system is also composed oftwo partitions separated by a security boundary and also provides cryptoprocessor isolation. However, unlikethe previous architecture, in this system, the cryptoprocessor does not have any secure, persistent storagethat could be used to store application keys.
If the cryptoprocessor is not capable of storing cryptographic material, then there is little use for a separatecryptoprocessor, since all data would have to be imported by the application.
The cryptoprocessor can provide useful services if it is able to store at least one key. This might be ahardware unique key that is burnt to one-time programmable memory during the manufacturing of thedevice. This key can be used for one or more purposes:

∙ Encrypt and authenticate data stored in the application processor.
∙ Communicate with a paired device.
∙ Allow the application to perform operations with keys that are derived from the hardware unique key.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 31

4.4 Multi-client cryptoprocessor
This is an expanded variant of Cryptographic token and single-application processor on page 31. In this variant,the cryptoprocessor serves multiple applications that are mutually untrustworthy. This architecture providescaller isolation.
In this architecture, API calls are translated to remote procedure calls, which encode the identity of theclient application. The cryptoprocessor carefully segments its internal storage to ensure that a client’s datais never leaked to another client.

4.5 Multi-cryptoprocessor architecture
This system includes multiple cryptoprocessors. There are several reasons to have multiplecryptoprocessors:

∙ Different compromises between security and performance for different keys. Typically, this means acryptoprocessor that runs on the same hardware as the main application and processes short-termsecrets, a secure element or a similar separate chip that retains long-term secrets.
∙ Independent provisioning of certain secrets.
∙ A combination of a non-removable cryptoprocessor and removable ones, for example, a smartcard orHSM.
∙ Cryptoprocessors managed by different stakeholders who do not trust each other.

The keystore implementation needs to dispatch each request to the correct processor. For example:
∙ All requests involving a non-extractable key must be processed in the cryptoprocessor that holds thatkey.
∙ Requests involving a persistent key must be processed in the cryptoprocessor that corresponds to thekey’s lifetime value.
∙ Requests involving a volatile key might target a cryptoprocessor based on parameters supplied by theapplication, or based on considerations such as performance inside the implementation.

5 Library conventions
5.1 Header files
The header file for the Crypto API has the name psa/crypto.h. All of the API elements that are provided byan implementation must be visible to an application program that includes this header file.
#include "psa/crypto.h"

Implementations must provide their own version of the psa/crypto.h header file. Implementations canprovide a subset of the API defined in this specification and a subset of the available algorithms. Exampleheader file on page 392 provides an incomplete, example header file which includes all of the API elements.See also Implementation considerations on page 39.
The Crypto API uses the status code definitions that are shared with the other PSA Certified APIs. PSACertified Status code API [PSA-STAT] defines these status codes in the psa/error.h header file. Applications
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 32

are not required to explicitly include the psa/error.h header file when using these status codes with theCrypto API. See Status codes on page 45.

5.2 API conventions
The interface in this specification is defined in terms of C macros, data types, and functions.

5.2.1 Identifier names
All of the identifiers defined in the Crypto API begin with the prefix psa_, for types and functions, or PSA_ formacros.
Future versions of this specification will use the same prefix for additional API elements. It is recommendedthat applications and implementations do not use this prefix for their own identifiers, to avoid a potentialconflict with a future version of the Crypto API.

5.2.2 Basic types
This specification makes use of standard C data types, including the fixed-width integer types from the ISOC99 specification update [C99]. The following standard C types are used:

int32_t a 32-bit signed integer
uint8_t an 8-bit unsigned integer
uint16_t a 16-bit unsigned integer
uint32_t a 32-bit unsigned integer
uint64_t a 64-bit unsigned integer
size_t an unsigned integer large enough to hold the size of an object in memory

5.2.3 Data types
Integral types are defined for specific API elements to provide clarity in the interface definition, and toimprove code readability. For example, psa_algorithm_t and psa_status_t.
For enum-like integral types, the value 0 is usually reserved by the API to indicate an unspecified or invalidvalue.
Structure types are declared using typedef instead of a struct tag, also to improve code readability.
Fully-defined types must be declared exactly as defined in this specification. Types that are not fully definedin this specification must be defined by an implementation. See Implementation-specific types on page 39.

5.2.4 Constants
Constant values are defined using C macros. Constants defined in this specification have names that are allupper-case.
A constant macro evaluates to a compile-time constant expression.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 33

5.2.5 Function-like macros
Function-like macros are C macros that take parameters, providing supporting functionality in the API.Function-like macros defined in this specification have names that are all upper-case.
Function-like macros are permitted to evaluate each argument multiple times or zero times. Providingarguments that have side effects will result in IMPLEMENTATION DEFINED behavior, and is non-portable.
If all of the arguments to a function-like macro are compile-time constant expressions, the then resultevaluates to a compile-time constant expression.
If an argument to a function-like macro has an invalid value (for example, a value outside the domain of thefunction-like macro), then the result is IMPLEMENTATION DEFINED.

5.2.6 Functions
Functions defined in this specification have names that are all lower-case.
An implementation is permitted to declare any API function with static inline linkage, instead of thedefault extern linkage.
An implementation is permitted to also define a function-like macro with the same name as a function in thisspecification. If an implementation defines a function-like macro for a function from this specification, then:

∙ The implementation must also provide a definition of the function. This enables an application to takethe address of a function defined in this specification.
∙ The function-like macro must expand to code that evaluates each of its arguments exactly once, as ifthe call was made to a C function. This enables an application to safely use arbitrary expressions asarguments to a function defined in this specification.

If a non-pointer argument to a function has an invalid value (for example, a value outside the domain of thefunction), then the function will normally return an error, as specified in the function definition. See alsoError handling.
If a pointer argument to a function has an invalid value (for example, a pointer outside the address space ofthe program, or a null pointer), the result is IMPLEMENTATION DEFINED. See also Pointer conventions on page 36.

5.3 Error handling
5.3.1 Return status
Almost all functions return a status indication of type psa_status_t. This is an enumeration of integer values,with 0 (PSA_SUCCESS) indicating successful operation and other values indicating errors. The exceptions arefunctions which only access objects that are intended to be implemented as simple data structures. Suchfunctions cannot fail and either return void or a data value.
Unless specified otherwise, if multiple error conditions apply, an implementation is free to return any of theapplicable error codes. The choice of error code is considered an implementation quality issue. Differentimplementations can make different choices, for example to favor code size over ease of debugging or viceversa.
In particular, in the Crypto API, there are many conditions where the specification permits a function toreturn either PSA_ERROR_INVALID_ARGUMENT or PSA_ERROR_NOT_SUPPORTED. For example, psa_hash_compute() ispassed a hash algorithm that the implementation does not support, it is IMPLEMENTATION DEFINED whether
PSA_ERROR_INVALID_ARGUMENT or PSA_ERROR_NOT_SUPPORTED is returned.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 34

Note:
This flexibility supports the scalability design goal. It permits implementations to not check whetherunsupported algorithm identifier and key type values are valid or invalid.

If the behavior is undefined, for example, if a function receives an invalid pointer as a parameter, thisspecification makes no guarantee that the function will return an error. Implementations are encouraged toreturn an error or halt the application in a manner that is appropriate for the platform if the undefinedbehavior condition can be detected. However, application developers need to be aware that undefinedbehavior conditions cannot be detected in general.

5.3.2 Behavior on error
In general, function calls must be implemented atomically:

∙ When a function returns a type other than psa_status_t, the requested action has been carried out.
∙ When a function returns the status PSA_SUCCESS, the requested action has been carried out.
∙ When a function returns another status of type psa_status_t, no action has been carried out. Unlessotherwise documented by the API or the implementation, the content of output parameters is notdefined. The state of the system has not changed, except as described below.

In general, functions that modify the system state, for example, creating or destroying a key, must leave thesystem state unchanged if they return an error code. There are specific conditions that can result indifferent behavior:
∙ The status PSA_ERROR_BAD_STATE indicates that a parameter was not in a valid state for the requestedaction. This parameter might have been modified by the call and is now in an error state. The onlyvalid action on an object in an error state is to abort it with the appropriate psa_xxx_abort() function.See Multi-part operations on page 27.
∙ The status PSA_ERROR_INSUFFICIENT_DATA indicates that a key derivation object has reached itsmaximum capacity. The key derivation operation might have been modified by the call. Any furtherattempt to obtain output from the key-derivation operation will return PSA_ERROR_INSUFFICIENT_DATA.
∙ The status PSA_ERROR_COMMUNICATION_FAILURE indicates that the communication between theapplication and the cryptoprocessor has broken down. In this case, the cryptoprocessor must eitherfinish the requested action successfully, or interrupt the action and roll back the system to its originalstate. Because it is often impossible to report the outcome to the application after a communicationfailure, this specification does not provide a way for the application to determine whether the actionwas successful.
∙ The statuses PSA_ERROR_STORAGE_FAILURE, PSA_ERROR_DATA_CORRUPT, PSA_ERROR_HARDWARE_FAILURE and

PSA_ERROR_CORRUPTION_DETECTED might indicate data corruption in the system state. When a functionreturns one of these statuses, the system state might have changed from its previous state before thefunction call, even though the function call failed.
∙ Some system states cannot be rolled back, for example, the internal state of the random numbergenerator or the content of access logs.

Implementation note

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 35

When a function returns an error status, it is recommended that implementations set outputparameters to safe defaults to avoid leaking confidential data and limit risk, in case an application doesnot properly handle all errors.

5.4 Parameter conventions
5.4.1 Pointer conventions
Unless explicitly stated in the documentation of a function, all pointers must be valid pointers to an objectof the specified type.
A parameter is considered a buffer if it points to an array of bytes. A buffer parameter always has the type
uint8_t * or const uint8_t *, and always has an associated parameter indicating the size of the array. Notethat a parameter of type void * is never considered a buffer.
All parameters of pointer type must be valid non-null pointers, unless the pointer is to a buffer of length 0or the function’s documentation explicitly describes the behavior when the pointer is null. Passing a nullpointer as a function parameter in other cases is expected to abort the caller on implementations where thisis the normal behavior for a null pointer dereference.
Pointers to input parameters can be in read-only memory. Output parameters must be in writable memory.Output parameters that are not buffers must also be readable, and the implementation must be able towrite to a non-buffer output parameter and read back the same value, as explained in Stability of parameterson page 37.

5.4.2 Input buffer sizes
For input buffers, the parameter convention is:

const uint8_t *fooPointer to the first byte of the data. The pointer can be invalid if the buffer size is 0.
size_t foo_lengthSize of the buffer in bytes.

The interface never uses input-output buffers.

5.4.3 Output buffer sizes
For output buffers, the parameter convention is:

uint8_t *fooPointer to the first byte of the data. The pointer can be invalid if the buffer size is 0.
size_t foo_sizeThe size of the buffer in bytes.
size_t *foo_lengthOn successful return, contains the length of the output in bytes.

The content of the data buffer and of *foo_length on errors is unspecified, unless explicitly mentioned inthe function description. They might be unmodified or set to a safe default. On successful completion, thecontent of the buffer between the offsets *foo_length and foo_size is also unspecified.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 36

Functions return PSA_ERROR_BUFFER_TOO_SMALL if the buffer size is insufficient to carry out the requestedoperation. The interface defines macros to calculate a sufficient buffer size for each operation that has anoutput buffer. These macros return compile-time constants if their arguments are compile-time constants,so they are suitable for static or stack allocation. Refer to an individual function’s documentation for theassociated output size macro.
Some functions always return exactly as much data as the size of the output buffer. In this case, theparameter convention changes to:

uint8_t *fooPointer to the first byte of the output. The pointer can be invalid if the buffer size is 0.
size_t foo_lengthThe number of bytes to return in foo if successful.

5.4.4 Overlap between parameters
Output parameters that are not buffers must not overlap with any input buffer or with any other outputparameter. Otherwise, the behavior is undefined.
Output buffers can overlap with input buffers. In this event, the implementation must return the same resultas if the buffers did not overlap. The implementation must behave as if it had copied all the inputs intotemporary memory, as far as the result is concerned. However, it is possible that overlap betweenparameters will affect the performance of a function call. Overlap might also affect memory managementsecurity if the buffer is located in memory that the caller shares with another security context, as describedin Stability of parameters.

5.4.5 Stability of parameters
In some environments, it is possible for the content of a parameter to change while a function is executing.It might also be possible for the content of an output parameter to be read before the function terminates.This can happen if the application is multithreaded. In some implementations, memory can be sharedbetween security contexts, for example, between tasks in a multitasking operating system, between a userland task and the kernel, or between the Non-secure world and the Secure world of a trusted executionenvironment.
This section describes the assumptions that an implementation can make about function parameters, andthe guarantees that the implementation must provide about how it accesses parameters.
Parameters that are not buffers are assumed to be under the caller’s full control. In a shared memoryenvironment, this means that the parameter must be in memory that is exclusively accessible by theapplication. In a multithreaded environment, this means that the parameter must not be modified during theexecution, and the value of an output parameter is undetermined until the function returns. Theimplementation can read an input parameter that is not a buffer multiple times and expect to read the samedata. The implementation can write to an output parameter that is not a buffer and expect to read back thevalue that it last wrote. The implementation has the same permissions on buffers that overlap with a bufferin the opposite direction.
In an environment with multiple threads or with shared memory, the implementation carefully accessesnon-overlapping buffer parameters in order to prevent any security risk resulting from the content of thebuffer being modified or observed during the execution of the function. In an input buffer that does notoverlap with an output buffer, the implementation reads each byte of the input once, at most. Theimplementation does not read from an output buffer that does not overlap with an input buffer.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 37

Additionally, the implementation does not write data to a non-overlapping output buffer if this data ispotentially confidential and the implementation has not yet verified that outputting this data is authorized.
Unless otherwise specified, the implementation must not keep a reference to any parameter once afunction call has returned.

5.5 Key types and algorithms
Types of cryptographic keys and cryptographic algorithms are encoded separately. Each is encoded by usingan integral type: psa_key_type_t and psa_algorithm_t, respectively.
There is some overlap in the information conveyed by key types and algorithms. Both types contain enoughinformation, so that the meaning of an algorithm type value does not depend on what type of key it is usedwith, and vice versa. However, the particular instance of an algorithm might depend on the key type. Forexample, the algorithm PSA_ALG_GCM can be instantiated as any AEAD algorithm using the GCM mode over ablock cipher. The underlying block cipher is determined by the key type.
Key types do not encode the key size. For example, AES-128, AES-192 and AES-256 share a key type
PSA_KEY_TYPE_AES.

5.5.1 Structure of key types and algorithms
Both types use a partial bitmask structure, which allows the analysis and building of values from parts.However, the interface defines constants, so that applications do not need to depend on the encoding, andan implementation might only care about the encoding for code size optimization.
The encodings follows a few conventions:

∙ The highest bit is a vendor flag. Current and future versions of this specification will only define valueswhere this bit is clear. Implementations that wish to define additional implementation-specific valuesmust use values where this bit is set, to avoid conflicts with future versions of this specification.
∙ The next few highest bits indicate the algorithm or key category: hash, MAC, symmetric cipher,asymmetric encryption, and so on.
∙ The following bits identify a family of algorithms or keys in a category-dependent manner.
∙ In some categories and algorithm families, the lowest-order bits indicate a variant in a systematic way.For example, algorithm families that are parametrized around a hash function encode the hash in the8 lowest bits.

The Algorithm and key type encoding on page 410 appendix provides a full definition of the encoding of keytypes and algorithm identifiers.

5.6 Concurrent calls
In some environments, an application can make calls to the Crypto API in separate threads. In such anenvironment, concurrent calls are two or more calls to the API whose execution can overlap in time.
Sequential consistencyThe result of two or more concurrent calls must be consistent with the same set of callsbeing executed sequentially in some order, provided that the calls obey the followingconstraints:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 38

∙ There is no overlap between an output parameter of one call and an input or outputparameter of another call. Overlap between input parameters is permitted.
∙ A call to psa_destroy_key() must not overlap with a concurrent call to any of thefollowing functions:

— Any call where the same key identifier is a parameter to the call.
— Any call in a multi-part operation, where the same key identifier was used as aparameter to a previous step in the multi-part operation.

∙ Concurrent calls must not use the same operation object.
If any of these constraints are violated, the behavior is undefined.
The consistency requirement does not apply to errors that arise from resource failures orlimitations. For example, errors resulting from resource exhaustion can arise in concurrentexecution that do not arise in sequential execution.
As an example of this rule: suppose two calls are executed concurrently which both attemptto create a new key with the same key identifier that is not already in the key store. Then:

∙ If one call returns PSA_ERROR_ALREADY_EXISTS, then the other call must succeed.
∙ If one of the calls succeeds, then the other must fail: either with

PSA_ERROR_ALREADY_EXISTS or some other error status.
∙ Both calls can fail with error codes that are not PSA_ERROR_ALREADY_EXISTS.

Parameter stabilityIf the application concurrently modifies an input parameter while a function call is inprogress, the behavior is undefined.
Individual implementations can provide additional guarantees.

6 Implementation considerations
6.1 Implementation-specific aspects of the interface
6.1.1 Implementation profile
Implementations can implement a subset of the API and a subset of the available algorithms. Theimplemented subset is known as the implementation’s profile. The documentation for each implementationmust describe the profile that it implements. This specification’s companion documents also define anumber of standard profiles.

6.1.2 Implementation-specific types
This specification defines a number of implementation-specific types, which represent objects whosecontent depends on the implementation. These are defined as C typedef types in this specification, with acomment /* implementation-defined type */ in place of the underlying type definition. For some types thespecification constrains the type, for example, by requiring that the type is a struct, or that it is convertibleto and from an unsigned integer. In the implementation’s version of psa/crypto.h, these types need to bedefined as complete C types so that objects of these types can be instantiated by application code.
Applications that rely on the implementation specific definition of any of these types might not be portableto other implementations of this specification.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 39

6.1.3 Implementation-specific macros
Some macro constants and function-like macros are precisely defined by this specification. The use of anexact definition is essential if the definition can appear in more than one header file within a compilation.
Other macros that are defined by this specification have a macro body that is implementation-specific. Thedescription of an implementation-specific macro can optionally specify each of the following requirements:

∙ Input domains: the macro must be valid for arguments within the input domain.
∙ A return type: the macro result must be compatible with this type.
∙ Output range: the macro result must lie in the output range.
∙ Computed value: A precise mapping of valid input to output values.

Each implementation-specific macro is in one of following categories:
Specification-defined valueThe result type and computed value of the macro expression is defined by this specification,but the definition of the macro body is provided by the implementation.

These macros are indicated in this specification using the comment:
/* specification-defined value */

For function-like macros with specification-defined values:
∙ Example implementations are provided in an appendix to this specification. See Examplemacro implementations on page 427.
∙ The expected computation for valid and supported input arguments will be defined aspseudo-code in a future version of this specification.

Implementation-defined valueThe value of the macro expression is implementation-defined.
For some macros, the computed value is derived from the specification of one or morecryptographic algorithms. In these cases, the result must exactly match the value in thoseexternal specifications.
These macros are indicated in this specification using the comment:
/* implementation-defined value */

Some of these macros compute a result based on an algorithm or key type. If an implementation definesvendor-specific algorithms or key types, then it must provide an implementation for such macros that takesall relevant algorithms and types into account. Conversely, an implementation that does not support acertain algorithm or key type can define such macros in a simpler way that does not take unsupportedargument values into account.
Some macros define the minimum sufficient output buffer size for certain functions. In some cases, animplementation is permitted to require a buffer size that is larger than the theoretical minimum. Animplementation must define minimum-size macros in such a way that it guarantees that the buffer of theresulting size is sufficient for the output of the corresponding function. Refer to each macro’sdocumentation for the applicable requirements.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 40

6.2 Porting to a platform
6.2.1 Platform assumptions
This specification is designed for a C99 platform. The interface is defined in terms of C macros, functionsand objects.
The specification assumes 8-bit bytes, and “byte” and “octet” are used synonymously.

6.2.2 Platform-specific types
The specification makes use of some types defined in C99. These types must be defined in theimplementation version of psa/crypto.h or by a header included in this file. The following C99 types areused:

uint8_t, uint16_t, uint32_tUnsigned integer types with 8, 16 and 32 value bits respectively. These types are defined bythe C99 header stdint.h.

6.2.3 Cryptographic hardware support
Implementations are encouraged to make use of hardware accelerators where available. A future version ofthis specification will define a function interface that calls drivers for hardware accelerators and externalcryptographic hardware.

6.3 Security requirements and recommendations
6.3.1 Error detection
Implementations that provide isolation between the caller and the cryptography processing environmentmust validate parameters to ensure that the cryptography processing environment is protected from attackscaused by passing invalid parameters.
Even implementations that do not provide isolation are recommended to detect bad parameters andfail-safe where possible.

6.3.2 Indirect object references
Implementations can use different strategies for allocating key identifiers, and other types of indirect objectreference.
Implementations that provide isolation between the caller and the cryptography processing environmentmust consider the threats relating to abuse and misuse of key identifiers and other indirect resourcereferences. For example, multi-part operations can be implemented as backend state to which the clientonly maintains an indirect reference in the application’s multi-part operation object.
An implementation that supports multiple callers must implement strict isolation of API resources betweendifferent callers. For example, a client must not be able to obtain a reference to another client’s key byguessing the key identifier value. Isolation of key identifiers can be achieved in several ways. For example:

∙ There is a single identifier namespace for all clients, and the implementation verifies that the client isthe owner of the identifier when looking up the key.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 41

∙ Each client has an independent identifier namespace, and the implementation uses a client specificidentifier-to-key mapping when looking up the key.
After a volatile key identifier is destroyed, it is recommended that the implementation does not immediatelyreuse the same identifier value for a different key. This reduces the risk of an attack that is able to exploit akey identifier reuse vulnerability within an application.

6.3.3 Memory cleanup
Implementations must wipe all sensitive data from memory when it is no longer used. It is recommendedthat they wipe this sensitive data as soon as possible. All temporary data used during the execution of afunction, such as stack buffers, must be wiped before the function returns. All data associated with anobject, such as a multi-part operation, must be wiped, at the latest, when the object becomes inactive, forexample, when a multi-part operation is aborted.
The rationale for this non-functional requirement is to minimize impact if the system is compromised. Ifsensitive data is wiped immediately after use, only data that is currently in use can be leaked. It does notcompromise past data.

6.3.4 Managing key material
In implementations that have limited volatile memory for keys, the implementation is permitted to store avolatile key to a temporary location in non-volatile memory. The implementation must delete anynon-volatile copies when the key is destroyed, and it is recommended that these copies are deleted as soonas the key is reloaded into volatile memory. An implementation that uses this method must clear any storedvolatile key material on startup.
Implementing the memory cleanup rule (see Memory cleanup) for a persistent key can result in inefficiencieswhen the same persistent key is used sequentially in multiple cryptographic operations. The inefficiencystems from loading the key from non-volatile storage on each use of the key. The PSA_KEY_USAGE_CACHEusage flag in a key policy allows an application to request that the implementation does not cleanupnon-essential copies of persistent key material, effectively suspending the cleanup rules for that key. Theeffects of this policy depend on the implementation and the key, for example:

∙ For volatile keys or keys in a secure element with no open/close mechanism, this is likely to have noeffect.
∙ For persistent keys that are not in a secure element, this allows the implementation to keep the key ina memory cache outside of the memory used by ongoing operations.
∙ For keys in a secure element with an open/close mechanism, this is a hint to keep the key open in thesecure element.

The application can indicate when it has finished using the key by calling psa_purge_key(), to request thatthe key material is cleaned from memory.

6.3.5 Safe outputs on error
Implementations must ensure that confidential data is not written to output parameters before validatingthat the disclosure of this confidential data is authorized. This requirement is particularly important forimplementations where the caller can share memory with another security context, as described in Stabilityof parameters on page 37.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 42

In most cases, the specification does not define the content of output parameters when an error occurs. Itis recommended that implementations try to ensure that the content of output parameters is as safe aspossible, in case an application flaw or a data leak causes it to be used. In particular, Arm recommends thatimplementations avoid placing partial output in output buffers when an action is interrupted. The meaningof “safe as possible” depends on the implementation, as different environments require differentcompromises between implementation complexity, overall robustness and performance. Some commonstrategies are to leave output parameters unchanged, in case of errors, or zeroing them out.

6.3.6 Attack resistance
Cryptographic code tends to manipulate high-value secrets, from which other secrets can be unlocked. Assuch, it is a high-value target for attacks. There is a vast body of literature on attack types, such as sidechannel attacks and glitch attacks. Typical side channels include timing, cache access patterns,branch-prediction access patterns, power consumption, radio emissions and more.
This specification does not specify particular requirements for attack resistance. Implementers areencouraged to consider the attack resistance desired in each use case and design their implementationaccordingly. Security standards for attack resistance for particular targets might be applicable in certain usecases.

6.4 Other implementation considerations
6.4.1 Philosophy of resource management
The specification allows most functions to return PSA_ERROR_INSUFFICIENT_MEMORY. This givesimplementations the freedom to manage memory as they please.
Alternatively, the interface is also designed for conservative strategies of memory management. Animplementation can avoid dynamic memory allocation altogether by obeying certain restrictions:

∙ Pre-allocate memory for a predefined number of keys, each with sufficient memory for all key typesthat can be stored.
∙ For multi-part operations, in an implementation with no isolation, place all the data that needs to becarried over from one step to the next in the operation object. The application is then fully in controlof how memory is allocated for the operation.
∙ In an implementation with isolation, pre-allocate memory for a predefined number of operations insidethe cryptoprocessor.

7 Usage considerations
7.1 Security recommendations
7.1.1 Always check for errors
Most functions in the Crypto API can return errors. All functions that can fail have the return type
psa_status_t. A few functions cannot fail, and thus, return void or some other type.
If an error occurs, unless otherwise specified, the content of the output parameters is undefined and mustnot be used.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 43

Some common causes of errors include:
∙ In implementations where the keys are stored and processed in a separate environment from theapplication, all functions that need to access the cryptography processing environment might fail dueto an error in the communication between the two environments.
∙ If an algorithm is implemented with a hardware accelerator, which is logically separate from theapplication processor, the accelerator might fail, even when the application processor keeps runningnormally.
∙ Most functions might fail due to a lack of resources. However, some implementations guarantee thatcertain functions always have sufficient memory.
∙ All functions that access persistent keys might fail due to a storage failure.
∙ All functions that require randomness might fail due to a lack of entropy. Implementations areencouraged to seed the random generator with sufficient entropy during the execution of

psa_crypto_init(). However, some security standards require periodic reseeding from a hardwarerandom generator, which can fail.

7.1.2 Shared memory and concurrency
Some environments allow applications to be multithreaded, while others do not. In some environments,applications can share memory with a different security context. In environments with multithreadedapplications or shared memory, applications must be written carefully to avoid data corruption or leakage.This specification requires the application to obey certain constraints.
In general, the Crypto API allows either one writer or any number of simultaneous readers, on any givenobject. In other words, if two or more calls access the same object concurrently, then the behavior is onlywell-defined if all the calls are only reading from the object and do not modify it. Read accesses includereading memory by input parameters and reading keystore content by using a key. For more details, refer toConcurrent calls on page 38.
If an application shares memory with another security context, it can pass shared memory blocks as inputbuffers or output buffers, but not as non-buffer parameters. For more details, refer to Stability of parameterson page 37.

7.1.3 Cleaning up after use
To minimize impact if the system is compromised, it is recommended that applications wipe all sensitive datafrom memory when it is no longer used. That way, only data that is currently in use can be leaked, and pastdata is not compromised.
Wiping sensitive data includes:

∙ Clearing temporary buffers in the stack or on the heap.
∙ Aborting operations if they will not be finished.
∙ Destroying keys that are no longer used.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 44

8 Library management reference
8.1 Status codes
The Crypto API uses the status code definitions that are shared with the other PSA Certified APIs. TheCrypto API also provides some Crypto API-specific status codes, see Error codes specific to the Crypto API onpage 47.
The following elements are defined in psa/error.h from PSA Certified Status code API [PSA-STAT] (previouslydefined in [PSA-FFM]):
typedef int32_t psa_status_t;

#define PSA_SUCCESS ((psa_status_t)0)

#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
#define PSA_ERROR_INVALID_HANDLE ((psa_status_t)-136)
#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)
#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t)-138)
#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t)-139)
#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)
#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)
#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)
#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)
#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)

These definitions must be available to an application that includes the psa/crypto.h header file.
Implementation note
An implementation is permitted to define the status code interface elements within the psa/crypto.hheader file, or to define them via inclusion of a psa/error.h header file that is shared with theimplementation of other PSA Certified APIs.

8.1.1 Common error codes
Some of the common status codes have a more precise meaning when returned by a function in the CryptoAPI, compared to the definitions in [PSA-STAT]. See also Error handling on page 34.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 45

Error code Meaning in the Crypto API

PSA_ERROR_NOT_SUPPORTED [PSA-STAT] recommends the use of PSA_ERROR_INVALID_ARGUMENT forinvalid parameter values.
In the Crypto API, this is relaxed for algorithm identifier and key typeparameters. It is recommended to return PSA_ERROR_INVALID_ARGUMENTfor invalid values, but PSA_ERROR_NOT_SUPPORTED is also allowed, topermit implementations to avoid having to recognize all thecryptographic mechanisms that are defined in the PSA specificationbut not provided by that particular implementation.

PSA_ERROR_INVALID_ARGUMENT [PSA-STAT] recommends the use of PSA_ERROR_NOT_SUPPORTED forunsupported parameter values.
In the Crypto API, either PSA_ERROR_INVALID_ARGUMENT or
PSA_ERROR_NOT_SUPPORTED can be returned when unsupportedalgorithm identifier or key type parameters are used. This allowsimplementations to avoid having to recognize all the cryptographicmechanisms that are defined in the PSA specification but notprovided by that particular implementation.

PSA_ERROR_INVALID_HANDLE A key identifier does not refer to an existing key. See also Keyidentifiers on page 25.
PSA_ERROR_BAD_STATE Multi-part operations return this error when one of the functions iscalled out of sequence. Refer to the function descriptions forpermitted sequencing of functions.

Implementations can return this error if the caller has not initializedthe library by a call to psa_crypto_init().
PSA_ERROR_BUFFER_TOO_SMALL Applications can call the PSA_xxx_SIZE macro listed in the functiondescription to determine a sufficient buffer size.
PSA_ERROR_STORAGE_FAILURE When a storage failure occurs, it is no longer possible to ensure theglobal integrity of the keystore. Depending on the global integrityguarantees offered by the implementation, access to other datamight fail even if the data is still readable but its integrity cannot beguaranteed.
PSA_ERROR_CORRUPTION_DETECTED This error code is intended as a last resort when a security breach isdetected and it is unsure whether the keystore data is still protected.Implementations must only return this error code to report an alarmfrom a tampering detector, to indicate that the confidentiality ofstored data can no longer be guaranteed, or to indicate that theintegrity of previously returned data is now considered compromised.
PSA_ERROR_DATA_CORRUPT When a storage failure occurs, it is no longer possible to ensure theglobal integrity of the keystore. Depending on the global integrityguarantees offered by the implementation, access to other datamight fail even if the data is still readable but its integrity cannot beguaranteed.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 46

8.1.2 Error codes specific to the Crypto API
The following elements are defined in the psa/crypto.h header file.
PSA_ERROR_INSUFFICIENT_ENTROPY (macro)
A status code that indicates that there is not enough entropy to generate random data needed for therequested action.
#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)

This error indicates a failure of a hardware random generator. Application writers must note that this errorcan be returned not only by functions whose purpose is to generate random data, such as key, IV or noncegeneration, but also by functions that execute an algorithm with a randomized result, as well as functionsthat use randomization of intermediate computations as a countermeasure to certain attacks.
It is recommended that implementations do not return this error after psa_crypto_init() has succeeded.This can be achieved if the implementation generates sufficient entropy during initialization andsubsequently a cryptographically secure pseudorandom generator (PRNG) is used. However,implementations might return this error at any time, for example, if a policy requires the PRNG to bereseeded during normal operation.
PSA_ERROR_INVALID_PADDING (macro)
A status code that indicates that the decrypted padding is incorrect.
#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)

. Warning

In some protocols, when decrypting data, it is essential that the behavior of the application does notdepend on whether the padding is correct, down to precise timing. Protocols that use authenticatedencryption are recommended for use by applications, rather than plain encryption. If the applicationmust perform a decryption of unauthenticated data, the application writer must take care not to revealwhether the padding is invalid.
Implementations must handle padding carefully, aiming to make it impossible for an external observer todistinguish between valid and invalid padding. In particular, it is recommended that the timing of adecryption operation does not depend on the validity of the padding.

8.2 Crypto API library
8.2.1 API version
PSA_CRYPTO_API_VERSION_MAJOR (macro)
The major version of this implementation of the Crypto API.
#define PSA_CRYPTO_API_VERSION_MAJOR 1

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 47

PSA_CRYPTO_API_VERSION_MINOR (macro)
The minor version of this implementation of the Crypto API.
#define PSA_CRYPTO_API_VERSION_MINOR 4

8.2.2 Library initialization
psa_crypto_init (function)
Library initialization.
psa_status_t psa_crypto_init(void);

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
It is recommended that applications call this function before calling any other function in this module.
Applications are permitted to call this function more than once. Once a call succeeds, subsequent calls areguaranteed to succeed.
If the application calls any function that returns a psa_status_t result code before calling psa_crypto_init(),the following will occur:

∙ If initialization of the library is essential for secure operation of the function, the implementation mustreturn PSA_ERROR_BAD_STATE or other appropriate error.
∙ If failure to initialize the library does not compromise the security of the function, the implementationmust either provide the expected result for the function, or return PSA_ERROR_BAD_STATE or otherappropriate error.

Note:
The following scenarios are examples where an implementation can require that the library has beeninitialized by calling psa_crypto_init():

∙ A client-server implementation, in which psa_crypto_init() establishes the communication withthe server. No key management or cryptographic operation can be performed until this is done.
∙ An implementation in which psa_crypto_init() initializes the random bit generator, and nooperations that require the RNG can be performed until this is done. For example, random data,key, IV, or nonce generation; randomized signature or encryption; and algorithms that areimplemented with blinding.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 48

. Warning

The set of functions that depend on successful initialization of the library is IMPLEMENTATION DEFINED.Applications that rely on calling functions before initializing the library might not be portable to otherimplementations.

9 Key management reference
9.1 Key attributes
Key attributes are managed in a psa_key_attributes_t object. These are used when a key is created, afterwhich the key attributes are fixed. Attributes of an existing key can be queried using
psa_get_key_attributes().
Description of the individual attributes is found in the following sections:

∙ Key types on page 53
∙ Key identifiers on page 98
∙ Key lifetimes on page 90
∙ Key policies on page 100

9.1.1 Managing key attributes
psa_key_attributes_t (typedef)
The type of an object containing key attributes.
typedef /* implementation-defined type */ psa_key_attributes_t;

This is the object that represents the metadata of a key object. Metadata that can be stored in attributesincludes:
∙ The location of the key in storage, indicated by its key identifier and its lifetime.
∙ The key’s policy, comprising usage flags and a specification of the permitted algorithm(s).
∙ Information about the key itself: the key type and its size.
∙ Implementations can define additional attributes.

The actual key material is not considered an attribute of a key. Key attributes do not contain informationthat is generally considered highly confidential.
Note:
Implementations are recommended to define the attribute object as a simple data structure, withfields corresponding to the individual key attributes. In such an implementation, each function
psa_set_key_xxx() sets a field and the corresponding function psa_get_key_xxx() retrieves the valueof the field.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 49

An implementations can report attribute values that are equivalent to the original one, but have adifferent encoding. For example, an implementation can use a more compact representation for typeswhere many bit-patterns are invalid or not supported, and store all values that it does not support asa special marker value. In such an implementation, after setting an invalid value, the corresponding getfunction returns an invalid value which might not be the one that was originally stored.
This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.
An attribute object can contain references to auxiliary resources, for example pointers to allocated memoryor indirect references to pre-calculated values. In order to free such resources, the application must call
psa_reset_key_attributes(). As an exception, calling psa_reset_key_attributes() on an attribute object isoptional if the object has only been modified by the following functions since it was initialized or last resetwith psa_reset_key_attributes():

∙ psa_set_key_id()

∙ psa_set_key_lifetime()

∙ psa_set_key_type()

∙ psa_set_key_bits()

∙ psa_set_key_usage_flags()

∙ psa_set_key_algorithm()

Before calling any function on a key attribute object, the application must initialize it by any of the followingmeans:
∙ Set the object to all-bits-zero, for example:

psa_key_attributes_t attributes;
memset(&attributes, 0, sizeof(attributes));

∙ Initialize the object to logical zero values by declaring the object as static or global without an explicitinitializer, for example:
static psa_key_attributes_t attributes;

∙ Initialize the object to the initializer PSA_KEY_ATTRIBUTES_INIT, for example:
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

∙ Assign the result of the function psa_key_attributes_init() to the object, for example:
psa_key_attributes_t attributes;
attributes = psa_key_attributes_init();

A freshly initialized attribute object contains the following values:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 50

Attribute Value

lifetime PSA_KEY_LIFETIME_VOLATILE.
key identifier PSA_KEY_ID_NULL — which is not a valid key identifier.
type PSA_KEY_TYPE_NONE — meaning that the type is unspecified.
key size 0 — meaning that the size is unspecified.
usage flags 0 — which permits no usage except exporting a public key.
algorithm PSA_ALG_NONE — which does not permit cryptographic usage, but permits exporting.

Usage
A typical sequence to create a key is as follows:

1. Create and initialize an attribute object.
2. If the key is persistent, call psa_set_key_id(). Also call psa_set_key_lifetime() to place the key in anon-default location.
3. If the key is volatile in a non-default location, call psa_set_key_lifetime() to specify the location.
4. Set the key policy with psa_set_key_usage_flags() and psa_set_key_algorithm().
5. Set the key type with psa_set_key_type(). Skip this step if copying an existing key with psa_copy_key().
6. When generating a random key with psa_generate_key() or psa_generate_key_custom(), or deriving akey with psa_key_derivation_output_key() or psa_key_derivation_output_key_custom(), set the desiredkey size with psa_set_key_bits().
7. Call a key creation function: psa_import_key(), psa_generate_key(), psa_generate_key_custom(),

psa_key_derivation_output_key(), psa_key_derivation_output_key_custom(), psa_key_agreement(),
psa_encapsulate(), psa_decapsulate(), psa_pake_get_shared_key(), psa_copy_key(), or
psa_attach_key(). This function reads the attribute object, creates a key with these attributes, andoutputs an identifier for the newly created key.

8. Optionally call psa_reset_key_attributes(), now that the attribute object is no longer needed.Currently this call is not required as the attributes defined in this specification do not requireadditional resources beyond the object itself.
A typical sequence to query a key’s attributes is as follows:

1. Call psa_get_key_attributes().
2. Call psa_get_key_xxx() functions to retrieve the required attribute(s).
3. Call psa_reset_key_attributes() to free any resources that can be used by the attribute object.

Once a key has been created, it is impossible to change its attributes.
PSA_KEY_ATTRIBUTES_INIT (macro)
This macro returns a suitable initializer for a key attribute object of type psa_key_attributes_t.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 51

#define PSA_KEY_ATTRIBUTES_INIT /* implementation-defined value */

psa_key_attributes_init (function)
Return an initial value for a key attribute object.
psa_key_attributes_t psa_key_attributes_init(void);

Returns: psa_key_attributes_t

psa_get_key_attributes (function)
Retrieve the attributes of a key.
psa_status_t psa_get_key_attributes(psa_key_id_t key,

psa_key_attributes_t * attributes);

Parameters
key Identifier of the key to query.
attributes On entry, *attributes must be in a valid state. On successful return, itcontains the attributes of the key. On failure, it is equivalent to afreshly-initialized attribute object.

Returns: psa_status_t
PSA_SUCCESS Success. attributes contains the attributes of the key.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
This function first resets the attribute object as with psa_reset_key_attributes(). It then copies theattributes of the given key into the given attribute object.

Note:
This function clears any previous content from the attribute object and therefore expects it to be in avalid state. In particular, if this function is called on a newly allocated attribute object, the attributeobject must be initialized before calling this function.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 52

Note:
This function might allocate memory or other resources. Once this function has been called on anattribute object, psa_reset_key_attributes() must be called to free these resources.

psa_reset_key_attributes (function)
Reset a key attribute object to a freshly initialized state.
void psa_reset_key_attributes(psa_key_attributes_t * attributes);

Parameters
attributes The attribute object to reset.

Returns: void
Description
The attribute object must be initialized as described in the documentation of the type psa_key_attributes_tbefore calling this function. Once the object has been initialized, this function can be called at any time.
This function frees any auxiliary resources that the object might contain.

9.2 Key types
9.2.1 Key type encoding
psa_key_type_t (typedef)
Encoding of a key type.
typedef uint16_t psa_key_type_t;

This is a structured bit field that identifies the category and type of key. The range of key type values isdivided as follows:
PSA_KEY_TYPE_NONE == 0Reserved as an invalid key type.
0x0001 - 0x7fffSpecification-defined key types. Key types defined by this standard always have bit 15 clear.Unallocated key type values in this range are reserved for future use.
0x8000 - 0xffffImplementation-defined key types. Implementations that define additional key types mustuse an encoding with bit 15 set. The related support macros will be easier to write if thesekey encodings also respect the bitwise structure used by standard encodings.

The Algorithm and key type encoding on page 410 appendix provides a full definition of the key typeencoding.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 53

PSA_KEY_TYPE_NONE (macro)
An invalid key type value.
#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)

Zero is not the encoding of any key type.

9.2.2 Key categories
In the Crypto API, keys are typically used to store secrets that are specific to a set of related cryptographicalgorithms. Keys can also be used to store non-cryptographic secrets or other data. The key type is used toidentify what the key value is, and what can be used for.

∙ Unstructured key types on page 62 — defines types for non-key data and unstructured symmetric keys.For example, passwords, key-derivation secrets, or AES keys.
∙ Structured key types on page 72 — defines types for structured symmetric keys. For example,WPA3-SAE password tokens.
∙ Asymmetric key types on page 76 — defines types for asymmetric keys. For example, elliptic curve orSPAKE2+ keys.

PSA_KEY_TYPE_IS_UNSTRUCTURED (macro)
Whether a key type is an unstructured array of bytes.
#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

Description
This encompasses both symmetric keys and non-key data.
See Unstructured key types on page 62 for a list of unstructured key types.
PSA_KEY_TYPE_IS_ASYMMETRIC (macro)
Whether a key type is asymmetric: either a key pair or a public key.
#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

Description
See Asymmetric key types on page 76 for a list of asymmetric key types.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 54

PSA_KEY_TYPE_IS_PUBLIC_KEY (macro)
Whether a key type is the public part of a key pair.
#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_KEY_PAIR (macro)
Whether a key type is a key pair containing a private part and a public part.
#define PSA_KEY_TYPE_IS_KEY_PAIR(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

9.2.3 Elliptic curve families
psa_ecc_family_t (typedef)
The type of identifiers of an elliptic curve family.
typedef uint8_t psa_ecc_family_t;

The curve family identifier is required to create a number of key types:
∙ ECC keys using PSA_KEY_TYPE_ECC_KEY_PAIR() or PSA_KEY_TYPE_ECC_PUBLIC_KEY(). These keys are usedin various asymmetric signature, key-encapsulation, and key-agreement algorithms.
∙ SPAKE2+ keys using the PSA_KEY_TYPE_SPAKE2P_KEY_PAIR() or PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY().These keys are used in the SPAKE2+ PAKE algorithms.
∙ WPA3-SAE password tokens using PSA_KEY_TYPE_WPA3_SAE_ECC(). These keys are used in theWPA3-SAE PAKE algorithms.

Elliptic curve family identifiers are also used to construct PAKE primitives for cipher suites based on ellipticcurve groups. See PAKE primitives on page 338.
The specific ECC curve within a family is identified by the key_bits attribute of the key.
The range of elliptic curve family identifier values is divided as follows:

0x00 Reserved. Not allocated to an elliptic curve family.
0x01 - 0x7f Elliptic curve family identifiers defined by this standard. Unallocated values in this range arereserved for future use.
0x80 - 0xff Invalid. Values in this range must not be used.

The least significant bit of a elliptic curve family identifier is a parity bit for the whole key type. SeeAsymmetric key encoding on page 424 for details of the encoding of asymmetric key types.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 55

Implementation note
To provide other elliptic curve families, it is recommended that an implementation defines a key typewith bit 15 set, which indicates an IMPLEMENTATION DEFINED key type.

PSA_ECC_FAMILY_SECP_K1 (macro)
SEC Koblitz curves over prime fields.
#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)

This family comprises the following curves:
∙ secp192k1 : key_bits = 192

∙ secp224k1 : key_bits = 225

∙ secp256k1 : key_bits = 256

They are defined in SEC 2: Recommended Elliptic Curve Domain Parameters [SEC2].
PSA_ECC_FAMILY_SECP_R1 (macro)
SEC random curves over prime fields.
#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)

This family comprises the following curves:
∙ secp192r1 : key_bits = 192

∙ secp224r1 : key_bits = 224

∙ secp256r1 : key_bits = 256

∙ secp384r1 : key_bits = 384

∙ secp521r1 : key_bits = 521

They are defined in [SEC2].
PSA_ECC_FAMILY_SECP_R2 (macro)

. Warning

This family of curves is weak and deprecated.

#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)

This family comprises the following curves:
∙ secp160r2 : key_bits = 160 (Deprecated)

It is defined in the superseded SEC 2: Recommended Elliptic Curve Domain Parameters, Version 1.0 [SEC2v1].
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 56

PSA_ECC_FAMILY_SECT_K1 (macro)
SEC Koblitz curves over binary fields.
#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)

This family comprises the following curves:
∙ sect163k1 : key_bits = 163 (Deprecated)
∙ sect233k1 : key_bits = 233

∙ sect239k1 : key_bits = 239

∙ sect283k1 : key_bits = 283

∙ sect409k1 : key_bits = 409

∙ sect571k1 : key_bits = 571

They are defined in [SEC2].
. Warning

The 163-bit curve sect163k1 is weak and deprecated and is only recommended for use in legacyapplications.

PSA_ECC_FAMILY_SECT_R1 (macro)
SEC random curves over binary fields.
#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)

This family comprises the following curves:
∙ sect163r1 : key_bits = 163 (Deprecated)
∙ sect233r1 : key_bits = 233

∙ sect283r1 : key_bits = 283

∙ sect409r1 : key_bits = 409

∙ sect571r1 : key_bits = 571

They are defined in [SEC2].
. Warning

The 163-bit curve sect163r1 is weak and deprecated and is only recommended for use in legacyapplications.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 57

PSA_ECC_FAMILY_SECT_R2 (macro)
SEC additional random curves over binary fields.
#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)

This family comprises the following curves:
∙ sect163r2 : key_bits = 163 (Deprecated)

It is defined in [SEC2].
. Warning

The 163-bit curve sect163r2 is weak and deprecated and is only recommended for use in legacyapplications.

PSA_ECC_FAMILY_BRAINPOOL_P_R1 (macro)
Brainpool P random curves.
#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)

This family comprises the following curves:
∙ brainpoolP160r1 : key_bits = 160 (Deprecated)
∙ brainpoolP192r1 : key_bits = 192

∙ brainpoolP224r1 : key_bits = 224

∙ brainpoolP256r1 : key_bits = 256

∙ brainpoolP320r1 : key_bits = 320

∙ brainpoolP384r1 : key_bits = 384

∙ brainpoolP512r1 : key_bits = 512

They are defined in Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation[RFC5639].
. Warning

The 160-bit curve brainpoolP160r1 is weak and deprecated and is only recommended for use in legacyapplications.

PSA_ECC_FAMILY_FRP (macro)
Curve used primarily in France and elsewhere in Europe.
#define PSA_ECC_FAMILY_FRP ((psa_ecc_family_t) 0x33)

This family comprises one 256-bit curve:
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 58

∙ FRP256v1 : key_bits = 256

This is defined by Publication d'un paramétrage de courbe elliptique visant des applications de passeportélectronique et de l'administration électronique française [FRP].
PSA_ECC_FAMILY_MONTGOMERY (macro)
Montgomery curves.
#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)

This family comprises the following Montgomery curves:
∙ Curve25519 : key_bits = 255

∙ Curve448 : key_bits = 448

Curve25519 is defined in Curve25519: new Diffie-Hellman speed records [Curve25519]. Curve448 is definedin Ed448-Goldilocks, a new elliptic curve [Curve448].
PSA_ECC_FAMILY_TWISTED_EDWARDS (macro)
Twisted Edwards curves.
Added in version 1.1.
#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)

This family comprises the following twisted Edwards curves:
∙ Edwards25519 : key_bits = 255. This curve is birationally equivalent to Curve25519.
∙ Edwards448 : key_bits = 448. This curve is birationally equivalent to Curve448.

Edwards25519 is defined in Twisted Edwards curves [Ed25519]. Edwards448 is defined in Ed448-Goldilocks,a new elliptic curve [Curve448].

9.2.4 Finite field Diffie-Hellman families
psa_dh_family_t (typedef)
The type of identifiers of a finite field Diffie-Hellman group family.
typedef uint8_t psa_dh_family_t;

The group family identifier is required to create a number of key types:
∙ Diffie-Hellman keys using PSA_KEY_TYPE_DH_KEY_PAIR() or PSA_KEY_TYPE_DH_PUBLIC_KEY(). These keysare used in the FFDH key-agreement algorithm.
∙ WPA3-SAE password tokens using PSA_KEY_TYPE_WPA3_SAE_DH(). These keys are used in theWPA3-SAE PAKE algorithms.

Finite field Diffie-Hellman group identifiers are also used to construct PAKE primitives for cipher suitesbased on finite field groups. See PAKE primitives on page 338.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 59

The specific finite field Diffie-Hellman group within a family is identified by the key_bits attribute of the key.
The range of finite field Diffie-Hellman group family identifier values is divided as follows:

0x00 Reserved. Not allocated to a Diffie-Hellman group family.
0x01 - 0x7f Diffie-Hellman group family identifiers defined by this standard. Unallocated values in thisrange are reserved for future use.
0x80 - 0xff Invalid. Values in this range must not be used.

The least significant bit of a finite field Diffie-Hellman group family identifier is a parity bit for the whole keytype. See Asymmetric key encoding on page 424 for details of the encoding of asymmetric key types.
Implementation note
To provide other finite field Diffie-Hellman group families, it is recommended that an implementationdefines a key type with bit 15 set, which indicates an IMPLEMENTATION DEFINED key type.

PSA_DH_FAMILY_RFC7919 (macro)
Finite field Diffie-Hellman groups defined for TLS in RFC 7919.
#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)

This family includes groups with the following key sizes (in bits): 2048, 3072, 4096, 6144, 8192. Animplementation can support all of these sizes or only a subset.
Groups in this family can be used with the PSA_ALG_FFDH key-agreement algorithm.
These groups are defined by Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport LayerSecurity (TLS) [RFC7919] Appendix A.
PSA_DH_FAMILY_RFC3526 (macro)
Finite field Diffie-Hellman groups defined for IKE2 in RFC 3526.
Added in version 1.4.
#define PSA_DH_FAMILY_RFC3526 ((psa_dh_family_t) 0x05)

This family includes groups with the following key sizes (in bits): 2048, 3072, 4096, 6144, 8192. Animplementation can support all of these sizes or only a subset.
Groups in this family can be used with the PSA_ALG_FFDH key-agreement algorithm, or with the
PSA_ALG_WPA3_SAE_FIXED and PSA_ALG_WPA3_SAE_GDH PAKE algorithms.
These groups are defined by More Modular Exponential (MODP) Diffie-Hellman groups for Internet KeyExchange (IKE) [RFC3526].

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 60

https://datatracker.ietf.org/doc/html/rfc7919.html#appendix-A

9.2.5 Attribute accessors
psa_set_key_type (function)
Declare the type of a key.
void psa_set_key_type(psa_key_attributes_t * attributes,

psa_key_type_t type);

Parameters
attributes The attribute object to write to.
type The key type to write. If this is PSA_KEY_TYPE_NONE, the key type in

attributes becomes unspecified.
Returns: void
Description
This function overwrites any key type previously set in attributes.

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

psa_get_key_type (function)
Retrieve the key type from key attributes.
psa_key_type_t psa_get_key_type(const psa_key_attributes_t * attributes);

Parameters
attributes The key attribute object to query.

Returns: psa_key_type_t
The key type stored in the attribute object.
Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

psa_get_key_bits (function)
Retrieve the key size from key attributes.
size_t psa_get_key_bits(const psa_key_attributes_t * attributes);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 61

Parameters
attributes The key attribute object to query.

Returns: size_t
The key size stored in the attribute object, in bits.
Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

psa_set_key_bits (function)
Declare the size of a key.
void psa_set_key_bits(psa_key_attributes_t * attributes,

size_t bits);

Parameters
attributes The attribute object to write to.
bits The key size in bits. If this is 0, the key size in attributes becomesunspecified. Keys of size 0 are not supported.

Returns: void
Description
This function overwrites any key size previously set in attributes.

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

9.3 Unstructured key types
9.3.1 Non-key data
PSA_KEY_TYPE_RAW_DATA (macro)
Raw data.
#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)

A “key” of this type cannot be used for any cryptographic operation. Applications can use this type to storearbitrary data in the keystore.
The bit size of a raw key must be a non-zero multiple of 8. The maximum size of a raw key is IMPLEMENTATION
DEFINED.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 62

Compatible algorithms
A key of this type can also be used as a non-secret input to the following key-derivation algorithms:

∙ PSA_ALG_HKDF
∙ PSA_ALG_HKDF_EXPAND
∙ PSA_ALG_HKDF_EXTRACT
∙ PSA_ALG_SP800_108_COUNTER_HMAC
∙ PSA_ALG_SP800_108_COUNTER_CMAC
∙ PSA_ALG_TLS12_PRF
∙ PSA_ALG_TLS12_PSK_TO_MS

Key format
The data format for import and export of the key is the raw bytes of the key.
Key derivation
A call to psa_key_derivation_output_key() will draw 𝑚/8 bytes of output and use these as the key data,where 𝑚 is the bit-size of the key.
PSA_KEY_TYPE_DERIVE (macro)
A secret for key derivation.
#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)

This key type is for high-entropy secrets only. For low-entropy secrets, PSA_KEY_TYPE_PASSWORD should beused instead.
These keys can be used in the PSA_KEY_DERIVATION_INPUT_SECRET or PSA_KEY_DERIVATION_INPUT_PASSWORD inputstep of key-derivation algorithms.
The key policy determines which key-derivation algorithm the key can be used for.
The bit size of a secret for key derivation must be a non-zero multiple of 8. The maximum size of a secretfor key derivation is IMPLEMENTATION DEFINED.
Compatible algorithms
A key of this type can be used as the secret input to the following key-derivation algorithms:

∙ PSA_ALG_HKDF
∙ PSA_ALG_HKDF_EXPAND
∙ PSA_ALG_HKDF_EXTRACT
∙ PSA_ALG_TLS12_PRF
∙ PSA_ALG_TLS12_PSK_TO_MS

Key format
The data format for import and export of the key is the raw bytes of the key.
Key derivation
A call to psa_key_derivation_output_key() will draw 𝑚/8 bytes of output and use these as the key data,where 𝑚 is the bit-size of the key.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 63

PSA_KEY_TYPE_PASSWORD (macro)
A low-entropy secret for password hashing or key derivation.
Added in version 1.1.
#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)

This key type is suitable for passwords and passphrases which are typically intended to be memorizable byhumans, and have a low entropy relative to their size. It can be used for randomly generated or derived keyswith maximum or near-maximum entropy, but PSA_KEY_TYPE_DERIVE is more suitable for such keys. It is notsuitable for passwords with extremely low entropy, such as numerical PINs.
These keys can be used in the PSA_KEY_DERIVATION_INPUT_PASSWORD input step of key-derivation algorithms.Algorithms that accept such an input were designed to accept low-entropy secret and are known aspassword hashing or key stretching algorithms.
These keys cannot be used in the PSA_KEY_DERIVATION_INPUT_SECRET input step of key-derivation algorithms,as the algorithms expect such an input to have high entropy.
The key policy determines which key-derivation algorithm the key can be used for, among the permissiblesubset defined above.
Compatible algorithms
A key of this type can be used as the password input to the following key-stretching algorithms:

∙ PSA_ALG_PBKDF2_HMAC
∙ PSA_ALG_PBKDF2_AES_CMAC_PRF_128

Key format
The data format for import and export of the key is the raw bytes of the key.
Key derivation
A call to psa_key_derivation_output_key() will draw 𝑚/8 bytes of output and use these as the key data,where 𝑚 is the bit-size of the key.
PSA_KEY_TYPE_PASSWORD_HASH (macro)
A secret value that can be used to verify a password hash.
Added in version 1.1.
#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)

The key policy determines which key-derivation algorithm the key can be used for, among the samepermissible subset as for PSA_KEY_TYPE_PASSWORD.
Compatible algorithms
A key of this type can be used to output or verify the result of the following key-stretching algorithms:

∙ PSA_ALG_PBKDF2_HMAC
∙ PSA_ALG_PBKDF2_AES_CMAC_PRF_128

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 64

Key format
The data format for import and export of the key is the raw bytes of the key.
Key derivation
A call to psa_key_derivation_output_key() will draw 𝑚/8 bytes of output and use these as the key data,where 𝑚 is the bit-size of the key.
PSA_KEY_TYPE_PEPPER (macro)
A secret value that can be used when computing a password hash.
Added in version 1.1.
#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)

The key policy determines which key-derivation algorithm the key can be used for, among the subset ofalgorithms that can use pepper.
Compatible algorithms
A key of this type can be used as the salt input to the following key-stretching algorithms:

∙ PSA_ALG_PBKDF2_HMAC
∙ PSA_ALG_PBKDF2_AES_CMAC_PRF_128

Key format
The data format for import and export of the key is the raw bytes of the key.
Key derivation
A call to psa_key_derivation_output_key() will draw 𝑚/8 bytes of output and use these as the key data,where 𝑚 is the bit-size of the key.

9.3.2 Symmetric cryptographic keys
PSA_KEY_TYPE_HMAC (macro)
HMAC key.
#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)

HMAC keys can be used in HMAC, or HMAC-based, algorithms. Although HMAC is parameterized by aspecific hash algorithm, for example SHA-256, the hash algorithm is not specified in the key type. Thepermitted-algorithm policy for the key must specify a particular hash algorithm.
The bit size of an HMAC key must be a non-zero multiple of 8. An HMAC key is typically the same size asthe output of the underlying hash algorithm. An HMAC key that is longer than the block size of theunderlying hash algorithm will be hashed before use, see HMAC: Keyed-Hashing for Message Authentication[RFC2104] §2.
It is recommended that an application does not construct HMAC keys that are longer than the block size ofthe hash algorithm that will be used. It is IMPLEMENTATION DEFINED whether an HMAC key that is longer thanthe hash block size is supported.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 65

https://datatracker.ietf.org/doc/html/rfc2104.html#section-2

If the application does not control the length of the data used to construct the HMAC key, it isrecommended that the application hashes the key data, when it exceeds the hash block length, beforeconstructing the HMAC key.
Note:
PSA_HASH_LENGTH(alg) provides the output size of hash algorithm alg, in bytes.
PSA_HASH_BLOCK_LENGTH(alg) provides the block size of hash algorithm alg, in bytes.

Compatible algorithms
∙ PSA_ALG_HMAC
∙ PSA_ALG_SP800_108_COUNTER_HMAC (secret input)

Key format
The data format for import and export of the key is the raw bytes of the key.
Key derivation
A call to psa_key_derivation_output_key() will draw 𝑚/8 bytes of output and use these as the key data,where 𝑚 is the bit-size of the key.
PSA_KEY_TYPE_AES (macro)
Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.
#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)

The size of the key is related to the AES algorithm variant. For algorithms except the XTS block ciphermode, the following key sizes are used:
∙ AES-128 uses a 16-byte key : key_bits = 128

∙ AES-192 uses a 24-byte key : key_bits = 192

∙ AES-256 uses a 32-byte key : key_bits = 256

For the XTS block cipher mode (PSA_ALG_XTS), the following key sizes are used:
∙ AES-128-XTS uses two 16-byte keys : key_bits = 256

∙ AES-192-XTS uses two 24-byte keys : key_bits = 384

∙ AES-256-XTS uses two 32-byte keys : key_bits = 512

The AES block cipher is defined in FIPS Publication 197: Advanced Encryption Standard (AES) [FIPS197].
Compatible algorithms

∙ PSA_ALG_CBC_MAC
∙ PSA_ALG_CMAC
∙ PSA_ALG_CTR
∙ PSA_ALG_CFB
∙ PSA_ALG_OFB
∙ PSA_ALG_XTS

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 66

∙ PSA_ALG_CBC_NO_PADDING
∙ PSA_ALG_CBC_PKCS7
∙ PSA_ALG_ECB_NO_PADDING
∙ PSA_ALG_CCM
∙ PSA_ALG_GCM
∙ PSA_ALG_KW
∙ PSA_ALG_KWP
∙ PSA_ALG_SP800_108_COUNTER_CMAC (secret input)

Key format
The data format for import and export of the key is the raw bytes of the key.
Key derivation
A call to psa_key_derivation_output_key() will draw 𝑚/8 bytes of output and use these as the key data,where 𝑚 is the bit-size of the key.
PSA_KEY_TYPE_ARIA (macro)
Key for a cipher, AEAD or MAC algorithm based on the ARIA block cipher.
Added in version 1.1.
#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)

The size of the key is related to the ARIA algorithm variant. For algorithms except the XTS block ciphermode, the following key sizes are used:
∙ ARIA-128 uses a 16-byte key : key_bits = 128

∙ ARIA-192 uses a 24-byte key : key_bits = 192

∙ ARIA-256 uses a 32-byte key : key_bits = 256

For the XTS block cipher mode (PSA_ALG_XTS), the following key sizes are used:
∙ ARIA-128-XTS uses two 16-byte keys : key_bits = 256

∙ ARIA-192-XTS uses two 24-byte keys : key_bits = 384

∙ ARIA-256-XTS uses two 32-byte keys : key_bits = 512

The ARIA block cipher is defined in A Description of the ARIA Encryption Algorithm [RFC5794].
Compatible algorithms

∙ PSA_ALG_CBC_MAC
∙ PSA_ALG_CMAC
∙ PSA_ALG_CTR
∙ PSA_ALG_CFB
∙ PSA_ALG_OFB
∙ PSA_ALG_XTS
∙ PSA_ALG_CBC_NO_PADDING
∙ PSA_ALG_CBC_PKCS7
∙ PSA_ALG_ECB_NO_PADDING
∙ PSA_ALG_CCM

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 67

∙ PSA_ALG_GCM
∙ PSA_ALG_KW
∙ PSA_ALG_KWP
∙ PSA_ALG_SP800_108_COUNTER_CMAC (secret input)

Key format
The data format for import and export of the key is the raw bytes of the key.
Key derivation
A call to psa_key_derivation_output_key() will draw 𝑚/8 bytes of output and use these as the key data,where 𝑚 is the bit-size of the key.
PSA_KEY_TYPE_DES (macro)
Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).
#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)

The size of the key determines which DES algorithm is used:
∙ Single DES uses an 8-byte key : key_bits = 64

∙ 2-key 3DES uses a 16-byte key : key_bits = 128

∙ 3-key 3DES uses a 24-byte key : key_bits = 192

. Warning

Single DES and 2-key 3DES are weak and strongly deprecated and are only recommended fordecrypting legacy data.
3-key 3DES is weak and deprecated and is only recommended for use in legacy applications.

The DES and 3DES block ciphers are defined in NIST Special Publication 800-67: Recommendation for theTriple Data Encryption Algorithm (TDEA) Block Cipher [SP800-67].
Compatible algorithms

∙ PSA_ALG_CBC_MAC
∙ PSA_ALG_CMAC
∙ PSA_ALG_CTR
∙ PSA_ALG_CFB
∙ PSA_ALG_OFB
∙ PSA_ALG_XTS
∙ PSA_ALG_CBC_NO_PADDING
∙ PSA_ALG_CBC_PKCS7
∙ PSA_ALG_ECB_NO_PADDING

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 68

Key format
The data format for import and export of the key is the raw bytes of the key. The parity bits in each 64-bitDES key element must be correct.
Key derivation
A call to psa_key_derivation_output_key() will construct a single 64-bit DES key using the following process:

1. Draw an 8-byte string.
2. Set/clear the parity bits in each byte.
3. If the result is a forbidden weak key, discard the result and return to step 1.
4. Output the string.

For 2-key 3DES and 3-key 3DES, this process is repeated to derive the 2nd and 3rd keys, as required.
PSA_KEY_TYPE_CAMELLIA (macro)
Key for a cipher, AEAD or MAC algorithm based on the Camellia block cipher.
#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)

The size of the key is related to the Camellia algorithm variant. For algorithms except the XTS block ciphermode, the following key sizes are used:
∙ Camellia-128 uses a 16-byte key : key_bits = 128

∙ Camellia-192 uses a 24-byte key : key_bits = 192

∙ Camellia-256 uses a 32-byte key : key_bits = 256

For the XTS block cipher mode (PSA_ALG_XTS), the following key sizes are used:
∙ Camellia-128-XTS uses two 16-byte keys : key_bits = 256

∙ Camellia-192-XTS uses two 24-byte keys : key_bits = 384

∙ Camellia-256-XTS uses two 32-byte keys : key_bits = 512

The Camellia block cipher is defined in Specification of Camellia — a 128-bit Block Cipher [NTT-CAM] andalso described in A Description of the Camellia Encryption Algorithm [RFC3713].
Compatible algorithms

∙ PSA_ALG_CBC_MAC
∙ PSA_ALG_CMAC
∙ PSA_ALG_CTR
∙ PSA_ALG_CFB
∙ PSA_ALG_OFB
∙ PSA_ALG_XTS
∙ PSA_ALG_CBC_NO_PADDING
∙ PSA_ALG_CBC_PKCS7
∙ PSA_ALG_ECB_NO_PADDING
∙ PSA_ALG_CCM
∙ PSA_ALG_GCM

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 69

∙ PSA_ALG_KW
∙ PSA_ALG_KWP
∙ PSA_ALG_SP800_108_COUNTER_CMAC (secret input)

Key format
The data format for import and export of the key is the raw bytes of the key.
Key derivation
A call to psa_key_derivation_output_key() will draw 𝑚/8 bytes of output and use these as the key data,where 𝑚 is the bit-size of the key.
PSA_KEY_TYPE_SM4 (macro)
Key for a cipher, AEAD or MAC algorithm based on the SM4 block cipher.
#define PSA_KEY_TYPE_SM4 ((psa_key_type_t)0x2405)

For algorithms except the XTS block cipher mode, the SM4 key size is 128 bits (16 bytes).
For the XTS block cipher mode (PSA_ALG_XTS), the SM4 key size is 256 bits (two 16-byte keys).
The SM4 block cipher is defined in GM/T 0002-2012: SM4 block cipher algorithm [CSTC0002].
Compatible algorithms

∙ PSA_ALG_CBC_MAC
∙ PSA_ALG_CMAC
∙ PSA_ALG_CTR
∙ PSA_ALG_CFB
∙ PSA_ALG_OFB
∙ PSA_ALG_XTS
∙ PSA_ALG_CBC_NO_PADDING
∙ PSA_ALG_CBC_PKCS7
∙ PSA_ALG_ECB_NO_PADDING
∙ PSA_ALG_CCM
∙ PSA_ALG_GCM
∙ PSA_ALG_KW
∙ PSA_ALG_KWP
∙ PSA_ALG_SP800_108_COUNTER_CMAC (secret input)

Key format
The data format for import and export of the key is the raw bytes of the key.
Key derivation
A call to psa_key_derivation_output_key() will draw 𝑚/8 bytes of output and use these as the key data,where 𝑚 is the bit-size of the key.
PSA_KEY_TYPE_ARC4 (macro)
Key for the ARC4 stream cipher.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 70

#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)

. Warning

The ARC4 cipher is weak and deprecated and is only recommended for use in legacy applications.
The ARC4 cipher supports key sizes between 40 and 2048 bits, that are multiples of 8. (5 to 256 bytes)
Use algorithm PSA_ALG_STREAM_CIPHER to use this key with the ARC4 cipher.
Compatible algorithms

∙ PSA_ALG_STREAM_CIPHER

Key format
The data format for import and export of the key is the raw bytes of the key.
Key derivation
A call to psa_key_derivation_output_key() will draw 𝑚/8 bytes of output and use these as the key data,where 𝑚 is the bit-size of the key.
PSA_KEY_TYPE_CHACHA20 (macro)
Key for the ChaCha20 stream cipher or the ChaCha20-Poly1305 AEAD algorithm.
#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)

The ChaCha20 key size is 256 bits (32 bytes).
∙ Use algorithm PSA_ALG_STREAM_CIPHER to use this key with the ChaCha20 cipher for unauthenticatedencryption. See PSA_ALG_STREAM_CIPHER for details of this algorithm.
∙ Use algorithm PSA_ALG_CHACHA20_POLY1305 to use this key with the ChaCha20 cipher and Poly1305authenticator for AEAD. See PSA_ALG_CHACHA20_POLY1305 for details of this algorithm.

Compatible algorithms
∙ PSA_ALG_STREAM_CIPHER
∙ PSA_ALG_CHACHA20_POLY1305

Key format
The data format for import and export of the key is the raw bytes of the key.
Key derivation
A call to psa_key_derivation_output_key() will draw 32 bytes of output and use these as the key data.
PSA_KEY_TYPE_XCHACHA20 (macro)
Key for the XChaCha20 stream cipher or the XChaCha20-Poly1305 AEAD algorithm.
Added in version 1.2.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 71

#define PSA_KEY_TYPE_XCHACHA20 ((psa_key_type_t)0x2007)

The XChaCha20 key size is 256 bits (32 bytes).
∙ Use algorithm PSA_ALG_STREAM_CIPHER to use this key with the XChaCha20 cipher for unauthenticatedencryption. See PSA_ALG_STREAM_CIPHER for details of this algorithm.
∙ Use algorithm PSA_ALG_XCHACHA20_POLY1305 to use this key with the XChaCha20 cipher and Poly1305authenticator for AEAD. See PSA_ALG_XCHACHA20_POLY1305 for details of this algorithm.

Compatible algorithms
∙ PSA_ALG_STREAM_CIPHER
∙ PSA_ALG_XCHACHA20_POLY1305

Key format
The data format for import and export of the key is the raw bytes of the key.
Key derivation
A call to psa_key_derivation_output_key() will draw 32 bytes of output and use these as the key data.
PSA_KEY_TYPE_ASCON (macro)
Key for the Ascon-AEAD128 AEAD algorithm.
Added in version 1.4.
#define PSA_KEY_TYPE_ASCON ((psa_key_type_t)0x2008)

The standard Ascon-AEAD128 key size is 128 bits (16 bytes).
For the nonce-masking variant of Ascon-AEAD128, use a key size of 256 bits (32-bytes).
See PSA_ALG_ASCON_AEAD128 for details of this algorithm.
Compatible algorithms

∙ PSA_ALG_ASCON_AEAD128

Key format
The data format for import and export of the key is the raw bytes of the key.
Key derivation
A call to psa_key_derivation_output_key() will draw 𝑚/8 bytes of output and use these as the key data,where 𝑚 is the bit-size of the key.

9.4 Structured key types
9.4.1 WPA3-SAE password tokens
The WPA3-SAE PAKE defines two techniques for generating the password element used during the PAKEprotocol. The recommended hash-2-curve method is used to generate an intermediate password token,which is an element of the cyclic group used in the PAKE cipher suite. The password token can be stored asa key object, and later used in the PAKE operation when performing the WPA3-SAE protocol.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 72

WPA3-SAE password tokens are defined for both elliptic curve and finite field groups.
See WPA3-SAE password processing on page 382.
PSA_KEY_TYPE_WPA3_SAE_ECC (macro)
WPA3-SAE password token using elliptic curves.
Added in version 1.4.
#define PSA_KEY_TYPE_WPA3_SAE_ECC(curve) /* specification-defined value */

Parameters
curve A value of type psa_ecc_family_t that identifies the elliptic curvefamily to be used.

Description
The bit-size of a WPA3-SAE password token is the bit size associated with the specific curve within theelliptic curve family. See the documentation of the elliptic curve family for details.
To construct a WPA3-SAE password token, it must be output from key derivation operation using the
PSA_ALG_WPA3_SAE_H2E algorithm.

Note:
To use a password token key with both PSA_ALG_WPA3_SAE_FIXED and PSA_ALG_WPA3_SAE_GDH algorithms,create the key with the wildcard PSA_ALG_WPA3_SAE_ANY permitted algorithm.

Compatible algorithms
∙ PSA_ALG_WPA3_SAE_FIXED
∙ PSA_ALG_WPA3_SAE_GDH

Key format
The password token is an element of the elliptic curve group, with value (𝑥, 𝑦).
The data format for import and export of the password token is the concatenation of:

∙ 𝑥 encoded as a big-endian 𝑚-byte string;
∙ 𝑦 encoded as a big-endian 𝑚-byte string.

For an elliptic curve over F𝑝, 𝑚 is the integer for which 28(𝑚−1) ≤ 𝑝 < 28𝑚.
Note:
This is the same format as the one used for group elements in the commit phase of the WPA3-SAEprotocol, defined in [IEEE-802.11] §12.4.7.2.4.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 73

Key derivation
A elliptic curve-based WPA3-SAE password token can only be derived using the PSA_ALG_WPA3_SAE_H2Ealgorithm. The call to psa_key_derivation_output_key() uses the method defined in [IEEE-802.11]§12.4.4.2.3 to generate the key value.
PSA_KEY_TYPE_WPA3_SAE_DH (macro)
WPA3-SAE password token using finite fields.
Added in version 1.4.
#define PSA_KEY_TYPE_WPA3_SAE_DH(group) /* specification-defined value */

Parameters
group A value of type psa_dh_family_t that identifies the finite fieldDiffie-Hellman family to be used.

Description
The bit-size of the WPA3-SAE password token is the bit size associated with the specific group within thefinite field Diffie-Hellman family. See the documentation of the selected Diffie-Hellman family for details.
To construct a WPA3-SAE password token, it must be output from key derivation operation using the
PSA_ALG_WPA3_SAE_H2E algorithm.

Note:
To use a password token key with both PSA_ALG_WPA3_SAE_FIXED and PSA_ALG_WPA3_SAE_GDH algorithms,create the key with the wildcard PSA_ALG_WPA3_SAE_ANY permitted algorithm.

Compatible algorithms
∙ PSA_ALG_WPA3_SAE_FIXED
∙ PSA_ALG_WPA3_SAE_GDH

Key format
The password token is a finite-field group element 𝑦 ∈ [1, 𝑝− 1], where 𝑝 is the group’s prime modulus.
The data format for import and export of the password token is 𝑦 encoded as a big-endian 𝑚-byte string,where 𝑚 is the integer for which 28(𝑚−1) ≤ 𝑝 < 28𝑚.

Note:
This is the same format as the one used for group elements in the commit phase of the WPA3-SAEprotocol, defined in [IEEE-802.11] §12.4.7.2.4.

Key derivation
A finite field-based WPA3-SAE password token can only be derived using the PSA_ALG_WPA3_SAE_H2Ealgorithm. The call to psa_key_derivation_output_key() uses the method defined in [IEEE-802.11]§12.4.4.3.3 to generate the key value.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 74

PSA_KEY_TYPE_IS_WPA3_SAE_ECC (macro)
Whether a key type is a WPA3-SAE password token using elliptic curves.
Added in version 1.4.
#define PSA_KEY_TYPE_IS_WPA3_SAE_ECC(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_WPA3_SAE_ECC_GET_FAMILY (macro)
Extract the curve family from a WPA3-SAE password token using elliptic curves.
Added in version 1.4.
#define PSA_KEY_TYPE_WPA3_SAE_ECC_GET_FAMILY(type) \

/* specification-defined value */

Parameters
type A WPA3-SAE password token using elliptic curve key type: a value oftype psa_key_type_t such that PSA_KEY_TYPE_IS_WPA3_SAE_ECC(type) istrue.

Returns: psa_ecc_family_t
The elliptic curve family id, if type is a supported WPA3-SAE password token using elliptic curve key.Unspecified if type is not a supported WPA3-SAE password token using elliptic curve key.
PSA_KEY_TYPE_IS_WPA3_SAE_DH (macro)
Whether a key type is a WPA3-SAE password token using elliptic curves.
Added in version 1.4.
#define PSA_KEY_TYPE_IS_WPA3_SAE_DH(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_WPA3_SAE_DH_GET_FAMILY (macro)
Extract the finite field group family from a WPA3-SAE password token using finite fields.
Added in version 1.4.
#define PSA_KEY_TYPE_WPA3_SAE_DH_GET_FAMILY(type) \

/* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 75

Parameters
type A WPA3-SAE password token using finite fields key type: a value oftype psa_key_type_t such that PSA_KEY_TYPE_IS_WPA3_SAE_DH(type) istrue.

Returns: psa_ecc_family_t
The finite field group family id, if type is a supported WPA3-SAE password token using finite fields key.Unspecified if type is not a supported WPA3-SAE password token using finite fields key.

9.5 Asymmetric key types
Asymmetric keys come in pairs. One is a private or secret key, which must be kept confidential. The other isa public key, which is meant to be shared with other participants in the protocol.

Note:
Depending on the type of cryptographic scheme, the private key can be referred to as the prover keyor the decapsulation key, and the public key can be referred to as the verifier key or the encapsulationkey.

The Crypto API defines the following types of asymmetric key:
∙ RSA keys
∙ Elliptic Curve keys on page 78
∙ Diffie Hellman keys on page 84
∙ SPAKE2+ keys on page 86

In the Crypto API, key objects can either be a key pair, providing both the private and public key, or just apublic key. The difference in the key type values for a key pair and a public key for the same scheme iscommon across all asymmetric keys.
The PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY() and PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR() macros convertfrom one type to the other.

9.5.1 RSA keys
PSA_KEY_TYPE_RSA_KEY_PAIR (macro)
RSA key pair: both the private and public key.
#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)

The size of an RSA key is the bit size of the modulus.
Compatible algorithms

∙ PSA_ALG_RSA_OAEP
∙ PSA_ALG_RSA_PKCS1V15_CRYPT
∙ PSA_ALG_RSA_PKCS1V15_SIGN

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 76

∙ PSA_ALG_RSA_PKCS1V15_SIGN_RAW
∙ PSA_ALG_RSA_PSS
∙ PSA_ALG_RSA_PSS_ANY_SALT

Key format
The data format for import and export of a key-pair is the non-encrypted DER encoding of therepresentation defined by in PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC8017] as
RSAPrivateKey, version 0.
RSAPrivateKey ::= SEQUENCE {

version INTEGER, -- must be 0
modulus INTEGER, -- n
publicExponent INTEGER, -- e
privateExponent INTEGER, -- d
prime1 INTEGER, -- p
prime2 INTEGER, -- q
exponent1 INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (q-1)
coefficient INTEGER, -- (inverse of q) mod p

}

Note:
Although it is possible to define an RSA key pair or private key using a subset of these elements, theoutput from psa_export_key() for an RSA key pair must include all of these elements.

See PSA_KEY_TYPE_RSA_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().
Key generation
A call to psa_generate_key() will generate an RSA key-pair with the default public exponent of 65537. Themodulus 𝑛 = 𝑝𝑞 is a product of two probabilistic primes 𝑝 and 𝑞, where 2𝑟−1 ≤ 𝑛 < 2𝑟 and 𝑟 is the bit sizespecified in the attributes.
The exponent can be explicitly specified in non-default production parameters in a call to
psa_generate_key_custom(). Use the following custom production parameters:

∙ The production parameters structure, custom, must have flags set to zero.
∙ If custom_data_length == 0, the default exponent value 65537 is used.
∙ The additional production parameter buffer custom_data is the public exponent, in little-endian byteorder.
The exponent must be an odd integer greater than 1. An implementation must support an exponent of
65537, and is recommended to support an exponent of 3, and can support other values.
The maximum supported exponent value is IMPLEMENTATION DEFINED.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 77

Key derivation
The method used by psa_key_derivation_output_key() to derive an RSA key-pair is implementation defined.
PSA_KEY_TYPE_RSA_PUBLIC_KEY (macro)
RSA public key.
#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)

The size of an RSA key is the bit size of the modulus.
Compatible algorithms

∙ PSA_ALG_RSA_OAEP (encryption only)
∙ PSA_ALG_RSA_PKCS1V15_CRYPT (encryption only)
∙ PSA_ALG_RSA_PKCS1V15_SIGN (signature verification only)
∙ PSA_ALG_RSA_PKCS1V15_SIGN_RAW (signature verification only)
∙ PSA_ALG_RSA_PSS (signature verification only)
∙ PSA_ALG_RSA_PSS_ANY_SALT (signature verification only)

Key format
The data format for import and export of a public key is the DER encoding of the representation defined byAlgorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate RevocationList (CRL) Profile [RFC3279] §2.3.1 as RSAPublicKey.
RSAPublicKey ::= SEQUENCE {

modulus INTEGER, -- n
publicExponent INTEGER } -- e

PSA_KEY_TYPE_IS_RSA (macro)
Whether a key type is an RSA key. This includes both key pairs and public keys.
#define PSA_KEY_TYPE_IS_RSA(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

9.5.2 Elliptic Curve keys
Elliptic curve keys are grouped into families of related curves. A keys for a specific curve is specified by acombination of the elliptic curve family and the bit-size of the key.
There are three categories of elliptic curve key, shown in Table 6 on page 79. The curve type affects the keyformat, the key-derivation procedure, and the algorithms which the key can be used with.

Table 6 Types of elliptic curve key

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 78

https://datatracker.ietf.org/doc/html/rfc3279.html#section-2.3.1

Curve type Curve families

Weierstrass PSA_ECC_FAMILY_SECP_K1

PSA_ECC_FAMILY_SECP_R1

PSA_ECC_FAMILY_SECP_R2

PSA_ECC_FAMILY_SECT_K1

PSA_ECC_FAMILY_SECT_R1

PSA_ECC_FAMILY_SECT_R2

PSA_ECC_FAMILY_BRAINPOOL_P_R1

PSA_ECC_FAMILY_FRP

Montgomery PSA_ECC_FAMILY_MONTGOMERY

Twisted Edwards PSA_ECC_FAMILY_TWISTED_EDWARDS

PSA_KEY_TYPE_ECC_KEY_PAIR (macro)
Elliptic curve key pair: both the private and public key.
#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) /* specification-defined value */

Parameters
curve A value of type psa_ecc_family_t that identifies the ECC curve familyto be used.

Description
The size of an elliptic curve key is the bit size associated with the curve, that is, the bit size of 𝑞 for a curveover a field F𝑞 . See the documentation of each elliptic curve family for details.
Compatible algorithms
Table 7 shows the compatible algorithms for each type of elliptic curve key-pair.

Table 7 Compatible algorithms for elliptic curve key-pairs
Curve type Compatible algorithms

Weierstrass Weierstrass curve key-pairs can be used in asymmetric signature, key-agreement,and key-encapsulation algorithms.
PSA_ALG_DETERMINISTIC_ECDSA

PSA_ALG_ECDSA

PSA_ALG_ECDSA_ANY

PSA_ALG_ECDH

PSA_ALG_ECIES_SEC1

continues on next page

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 79

Table 7 – continued from previous page

Curve type Compatible algorithms

Montgomery Montgomery curve key-pairs can be used in key-agreement and key-encapsulationalgorithms.
PSA_ALG_ECDH

PSA_ALG_ECIES_SEC1

Twisted Edwards Twisted Edwards curve key-pairs can only be used in asymmetric signaturealgorithms.
PSA_ALG_PURE_EDDSA

PSA_ALG_ED25519PH (Edwards25519 only)
PSA_ALG_ED448PH (Edwards448 only)

Key format
The data format for import and export of the key-pair depends on the type of elliptic curve. Table 8 showsthe format for each type of elliptic curve key-pair.
See PSA_KEY_TYPE_ECC_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().

Table 8 Key-pair formats for elliptic curve keys
Curve type Key-pair format

Weierstrass The key data is the content of the privateKey field of the ECPrivateKey formatdefined by Elliptic Curve Private Key Structure [RFC5915].
This is a ⌈𝑚/8⌉-byte string in big-endian order, where 𝑚 is the key size in bits.

Montgomery The key data is the scalar value of the ‘private key’ in little-endian order as definedby Elliptic Curves for Security [RFC7748] §6. The value must have the forced bits setto zero or one as specified by decodeScalar25519() and decodeScalar448() in[RFC7748] §5.
This is a ⌈𝑚/8⌉-byte string where 𝑚 is the key size in bits. This is 32 bytes forCurve25519, and 56 bytes for Curve448.

Twisted Edwards The key data is the private key, as defined by Edwards-Curve Digital SignatureAlgorithm (EdDSA) [RFC8032].
This is a 32-byte string for Edwards25519, and a 57-byte string for Edwards448.

Key derivation
The key-derivation method used when calling psa_key_derivation_output_key() depends on the type ofelliptic curve. Table 9 on page 81 shows the derivation method for each type of elliptic curve key.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 80

https://datatracker.ietf.org/doc/html/rfc7748.html#section-6
https://datatracker.ietf.org/doc/html/rfc7748.html#section-5

Table 9 Key derivation for elliptic curve keys
Curve type Key derivation

Weierstrass A Weierstrass elliptic curve private key is 𝑑 ∈ [1, 𝑁 − 1], where 𝑁 is the order of thecurve’s base point for ECC.
Let 𝑚 be the bit size of 𝑁 , such that 2𝑚−1 ≤ 𝑁 < 2𝑚. This function generates theprivate key using the following process:

1. Draw a byte string of length ⌈𝑚/8⌉ bytes.
2. If 𝑚 is not a multiple of 8, set the most significant 8 * ⌈𝑚/8⌉ −𝑚 bits of thefirst byte in the string to zero.
3. Convert the string to integer 𝑘 by decoding it as a big-endian byte-string.
4. If 𝑘 > 𝑁 − 2, discard the result and return to step 1.
5. Output 𝑑 = 𝑘 + 1 as the private key.

This method allows compliance to NIST standards, specifically the methods titledKey-Pair Generation by Testing Candidates in [SP800-56A] §5.6.1.2.2 or FIPSPublication 186-4: Digital Signature Standard (DSS) [FIPS186-4] §B.4.2.
Montgomery Draw a byte string whose length is determined by the curve, and set the mandatorybits accordingly. That is:

∙ Curve25519 (PSA_ECC_FAMILY_MONTGOMERY, 255 bits): draw a 32-byte string andprocess it as specified in Elliptic Curves for Security [RFC7748] §5.
∙ Curve448 (PSA_ECC_FAMILY_MONTGOMERY, 448 bits): draw a 56-byte string andprocess it as specified in [RFC7748] §5.

Twisted Edwards Draw a byte string whose length is determined by the curve, and use this as theprivate key. That is:
∙ Ed25519 (PSA_ECC_FAMILY_MONTGOMERY, 255 bits): draw a 32-byte string.
∙ Ed448 (PSA_ECC_FAMILY_MONTGOMERY, 448 bits): draw a 57-byte string.

PSA_KEY_TYPE_ECC_PUBLIC_KEY (macro)
Elliptic curve public key.
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) /* specification-defined value */

Parameters
curve A value of type psa_ecc_family_t that identifies the ECC curve familyto be used.

Description
The size of an elliptic curve public key is the same as the corresponding private key. See
PSA_KEY_TYPE_ECC_KEY_PAIR() and the documentation of each elliptic curve family for details.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 81

https://datatracker.ietf.org/doc/html/rfc7748.html#section-5
https://datatracker.ietf.org/doc/html/rfc7748.html#section-5

Compatible algorithms
Table 10 shows the compatible algorithms for each type of elliptic curve public key.

Note:
For key agreement, the public key of the peer is provided to the Crypto API as a buffer. This avoidsthe need to import the public-key data that is received from the peer, just to carry out thekey-agreement algorithm.

Table 10 Compatible algorithms for elliptic curve public keys
Curve type Compatible algorithms

Weierstrass Weierstrass curve public keys can be used in asymmetric signature andkey-encapsulation algorithms.
PSA_ALG_DETERMINISTIC_ECDSA

PSA_ALG_ECDSA

PSA_ALG_ECDSA_ANY

PSA_ALG_ECIES_SEC1

Montgomery Montgomery curve public keys can only be used in key-encapsulation algorithms.
PSA_ALG_ECIES_SEC1

Twisted Edwards Twisted Edwards curve public keys can only be used in asymmetric signaturealgorithms.
PSA_ALG_PURE_EDDSA

PSA_ALG_ED25519PH (Edwards25519 only)
PSA_ALG_ED448PH (Edwards448 only)

Key format
The data format for import and export of the public key depends on the type of elliptic curve. Table 11 onpage 83 shows the format for each type of elliptic curve public key.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 82

Table 11 Public-key formats for elliptic curve keys
Curve type Public-key format

Weierstrass The key data is the uncompressed representation of an elliptic curve point as anoctet string defined in SEC 1: Elliptic Curve Cryptography [SEC1] §2.3.3. If 𝑚 is thebit size associated with the curve, i.e. the bit size of 𝑞 for a curve over F𝑞 , then therepresentation of point 𝑃 consists of:
∙ The byte 0x04;
∙ 𝑥𝑃 as a ⌈𝑚/8⌉-byte string, big-endian;
∙ 𝑦𝑃 as a ⌈𝑚/8⌉-byte string, big-endian.

Montgomery The key data is the scalar value of the ‘public key’ in little-endian order as definedby Elliptic Curves for Security [RFC7748] §6. This is a ⌈𝑚/8⌉-byte string where 𝑚 isthe key size in bits.
∙ This is 32 bytes for Curve25519, computed as X25519(private_key, 9).
∙ This is 56 bytes for Curve448, computed as X448(private_key, 5).

Twisted Edwards The key data is the public key, as defined by Edwards-Curve Digital SignatureAlgorithm (EdDSA) [RFC8032].
This is a 32-byte string for Edwards25519, and a 57-byte string for Edwards448.

PSA_KEY_TYPE_IS_ECC (macro)
Whether a key type is an elliptic curve key, either a key pair or a public key.
#define PSA_KEY_TYPE_IS_ECC(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_ECC_KEY_PAIR (macro)
Whether a key type is an elliptic curve key pair.
#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY (macro)
Whether a key type is an elliptic curve public key.
#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) /* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 83

https://datatracker.ietf.org/doc/html/rfc7748.html#section-6

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_ECC_GET_FAMILY (macro)
Extract the curve family from an elliptic curve key type.
#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) /* specification-defined value */

Parameters
type An elliptic curve key type: a value of type psa_key_type_t such that

PSA_KEY_TYPE_IS_ECC(type) is true.
Returns: psa_ecc_family_t
The elliptic curve family id, if type is a supported elliptic curve key. Unspecified if type is not a supportedelliptic curve key.

9.5.3 Diffie Hellman keys
PSA_KEY_TYPE_DH_KEY_PAIR (macro)
Finite field Diffie-Hellman key pair: both the private key and public key.
#define PSA_KEY_TYPE_DH_KEY_PAIR(group) /* specification-defined value */

Parameters
group A value of type psa_dh_family_t that identifies the finite fieldDiffie-Hellman group family to be used.

Compatible algorithms
∙ PSA_ALG_FFDH

Key format
The data format for import and export of the key pair is the representation of the private key 𝑥 as abig-endian byte string. The length of the byte string is the private key’s size in bytes, and leading zeroes arenot stripped.
See PSA_KEY_TYPE_DH_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().
Key derivation
A call to psa_key_derivation_output_key() will use the following process, defined in Key-Pair Generation byTesting Candidates in NIST Special Publication 800-56A: Recommendation for Pair-Wise Key-EstablishmentSchemes Using Discrete Logarithm Cryptography [SP800-56A] §5.6.1.1.4.
A finite field Diffie-Hellman private key is 𝑥 ∈ [1, 𝑝− 1], where 𝑝 is the group’s prime modulus. Let 𝑚 be thebit size of 𝑝, such that 2𝑚−1 ≤ 𝑝 < 2𝑚.
This function generates the private key using the following process:

1. Draw a byte string of length ⌈𝑚/8⌉ bytes.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 84

2. If 𝑚 is not a multiple of 8, set the most significant 8 * ⌈𝑚/8⌉ −𝑚 bits of the first byte in the string tozero.
3. Convert the string to integer 𝑘 by decoding it as a big-endian byte-string.
4. If 𝑘 > 𝑝− 2, discard the result and return to step 1.
5. Output 𝑥 = 𝑘 + 1 as the private key.

PSA_KEY_TYPE_DH_PUBLIC_KEY (macro)
Finite field Diffie-Hellman public key.
#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) /* specification-defined value */

Parameters
group A value of type psa_dh_family_t that identifies the finite fieldDiffie-Hellman group family to be used.

Compatible algorithms
None: Finite field Diffie-Hellman public keys are exported to use in a key-agreement algorithm, and the peerkey is provided to the PSA_ALG_FFDH key-agreement algorithm as a buffer of key data.
Key format
The data format for export of the public key is the representation of the public key 𝑦 = 𝑔𝑥 mod 𝑝 as abig-endian byte string. The length of the byte string is the length of the base prime 𝑝 in bytes.
PSA_KEY_TYPE_IS_DH (macro)
Whether a key type is a finite field Diffie-Hellman key, either a key pair or a public key.
#define PSA_KEY_TYPE_IS_DH(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_DH_KEY_PAIR (macro)
Whether a key type is a finite field Diffie-Hellman key pair.
#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_DH_PUBLIC_KEY (macro)
Whether a key type is a finite field Diffie-Hellman public key.
#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) /* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 85

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_DH_GET_FAMILY (macro)
Extract the group family from a finite field Diffie-Hellman key type.
#define PSA_KEY_TYPE_DH_GET_FAMILY(type) /* specification-defined value */

Parameters
type A finite field Diffie-Hellman key type: a value of type psa_key_type_tsuch that PSA_KEY_TYPE_IS_DH(type) is true.

Returns: psa_dh_family_t
The finite field Diffie-Hellman group family id, if type is a supported finite field Diffie-Hellman key.Unspecified if type is not a supported finite field Diffie-Hellman key.

9.5.4 SPAKE2+ keys
PSA_KEY_TYPE_SPAKE2P_KEY_PAIR (macro)
SPAKE2+ key pair: both the prover and verifier key.
Added in version 1.2.
#define PSA_KEY_TYPE_SPAKE2P_KEY_PAIR(curve) /* specification-defined value */

Parameters
curve A value of type psa_ecc_family_t that identifies the elliptic curvefamily to be used.

Description
The bit-size of a SPAKE2+ key is the size associated with the elliptic curve group, that is, ⌈𝑙𝑜𝑔2(𝑞)⌉ for acurve over a field F𝑞 . See Elliptic Curve keys on page 78 for details of each elliptic curve family.
To create a new SPAKE2+ key pair, use psa_key_derivation_output_key() as described in SPAKE2+registration on page 372. The SPAKE2+ protocol recommends that a key-stretching key-derivation function,such as PBKDF2, is used to hash the SPAKE2+ password. This follows the recommended process describedin [RFC9383].
A SPAKE2+ key pair can also be imported from a previously exported SPAKE2+ key pair.
The corresponding public key can be exported using psa_export_public_key(). See also
PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY().
Compatible algorithms

∙ PSA_ALG_SPAKE2P_HMAC
∙ PSA_ALG_SPAKE2P_CMAC
∙ PSA_ALG_SPAKE2P_MATTER

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 86

Key format
A SPAKE2+ key pair consists of the two values 𝑤0 and 𝑤1, which result from the SPAKE2+ registrationphase, see SPAKE2+ registration on page 372. 𝑤0 and 𝑤1 are scalars in the same range as an elliptic curveprivate key from the group used as the SPAKE2+ primitive group.
The data format for import and export of the key pair is the concatenation of the formatted values for 𝑤0and 𝑤1, using the standard formats for elliptic curve keys used by the Crypto API. For example, forSPAKE2+ over P-256 (secp256r1), the output from psa_export_key() would be the concatenation of:

∙ The P-256 private key 𝑤0. This is a 32-byte big-endian encoding of the integer 𝑤0.
∙ The P-256 private key 𝑤1. This is a 32-byte big-endian encoding of the integer 𝑤1.

See PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().
Key derivation
A call to psa_key_derivation_output_key() will use the following process, which follows therecommendations for the registration process in SPAKE2+, an Augmented Password-Authenticated KeyExchange (PAKE) Protocol [RFC9383], and matches the specification of this process in Matter Specification,Version 1.2 [MATTER].
The derivation of SPAKE2+ keys extracts ⌈𝑙𝑜𝑔2(𝑝)/8⌉+ 8 bytes from the PBKDF for each of 𝑤0𝑠 and 𝑤1𝑠,where 𝑝 is the prime factor of the order of the elliptic curve group. The following sizes are used forextracting 𝑤0𝑠 and 𝑤1𝑠, depending on the elliptic curve:

∙ P-256: 40 bytes
∙ P-384: 56 bytes
∙ P-521: 74 bytes
∙ edwards25519: 40 bytes
∙ edwards448: 64 bytes

The calculation of 𝑤0, 𝑤1, and 𝐿 then proceeds as described in [RFC9383].
Implementation note
The values of 𝑤0 and 𝑤1 are required as part of the SPAKE2+ key pair.
It is IMPLEMENTATION DEFINED whether 𝐿 is computed during key derivation, and stored as part of thekey pair; or only computed when required from the key pair.

PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY (macro)
SPAKE2+ public key: the verifier key.
Added in version 1.2.
#define PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY(curve) \

/* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 87

Parameters
curve A value of type psa_ecc_family_t that identifies the elliptic curvefamily to be used.

Description
The bit-size of an SPAKE2+ public key is the same as the corresponding private key. See
PSA_KEY_TYPE_SPAKE2P_KEY_PAIR() and the documentation of each elliptic curve family for details.
To construct a SPAKE2+ public key, it must be imported.
Compatible algorithms

∙ PSA_ALG_SPAKE2P_HMAC (verification only)
∙ PSA_ALG_SPAKE2P_CMAC (verification only)
∙ PSA_ALG_SPAKE2P_MATTER (verification only)

Key format
A SPAKE2+ public key consists of the two values 𝑤0 and 𝐿, which result from the SPAKE2+ registrationphase, see SPAKE2+ registration on page 372. 𝑤0 is a scalar in the same range as a elliptic curve private keyfrom the group used as the SPAKE2+ primitive group. 𝐿 is a point on the curve, similar to a public key fromthe same group, corresponding to the 𝑤1 value in the key pair.
The data format for import and export of the public key is the concatenation of the formatted values for 𝑤0and 𝐿, using the standard formats for elliptic curve keys used by the Crypto API. For example, for SPAKE2+over P-256 (secp256r1), the output from psa_export_public_key() would be the concatenation of:

∙ The P-256 private key 𝑤0. This is a 32-byte big-endian encoding of the integer 𝑤0.
∙ The P-256 public key 𝐿. This is a 65-byte concatenation of:

— The byte 0x04.
— The 32-byte big-endian encoding of the x-coordinate of 𝐿.
— The 32-byte big-endian encoding of the y-coordinate of 𝐿.

PSA_KEY_TYPE_IS_SPAKE2P (macro)
Whether a key type is a SPAKE2+ key, either a key pair or a public key.
Added in version 1.2.
#define PSA_KEY_TYPE_IS_SPAKE2P(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_SPAKE2P_KEY_PAIR (macro)
Whether a key type is a SPAKE2+ key pair.
Added in version 1.2.
#define PSA_KEY_TYPE_IS_SPAKE2P_KEY_PAIR(type) \

/* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 88

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_SPAKE2P_PUBLIC_KEY (macro)
Whether a key type is a SPAKE2+ public key.
Added in version 1.2.
#define PSA_KEY_TYPE_IS_SPAKE2P_PUBLIC_KEY(type) \

/* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_SPAKE2P_GET_FAMILY (macro)
Extract the curve family from a SPAKE2+ key type.
Added in version 1.2.
#define PSA_KEY_TYPE_SPAKE2P_GET_FAMILY(type) /* specification-defined value */

Parameters
type A SPAKE2+ key type: a value of type psa_key_type_t such that

PSA_KEY_TYPE_IS_SPAKE2P(type) is true.
Returns: psa_ecc_family_t
The elliptic curve family id, if type is a supported SPAKE2+ key. Unspecified if type is not a supportedSPAKE2+ key.

9.5.5 Support macros
PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY (macro)
The key-pair type corresponding to a public-key type.
#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \

/* specification-defined value */

Parameters
type A public-key type or key-pair type.

Returns
The corresponding key-pair type. If type is not a public key or a key pair, the return value is undefined.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 89

Description
If type is a key-pair type, it will be left unchanged.
PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR (macro)
The public-key type corresponding to a key-pair type.
#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \

/* specification-defined value */

Parameters
type A public-key type or key-pair type.

Returns
The corresponding public-key type. If type is not a public key or a key pair, the return value is undefined.
Description
If type is a public-key type, it will be left unchanged.

9.6 Key lifetimes
The lifetime of a key indicates where it is stored and which application and system actions will create anddestroy it.
Lifetime values are composed from:

∙ A persistence level, which indicates what device management actions can cause it to be destroyed. Inparticular, it indicates whether the key is volatile or persistent. See psa_key_persistence_t for moreinformation.
∙ A location indicator, which indicates where the key is stored and where operations on the key areperformed. See psa_key_location_t for more information.

There are two main types of lifetime, indicated by the persistence level: volatile and persistent.

9.6.1 Volatile keys
Volatile keys are automatically destroyed when the application instance terminates or on a power reset ofthe device. Volatile keys can be explicitly destroyed by the application.
Volatile keys have the persistence level PSA_KEY_PERSISTENCE_VOLATILE in the key lifetime value, see Keylifetime encoding on page 91. Unless the key lifetime is explicitly set in the key attributes before creating akey, a volatile key will be created with the default PSA_KEY_LIFETIME_VOLATILE lifetime value.
To create a volatile key:

1. Populate a psa_key_attributes_t object with the required type, size, policy and other key attributes.
2. If a non-default storage location is being used, set the key lifetime in the attributes object.
3. Create the key with one of the key creation functions. If successful, these functions output a transientkey identifier.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 90

To destroy a volatile key: call psa_destroy_key() with the key identifier. There must be a matching call to
psa_destroy_key() for each successful call to a create a volatile key.

9.6.2 Persistent keys
Persistent keys are preserved until the application explicitly destroys them or until animplementation-specific device management event occurs, for example, a factory reset.
Each persistent key has a permanent key identifier, which acts as a name for the key. Within an application,the key identifier corresponds to a single key. The application specifies the key identifier when the key iscreated and when using the key.
The lifetime attribute of a persistent key indicates how and where it is stored. The default lifetime value fora persistent key is PSA_KEY_LIFETIME_PERSISTENT, which corresponds to a default storage area. Thisspecification defines how implementations can provide other lifetime values corresponding to differentstorage areas with different retention policies, or to secure elements with different security characteristics.
To create a persistent key:

1. Populate a psa_key_attributes_t object with the key’s type, size, policy and other attributes.
2. In the attributes object, set the desired lifetime and persistent identifier for the key.
3. Create the key with one of the key creation functions. If successful, these functions output the keyidentifier that was specified by the application in step 2.

To access an existing persistent key: use the key identifier in any API that requires a key.
To destroy a persistent key: call psa_destroy_key() with the key identifier. Destroying a persistent keypermanently removes it from memory and storage.
By default, persistent key material is removed from volatile memory when not in use. Frequently usedpersistent keys can benefit from caching, depending on the implementation and the application. Cachingcan be enabled by creating the key with the PSA_KEY_USAGE_CACHE policy. Cached keys can be removed fromvolatile memory by calling psa_purge_key(). See also Memory cleanup on page 42 and Managing key materialon page 42.

9.6.3 Key lifetime encoding
psa_key_lifetime_t (typedef)
Encoding of key lifetimes.
typedef uint32_t psa_key_lifetime_t;

The lifetime of a key indicates where it is stored and which application and system actions will create anddestroy it.
Lifetime values have the following structure:
Bits[7:0]: Persistence levelThis value indicates what device management actions can cause it to be destroyed. Inparticular, it indicates whether the key is volatile or persistent. See psa_key_persistence_t formore information.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 91

PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) returns the persistence level for a key lifetimevalue.
Bits[31:8]: Location indicatorThis value indicates where the key material is stored (or at least where it is accessible incleartext) and where operations on the key are performed. See psa_key_location_t for moreinformation.

PSA_KEY_LIFETIME_GET_LOCATION(lifetime) returns the location indicator for a key lifetimevalue.
Volatile keys are automatically destroyed when the application instance terminates or on a power reset ofthe device. Persistent keys are preserved until the application explicitly destroys them or until animplementation-specific device management event occurs, for example, a factory reset.
Persistent keys have a key identifier of type psa_key_id_t. This identifier remains valid throughout thelifetime of the key, even if the application instance that created the key terminates.
This specification defines two basic lifetime values:

∙ Keys with the lifetime PSA_KEY_LIFETIME_VOLATILE are volatile. All implementations should support thislifetime.
∙ Keys with the lifetime PSA_KEY_LIFETIME_PERSISTENT are persistent. All implementations that haveaccess to persistent storage with appropriate security guarantees should support this lifetime.

psa_key_persistence_t (typedef)
Encoding of key persistence levels.
typedef uint8_t psa_key_persistence_t;

What distinguishes different persistence levels is which device management events can cause keys to bedestroyed. For example, power reset, transfer of device ownership, or a factory reset are devicemanagement events that can affect keys at different persistence levels. The specific management eventswhich affect persistent keys at different levels is outside the scope of the Crypto API.
Values for persistence levels defined by Crypto API are shown in Table 12.

Table 12 Key persistence level values
Persistence level Definition

0 = PSA_KEY_PERSISTENCE_VOLATILE Volatile key.
A volatile key is automatically destroyed by theimplementation when the application instance terminates. Inparticular, a volatile key is automatically destroyed on a powerreset of the device.

continues on next page

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 92

Table 12 – continued from previous page

Persistence level Definition

1 = PSA_KEY_PERSISTENCE_DEFAULT Persistent key with a default lifetime.
Implementations should support this value if they supportpersistent keys at all. Applications should use this value if theyhave no specific needs that are only met byimplementation-specific features.

2 - 127 Persistent key with a PSA Certified API-specified lifetime.
The Crypto API does not define the meaning of these values,but another PSA Certified API may do so.

128 - 254 Persistent key with a vendor-specified lifetime.
No PSA Certified API will define the meaning of these values,so implementations may choose the meaning freely. As aguideline, higher persistence levels should cause a key tosurvive more management events than lower levels.

255 = PSA_KEY_PERSISTENCE_READ_ONLY Read-only or write-once key.
A key with this persistence level cannot be destroyed.Implementations that support such keys may either allowtheir creation through the Crypto API, preferably only toapplications with the appropriate privilege, or only exposekeys created through implementation-specific means such asa factory ROM engraving process.
Note that keys that are read-only due to policy restrictionsrather than due to physical limitations should not have thispersistence level.

Note:
Key persistence levels are 8-bit values. Key management interfaces operate on lifetimes (type
psa_key_lifetime_t), and encode the persistence value as the lower 8 bits of a 32-bit value.

psa_key_location_t (typedef)
Encoding of key location indicators.
typedef uint32_t psa_key_location_t;

If an implementation of the Crypto API can make calls to external cryptoprocessors such as secureelements, the location of a key indicates which secure element performs the operations on the key. If thekey material is not stored persistently inside the secure element, it must be stored in a wrapped form suchthat only the secure element can access the key material in cleartext.
Values for location indicators defined by this specification are shown in Table 13 on page 94.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 93

Table 13 Key location indicator values
Location indicator Definition

0 Primary local storage.
All implementations should support this value. The primary local storage istypically the same storage area that contains the key metadata.

1 Primary secure element.
Implementations should support this value if there is a secure elementattached to the operating environment. As a guideline, secure elements mayprovide higher resistance against side channel and physical attacks than theprimary local storage, but may have restrictions on supported key types, sizes,policies and operations and may have different performance characteristics.

2 - 0x7fffff Other locations defined by a PSA specification.
The Crypto API does not currently assign any meaning to these locations, butfuture versions of this specification or other PSA Certified APIs may do so.

0x800000 - 0xffffff Vendor-defined locations.
No PSA Certified API will assign a meaning to locations in this range.

Note:
Key location indicators are 24-bit values. Key management interfaces operate on lifetimes (type
psa_key_lifetime_t), and encode the location as the upper 24 bits of a 32-bit value.

9.6.4 Lifetime values
PSA_KEY_LIFETIME_VOLATILE (macro)
The default lifetime for volatile keys.
#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)

A volatile key only exists as long as its identifier is not destroyed. The key material is guaranteed to beerased on a power reset.
A key with this lifetime is typically stored in the RAM area of the Crypto API implementation. However thisis an implementation choice. If an implementation stores data about the key in a non-volatile memory, itmust release all the resources associated with the key and erase the key material if the calling applicationterminates.
PSA_KEY_LIFETIME_PERSISTENT (macro)
The default lifetime for persistent keys.
#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)

A persistent key remains in storage until it is explicitly destroyed or until the corresponding storage area iswiped. This specification does not define any mechanism to wipe a storage area. Implementations are
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 94

permitted to provide their own mechanism, for example, to perform a factory reset, to prepare for devicerefurbishment, or to uninstall an application.
This lifetime value is the default storage area for the calling application. Implementations can offer otherstorage areas designated by other lifetime values as implementation-specific extensions.
PSA_KEY_PERSISTENCE_VOLATILE (macro)
The persistence level of volatile keys.
#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)

See psa_key_persistence_t for more information.
PSA_KEY_PERSISTENCE_DEFAULT (macro)
The default persistence level for persistent keys.
#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)

See psa_key_persistence_t for more information.
PSA_KEY_PERSISTENCE_READ_ONLY (macro)
A persistence level indicating that a key is never destroyed.
#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)

See psa_key_persistence_t for more information.
PSA_KEY_LOCATION_LOCAL_STORAGE (macro)
The local storage area for persistent keys.
#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)

This storage area is available on all systems that can store persistent keys without delegating the storage toa third-party cryptoprocessor.
See psa_key_location_t for more information.
PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT (macro)
The default secure element storage area for persistent keys.
#define PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT ((psa_key_location_t) 0x000001)

This storage location is available on systems that have one or more secure elements that are able to storekeys.
Vendor-defined locations must be provided by the system for storing keys in additional secure elements.
See psa_key_location_t for more information.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 95

9.6.5 Attribute accessors
psa_set_key_lifetime (function)
Set the lifetime of a key, for a persistent key or a non-default location.
void psa_set_key_lifetime(psa_key_attributes_t * attributes,

psa_key_lifetime_t lifetime);

Parameters
attributes The attribute object to write to.
lifetime The lifetime for the key.

If this is a volatile lifetime (such that
PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) is true), the key identifierattribute is reset to PSA_KEY_ID_NULL.

Returns: void
Description
To make a key persistent, give it a persistent key identifier by using psa_set_key_id(). By default, a key thathas a persistent identifier is stored in the default storage area identifier by PSA_KEY_LIFETIME_PERSISTENT. Callthis function to choose a specific storage area, or to explicitly declare the key as volatile.
This function does not access storage, it merely stores the given value in the attribute object. The persistentkey will be written to storage when the attribute object is passed to a key creation function such as
psa_import_key(), psa_generate_key(), psa_generate_key_custom(), psa_key_derivation_output_key(),
psa_key_derivation_output_key_custom(), psa_key_agreement(), psa_encapsulate(), psa_decapsulate(),
psa_pake_get_shared_key(), or psa_copy_key().

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

psa_get_key_lifetime (function)
Retrieve the lifetime from key attributes.
psa_key_lifetime_t psa_get_key_lifetime(const psa_key_attributes_t * attributes);

Parameters
attributes The key attribute object to query.

Returns: psa_key_lifetime_t
The lifetime value stored in the attribute object.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 96

Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

9.6.6 Support macros
PSA_KEY_LIFETIME_GET_PERSISTENCE (macro)
Extract the persistence level from a key lifetime.
#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \

((psa_key_persistence_t) ((lifetime) & 0x000000ff))

Parameters
lifetime The lifetime value to query: a value of type psa_key_lifetime_t.

PSA_KEY_LIFETIME_GET_LOCATION (macro)
Extract the location indicator from a key lifetime.
#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \

((psa_key_location_t) ((lifetime) >> 8))

Parameters
lifetime The lifetime value to query: a value of type psa_key_lifetime_t.

PSA_KEY_LIFETIME_IS_VOLATILE (macro)
Whether a key lifetime indicates that the key is volatile.
#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \

(PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == PSA_KEY_PERSISTENCE_VOLATILE)

Parameters
lifetime The lifetime value to query: a value of type psa_key_lifetime_t.

Returns
1 if the key is volatile, otherwise 0.
Description
A volatile key is automatically destroyed by the implementation when the application instance terminates. Inparticular, a volatile key is automatically destroyed on a power reset of the device.
A key that is not volatile is persistent. Persistent keys are preserved until the application explicitly destroysthem or until an implementation-specific device management event occurs, for example, a factory reset.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 97

PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION (macro)
Construct a lifetime from a persistence level and a location.
#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \

((location) << 8 | (persistence))

Parameters
persistence The persistence level: a value of type psa_key_persistence_t.
location The location indicator: a value of type psa_key_location_t.

Returns
The constructed lifetime value.

9.7 Key identifiers
Key identifiers are integral values that act as permanent names for persistent keys, or as transientreferences to volatile keys. Key identifiers use the psa_key_id_t type, and the range of identifier values isdivided as follows:

PSA_KEY_ID_NULL = 0Reserved as an invalid key identifier.
PSA_KEY_ID_USER_MIN - PSA_KEY_ID_USER_MAXApplications can freely choose persistent key identifiers in this range.
PSA_KEY_ID_VENDOR_MIN - PSA_KEY_ID_VENDOR_MAXImplementations can define additional persistent key identifiers in this range, and mustallocate any volatile key identifiers from this range.

Key identifiers outside these ranges are reserved for future use.
Key identifiers are output from a successful call to one of the key creation functions. For persistent keys,this is the same identifier as the one specified in the key attributes used to create the key. The key identifierremains valid until it is invalidated by passing it to psa_destroy_key(). A volatile key identifier must not beused after it has been invalidated.
If an invalid key identifier is provided as a parameter in any function, the function will return
PSA_ERROR_INVALID_HANDLE; except for the special case of calling psa_destroy_key(PSA_KEY_ID_NULL), whichhas no effect and always returns PSA_SUCCESS.
Valid key identifiers must have distinct values within the same application. If the implementation providescaller isolation, then key identifiers are local to each application. That is, the same key identifier in twoapplications corresponds to two different keys.

9.7.1 Key identifier type
psa_key_id_t (typedef)
Key identifier.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 98

typedef uint32_t psa_key_id_t;

A key identifier can be a permanent name for a persistent key, or a transient reference to volatile key. SeeKey identifiers on page 98.
PSA_KEY_ID_NULL (macro)
The null key identifier.
#define PSA_KEY_ID_NULL ((psa_key_id_t)0)

The null key identifier is always invalid, except when used without in a call to psa_destroy_key() which willreturn PSA_SUCCESS.
PSA_KEY_ID_USER_MIN (macro)
The minimum value for a key identifier chosen by the application.
#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)

PSA_KEY_ID_USER_MAX (macro)
The maximum value for a key identifier chosen by the application.
#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)

PSA_KEY_ID_VENDOR_MIN (macro)
The minimum value for a key identifier chosen by the implementation.
#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)

PSA_KEY_ID_VENDOR_MAX (macro)
The maximum value for a key identifier chosen by the implementation.
#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)

9.7.2 Attribute accessors
psa_set_key_id (function)
Declare a key as persistent and set its key identifier.
void psa_set_key_id(psa_key_attributes_t * attributes,

psa_key_id_t id);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 99

Parameters
attributes The attribute object to write to.
id The persistent identifier for the key.

Returns: void
Description
The application must choose a value for id between PSA_KEY_ID_USER_MIN and PSA_KEY_ID_USER_MAX.
If the attribute object currently declares the key as volatile, this function sets the persistence level in thelifetime attribute to PSA_KEY_PERSISTENCE_DEFAULT without changing the key location. See Key lifetimes onpage 90.
This function does not access storage, it merely stores the given value in the attribute object. The persistentkey will be written to storage when the attribute object is passed to a key creation function such as
psa_import_key(), psa_generate_key(), psa_generate_key_custom(), psa_key_derivation_output_key(),
psa_key_derivation_output_key_custom(), psa_key_agreement(), psa_encapsulate(), psa_decapsulate(),
psa_pake_get_shared_key(), or psa_copy_key().

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

psa_get_key_id (function)
Retrieve the key identifier from key attributes.
psa_key_id_t psa_get_key_id(const psa_key_attributes_t * attributes);

Parameters
attributes The key attribute object to query.

Returns: psa_key_id_t
The persistent identifier stored in the attribute object. This value is unspecified if the attribute objectdeclares the key as volatile.
Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

9.8 Key policies
All keys have an associated policy that regulates which operations are permitted on the key. A key policy iscomposed of two elements:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 100

∙ A set of usage flags. See Key usage flags on page 102.
∙ A specific algorithm that is permitted with the key. See Permitted algorithms.

The policy is part of the key attributes that are managed by a psa_key_attributes_t object.
A highly constrained implementation might not be able to support all the policies that can be expressedthrough this interface. If an implementation cannot create a key with the required policy, it must return anappropriate error code when the key is created.

9.8.1 Permitted algorithms
The permitted algorithm is encoded using a algorithm identifier, as described in Algorithms on page 130.
For most algorithms, this specification only defines policies that restrict keys to a single algorithm, which isconsistent with both common practice and security good practice.
If the permitted algorithm is PSA_ALG_NONE, no cryptographic operation is permitted with the key. The keycan still be used for non-cryptographic actions such as exporting, if permitted by the usage flags.
For a cryptographic operation, the permitted algorithm value must exactly match the requested algorithm,except in the following cases:

∙ The following pairs of signature algorithms are considered equivalent for verification, but not forcomputing the signature:
— PSA_ALG_ECDSA and PSA_ALG_DETERMINISTIC_ECDSA.

∙ A signature algorithm constructed with PSA_ALG_ANY_HASH permits the specified signature scheme withany hash algorithm. In addition, PSA_ALG_RSA_PKCS1V15_SIGN(PSA_ALG_ANY_HASH) also permits the
PSA_ALG_RSA_PKCS1V15_SIGN_RAW signature algorithm.

∙ A standalone key-agreement algorithm also permits the specified key-agreement scheme to becombined with any key-derivation algorithm.
∙ An algorithm built from PSA_ALG_AT_LEAST_THIS_LENGTH_MAC() permits any MAC algorithm from thesame base class (for example, CMAC) which computes or verifies a MAC length greater than or equalto the length encoded in the wildcard algorithm.
∙ An algorithm built from PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG() permits any AEAD algorithmfrom the same base class (for example, CCM) which computes or verifies a tag length greater than orequal to the length encoded in the wildcard algorithm.
∙ The PSA_ALG_CCM_STAR_ANY_TAG wildcard algorithm permits the PSA_ALG_CCM_STAR_NO_TAG cipheralgorithm, the PSA_ALG_CCM AEAD algorithm, and the PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM,

tag_length) truncated-tag AEAD algorithm for tag_length equal to 4, 8 or 16.
∙ The wildcard key policy PSA_ALG_WPA3_SAE_ANY permits a password key or WPA3-SAE password tokenkey to be used with any WPA3-SAE cipher suite.

When a key is used in a cryptographic operation, the application supplies the algorithm to use for theoperation. The algorithm and operation are checked against the key’s permitted-algorithm policy.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 101

psa_set_key_algorithm (function)
Declare the permitted-algorithm policy for a key.
void psa_set_key_algorithm(psa_key_attributes_t * attributes,

psa_algorithm_t alg);

Parameters
attributes The attribute object to write to.
alg The permitted algorithm to write.

Returns: void
Description
The permitted-algorithm policy of a key encodes which algorithm or algorithms are permitted to be usedwith this key.
This function overwrites any permitted-algorithm policy previously set in attributes.

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

psa_get_key_algorithm (function)
Retrieve the permitted-algorithm policy from key attributes.
psa_algorithm_t psa_get_key_algorithm(const psa_key_attributes_t * attributes);

Parameters
attributes The key attribute object to query.

Returns: psa_algorithm_t
The algorithm stored in the attribute object.
Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

9.8.2 Key usage flags
The usage flags are encoded in a bitmask, which has the type psa_key_usage_t. There are two kinds of usageflag:

1. Key-management usage flags.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 102

∙ The extractable flag PSA_KEY_USAGE_EXPORT determines whether the key material can be extractedfrom the cryptoprocessor, or copied outside of its current security boundary.
∙ The copyable flag PSA_KEY_USAGE_COPY determines whether the key material can be copied into anew key, which can have a different lifetime or a more restrictive policy.
∙ The cacheable flag PSA_KEY_USAGE_CACHE determines whether the implementation is permitted toretain non-essential copies of the key material in RAM. This policy only applies to persistent keys.See also Managing key material on page 42.

2. Cryptographic-operation usage flags.
The following usage flags determine whether the corresponding cryptographic operations arepermitted with the key:

∙ PSA_KEY_USAGE_ENCRYPT

∙ PSA_KEY_USAGE_DECRYPT

∙ PSA_KEY_USAGE_SIGN_MESSAGE

∙ PSA_KEY_USAGE_VERIFY_MESSAGE

∙ PSA_KEY_USAGE_SIGN_HASH

∙ PSA_KEY_USAGE_VERIFY_HASH

∙ PSA_KEY_USAGE_DERIVE

∙ PSA_KEY_USAGE_VERIFY_DERIVATION

∙ PSA_KEY_USAGE_WRAP

∙ PSA_KEY_USAGE_UNWRAP

The flag PSA_KEY_USAGE_DERIVE_PUBLIC is used in the function psa_check_key_usage() to query if a keycan be used for the public role in the specified algorithm.
psa_key_usage_t (typedef)
Encoding of permitted usage on a key.
typedef uint32_t psa_key_usage_t;

PSA_KEY_USAGE_EXPORT (macro)
Permission to export the key.
#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)

This key-management usage flag permits a key to be moved outside of the security boundary of its currentstorage location. In particular:
∙ This flag is required to export a key from the cryptoprocessor using psa_export_key(). A public key orthe public part of a key pair can always be exported regardless of the value of this permission flag.
∙ This flag can also be required to make a copy of a key outside of a secure element using

psa_copy_key(). See also PSA_KEY_USAGE_COPY.
If a key does not have export permission, implementations must not permit the key to be exported in plainform from the cryptoprocessor, whether through psa_export_key() or through a proprietary interface. Thekey might still be exportable in a wrapped form, i.e. in a form where it is encrypted by another key.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 103

PSA_KEY_USAGE_COPY (macro)
Permission to copy the key.
#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)

This key-management usage flag is required to make a copy of a key using psa_copy_key().
For a key lifetime that corresponds to a secure element location that enforces the non-exportability of keys,copying a key outside the secure element also requires the usage flag PSA_KEY_USAGE_EXPORT. Copying thekey within the secure element is permitted with just PSA_KEY_USAGE_COPY, if the secure element supports it.For keys with the lifetime PSA_KEY_LIFETIME_VOLATILE or PSA_KEY_LIFETIME_PERSISTENT, the usage flag
PSA_KEY_USAGE_COPY is sufficient to permit the copy.
PSA_KEY_USAGE_CACHE (macro)
Permission for the implementation to cache the key.
#define PSA_KEY_USAGE_CACHE ((psa_key_usage_t)0x00000004)

This key-management usage flag permits the implementation to make additional copies of the key materialthat are not in storage and not for the purpose of an ongoing operation. Applications can use it as a hint forthe cryptoprocessor, to keep a copy of the key around for repeated access.
An application can request that cached key material is removed from memory by calling psa_purge_key().
The presence of this usage flag when creating a key is a hint:

∙ An implementation is not required to cache keys that have this usage flag.
∙ An implementation must not report an error if it does not cache keys.

If this usage flag is not present, the implementation must ensure key material is removed from memory assoon as it is not required for an operation, or for maintenance of a volatile key.
This flag must be preserved when reading back the attributes for all keys, regardless of key type orimplementation behavior.
See also Managing key material on page 42.
PSA_KEY_USAGE_ENCRYPT (macro)
Permission to encrypt a message, or perform key encapsulation, with the key.
#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)

This cryptographic-operation usage flag is required to use the key in a symmetric encryption operation, inan AEAD encryption-and-authentication operation, in an asymmetric encryption operation, or in akey-encapsulation operation. The flag must be present on keys used with the following APIs:
∙ psa_cipher_encrypt()

∙ psa_cipher_encrypt_setup()

∙ psa_aead_encrypt()

∙ psa_aead_encrypt_setup()

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 104

∙ psa_asymmetric_encrypt()

∙ psa_encapsulate()

For a key pair, this concerns the public key.
PSA_KEY_USAGE_DECRYPT (macro)
Permission to decrypt a message, or perform key decapsulation, with the key.
#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)

This cryptographic-operation usage flag is required to use the key in a symmetric decryption operation, inan AEAD decryption-and-verification operation, in an asymmetric decryption operation, or in akey-decapsulation operation. The flag must be present on keys used with the following APIs:
∙ psa_cipher_decrypt()

∙ psa_cipher_decrypt_setup()

∙ psa_aead_decrypt()

∙ psa_aead_decrypt_setup()

∙ psa_asymmetric_decrypt()

∙ psa_decapsulate()

For a key pair, this concerns the private key.
PSA_KEY_USAGE_SIGN_MESSAGE (macro)
Permission to sign a message with the key.
#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)

This cryptographic-operation usage flag is required to use the key in a MAC calculation operation, or in anasymmetric message signature operation. The flag must be present on keys used with the following APIs:
∙ psa_mac_compute()

∙ psa_mac_sign_setup()

∙ psa_sign_message()

For a key pair, this concerns the private key.
PSA_KEY_USAGE_VERIFY_MESSAGE (macro)
Permission to verify a message signature with the key.
#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)

This cryptographic-operation usage flag is required to use the key in a MAC verification operation, or in anasymmetric message signature verification operation. The flag must be present on keys used with thefollowing APIs:
∙ psa_mac_verify()

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 105

∙ psa_mac_verify_setup()

∙ psa_verify_message()

For a key pair, this concerns the public key.
PSA_KEY_USAGE_SIGN_HASH (macro)
Permission to sign a message hash with the key.
#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)

This cryptographic-operation usage flag is required to use the key to sign a pre-computed message hash inan asymmetric signature operation. The flag must be present on keys used with the following APIs:
∙ psa_sign_hash()

This flag automatically sets PSA_KEY_USAGE_SIGN_MESSAGE: if an application sets the flag
PSA_KEY_USAGE_SIGN_HASH when creating a key, then the key always has the permissions conveyed by
PSA_KEY_USAGE_SIGN_MESSAGE, and the flag PSA_KEY_USAGE_SIGN_MESSAGE will also be present when theapplication queries the usage flags of the key.
For a key pair, this concerns the private key.
PSA_KEY_USAGE_VERIFY_HASH (macro)
Permission to verify a message hash with the key.
#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)

This cryptographic-operation usage flag is required to use the key to verify a pre-computed message hash inan asymmetric signature verification operation. The flag must be present on keys used with the followingAPIs:
∙ psa_verify_hash()

This flag automatically sets PSA_KEY_USAGE_VERIFY_MESSAGE: if an application sets the flag
PSA_KEY_USAGE_VERIFY_HASH when creating a key, then the key always has the permissions conveyed by
PSA_KEY_USAGE_VERIFY_MESSAGE, and the flag PSA_KEY_USAGE_VERIFY_MESSAGE will also be present when theapplication queries the usage flags of the key.
For a key pair, this concerns the public key.
PSA_KEY_USAGE_DERIVE (macro)
Permission to derive other keys or produce a password hash from this key.
#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)

This cryptographic-operation usage flag is required to use the key for derivation in a key-derivationoperation, or in a key-agreement operation.
This flag must be present on keys used with the following APIs:

∙ psa_key_agreement()

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 106

∙ psa_key_derivation_key_agreement()

∙ psa_raw_key_agreement()

If this flag is present on all keys used in calls to psa_key_derivation_input_key() for a key-derivationoperation, then it permits calling psa_key_derivation_output_bytes(), psa_key_derivation_output_key(),
psa_key_derivation_output_key_custom(), psa_key_derivation_verify_bytes(), or
psa_key_derivation_verify_key() at the end of the operation.
PSA_KEY_USAGE_VERIFY_DERIVATION (macro)
Permission to verify the result of a key derivation, including password hashing.
Added in version 1.1.
#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)

This cryptographic-operation usage flag is required to use the key for verification in a key-derivationoperation.
This flag must be present on keys used with psa_key_derivation_verify_key().
If this flag is present on all keys used in calls to psa_key_derivation_input_key() for a key-derivationoperation, then it permits calling psa_key_derivation_verify_bytes() or psa_key_derivation_verify_key() atthe end of the operation.
PSA_KEY_USAGE_DERIVE_PUBLIC (macro)
Used in the psa_check_key_usage() function to determine if the key can be used in the public key role in akey-agreement or a PAKE operation.
Added in version 1.4.
#define PSA_KEY_USAGE_DERIVE_PUBLIC ((psa_key_usage_t)0x00000080)

This cryptographic-operation usage flag is only used with the psa_check_key_usage() function. This flag isnot currently checked when performing any cryptographic operation.
For example, calling psa_check_key_usage() with PSA_KEY_USAGE_DERIVE_PUBLIC and with:

∙ PSA_ALG_ECDH checks that the key can be used as the public share in the ECDH key agreement. Thereare no checks on permissions as the key share is provided in a buffer.
∙ PSA_ALG_SPAKE2P_HMAC will check that the key can be used in the Verifier role in the SPAKE2+algorithm. The key must have the PSA_KEY_USAGE_DERIVE permission.
∙ PSA_ALG_HKDF is invalid, as there is no such role in single-key derivation algorithms.

PSA_KEY_USAGE_WRAP (macro)
Permission to wrap another key with the key.
#define PSA_KEY_USAGE_WRAP ((psa_key_usage_t)0x00010000)

This flag is required to use the key in a key-wrapping operation. The flag must be present on keys used withthe following APIs:
∙ psa_wrap_key()

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 107

PSA_KEY_USAGE_UNWRAP (macro)
Permission to unwrap another key with the key.
#define PSA_KEY_USAGE_UNWRAP ((psa_key_usage_t)0x00020000)

This flag is required to use the key in a key-unwrapping operation. The flag must be present on keys usedwith the following APIs:
∙ psa_unwrap_key()

psa_set_key_usage_flags (function)
Declare usage flags for a key.
void psa_set_key_usage_flags(psa_key_attributes_t * attributes,

psa_key_usage_t usage_flags);

Parameters
attributes The attribute object to write to.
usage_flags The usage flags to write.

Returns: void
Description
Usage flags are part of a key’s policy. They encode what kind of operations are permitted on the key. Formore details, see Key policies on page 100.
This function overwrites any usage flags previously set in attributes.

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

psa_get_key_usage_flags (function)
Retrieve the usage flags from key attributes.
psa_key_usage_t psa_get_key_usage_flags(const psa_key_attributes_t * attributes);

Parameters
attributes The key attribute object to query.

Returns: psa_key_usage_t
The usage flags stored in the attribute object.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 108

Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like-macro.

psa_check_key_usage (function)
Query the capability of a key.
Added in version 1.4.
psa_status_t psa_check_key_usage(psa_key_id_t key,

psa_algorithm_t alg,
psa_key_usage_t usage);

Parameters
key Identifier of the key to check.
alg An algorithm identifier: a value of type psa_algorithm_t.
usage A single PSA_KEY_USAGE_xxx flag.

Returns: psa_status_t
PSA_SUCCESS key can be used for the requested operation on this implementation.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ usage is a key-management usage flag and alg is not PSA_ALG_NONE.
∙ usage is a cryptographic-operation usage flag and alg is not avalid, specific algorithm. A ‘specific algorithm’ is one that isneither PSA_ALG_NONE nor a wildcard algorithm.
∙ usage is not a valid role for algorithm alg.
∙ key is not compatible with alg and usage.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ The implementation does not support algorithm alg.
∙ The implementation does not support using key with theoperation associated with alg and usage.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 109

Description
This function reports whether the implementation supports the use of a key with the operation associatedwith a provided algorithm and usage. This function does not attempt to perform the operation.
If usage is a key-management usage flag, then:

∙ alg must be PSA_ALG_NONE.
∙ key must exist, and permit the requested usage flag.

If usage is a cryptographic-operation usage flag, then:
∙ alg must be a valid, fully specified algorithm, and not a wildcard. For example:

— PSA_ALG_ECDSA(PSA_ALG_ANY_HASH) is invalid as it is a wildcard algorithm.
— PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_GCM, 9) is invalid as it has an invalid tag-length forGCM.
— PSA_ALG_SPAKE2P_HMAC(PSA_ALG_SHA_1) is invalid as SPAKE2+ does have SHA-1 in any cipher-suite.

∙ usage must identify a valid role within the algorithm. For example, if alg == PSA_ALG_GCM, the usagemust be either PSA_KEY_USAGE_ENCRYPT or PSA_KEY_USAGE_DECRYPT, as these are the key-usage policyflags for AEAD functions.
∙ key must exist, have a type and size that are compatible with the operation associated with alg and

usage, and have the required permission for the algorithm and usage. For example:
— An Edwards25519 key pair is not compatible with PSA_ALG_ECDSA(PSA_ALG_SHA_256).
— A 512-bit RSA key pair is not compatible with PSA_ALG_RSA_OAEP(PSA_ALG_SHA_512) as thealgorithm requires a larger key size.
— A 512-bit AES key (double-length key for use in AES-256-XTS) is not compatible with PSA_ALG_CTR.

Note:
For the key pair or public key of a valid type in a key agreement function, this function returns
PSA_SUCCESS for the usage PSA_KEY_USAGE_DERIVE_PUBLIC, regardless of the key’s policy. This is becausethe corresponding API functions take a key buffer as input, not a key object, and the key data canextracted by calling psa_export_public_key(), which does not require any usage flag.

Implementation note
The intended behavior of this function is to include any check that can be made using the accessiblekey attributes, but without requiring logic or arithmetic using the key material.

9.9 Key management functions
9.9.1 Key creation
New keys can be created in the following ways:

∙ psa_import_key() creates a key from a data buffer provided by the application.
∙ psa_generate_key() and psa_generate_key_custom() create a key from randomly generated data.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 110

∙ psa_key_derivation_output_key() and psa_key_derivation_output_key_custom() create a key from datagenerated by a pseudorandom derivation process. See Key derivation on page 244.
∙ psa_key_agreement() creates a key from the shared secret result of a key-agreement process. See Keyagreement on page 317.
∙ psa_encapsulate() and psa_decapsulate() create a shared secret key using a key-encapsulationmechanism.
∙ psa_pake_get_shared_key() creates a key from the shared secret result of a password-authenticatedkey exchange. See Password-authenticated key exchange (PAKE) on page 338.
∙ psa_copy_key() duplicates an existing key with a different lifetime or with a more restrictive usagepolicy.
∙ psa_attach_key() registers implementation-provided key material for use as a volatile key.

When creating a key, the attributes for the new key are specified in a psa_key_attributes_t object. Each keycreation function defines how it uses the attributes.
Note:
The attributes for a key are immutable after the key has been created.
The application must set the key algorithm policy and the appropriate key usage flags in the attributesin order for the key to be used in any cryptographic operations.

psa_import_key (function)
Import a key in binary format.
psa_status_t psa_import_key(const psa_key_attributes_t * attributes,

const uint8_t * data,
size_t data_length,
psa_key_id_t * key);

Parameters
attributes The attributes for the new key.

The following attributes are required for all keys:
∙ The key type determines how the data buffer is interpreted.

The following attributes must be set for keys used in cryptographicoperations:
∙ The key permitted-algorithm policy, see Permitted algorithms onpage 101.
∙ The key usage flags, see Key usage flags on page 102.

The following attributes must be set for keys that do not use thedefault PSA_KEY_LIFETIME_VOLATILE lifetime:
∙ The key lifetime, see Key lifetimes on page 90.
∙ The key identifier is required for a key with a persistent lifetime,see Key identifiers on page 98.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 111

The following attributes are optional:
∙ If the key size is nonzero, it must be equal to the key sizedetermined from data.

Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queried bycalling psa_get_key_attributes() with the key’s identifier.

data Buffer containing the key data. The content of this buffer isinterpreted according to the type declared in attributes.
All implementations must support at least the format described in theKey format section of the chosen key type. Implementations cansupport other formats, but be conservative in interpreting the keydata: it is recommended that implementations reject content if it mightbe erroneous, for example, if it is the wrong type or is truncated.

data_length Size of the data buffer in bytes.
key On success, an identifier for the newly created key. PSA_KEY_ID_NULL onfailure.

Returns: psa_status_t
PSA_SUCCESS Success. If the key is persistent, the key material and the key’smetadata have been saved to persistent storage.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_NOT_PERMITTED The implementation does not permit creating a key with the specifiedattributes due to some implementation-specific policy.
PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ The key type is invalid.
∙ The key size is nonzero, and is incompatible with the key data in

data.
∙ The key lifetime is invalid.
∙ The key identifier is not valid for the key lifetime.
∙ The key usage flags include invalid values.
∙ The key’s permitted-usage algorithm is invalid.
∙ The key attributes, as a whole, are invalid.
∙ The key data is not correctly formatted for the key type.

PSA_ERROR_NOT_SUPPORTED The key attributes, as a whole, are not supported, either by theimplementation in general or in the specified storage location.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 112

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The key is extracted from the provided data buffer. Its location, policy, and type are taken from attributes.
The provided key data determines the key size. The attributes can optionally specify a key size; in this caseit must match the size determined from the key data. A key size of 0 in attributes — the default value —indicates that the key size is solely determined by the key data.
Implementations must reject an attempt to import a key of size 0.
This function supports any output from psa_export_key(). Each key type in Key types on page 53 describesthe expected format of keys.
This specification defines a single format for each key type. Implementations can optionally support otherformats in addition to the standard format. It is recommended that implementations that support otherformats ensure that the formats are clearly unambiguous, to minimize the risk that an invalid input isaccidentally interpreted according to a different format.

Note:
The Crypto API does not support asymmetric private-key objects outside of a key pair. To import aprivate key, the attributes must specify the corresponding key-pair type. Depending on the key type,either the import format contains the public-key data or the implementation will reconstruct thepublic key from the private key as needed.

psa_custom_key_parameters_t (struct)
Custom production parameters for key generation or key derivation.
Added in version 1.3.
typedef struct psa_custom_key_parameters_t {

uint32_t flags;
} psa_custom_key_parameters_t;

Fields
flags Flags to control the key production process. 0 for the defaultproduction parameters.

Description

Note:
Future versions of the specification, and implementations, may add other fields in this structure.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 113

The interpretation of this structure depends on the type of the key. Table 14 shows the custom productionparameters for each type of key. See the key type definitions for details of the valid parameter values.
Table 14 Custom key parameters

Key type Custom key parameters

RSA Use the production parameters to select an exponent value that is different fromthe default value of 65537.
See PSA_KEY_TYPE_RSA_KEY_PAIR.

Other key types Reserved for future use.
flags must be 0.

PSA_CUSTOM_KEY_PARAMETERS_INIT (macro)
The default production parameters for key generation or key derivation.
Added in version 1.3.
#define PSA_CUSTOM_KEY_PARAMETERS_INIT { 0 }

Calling psa_generate_key_custom() or psa_key_derivation_output_key_custom() with custom ==
PSA_CUSTOM_KEY_PARAMETERS_INIT and custom_data_length == 0 is equivalent to calling psa_generate_key() or
psa_key_derivation_output_key() respectively.
psa_generate_key (function)
Generate a key or key pair.
psa_status_t psa_generate_key(const psa_key_attributes_t * attributes,

psa_key_id_t * key);

Parameters
attributes The attributes for the new key.

The following attributes are required for all keys:
∙ The key type. It must not be an asymmetric public key.
∙ The key size. It must be a valid size for the key type.

The following attributes must be set for keys used in cryptographicoperations:
∙ The key permitted-algorithm policy, see Permitted algorithms onpage 101.
∙ The key usage flags, see Key usage flags on page 102.

The following attributes must be set for keys that do not use thedefault PSA_KEY_LIFETIME_VOLATILE lifetime:
∙ The key lifetime, see Key lifetimes on page 90.
∙ The key identifier is required for a key with a persistent lifetime,see Key identifiers on page 98.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 114

Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queried bycalling psa_get_key_attributes() with the key’s identifier.

key On success, an identifier for the newly created key. For persistentkeys, this is the key identifier defined in attributes. PSA_KEY_ID_NULLon failure.
Returns: psa_status_t

PSA_SUCCESS Success. If the key is persistent, the key material and the key’smetadata have been saved to persistent storage.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_NOT_PERMITTED The implementation does not permit creating a key with the specifiedattributes due to some implementation-specific policy.
PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ The key type is invalid, or is an asymmetric public-key type.
∙ The key size is not valid for the key type.
∙ The key lifetime is invalid.
∙ The key identifier is not valid for the key lifetime.
∙ The key usage flags include invalid values.
∙ The key’s permitted-usage algorithm is invalid.
∙ The key attributes, as a whole, are invalid.

PSA_ERROR_NOT_SUPPORTED The key attributes, as a whole, are not supported, either by theimplementation in general or in the specified storage location.
PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 115

Description
The key is generated randomly. Its location, policy, type and size are taken from attributes.
Implementations must reject an attempt to generate a key of size 0.
The key type definitions in Key types on page 53 provide specific details relating to generation of the key.

Note:
This function is equivalent to calling psa_generate_key_custom() with the production parameters
PSA_CUSTOM_KEY_PARAMETERS_INIT and custom_data_length == 0 (custom_data is ignored).

psa_generate_key_custom (function)
Generate a key or key pair using custom production parameters.
Added in version 1.3.
psa_status_t psa_generate_key_custom(const psa_key_attributes_t * attributes,

const psa_custom_key_parameters_t * custom,
const uint8_t * custom_data,
size_t custom_data_length,
psa_key_id_t * key);

Parameters
attributes The attributes for the new key.

The following attributes are required for all keys:
∙ The key type. It must not be an asymmetric public key.
∙ The key size. It must be a valid size for the key type.

The following attributes must be set for keys used in cryptographicoperations:
∙ The key permitted-algorithm policy, see Permitted algorithms onpage 101.
∙ The key usage flags, see Key usage flags on page 102.

The following attributes must be set for keys that do not use thedefault PSA_KEY_LIFETIME_VOLATILE lifetime:
∙ The key lifetime, see Key lifetimes on page 90.
∙ The key identifier is required for a key with a persistent lifetime,see Key identifiers on page 98.

Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queried bycalling psa_get_key_attributes() with the key’s identifier.

custom Customized production parameters for the key generation.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 116

When this is PSA_CUSTOM_KEY_PARAMETERS_INIT with custom_data_length
== 0, this function is equivalent to psa_generate_key().

custom_data A buffer containing additional variable-sized production parameters.
custom_data_length Length of custom_data in bytes.
key On success, an identifier for the newly created key. For persistentkeys, this is the key identifier defined in attributes. PSA_KEY_ID_NULLon failure.

Returns: psa_status_t
PSA_SUCCESS Success. If the key is persistent, the key material and the key’smetadata have been saved to persistent storage.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_NOT_PERMITTED The implementation does not permit creating a key with the specifiedattributes due to some implementation-specific policy.
PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ The key type is invalid, or is an asymmetric public-key type.
∙ The key size is not valid for the key type.
∙ The key lifetime is invalid.
∙ The key identifier is not valid for the key lifetime.
∙ The key usage flags include invalid values.
∙ The key’s permitted-usage algorithm is invalid.
∙ The key attributes, as a whole, are invalid.
∙ The production parameters are invalid.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ The key attributes, as a whole, are not supported, either by theimplementation in general or in the specified storage location.
∙ The production parameters are not supported by theimplementation.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 117

Description
Use this function to provide explicit production parameters when generating a key. See the description of
psa_generate_key() for the operation of this function with the default production parameters.
The key is generated randomly. Its location, policy, type and size are taken from attributes.
Implementations must reject an attempt to generate a key of size 0.
See the documentation of psa_custom_key_parameters_t for a list of non-default production parameters. Seethe key type definitions in Key types on page 53 for details of the custom production parameters used forkey generation.
psa_copy_key (function)
Make a copy of a key.
psa_status_t psa_copy_key(psa_key_id_t source_key,

const psa_key_attributes_t * attributes,
psa_key_id_t * target_key);

Parameters
source_key The key to copy. It must permit the usage PSA_KEY_USAGE_COPY. If aprivate or secret key is being copied outside of a secure element itmust also permit PSA_KEY_USAGE_EXPORT.
attributes The attributes for the new key.

The following attributes must be set for keys used in cryptographicoperations:
∙ The key permitted-algorithm policy, see Permitted algorithms onpage 101.
∙ The key usage flags, see Key usage flags on page 102.

These flags are combined with the source key policy so that both setsof restrictions apply, as described in the documentation of thisfunction.
The following attributes must be set for keys that do not use thedefault PSA_KEY_LIFETIME_VOLATILE lifetime:

∙ The key lifetime, see Key lifetimes on page 90.
∙ The key identifier is required for a key with a persistent lifetime,see Key identifiers on page 98.

The following attributes are optional:
∙ If the key type has a non-default value, it must be equal to thesource key type.
∙ If the key size is nonzero, it must be equal to the source key size.

Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queried bycalling psa_get_key_attributes() with the key’s identifier.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 118

target_key On success, an identifier for the newly created key. PSA_KEY_ID_NULL onfailure.
Returns: psa_status_t

PSA_SUCCESS Success. If the new key is persistent, the key material and the key’smetadata have been saved to persistent storage.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE source_key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:

∙ source_key does not have the PSA_KEY_USAGE_COPY usage flag.
∙ source_key does not have the PSA_KEY_USAGE_EXPORT usage flag,and the location of target_key is outside the security boundary ofthe source_key storage location.
∙ The implementation does not permit creating a key with thespecified attributes due to some implementation-specific policy.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ attributes specifies a key type or key size which does not matchthe attributes of source key.
∙ The lifetime or identifier in attributes are invalid.
∙ The key policies from source_key and those specified in

attributes are incompatible.
PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

∙ The source key storage location does not support copying to thetarget key’s storage location.
∙ The key attributes, as a whole, are not supported in the targetkey’s storage location.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
Copy key material from one location to another. Its location is taken from attributes, its policy is theintersection of the policy in attributes and the source key policy, and its type and size are taken from thesource key.
This function is primarily useful to copy a key from one location to another, as it populates a key using the

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 119

material from another key which can have a different lifetime.
This function can be used to share a key with a different party, subject to implementation-definedrestrictions on key sharing.
The policy on the source key must have the usage flag PSA_KEY_USAGE_COPY set. This flag is sufficient topermit the copy if the key has the lifetime PSA_KEY_LIFETIME_VOLATILE or PSA_KEY_LIFETIME_PERSISTENT. Somesecure elements do not provide a way to copy a key without making it extractable from the secure element.If a key is located in such a secure element, then the key must have both usage flags PSA_KEY_USAGE_COPYand PSA_KEY_USAGE_EXPORT in order to make a copy of the key outside the secure element.
The resulting key can only be used in a way that conforms to both the policy of the original key and thepolicy specified in the attributes parameter:

∙ The usage flags on the resulting key are the bitwise-and of the usage flags on the source policy andthe usage flags in attributes.
∙ If both permit the same algorithm or wildcard-based algorithm, the resulting key has the samepermitted algorithm.
∙ If either of the policies permits an algorithm and the other policy permits a wildcard-based permittedalgorithm that includes this algorithm, the resulting key uses this permitted algorithm.
∙ If the policies do not permit any algorithm in common, this function fails with the status

PSA_ERROR_INVALID_ARGUMENT.
As a result, the new key cannot be used for operations that were not permitted on the source key.
The effect of this function on implementation-defined attributes is implementation-defined.
psa_attach_key (function)
Register implementation-provided key material with a volatile key identifier and key policy.
Added in version 1.4.
psa_status_t psa_attach_key(const psa_key_attributes_t * attributes,

const uint8_t * label,
size_t label_length,
psa_key_id_t * key);

Parameters
attributes The attributes for the key to be registered.

Some of the attributes can be provided by the implementation. It is
IMPLEMENTATION DEFINED, and possibly key-specific, which attributes areprovided by the implementation and which must be supplied by theapplication.
The following attributes must always be provided by the application:

∙ The key lifetime must specify a volatile key, and the storagelocation of the implementation-provided key. See Key lifetimes onpage 90.
The following attributes must be provided by either the application orthe implementation. If provided by both, they must be identical:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 120

∙ The key type.
∙ The key size.

The following attributes must be set for keys used in cryptographicoperations:
∙ The key permitted-algorithm policy, see Permitted algorithms onpage 101.
∙ The key usage flags, see Key usage flags on page 102.

These attributes are combined with any policy that is provided by theimplementation, so that both sets of restrictions apply.
label Buffer containing a label that identifies the implementation-providedkey to be registered.

The contents of this label are interpreted by the implementation andmay correspond to a pre-provisioned, securely stored, ordeterministically derived key within the location specified in
attributes.

label_length Size of the label buffer in bytes.
key On success, an identifier for the newly created key. PSA_KEY_ID_NULL onfailure.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_NOT_PERMITTED The implementation does not permit creating a key with the specifiedattributes due to some implementation-specific policy.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ The key type is invalid.
∙ The key size is nonzero, and is incompatible with theimplementation-provided key.
∙ The key lifetime specifies a non-volatile persistence level.
∙ The key lifetime specifies an invalid storage location.
∙ The key usage flags include invalid values.
∙ The key’s permitted-usage algorithm is invalid.
∙ The key attributes, as a whole, are invalid.
∙ The implementation-provided key material is incompatible withthe provided key attributes.

PSA_ERROR_NOT_SUPPORTED The key attributes, as a whole, are not supported, either by theimplementation in general or in the specified storage location.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 121

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

PSA_ERROR_DOES_NOT_EXIST label does not refer to key material within the location specified in
attributes.

Description
This function allows applications to register implementation-provided key material. The key material cancome from different sources, for example:

∙ Keys that are provisioned outside the Crypto API, such as during manufacturing or by a secureelement.
∙ Keys that are deterministically derived from a secret within the implementation.

After registering the key, the application has a volatile key identifier that can be used in cryptographicoperations permitted by its usage flags and algorithm policy.
The key material is identified by its location, specified in the provided attributes lifetime value, and the
label parameter. The format of the label is specific to the implementation and storage location. Typically,the label is used as a location-specific identifier for the key material, or can provide input for deriving thekey material from an internal secret.
This function can only be used to create a volatile key. That is, a key with a lifetime persistence level of
PSA_KEY_PERSISTENCE_VOLATILE.
Depending on the key being registered, the implementation can provide some or all of the key type, size,and policy. For example:

∙ Provisioned key material has a fixed size. The implementation might permit the application to definethe key type and policy, as long as these are compatible with the key material.
∙ An implementation-specific derived key can require the application to provide a key type and size,using these in the derivation process.
∙ An implementation-provided key can be fully defined by the implementation, with a fixed type, size,and policy. The call to psa_attach_key() needs to specify the location and label of the key, and amatching policy, in order to obtain a key id.

Calling psa_destroy_key() with a key identifier returned by psa_attach_key() will remove the key identifierand policy from the key store, but any implementation-provided key material remains within theimplementation. A subsequent call to psa_attach_key() with the same parameters will return a new keyidentifier for the same key.
It is IMPLEMENTATION DEFINED whether the same implementation-provided key can be attached to multiple keyidentifiers concurrently.

Note:
This function is intended for scenarios where key material is provided outside the Crypto API, and theapplication needs to use such keys within the Crypto API framework.
The function only allows registering key material that is provided by the implementation. To importnew key material, use psa_import_key().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 122

Although the implementation verifies that the application-supplied attributes are compatible with theimplementation-provided key; it is the application’s responsibility to ensure correctness for attributesthat are provided by the implementation.
To create a persistent key from pre-existing key material, the implementation might permit a keyreturned by psa_attach_key() to be copied to a persistent key using psa_copy_key().

Implementation note
Implementations may impose restrictions on which keys can be registered, depending on their storagearchitecture and security policies.
The behavior of a call psa_attach_key() with a persistent key-lifetime might be specified in a futureversion of the Crypto API. At present, it is recommended that such a call returns
PSA_ERROR_INVALID_ARGUMENT, and does not provide implementation-specific behavior.

9.9.2 Key destruction
psa_destroy_key (function)
Destroy or unregister a key.
psa_status_t psa_destroy_key(psa_key_id_t key);

Parameters
key Identifier of the key to erase. If this is PSA_KEY_ID_NULL, do nothing andreturn PSA_SUCCESS.

Returns: psa_status_t
PSA_SUCCESS Success:

∙ If key was a valid key identifier that was not the result of a call to
psa_attach_key(), then material that it referred to has beenerased.

∙ If key was a valid key identifier that was returned by
psa_attach_key(), then the key identifier is detached from theimplementation-provided key.

∙ Alternatively, key was PSA_KEY_ID_NULL.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is neither a valid key identifier, nor PSA_KEY_ID_NULL.
PSA_ERROR_NOT_PERMITTED The key cannot be erased because it is read-only, either due to apolicy or due to physical restrictions.
PSA_ERROR_COMMUNICATION_FAILURE There was an failure in communication with the cryptoprocessor. Thekey material might still be present in the cryptoprocessor.
PSA_ERROR_CORRUPTION_DETECTED An unexpected condition which is not a storage corruption or acommunication failure occurred. The cryptoprocessor might have been

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 123

compromised.
PSA_ERROR_STORAGE_FAILURE The storage operation failed. Implementations must make a best effortto erase key material even in this situation, however, it might beimpossible to guarantee that the key material is not recoverable insuch cases.
PSA_ERROR_DATA_CORRUPT The storage is corrupted. Implementations must make a best effort toerase key material even in this situation, however, it might beimpossible to guarantee that the key material is not recoverable insuch cases.
PSA_ERROR_DATA_INVALID

Description
For key identifiers that resulted from registering an implementation-provided key using psa_attach_key(),this function detaches the key identifier from the implementation-provided key.
For other keys, this function destroys a key from both volatile memory and, if applicable, non-volatilestorage. Implementations must make a best effort to ensure that that the key material cannot be recovered.
This function also erases any metadata such as policies and frees resources associated with the key.
Destroying the key makes the key identifier invalid, and the key identifier must not be used again by theapplication.
If a key is currently in use in a multi-part operation, then destroying the key will cause the multi-partoperation to fail.
psa_purge_key (function)
Remove non-essential copies of key material from memory.
psa_status_t psa_purge_key(psa_key_id_t key);

Parameters
key Identifier of the key to purge.

Returns: psa_status_t
PSA_SUCCESS Success. The key material has been removed from memory, if the keymaterial is not currently required.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 124

Description
For keys that have been created with the PSA_KEY_USAGE_CACHE usage flag, an implementation is permitted tomake additional copies of the key material that are not in storage and not for the purpose of ongoingoperations.
This function will remove these extra copies of the key material from memory.
This function is not required to remove key material from memory in any of the following situations:

∙ The key is currently in use in a cryptographic operation.
∙ The key is volatile.

See also Managing key material on page 42.

9.9.3 Key export
psa_export_key (function)
Export a key in binary format.
psa_status_t psa_export_key(psa_key_id_t key,

uint8_t * data,
size_t data_size,
size_t * data_length);

Parameters
key Identifier of the key to export. It must permit the usage

PSA_KEY_USAGE_EXPORT, unless it is a public key.
data Buffer where the key data is to be written.
data_size Size of the data buffer in bytes. This must be appropriate for the key:

∙ The required output size is PSA_EXPORT_KEY_OUTPUT_SIZE(type,
bits) where type is the key type and bits is the key size in bits.

∙ PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE evaluates to the maximumoutput size of any supported public key or key pair.
∙ PSA_EXPORT_KEY_PAIR_MAX_SIZE evaluates to the maximum outputsize of any supported key pair.
∙ PSA_EXPORT_PUBLIC_KEY_MAX_SIZE evaluates to the maximumoutput size of any supported public key.
∙ This API defines no maximum size for symmetric keys. Arbitrarilylarge data items can be stored in the key store, for examplecertificates that correspond to a stored private key or inputmaterial for key derivation.

data_length On success, the number of bytes that make up the key data.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 125

Returns: psa_status_t
PSA_SUCCESS Success. The first (*data_length) bytes of data contain the exportedkey.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_EXPORT flag.
PSA_ERROR_BUFFER_TOO_SMALL The size of the data buffer is too small. PSA_EXPORT_KEY_OUTPUT_SIZE(),

PSA_EXPORT_KEY_PAIR_MAX_SIZE, PSA_EXPORT_PUBLIC_KEY_MAX_SIZE, or
PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE can be used to determine asufficient buffer size.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ The key’s storage location does not support export of the key.
∙ The implementation does not support export of keys with thiskey type.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The output of this function can be passed to psa_import_key() to create an equivalent object.
If the implementation of psa_import_key() supports other formats beyond the format specified here, theoutput from psa_export_key() must use the representation specified in Key types on page 53, not theoriginally imported representation.
For standard key types, the output format is defined in the relevant Key format section in Key types onpage 53. The policy on the key must have the usage flag PSA_KEY_USAGE_EXPORT set.
psa_export_public_key (function)
Export a public key or the public part of a key pair in binary format.
psa_status_t psa_export_public_key(psa_key_id_t key,

uint8_t * data,
size_t data_size,
size_t * data_length);

Parameters
key Identifier of the key to export.
data Buffer where the key data is to be written.
data_size Size of the data buffer in bytes. This must be appropriate for the key:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 126

∙ The required output size is
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(type, bits) where type isthe key type and bits is the key size in bits.

∙ PSA_EXPORT_PUBLIC_KEY_MAX_SIZE evaluates to the maximumoutput size of any supported public key or public part of a keypair.
∙ PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE evaluates to the maximumoutput size of any supported public key or key pair.

data_length On success, the number of bytes that make up the key data.
Returns: psa_status_t

PSA_SUCCESS Success. The first (*data_length) bytes of data contain the exportedpublic key.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_BUFFER_TOO_SMALL The size of the data buffer is too small.

PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(),
PSA_EXPORT_PUBLIC_KEY_MAX_SIZE, or
PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The key is neither a public key nor a key pair.
PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

∙ The key’s storage location does not support export of the key.
∙ The implementation does not support export of keys with thiskey type.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The output of this function can be passed to psa_import_key() to create an object that is equivalent to thepublic key.
If the implementation of psa_import_key() supports other formats beyond the format specified here, theoutput from psa_export_public_key() must use the representation specified in Key types on page 53, not theoriginally imported representation.
For standard key types, the output format is defined in the relevant Key format section in Key types onpage 53.
Exporting a public-key object or the public part of a key pair is always permitted, regardless of the key’susage flags.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 127

PSA_EXPORT_KEY_OUTPUT_SIZE (macro)
Sufficient output buffer size for psa_export_key().
#define PSA_EXPORT_KEY_OUTPUT_SIZE(key_type, key_bits) \

/* implementation-defined value */

Parameters
key_type A supported key type.
key_bits The size of the key in bits.

Returns
If the parameters are valid and supported, return a buffer size in bytes that guarantees that
psa_export_key() or psa_export_public_key() will not fail with PSA_ERROR_BUFFER_TOO_SMALL. If theparameters are a valid combination that is not supported by the implementation, this macro must returneither a sensible size or 0. If the parameters are not valid, the return value is unspecified.
Description
The following code illustrates how to allocate enough memory to export a key by querying the key type andsize at runtime.
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status;
status = psa_get_key_attributes(key, &attributes);
if (status != PSA_SUCCESS)

handle_error(...);
psa_key_type_t key_type = psa_get_key_type(&attributes);
size_t key_bits = psa_get_key_bits(&attributes);
size_t buffer_size = PSA_EXPORT_KEY_OUTPUT_SIZE(key_type, key_bits);
psa_reset_key_attributes(&attributes);
uint8_t *buffer = malloc(buffer_size);
if (buffer == NULL)

handle_error(...);
size_t buffer_length;
status = psa_export_key(key, buffer, buffer_size, &buffer_length);
if (status != PSA_SUCCESS)

handle_error(...);

See also PSA_EXPORT_KEY_PAIR_MAX_SIZE, PSA_EXPORT_PUBLIC_KEY_MAX_SIZE, and
PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE.
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE (macro)
Sufficient output buffer size for psa_export_public_key().
#define PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(key_type, key_bits) \

/* implementation-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 128

Parameters
key_type A public-key or key-pair key type.
key_bits The size of the key in bits.

Returns
If the parameters are valid and supported, return a buffer size in bytes that guarantees that
psa_export_public_key() will not fail with PSA_ERROR_BUFFER_TOO_SMALL. If the parameters are a validcombination that is not supported by the implementation, this macro must return either a sensible size or 0.If the parameters are not valid, the return value is unspecified.
If the parameters are valid and supported, it is recommended that this macro returns the same result as
PSA_EXPORT_KEY_OUTPUT_SIZE(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(key_type), key_bits).
Description
The following code illustrates how to allocate enough memory to export a public key by querying the keytype and size at runtime.
psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status;
status = psa_get_key_attributes(key, &attributes);
if (status != PSA_SUCCESS)

handle_error(...);
psa_key_type_t key_type = psa_get_key_type(&attributes);
size_t key_bits = psa_get_key_bits(&attributes);
size_t buffer_size = PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(key_type, key_bits);
psa_reset_key_attributes(&attributes);
uint8_t *buffer = malloc(buffer_size);
if (buffer == NULL)

handle_error(...);
size_t buffer_length;
status = psa_export_public_key(key, buffer, buffer_size, &buffer_length);
if (status != PSA_SUCCESS)

handle_error(...);

See also PSA_EXPORT_PUBLIC_KEY_MAX_SIZE and PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE.
PSA_EXPORT_KEY_PAIR_MAX_SIZE (macro)
Sufficient buffer size for exporting any asymmetric key pair.
#define PSA_EXPORT_KEY_PAIR_MAX_SIZE /* implementation-defined value */

This value must be a sufficient buffer size when calling psa_export_key() to export any asymmetric key pairthat is supported by the implementation, regardless of the exact key type and key size.
See also PSA_EXPORT_KEY_OUTPUT_SIZE(), PSA_EXPORT_PUBLIC_KEY_MAX_SIZE, and
PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 129

PSA_EXPORT_PUBLIC_KEY_MAX_SIZE (macro)
Sufficient buffer size for exporting any asymmetric public key.
#define PSA_EXPORT_PUBLIC_KEY_MAX_SIZE /* implementation-defined value */

This value must be a sufficient buffer size when calling psa_export_key() or psa_export_public_key() toexport any asymmetric public key that is supported by the implementation, regardless of the exact key typeand key size.
See also PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(), PSA_EXPORT_KEY_OUTPUT_SIZE(),
PSA_EXPORT_KEY_PAIR_MAX_SIZE, and PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE.
PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE (macro)
Sufficient buffer size for exporting any asymmetric key pair or public key.
Added in version 1.3.
#define PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE /* implementation-defined value */

This value must be a sufficient buffer size when calling psa_export_key() or psa_export_public_key() toexport any asymmetric key pair or public key that is supported by the implementation, regardless of theexact key type and key size.
See also PSA_EXPORT_KEY_PAIR_MAX_SIZE, PSA_EXPORT_PUBLIC_KEY_MAX_SIZE, and PSA_EXPORT_KEY_OUTPUT_SIZE().

10 Cryptographic operation reference
10.1 Algorithms
This specification encodes algorithms into a structured 32-bit integer value.
Algorithm identifiers are used for two purposes in the Crypto API:

1. To specify a specific algorithm to use in a cryptographic operation. These are all defined inCryptographic operation reference.
2. To specify the policy for a key, identifying the permitted algorithm for use with the key. This use isdescribed in Key policies on page 100.

The specific algorithm identifiers are described alongside the cryptographic operation functions to whichthey apply:
∙ Hash algorithms on page 138
∙ XOF algorithms on page 158
∙ MAC algorithms on page 165
∙ Cipher algorithms on page 182
∙ AEAD algorithms on page 208
∙ Key-wrapping algorithms on page 237

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 130

∙ Key-derivation algorithms on page 245
∙ Asymmetric signature on page 278
∙ Asymmetric encryption algorithms on page 311
∙ Key-agreement algorithms on page 317
∙ Key encapsulation on page 329
∙ Password-authenticated key exchange (PAKE) on page 338

10.1.1 Algorithm encoding
psa_algorithm_t (typedef)
Encoding of a cryptographic algorithm.
typedef uint32_t psa_algorithm_t;

This is a structured bitfield that identifies the category and type of algorithm. The range of algorithmidentifier values is divided as follows:
0x00000000 Reserved as an invalid algorithm identifier.
0x00000001 - 0x7fffffffSpecification-defined algorithm identifiers. Algorithm identifiers defined by this standardalways have bit 31 clear. Unallocated algorithm identifier values in this range are reserved forfuture use.
0x80000000 - 0xffffffffImplementation-defined algorithm identifiers. Implementations that define additionalalgorithms must use an encoding with bit 31 set. The related support macros will be easierto write if these algorithm identifier encodings also respect the bitwise structure used bystandard encodings.

For algorithms that can be applied to multiple key types, this identifier does not encode the key type. Forexample, for symmetric ciphers based on a block cipher, psa_algorithm_t encodes the block cipher modeand the padding mode while the block cipher itself is encoded via psa_key_type_t.
The Algorithm and key type encoding on page 410 appendix provides a full definition of the algorithmidentifier encoding.
PSA_ALG_NONE (macro)
An invalid algorithm identifier value.
#define PSA_ALG_NONE ((psa_algorithm_t)0)

Zero is not the encoding of any algorithm.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 131

10.1.2 Algorithm categories
PSA_ALG_IS_HASH (macro)
Whether the specified algorithm is a hash algorithm.
#define PSA_ALG_IS_HASH(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a hash algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedalgorithm identifier.
Description
See Hash algorithms on page 138 for a list of defined hash algorithms.
PSA_ALG_IS_XOF (macro)
Whether the specified algorithm is an XOF algorithm.
Added in version 1.4.
#define PSA_ALG_IS_XOF(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an XOF algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedalgorithm identifier.
Description
See XOF algorithms on page 158 for a list of defined XOF algorithms.
PSA_ALG_IS_MAC (macro)
Whether the specified algorithm is a MAC algorithm.
#define PSA_ALG_IS_MAC(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a MAC algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedalgorithm identifier.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 132

Description
See MAC algorithms on page 165 for a list of defined MAC algorithms.
PSA_ALG_IS_CIPHER (macro)
Whether the specified algorithm is a symmetric cipher algorithm.
#define PSA_ALG_IS_CIPHER(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a symmetric cipher algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported algorithm identifier.
Description
See Cipher algorithms on page 182 for a list of defined cipher algorithms.
PSA_ALG_IS_AEAD (macro)
Whether the specified algorithm is an authenticated encryption with associated data (AEAD) algorithm.
#define PSA_ALG_IS_AEAD(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an AEAD algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedalgorithm identifier.
Description
See AEAD algorithms on page 208 for a list of defined AEAD algorithms.
PSA_ALG_IS_KEY_WRAP (macro)
Whether the specified algorithm is a key wrapping algorithm.
Added in version 1.4.
#define PSA_ALG_IS_KEY_WRAP(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 133

Returns
1 if alg is a key-wrapping algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedalgorithm identifier.
Description
See Key-wrapping algorithms on page 237 for a list of defined key-wrapping algorithms.
PSA_ALG_IS_KEY_DERIVATION (macro)
Whether the specified algorithm is a key-derivation algorithm.
#define PSA_ALG_IS_KEY_DERIVATION(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a key-derivation algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported algorithm identifier.
Description
See Key-derivation algorithms on page 245 for a list of defined key-derivation algorithms.
PSA_ALG_IS_SIGN (macro)
Whether the specified algorithm is an asymmetric signature algorithm, also known as public-key signaturealgorithm.
#define PSA_ALG_IS_SIGN(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an asymmetric signature algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported algorithm identifier.
Description
See Asymmetric signature on page 278 for a list of defined signature algorithms.
PSA_ALG_IS_ASYMMETRIC_ENCRYPTION (macro)
Whether the specified algorithm is an asymmetric encryption algorithm, also known as public-keyencryption algorithm.
#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) /* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 134

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an asymmetric encryption algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported algorithm identifier.
Description
See Asymmetric encryption algorithms on page 311 for a list of defined asymmetric encryption algorithms.
PSA_ALG_IS_KEY_AGREEMENT (macro)
Whether the specified algorithm is a key-agreement algorithm.
#define PSA_ALG_IS_KEY_AGREEMENT(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a key-agreement algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported algorithm identifier.
Description
See Key-agreement algorithms on page 317 for a list of defined key-agreement algorithms.
PSA_ALG_IS_PAKE (macro)
Whether the specified algorithm is a password-authenticated key exchange.
Added in version 1.1.
#define PSA_ALG_IS_PAKE(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a password-authenticated key exchange (PAKE) algorithm, 0 otherwise. This macro can returneither 0 or 1 if alg is not a supported algorithm identifier.
PSA_ALG_IS_KEY_ENCAPSULATION (macro)
Whether the specified algorithm is a key-encapsulation algorithm.
Added in version 1.3.
#define PSA_ALG_IS_KEY_ENCAPSULATION(alg) /* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 135

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a key-encapsulation algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported algorithm identifier.
Description
See Key encapsulation on page 329 for a list of defined key-encapsulation algorithms.

10.1.3 Support macros
PSA_ALG_IS_WILDCARD (macro)
Whether the specified algorithm encoding is a wildcard.
#define PSA_ALG_IS_WILDCARD(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a wildcard algorithm encoding.
0 if alg is a non-wildcard algorithm encoding that is suitable for an operation.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description
Wildcard algorithm values can only be used to set the permitted-algorithm field in a key policy, wildcardvalues cannot be used to perform an operation.
See PSA_ALG_ANY_HASH for example of how a wildcard algorithm can be used in a key policy.
PSA_ALG_GET_HASH (macro)
Get the hash used by a composite algorithm.
#define PSA_ALG_GET_HASH(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
The underlying hash algorithm if alg is a composite algorithm that uses a hash algorithm.
PSA_ALG_NONE if alg is not a composite algorithm that uses a hash.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 136

Description
The following composite algorithms require a hash algorithm:

∙ PSA_ALG_DETERMINISTIC_ECDSA()

∙ PSA_ALG_ECDSA()

∙ PSA_ALG_HKDF()

∙ PSA_ALG_HKDF_EXPAND()

∙ PSA_ALG_HKDF_EXTRACT()

∙ PSA_ALG_HMAC()

∙ PSA_ALG_JPAKE()

∙ PSA_ALG_PBKDF2_HMAC()

∙ PSA_ALG_RSA_OAEP()

∙ PSA_ALG_RSA_PKCS1V15_SIGN()

∙ PSA_ALG_RSA_PSS()

∙ PSA_ALG_RSA_PSS_ANY_SALT()

∙ PSA_ALG_SP800_108_COUNTER_HMAC()

∙ PSA_ALG_SPAKE2P_CMAC()

∙ PSA_ALG_SPAKE2P_HMAC()

∙ PSA_ALG_TLS12_PRF()

∙ PSA_ALG_TLS12_PSK_TO_MS()

10.2 Message digests (Hashes)
The single-part hash functions are:

∙ psa_hash_compute() to calculate the hash of a message.
∙ psa_hash_compare() to compare the hash of a message with a reference value.

The psa_hash_operation_t multi-part operation allows messages to be processed in fragments. A multi-parthash operation is used as follows:
1. Initialize the psa_hash_operation_t object to zero, or by assigning the value of the associated macro

PSA_HASH_OPERATION_INIT.
2. Call psa_hash_setup() to specify the required hash algorithm, call psa_hash_clone() to duplicate thestate of active psa_hash_operation_t object, or call psa_hash_resume() to restart a hash operation withthe output from a previously suspended hash operation.
3. Call the psa_hash_update() function on successive chunks of the message.
4. At the end of the message, call the required finishing function:

∙ To suspend the hash operation and extract a hash suspend state, call psa_hash_suspend(). Theoutput state can subsequently be used to resume the hash operation.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 137

∙ To calculate the digest of a message, call psa_hash_finish().
∙ To verify the digest of a message against a reference value, call psa_hash_verify().

To abort the operation or recover from an error, call psa_hash_abort().

10.2.1 Hash algorithms
PSA_ALG_MD2 (macro)
The MD2 message-digest algorithm.
#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)

. Warning

The MD2 hash is weak and deprecated and is only recommended for use in legacy applications.
MD2 is defined in The MD2 Message-Digest Algorithm [RFC1319].
PSA_ALG_MD4 (macro)
The MD4 message-digest algorithm.
#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)

. Warning

The MD4 hash is weak and deprecated and is only recommended for use in legacy applications.
MD4 is defined in The MD4 Message-Digest Algorithm [RFC1320].
PSA_ALG_MD5 (macro)
The MD5 message-digest algorithm.
#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)

. Warning

The MD5 hash is weak and deprecated and is only recommended for use in legacy applications.
MD5 is defined in The MD5 Message-Digest Algorithm [RFC1321].

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 138

PSA_ALG_RIPEMD160 (macro)
The RIPEMD-160 message-digest algorithm.
#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)

RIPEMD-160 is defined in RIPEMD-160: A Strengthened Version of RIPEMD [RIPEMD], and also in ISO/IEC10118-3:2018 IT Security techniques — Hash-functions — Part 3: Dedicated hash-functions [ISO10118].
PSA_ALG_AES_MMO_ZIGBEE (macro)
The Zigbee 1.0 hash function based on a Matyas-Meyer-Oseas (MMO) construction using AES-128.
Added in version 1.2.
#define PSA_ALG_AES_MMO_ZIGBEE ((psa_algorithm_t)0x02000007)

This is the cryptographic hash function based on the Merkle-Damgård construction over aMatyas-Meyer-Oseas one-way compression function and the AES-128 block cipher, with theparametrization defined in zigbee Specification [ZIGBEE] §B.6.
This hash function can operate on input strings of up to 232 − 1 bits.

Note:
The Zigbee keyed hash function from [ZIGBEE] §B.1.4 is PSA_ALG_HMAC(PSA_ALG_AES_MMO_ZIGBEE).

PSA_ALG_SHA_1 (macro)
The SHA-1 message-digest algorithm.
#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)

. Warning

The SHA-1 hash is weak and deprecated and is only recommended for use in legacy applications.
SHA-1 is defined in FIPS Publication 180-4: Secure Hash Standard (SHS) [FIPS180-4].
PSA_ALG_SHA_224 (macro)
The SHA-224 message-digest algorithm.
#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)

SHA-224 is defined in [FIPS180-4].

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 139

PSA_ALG_SHA_256 (macro)
The SHA-256 message-digest algorithm.
#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)

SHA-256 is defined in [FIPS180-4].
PSA_ALG_SHA_384 (macro)
The SHA-384 message-digest algorithm.
#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)

SHA-384 is defined in [FIPS180-4].
PSA_ALG_SHA_512 (macro)
The SHA-512 message-digest algorithm.
#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b)

SHA-512 is defined in [FIPS180-4].
PSA_ALG_SHA_512_224 (macro)
The SHA-512/224 message-digest algorithm.
#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)

SHA-512/224 is defined in [FIPS180-4].
PSA_ALG_SHA_512_256 (macro)
The SHA-512/256 message-digest algorithm.
#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)

SHA-512/256 is defined in [FIPS180-4].
PSA_ALG_SHA3_224 (macro)
The SHA3-224 message-digest algorithm.
#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)

SHA3-224 is defined in FIPS Publication 202: SHA-3 Standard: Permutation-Based Hash andExtendable-Output Functions [FIPS202].

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 140

PSA_ALG_SHA3_256 (macro)
The SHA3-256 message-digest algorithm.
#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)

SHA3-256 is defined in [FIPS202].
PSA_ALG_SHA3_384 (macro)
The SHA3-384 message-digest algorithm.
#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)

SHA3-384 is defined in [FIPS202].
PSA_ALG_SHA3_512 (macro)
The SHA3-512 message-digest algorithm.
#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)

SHA3-512 is defined in [FIPS202].
PSA_ALG_SHAKE256_512 (macro)
The first 512 bits (64 bytes) of the output from SHAKE256.
Added in version 1.1.
#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)

This is used for pre-hashing in Ed448ph, see PSA_ALG_ED448PH.
The SHAKE256 XOF is defined in [FIPS202].

Note:
To use SHAKE256 as an XOF, see Extendable-output functions (XOF) on page 157 and
PSA_ALG_SHAKE256.

Note:
For other scenarios where a hash function based on SHA3 or SHAKE is required, SHA3-512 isrecommended. SHA3-512 has the same output size, and a theoretically higher security strength.

PSA_ALG_SM3 (macro)
The SM3 message-digest algorithm.
#define PSA_ALG_SM3 ((psa_algorithm_t)0x02000014)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 141

SM3 is defined in ISO/IEC 10118-3:2018 IT Security techniques — Hash-functions — Part 3: Dedicatedhash-functions [ISO10118], and also in GM/T 0004-2012: SM3 cryptographic hash algorithm [CSTC0004].
PSA_ALG_ASCON_HASH256 (macro)
The Ascon-Hash256 message-digest algorithm.
Added in version 1.4.
#define PSA_ALG_ASCON_HASH256 ((psa_algorithm_t)0x02000019)

Ascon-Hash256 is defined in NIST Special Publication 800-232: Ascon-Based Lightweight CryptographyStandards for Constrained Devices [SP800-232] §5.1.
Note:
To use the Ascon XOF algorithms, see PSA_ALG_ASCON_XOF128 and PSA_ALG_ASCON_CXOF128.

10.2.2 Single-part hashing functions
psa_hash_compute (function)
Calculate the hash (digest) of a message.
psa_status_t psa_hash_compute(psa_algorithm_t alg,

const uint8_t * input,
size_t input_length,
uint8_t * hash,
size_t hash_size,
size_t * hash_length);

Parameters
alg The hash algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_HASH(alg) is true.
input Buffer containing the message to hash.
input_length Size of the input buffer in bytes.
hash Buffer where the hash is to be written.
hash_size Size of the hash buffer in bytes. This must be at least

PSA_HASH_LENGTH(alg).
hash_length On success, the number of bytes that make up the hash value. This isalways PSA_HASH_LENGTH(alg).

Returns: psa_status_t
PSA_SUCCESS Success. The first (*hash_length) bytes of hash contain the hash value.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_BUFFER_TOO_SMALL The size of the hash buffer is too small. PSA_HASH_LENGTH() can be usedto determine a sufficient buffer size.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 142

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not a hash algorithm.
∙ input_length is too large for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a hash algorithm.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Note:
To verify the hash of a message against an expected value, use psa_hash_compare() instead.

psa_hash_compare (function)
Calculate the hash (digest) of a message and compare it with a reference value.
psa_status_t psa_hash_compare(psa_algorithm_t alg,

const uint8_t * input,
size_t input_length,
const uint8_t * hash,
size_t hash_length);

Parameters
alg The hash algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_HASH(alg) is true.
input Buffer containing the message to hash.
input_length Size of the input buffer in bytes.
hash Buffer containing the expected hash value.
hash_length Size of the hash buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success. The expected hash is identical to the actual hash of the input.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_SIGNATURE The calculated hash of the message does not match the value in hash.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a hash algorithm.
∙ input_length is too large for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 143

∙ alg is not supported or is not a hash algorithm.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

10.2.3 Multi-part hashing operations
psa_hash_operation_t (typedef)
The type of the state object for multi-part hash operations.
typedef /* implementation-defined type */ psa_hash_operation_t;

Before calling any function on a hash operation object, the application must initialize it by any of thefollowing means:
∙ Set the object to all-bits-zero, for example:

psa_hash_operation_t operation;
memset(&operation, 0, sizeof(operation));

∙ Initialize the object to logical zero values by declaring the object as static or global without an explicitinitializer, for example:
static psa_hash_operation_t operation;

∙ Initialize the object to the initializer PSA_HASH_OPERATION_INIT, for example:
psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;

∙ Assign the result of the function psa_hash_operation_init() to the object, for example:
psa_hash_operation_t operation;
operation = psa_hash_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.
PSA_HASH_OPERATION_INIT (macro)
This macro returns a suitable initializer for a hash operation object of type psa_hash_operation_t.
#define PSA_HASH_OPERATION_INIT /* implementation-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 144

psa_hash_operation_init (function)
Return an initial value for a hash operation object.
psa_hash_operation_t psa_hash_operation_init(void);

Returns: psa_hash_operation_t

psa_hash_setup (function)
Set up a multi-part hash operation.
psa_status_t psa_hash_setup(psa_hash_operation_t * operation,

psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per thedocumentation for psa_hash_operation_t and not yet in use.
alg The hash algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_HASH(alg) is true.

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT alg is not a hash algorithm.
PSA_ERROR_NOT_SUPPORTED alg is not supported or is not a hash algorithm.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
The sequence of operations to calculate a hash (message digest) is as follows:

1. Allocate a hash operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_hash_operation_t, e.g. PSA_HASH_OPERATION_INIT.
3. Call psa_hash_setup() to specify the algorithm.
4. Call psa_hash_update() zero, one or more times, passing a fragment of the message each time. Thehash that is calculated is the hash of the concatenation of these messages in order.
5. To calculate the hash, call psa_hash_finish(). To compare the hash with an expected value, call

psa_hash_verify(). To suspend the hash operation and extract the current state, call
psa_hash_suspend().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 145

After a successful call to psa_hash_setup(), the operation is active, and the application must eventuallyterminate the operation. The following events terminate an operation:
∙ A successful call to psa_hash_finish() or psa_hash_verify() or psa_hash_suspend().
∙ A call to psa_hash_abort().

If psa_hash_setup() returns an error, the operation object is unchanged. If a subsequent function call with anactive operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_hash_abort().
See Multi-part operations on page 27.
psa_hash_update (function)
Add a message fragment to a multi-part hash operation.
psa_status_t psa_hash_update(psa_hash_operation_t * operation,

const uint8_t * input,
size_t input_length);

Parameters
operation Active hash operation.
input Buffer containing the message fragment to hash.
input_length Size of the input buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The total input for the operation is too large for the hash algorithm.
PSA_ERROR_NOT_SUPPORTED The total input for the operation is too large for the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
The application must call psa_hash_setup() or psa_hash_resume() before calling this function.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_hash_abort().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 146

psa_hash_finish (function)
Finish the calculation of the hash of a message.
psa_status_t psa_hash_finish(psa_hash_operation_t * operation,

uint8_t * hash,
size_t hash_size,
size_t * hash_length);

Parameters
operation Active hash operation.
hash Buffer where the hash is to be written.
hash_size Size of the hash buffer in bytes. This must be at least

PSA_HASH_LENGTH(alg) where alg is the algorithm that the operationperforms.
hash_length On success, the number of bytes that make up the hash value. This isalways PSA_HASH_LENGTH(alg) where alg is the hash algorithm that theoperation performs.

Returns: psa_status_t
PSA_SUCCESS Success. The first (*hash_length) bytes of hash contain the hash value.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the hash buffer is too small. PSA_HASH_LENGTH() can be usedto determine a sufficient buffer size.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
The application must call psa_hash_setup() or psa_hash_resume() before calling this function. This functioncalculates the hash of the message formed by concatenating the inputs passed to preceding calls to
psa_hash_update().
When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_hash_abort().
. Warning

It is not recommended to use this function when a specific value is expected for the hash. Call
psa_hash_verify() instead with the expected hash value.
Comparing integrity or authenticity data such as hash values with a function such as memcmp() is riskybecause the time taken by the comparison might leak information about the hashed data which couldallow an attacker to guess a valid hash and thereby bypass security controls.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 147

psa_hash_verify (function)
Finish the calculation of the hash of a message and compare it with an expected value.
psa_status_t psa_hash_verify(psa_hash_operation_t * operation,

const uint8_t * hash,
size_t hash_length);

Parameters
operation Active hash operation.
hash Buffer containing the expected hash value.
hash_length Size of the hash buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success. The expected hash is identical to the actual hash of themessage.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_SIGNATURE The calculated hash of the message does not match the value in hash.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
The application must call psa_hash_setup() before calling this function. This function calculates the hash ofthe message formed by concatenating the inputs passed to preceding calls to psa_hash_update(). It thencompares the calculated hash with the expected hash passed as a parameter to this function.
When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_hash_abort().

Note:
Implementations must make the best effort to ensure that the comparison between the actual hashand the expected hash is performed in constant time.

psa_hash_abort (function)
Abort a hash operation.
psa_status_t psa_hash_abort(psa_hash_operation_t * operation);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 148

Parameters
operation Initialized hash operation.

Returns: psa_status_t
PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
Aborting an operation frees all associated resources except for the operation object itself. Once aborted,the operation object can be reused for another operation by calling psa_hash_setup() again.
This function can be called any time after the operation object has been initialized by one of the methodsdescribed in psa_hash_operation_t.
In particular, calling psa_hash_abort() after the operation has been terminated by a call to psa_hash_abort(),
psa_hash_finish() or psa_hash_verify() is safe and has no effect.
psa_hash_suspend (function)
Halt the hash operation and extract the intermediate state of the hash computation.
psa_status_t psa_hash_suspend(psa_hash_operation_t * operation,

uint8_t * hash_state,
size_t hash_state_size,
size_t * hash_state_length);

Parameters
operation Active hash operation.
hash_state Buffer where the hash suspend state is to be written.
hash_state_size Size of the hash_state buffer in bytes. This must be appropriate for theselected algorithm:

∙ A sufficient output size is PSA_HASH_SUSPEND_OUTPUT_SIZE(alg)where alg is the algorithm that was used to set up the operation.
∙ PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE evaluates to the maximumoutput size of any supported hash algorithm.

hash_state_length On success, the number of bytes that make up the hash suspend state.
Returns: psa_status_t

PSA_SUCCESS Success. The first (*hash_state_length) bytes of hash_state containthe intermediate hash state.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 149

PSA_ERROR_BUFFER_TOO_SMALL The size of the hash_state buffer is too small.
PSA_HASH_SUSPEND_OUTPUT_SIZE() or PSA_HASH_SUSPEND_OUTPUT_MAX_SIZEcan be used to determine a sufficient buffer size.

PSA_ERROR_NOT_SUPPORTED The hash algorithm being computed does not support suspend andresume.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
The application must call psa_hash_setup() or psa_hash_resume() before calling this function. This functionextracts an intermediate state of the hash computation of the message formed by concatenating the inputspassed to preceding calls to psa_hash_update().
This function can be used to halt a hash operation, and then resume the hash operation at a later time, or inanother application, by transferring the extracted hash suspend state to a call to psa_hash_resume().
When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_hash_abort().
Hash suspend and resume is not defined for the SHA3 family of hash algorithms. Hash suspend state onpage 155 defines the format of the output from psa_hash_suspend().
. Warning

Applications must not use any of the hash suspend state as if it was a hash output. Instead, the suspendstate must only be used to resume a hash operation, and psa_hash_finish() or psa_hash_verify() canthen calculate or verify the final hash value.
Usage
The sequence of operations to suspend and resume a hash operation is as follows:

1. Compute the first part of the hash.
a. Allocate an operation object and initialize it as described in the documentation for

psa_hash_operation_t.
b. Call psa_hash_setup() to specify the algorithm.
c. Call psa_hash_update() zero, one or more times, passing a fragment of the message each time.
d. Call psa_hash_suspend() to extract the hash suspend state into a buffer.

2. Pass the hash state buffer to the application which will resume the operation.
3. Compute the rest of the hash.

a. Allocate an operation object and initialize it as described in the documentation for
psa_hash_operation_t.

b. Call psa_hash_resume() with the extracted hash state.
c. Call psa_hash_update() zero, one or more times, passing a fragment of the message each time.
d. To calculate the hash, call psa_hash_finish(). To compare the hash with an expected value, call

psa_hash_verify().
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 150

If an error occurs at any step after a call to psa_hash_setup() or psa_hash_resume(), the operation will needto be reset by a call to psa_hash_abort(). The application can call psa_hash_abort() at any time after theoperation has been initialized.
psa_hash_resume (function)
Set up a multi-part hash operation using the hash suspend state from a previously suspended hashoperation.
psa_status_t psa_hash_resume(psa_hash_operation_t * operation,

const uint8_t * hash_state,
size_t hash_state_length);

Parameters
operation The operation object to set up. It must have been initialized as per thedocumentation for psa_hash_operation_t and not yet in use.
hash_state A buffer containing the suspended hash state which is to be resumed.This must be in the format output by psa_hash_suspend(), which isdescribed in Hash suspend state format on page 155.
hash_state_length Length of hash_state in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT hash_state does not correspond to a valid hash suspend state. SeeHash suspend state format on page 155 for the definition.
PSA_ERROR_NOT_SUPPORTED The provided hash suspend state is for an algorithm that is notsupported.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
See psa_hash_suspend() for an example of how to use this function to suspend and resume a hash operation.
After a successful call to psa_hash_resume(), the application must eventually terminate the operation. Thefollowing events terminate an operation:

∙ A successful call to psa_hash_finish(), psa_hash_verify() or psa_hash_suspend().
∙ A call to psa_hash_abort().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 151

psa_hash_clone (function)
Clone a hash operation.
psa_status_t psa_hash_clone(const psa_hash_operation_t * source_operation,

psa_hash_operation_t * target_operation);

Parameters
source_operation The active hash operation to clone.
target_operation The operation object to set up. It must be initialized but not active.

Returns: psa_status_t
PSA_SUCCESS Success. target_operation is ready to continue the same hashoperation as source_operation.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The source_operation state is not valid: it must be active.
∙ The target_operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
This function copies the state of an ongoing hash operation to a new operation object. In other words, thisfunction is equivalent to calling psa_hash_setup() on target_operation with the same algorithm that
source_operation was set up for, then psa_hash_update() on target_operation with the same input that thatwas passed to source_operation. After this function returns, the two objects are independent, i.e.subsequent calls involving one of the objects do not affect the other object.

10.2.4 Support macros
PSA_HASH_LENGTH (macro)
The size of the output of psa_hash_compute() and psa_hash_finish(), in bytes.
#define PSA_HASH_LENGTH(alg) /* implementation-defined value */

Parameters
alg A hash algorithm or an HMAC algorithm: a value of type

psa_algorithm_t such that (PSA_ALG_IS_HASH(alg) ||
PSA_ALG_IS_HMAC(alg)) is true.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 152

Returns
The hash length for the specified hash algorithm. If the hash algorithm is not recognized, return 0. Animplementation can return either 0 or the correct size for a hash algorithm that it recognizes, but does notsupport.
Description
This is also the hash length that psa_hash_compare() and psa_hash_verify() expect.
See also PSA_HASH_MAX_SIZE.
PSA_HASH_MAX_SIZE (macro)
Maximum size of a hash.
#define PSA_HASH_MAX_SIZE /* implementation-defined value */

It is recommended that this value is the maximum size of a hash supported by the implementation, in bytes.The value must not be smaller than this maximum.
See also PSA_HASH_LENGTH().
PSA_HASH_SUSPEND_OUTPUT_SIZE (macro)
A sufficient hash suspend state buffer size for psa_hash_suspend(), in bytes.
#define PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) /* specification-defined value */

Parameters
alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(alg) is true.
Returns
A sufficient output size for the algorithm. If the hash algorithm is not recognized, or is not supported by
psa_hash_suspend(), return 0. An implementation can return either 0 or a correct size for a hash algorithmthat it recognizes, but does not support.
For a supported hash algorithm alg, the following expression is true:
PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) == PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH +

PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) +
PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) +
PSA_HASH_BLOCK_LENGTH(alg) - 1

Description
If the size of the hash state buffer is at least this large, it is guaranteed that psa_hash_suspend() will not faildue to an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 153

PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE (macro)
A sufficient hash suspend state buffer size for psa_hash_suspend(), for any supported hash algorithms.
#define PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE /* implementation-defined value */

If the size of the hash state buffer is at least this large, it is guaranteed that psa_hash_suspend() will not faildue to an insufficient buffer size.
See also PSA_HASH_SUSPEND_OUTPUT_SIZE().
PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH (macro)
The size of the algorithm field that is part of the output of psa_hash_suspend(), in bytes.
#define PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH ((size_t)4)

Applications can use this value to unpack the hash suspend state that is output by psa_hash_suspend().
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH (macro)
The size of the input-length field that is part of the output of psa_hash_suspend(), in bytes.
#define PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) \

/* specification-defined value */

Parameters
alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(alg) is true.
Returns
The size, in bytes, of the input-length field of the hash suspend state for the specified hash algorithm. If thehash algorithm is not recognized, return 0. An implementation can return either 0 or the correct size for ahash algorithm that it recognizes, but does not support.
The algorithm-specific values are defined in Hash suspend state field sizes on page 157.
Description
Applications can use this value to unpack the hash suspend state that is output by psa_hash_suspend().
PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH (macro)
The size of the hash-state field that is part of the output of psa_hash_suspend(), in bytes.
#define PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) \

/* specification-defined value */

Parameters
alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(alg) is true.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 154

Returns
The size, in bytes, of the hash-state field of the hash suspend state for the specified hash algorithm. If thehash algorithm is not recognized, return 0. An implementation can return either 0 or the correct size for ahash algorithm that it recognizes, but does not support.
The algorithm-specific values are defined in Hash suspend state field sizes on page 157.
Description
Applications can use this value to unpack the hash suspend state that is output by psa_hash_suspend().
PSA_HASH_BLOCK_LENGTH (macro)
The input block size of a hash algorithm, in bytes.
#define PSA_HASH_BLOCK_LENGTH(alg) /* implementation-defined value */

Parameters
alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(alg) is true.
Returns
The block size in bytes for the specified hash algorithm. If the hash algorithm is not recognized, return 0. Animplementation can return either 0 or the correct size for a hash algorithm that it recognizes, but does notsupport.
Description
Hash algorithms process their input data in blocks. Hash operations will retain any partial blocks until theyhave enough input to fill the block or until the operation is finished.
This affects the output from psa_hash_suspend().

10.2.5 Hash suspend state
The hash suspend state is output by psa_hash_suspend() and input to psa_hash_resume().

Note:
Hash suspend and resume is not defined for the SM3 algorithm and the SHA3 family of hashalgorithms.

Hash suspend state format
The hash suspend state has the following format:

ℎ𝑎𝑠ℎ_𝑠𝑢𝑠𝑝𝑒𝑛𝑑_𝑠𝑡𝑎𝑡𝑒 = 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 || 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ || ℎ𝑎𝑠ℎ_𝑠𝑡𝑎𝑡𝑒 || 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑖𝑛𝑝𝑢𝑡
The fields in the hash suspend state are defined as follows:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 155

𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 A big-endian 32-bit unsigned integer.
The Crypto API algorithm identifier value.
The byte length of the 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 field can be evaluated using
PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH.

𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎA big-endian unsigned integer
The content of this field is algorithm-specific:

∙ For MD2, this is the number of bytes in 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑖𝑛𝑝𝑢𝑡.
∙ For all other hash algorithms, this is the total number of bytes of input to the hashcomputation. This includes the 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑖𝑛𝑝𝑢𝑡 bytes.

The size of this field is algorithm-specific:
∙ For MD2: 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ is an 8-bit unsigned integer.
∙ For MD4, MD5, RIPEMD-160, SHA-1, SHA-224, and SHA-256: 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ is a64-bit unsigned integer.
∙ For SHA-512/224, SHA-512/256, SHA-384, and SHA-512: 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ is a 128-bitunsigned integer.

The length, in bytes, of the 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ field can be calculated using
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) where alg is a hash algorithm. See Hashsuspend state field sizes on page 157.

ℎ𝑎𝑠ℎ_𝑠𝑡𝑎𝑡𝑒 An array of bytes
Algorithm-specific intermediate hash state:

∙ For MD2: 16 bytes of internal checksum, then 48 bytes of intermediate digest.
∙ For MD4 and MD5: 4x 32-bit integers, in little-endian encoding.
∙ For RIPEMD-160: 5x 32-bit integers, in little-endian encoding.
∙ For SHA-1: 5x 32-bit integers, in big-endian encoding.
∙ For SHA-224 and SHA-256: 8x 32-bit integers, in big-endian encoding.
∙ For SHA-512/224, SHA-512/256, SHA-384, and SHA-512: 8x 64-bit integers, inbig-endian encoding.

The length of this field is specific to the algorithm. The length, in bytes, of the ℎ𝑎𝑠ℎ_𝑠𝑡𝑎𝑡𝑒field can be calculated using PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) where alg is ahash algorithm. See Hash suspend state field sizes on page 157.
𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑖𝑛𝑝𝑢𝑡

0 to (ℎ𝑎𝑠ℎ_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒− 1) bytes
A partial block of unprocessed input data. This is between zero and ℎ𝑎𝑠ℎ_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒− 1bytes of data, the length can be calculated by:

length(𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑖𝑛𝑝𝑢𝑡) = 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ mod ℎ𝑎𝑠ℎ_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒.
The value of ℎ𝑎𝑠ℎ_𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒 is specific to the hash algorithm. The size of a hash block canbe calculated using PSA_HASH_BLOCK_LENGTH(alg) where alg is a hash algorithm. See Hashsuspend state field sizes on page 157.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 156

Hash suspend state field sizes
The following table defines the algorithm-specific field lengths for the hash suspend state returned by
psa_hash_suspend(). All of the field lengths are in bytes. To compute the field lengths for algorithm alg, usethe following expressions:

∙ PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH returns the length of the 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 field.
∙ PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) returns the length of the 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ field.
∙ PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) returns the length of the ℎ𝑎𝑠ℎ_𝑠𝑡𝑎𝑡𝑒 field.
∙ PSA_HASH_BLOCK_LENGTH(alg) - 1 is the maximum length of the 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑏𝑦𝑡𝑒𝑠 field.
∙ PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) returns the maximum size of the hash suspend state.

Hash algorithm 𝑖𝑛𝑝𝑢𝑡_𝑙𝑒𝑛𝑔𝑡ℎ size (bytes) ℎ𝑎𝑠ℎ_𝑠𝑡𝑎𝑡𝑒 length (bytes) 𝑢𝑛𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑏𝑦𝑡𝑒𝑠 length (bytes)

PSA_ALG_MD2 1 64 0 – 15
PSA_ALG_MD4 8 16 0 – 63
PSA_ALG_MD5 8 16 0 – 63
PSA_ALG_RIPEMD160 8 20 0 – 63
PSA_ALG_SHA_1 8 20 0 – 63
PSA_ALG_SHA_224 8 32 0 – 63
PSA_ALG_SHA_256 8 32 0 – 63
PSA_ALG_SHA_512_224 16 64 0 – 127
PSA_ALG_SHA_512_256 16 64 0 – 127
PSA_ALG_SHA_384 16 64 0 – 127
PSA_ALG_SHA_512 16 64 0 – 127

10.3 Extendable-output functions (XOF)
An eXtendable-Output Function (XOF) is similar to a cryptographic hash, transforming an arbitrary amountof input data into pseudorandom output. Unlike hash algorithms, an XOF can produce an arbitrary amountof output.
XOF algorithms are often used as a building block in other algorithms, as they are suitable for use inhashing, key-derivation, and as a pseudorandom function (PRF).
In the Crypto API, support for XOF algorithms is provided by the psa_xof_operation_t multi-part operation,and XOF algorithm identifiers. A multi-part XOF operation is used as follows:

1. Initialize the psa_xof_operation_t object to zero, or by assigning the value of the associated macro
PSA_XOF_OPERATION_INIT.

2. Call psa_xof_setup() to specify the required XOF algorithm.
3. If the algorithm has a context, call psa_xof_set_context() to provide the context value.
4. Call the psa_xof_update() function on successive chunks of the input data.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 157

5. After input is complete, call psa_xof_output() one or more times to extract successive chunks ofoutput.
6. When output is complete, call psa_xof_abort() to end the operation.

To abort the operation or recover from an error, call psa_xof_abort().
Note:
For an XOF algorithm:

∙ The result does not depend on how the overall input is fragmented. For example, calling
psa_xof_update() twice with input 𝑖1 and 𝑖2 has the same effect as calling psa_xof_update() oncewith the concatenation 𝑖1 || 𝑖2.

∙ The overall output does not depend on how the output is fragmented. If the output isconsidered as a stream of bytes, psa_xof_output() is an operation that reads bytes in sequencefrom the stream of data.

10.3.1 XOF algorithms
PSA_ALG_SHAKE128 (macro)
The SHAKE128 XOF algorithm.
Added in version 1.4.
#define PSA_ALG_SHAKE128 ((psa_algorithm_t)0x0D000100)

SHAKE128 is one of the KECCAK family of algorithms.
SHAKE128 is defined in FIPS Publication 202: SHA-3 Standard: Permutation-Based Hash andExtendable-Output Functions [FIPS202].
Some fixed output-length hash algorithms based on SHAKE128 are also provided in the Crypto API:

∙ PSA_ALG_SHAKE128_256 — defined in PSA Certified Crypto API 1.4 PQC Extension [PSA-PQC]
PSA_ALG_SHAKE256 (macro)
The SHAKE256 XOF algorithm.
Added in version 1.4.
#define PSA_ALG_SHAKE256 ((psa_algorithm_t)0x0D000200)

SHAKE256 is one of the KECCAK family of algorithms.
SHAKE256 is defined in [FIPS202].
Some fixed output-length hash algorithms based on SHAKE256 are also provided in the Crypto API:

∙ PSA_ALG_SHAKE256_192 — defined in [PSA-PQC]
∙ PSA_ALG_SHAKE256_256 — defined in [PSA-PQC]
∙ PSA_ALG_SHAKE256_512

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 158

PSA_ALG_ASCON_XOF128 (macro)
The Ascon-XOF128 XOF algorithm.
Added in version 1.4.
#define PSA_ALG_ASCON_XOF128 ((psa_algorithm_t)0x0D000300)

Ascon-XOF128 is defined in NIST Special Publication 800-232: Ascon-Based Lightweight CryptographyStandards for Constrained Devices [SP800-232] §5.2.
Note:
To use the Ascon-Hash256 hash algorithm, see PSA_ALG_ASCON_HASH256.

PSA_ALG_ASCON_CXOF128 (macro)
The Ascon-CXOF128 XOF algorithm, with context.
Added in version 1.4.
#define PSA_ALG_ASCON_CXOF128 ((psa_algorithm_t)0x0D008300)

Ascon-CXOF128 is defined in NIST Special Publication 800-232: Ascon-Based Lightweight CryptographyStandards for Constrained Devices [SP800-232] §5.3.
The context value must be provided by calling psa_xof_set_context() on the XOF mluti-part operation,before providing any input data.

10.3.2 Multi-part XOF operations
psa_xof_operation_t (typedef)
The type of the state object for multi-part XOF operations.
Added in version 1.4.
typedef /* implementation-defined type */ psa_xof_operation_t;

Before calling any function on an XOF operation object, the application must initialize it by any of thefollowing means:
∙ Set the object to all-bits-zero, for example:

psa_xof_operation_t operation;
memset(&operation, 0, sizeof(operation));

∙ Initialize the object to logical zero values by declaring the object as static or global without an explicitinitializer, for example:
static psa_xof_operation_t operation;

∙ Initialize the object to the initializer PSA_XOF_OPERATION_INIT, for example:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 159

psa_xof_operation_t operation = PSA_XOF_OPERATION_INIT;

∙ Assign the result of the function psa_xof_operation_init() to the object, for example:
psa_xof_operation_t operation;
operation = psa_xof_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.
PSA_XOF_OPERATION_INIT (macro)
This macro returns a suitable initializer for an XOF operation object of type psa_xof_operation_t.
Added in version 1.4.
#define PSA_XOF_OPERATION_INIT /* implementation-defined value */

psa_xof_operation_init (function)
Return an initial value for an XOF operation object.
Added in version 1.4.
psa_xof_operation_t psa_xof_operation_init(void);

Returns: psa_xof_operation_t

psa_xof_setup (function)
Set up an XOF operation.
Added in version 1.4.
psa_status_t psa_xof_setup(psa_xof_operation_t * operation,

psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per thedocumentation for psa_xof_operation_t and not yet in use.
alg The XOF algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_XOF(alg) is true.

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT alg is not an XOF algorithm.
PSA_ERROR_NOT_SUPPORTED alg is not supported or is not an XOF algorithm.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 160

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
The sequence of operations to generate XOF output is as follows:

1. Allocate an XOF operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_xof_operation_t, e.g. PSA_XOF_OPERATION_INIT.
3. Call psa_xof_setup() to specify the algorithm.
4. For an XOF algorithm that has a context, call psa_xof_set_context() to provide the context.
5. Call psa_xof_update() zero, one, or more times, passing a fragment of the input each time.
6. To extract XOF output data, call psa_xof_output() one or more times.

After a successful call to psa_xof_setup(), the operation is active, and the application must eventuallyterminate the operation with a call to psa_xof_abort().
If psa_xof_setup() returns an error, the operation object is unchanged. If a subsequent function call with anactive operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_xof_abort().
See Multi-part operations on page 27.
psa_xof_set_context (function)
Provide a context for a multi-part XOF operation.
Added in version 1.4.
psa_status_t psa_xof_set_context(psa_xof_operation_t * operation,

const uint8_t * context,
size_t context_length);

Parameters
operation Active XOF operation.
context Buffer containing the input fragment.
context_length Size of the context buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, and no call to
psa_xof_set_context(), psa_xof_output(), or psa_xof_output() hasbeen made.

∙ The library requires initializing by a call to psa_crypto_init().
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 161

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ The algorithm does not support a context value. See

PSA_ALG_XOF_HAS_CONTEXT().
∙ The context value is not valid for the XOF algorithm.

PSA_ERROR_NOT_SUPPORTED The context value is not supported by this implementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
This function sets the context value in a multi-part XOF operation, when using an XOF algorithm that has acontext parameter.
The application must call psa_xof_setup() before calling this function. For an XOF algorithm with a contextparameter, this function must be called immediately after psa_xof_setup(), before calling any other functionon the XOF operation.
This function must not be called if the XOF algorithm does not have a context parameter. The macro
PSA_ALG_XOF_HAS_CONTEXT() can be used to determine if a context value is required for the XOF algorithm.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_xof_abort().
psa_xof_update (function)
Add input to a multi-part XOF operation.
Added in version 1.4.
psa_status_t psa_xof_update(psa_xof_operation_t * operation,

const uint8_t * input,
size_t input_length);

Parameters
operation Active XOF operation.
input Buffer containing the input fragment.
input_length Size of the input buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, and no call to
psa_xof_output() has been made.

∙ The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_ARGUMENT The total input for the operation is too large for the XOF algorithm.
PSA_ERROR_NOT_SUPPORTED The total input for the operation is too large for the implementation.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 162

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
The application must call psa_xof_setup() before calling this function.
This function can be called zero, one, or more times to provide input for the XOF. The input to the XOF isonly finalized on the first call to psa_xof_output().
psa_xof_update() cannot be called on an XOF operation once psa_xof_output() has been called on theoperation.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_xof_abort().
psa_xof_output (function)
Extract data from an XOF operation.
Added in version 1.4.
psa_status_t psa_xof_output(psa_xof_operation_t * operation,

uint8_t * output,
size_t output_length);

Parameters
operation Active XOF operation.
output Buffer where the output will be written.
output_length Number of bytes to output.

Returns: psa_status_t
PSA_SUCCESS Success. The first output_length bytes of output contain the data.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
This function calculates output bytes from the XOF algorithm and returns those bytes. If the keyderivation’s output is viewed as a stream of bytes, this function consumes the requested number of bytesfrom the stream and returns them to the caller.
The application must call psa_xof_setup() and supply all input data, using calls to psa_xof_update(), beforecalling this function. The input to the XOF is finalized on the first call to psa_xof_output() before data is
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 163

extracted from the XOF.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_xof_abort().
psa_xof_abort (function)
Abort an XOF operation.
Added in version 1.4.
psa_status_t psa_xof_abort(psa_xof_operation_t * operation);

Parameters
operation Initialized XOF operation.

Returns: psa_status_t
PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
Aborting an operation frees all associated resources except for the operation object itself. Once aborted,the operation object can be reused for another operation by calling psa_xof_setup() again.
This function can be called any time after the operation object has been initialized by one of the methodsdescribed in psa_xof_operation_t.
In particular, calling psa_xof_abort() after the operation has been terminated by a call to psa_xof_abort() issafe and has no effect.

10.3.3 Support macros
PSA_ALG_XOF_HAS_CONTEXT (macro)
Whether the specified XOF algorithm has a context parameter.
Added in version 1.4.
#define PSA_ALG_XOF_HAS_CONTEXT(alg) /* specification-defined value */

Parameters
alg An XOF algorithm identifier: a value of type psa_algorithm_t such that

PSA_ALG_IS_XOF(alg) is true.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 164

Returns
1 if alg is an XOF algorithm that has a context parameter. 0 if alg is an XOF algorithm that does not have acontext parameter. This macro can return either 0 or 1 if alg is not a supported XOF algorithm identifier.

10.4 Message authentication codes (MAC)
The single-part MAC functions are:

∙ psa_mac_compute() to calculate the MAC of a message.
∙ psa_mac_verify() to compare the MAC of a message with a reference value.

The psa_mac_operation_t multi-part operation allows messages to be processed in fragments. A multi-partMAC operation is used as follows:
1. Initialize the psa_mac_operation_t object to zero, or by assigning the value of the associated macro

PSA_MAC_OPERATION_INIT.
2. Call psa_mac_sign_setup() or psa_mac_verify_setup() to specify the algorithm and key.
3. Call the psa_mac_update() function on successive chunks of the message.
4. At the end of the message, call the required finishing function:

∙ To calculate the MAC of the message, call psa_mac_sign_finish().
∙ To verify the MAC of the message against a reference value, call psa_mac_verify_finish().

To abort the operation or recover from an error, call psa_mac_abort().

10.4.1 MAC algorithms
PSA_ALG_HMAC (macro)
Macro to build an HMAC message-authentication-code algorithm from an underlying hash algorithm.
#define PSA_ALG_HMAC(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true.
See below on selecting a hash algorithm for use with HMAC.

Returns
The corresponding HMAC algorithm.
Unspecified if hash_alg is not a supported hash algorithm.
Description
For example, PSA_ALG_HMAC(PSA_ALG_SHA_256) is HMAC-SHA-256.
The HMAC construction is defined in HMAC: Keyed-Hashing for Message Authentication [RFC2104].

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 165

Choice of hash algorithm
An HMAC block size must be defined for use with each hash algorithm, which is at least as large as the hashoutput size.
HMAC was designed for hashes that use a Merkle-Damgård construction, for example, MD5, SHA-1, andSHA-2. For these hash algorithms, the HMAC block size is defined to be the hash input-block size.
Some algorithms do not have a defined HMAC block size. For example, Ascon (PSA_ALG_ASCON_HASH256) orShake-based hashes (PSA_ALG_SHAKE256_512).
Table 15 lists the valid hash algorithms for use with HMAC, and their HMAC block and output sizes in bytes.

Table 15 Hash algorithms that can be used with HMAC
Algorithm HMAC block size Output size

PSA_ALG_MD2 16 16
PSA_ALG_MD4 64 16
PSA_ALG_MD5 64 16
PSA_ALG_RIPEMD160 64 20
PSA_ALG_SHA_1 64 20
PSA_ALG_SHA_224 64 28
PSA_ALG_SHA_256 64 32
PSA_ALG_SHA_384 128 48
PSA_ALG_SHA_512 128 64
PSA_ALG_SHA_512_224 128 28
PSA_ALG_SHA_512_256 128 32
PSA_ALG_SHA3_224 144 28
PSA_ALG_SHA3_256 136 32
PSA_ALG_SHA3_384 104 48
PSA_ALG_SHA3_512 72 64
PSA_ALG_SM3 64 32

Implementation note
It is recommended that other hash algorithms are not supported with PSA_ALG_HMAC. Future versions ofthe Crypto API might specify HMAC support for these hash algorithms, and will define the block sizeto use for HMAC.

Compatible key types
PSA_KEY_TYPE_HMAC

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 166

PSA_ALG_CBC_MAC (macro)
The CBC-MAC message-authentication-code algorithm, constructed over a block cipher.
#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)

. Warning

CBC-MAC is insecure in many cases. A more secure mode, such as PSA_ALG_CMAC, is recommended.
The CBC-MAC algorithm must be used with a key for a block cipher. For example, one of PSA_KEY_TYPE_AES.
CBC-MAC is defined as MAC Algorithm 1 in ISO/IEC 9797-1:2011 Information technology — Securitytechniques — Message Authentication Codes (MACs) — Part 1: Mechanisms using a block cipher [ISO9797].
Compatible key types
PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_CMAC (macro)
The CMAC message-authentication-code algorithm, constructed over a block cipher.
#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)

The CMAC algorithm must be used with a key for a block cipher. For example, when used with a key withtype PSA_KEY_TYPE_AES, the resulting operation is AES-CMAC.
CMAC is defined in NIST Special Publication 800-38B: Recommendation for Block Cipher Modes of Operation:the CMAC Mode for Authentication [SP800-38B].
Compatible key types
PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_TRUNCATED_MAC (macro)
Macro to build a truncated MAC algorithm.
#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \

/* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 167

Parameters
mac_alg A MAC algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_MAC(mac_alg) is true. This can be a truncated oruntruncated MAC algorithm.
mac_length Desired length of the truncated MAC in bytes. This must be at mostthe untruncated length of the MAC and must be at least animplementation-specified minimum. The implementation-specifiedminimum must not be zero.

Returns
The corresponding MAC algorithm with the specified length.
Unspecified if mac_alg is not a supported MAC algorithm or if mac_length is too small or too large for thespecified MAC algorithm.
Description
A truncated MAC algorithm is identical to the corresponding MAC algorithm except that the MAC value forthe truncated algorithm consists of only the first mac_length bytes of the MAC value for the untruncatedalgorithm.

Note:
This macro might allow constructing algorithm identifiers that are not valid, either because thespecified length is larger than the untruncated MAC or because the specified length is smaller thanpermitted by the implementation.

Note:
It is implementation-defined whether a truncated MAC that is truncated to the same length as theMAC of the untruncated algorithm is considered identical to the untruncated algorithm for policycomparison purposes.

The untruncated MAC algorithm can be recovered using PSA_ALG_FULL_LENGTH_MAC().
Compatible key types
The resulting truncated MAC algorithm is compatible with the same key types as the MAC algorithm usedto construct it.
PSA_ALG_FULL_LENGTH_MAC (macro)
Macro to construct the MAC algorithm with an untruncated MAC, from a truncated MAC algorithm.
#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) /* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 168

Parameters
mac_alg A MAC algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_MAC(mac_alg) is true. This can be a truncated oruntruncated MAC algorithm.
Returns
The corresponding MAC algorithm with an untruncated MAC.
Unspecified if mac_alg is not a supported MAC algorithm.
Compatible key types
The resulting untruncated MAC algorithm is compatible with the same key types as the MAC algorithmused to construct it.
PSA_ALG_AT_LEAST_THIS_LENGTH_MAC (macro)
Macro to build a MAC minimum-MAC-length wildcard algorithm.
Added in version 1.1.
#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \

/* specification-defined value */

Parameters
mac_alg A MAC algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_MAC(alg) is true. This can be a truncated or untruncatedMAC algorithm.
min_mac_length Desired minimum length of the message authentication code in bytes.This must be at most the untruncated length of the MAC and must beat least 1.

Returns
The corresponding MAC wildcard algorithm with the specified minimum MAC length.
Unspecified if mac_alg is not a supported MAC algorithm or if min_mac_length is less than 1 or too large forthe specified MAC algorithm.
Description
A key with a minimum-MAC-length MAC wildcard algorithm as permitted-algorithm policy can be used withall MAC algorithms sharing the same base algorithm, and where the (potentially truncated) MAC length ofthe specific algorithm is equal to or larger then the wildcard algorithm’s minimum MAC length.

Note:
When setting the minimum required MAC length to less than the smallest MAC length permitted bythe base algorithm, this effectively becomes an ‘any-MAC-length-permitted’ policy for that basealgorithm.

The untruncated MAC algorithm can be recovered using PSA_ALG_FULL_LENGTH_MAC().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 169

Compatible key types
The resulting wildcard MAC algorithm is compatible with the same key types as the MAC algorithm used toconstruct it.

10.4.2 Single-part MAC functions
psa_mac_compute (function)
Calculate the message authentication code (MAC) of a message.
psa_status_t psa_mac_compute(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * mac,
size_t mac_size,
size_t * mac_length);

Parameters
key Identifier of the key to use for the operation. It must permit the usage

PSA_KEY_USAGE_SIGN_MESSAGE.
alg The MAC algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_MAC(alg) is true.
input Buffer containing the input message.
input_length Size of the input buffer in bytes.
mac Buffer where the MAC value is to be written.
mac_size Size of the mac buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The exact MAC size is PSA_MAC_LENGTH(key_type, key_bits, alg)where key_type and key_bits are attributes of the key used tocompute the MAC.
∙ PSA_MAC_MAX_SIZE evaluates to the maximum MAC size of anysupported MAC algorithm.

mac_length On success, the number of bytes that make up the MAC value.
Returns: psa_status_t

PSA_SUCCESS Success. The first (*mac_length) bytes of mac contain the MAC value.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_SIGN_MESSAGE flag, or it doesnot permit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the mac buffer is too small. PSA_MAC_LENGTH() or

PSA_MAC_MAX_SIZE can be used to determine a sufficient buffer size.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 170

∙ alg is not a MAC algorithm.
∙ key is not compatible with alg.
∙ input_length is too large for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a MAC algorithm.
∙ key is not supported for use with alg.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

Note:
To verify the MAC of a message against an expected value, use psa_mac_verify() instead. Beware thatcomparing integrity or authenticity data such as MAC values with a function such as memcmp() is riskybecause the time taken by the comparison might leak information about the MAC value which couldallow an attacker to guess a valid MAC and thereby bypass security controls.

psa_mac_verify (function)
Calculate the MAC of a message and compare it with a reference value.
psa_status_t psa_mac_verify(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * mac,
size_t mac_length);

Parameters
key Identifier of the key to use for the operation. It must permit the usage

PSA_KEY_USAGE_VERIFY_MESSAGE.
alg The MAC algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_MAC(alg) is true.
input Buffer containing the input message.
input_length Size of the input buffer in bytes.
mac Buffer containing the expected MAC value.
mac_length Size of the mac buffer in bytes.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 171

Returns: psa_status_t
PSA_SUCCESS Success. The expected MAC is identical to the actual MAC of theinput.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_MESSAGE flag, or itdoes not permit the requested algorithm.
PSA_ERROR_INVALID_SIGNATURE The calculated MAC of the message does not match the value in mac.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a MAC algorithm.
∙ key is not compatible with alg.
∙ input_length is too large for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a MAC algorithm.
∙ key is not supported for use with alg.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

10.4.3 Multi-part MAC operations
psa_mac_operation_t (typedef)
The type of the state object for multi-part MAC operations.
typedef /* implementation-defined type */ psa_mac_operation_t;

Before calling any function on a MAC operation object, the application must initialize it by any of thefollowing means:
∙ Set the object to all-bits-zero, for example:

psa_mac_operation_t operation;
memset(&operation, 0, sizeof(operation));

∙ Initialize the object to logical zero values by declaring the object as static or global without an explicitinitializer, for example:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 172

static psa_mac_operation_t operation;

∙ Initialize the object to the initializer PSA_MAC_OPERATION_INIT, for example:
psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;

∙ Assign the result of the function psa_mac_operation_init() to the object, for example:
psa_mac_operation_t operation;
operation = psa_mac_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.
PSA_MAC_OPERATION_INIT (macro)
This macro returns a suitable initializer for a MAC operation object of type psa_mac_operation_t.
#define PSA_MAC_OPERATION_INIT /* implementation-defined value */

psa_mac_operation_init (function)
Return an initial value for a MAC operation object.
psa_mac_operation_t psa_mac_operation_init(void);

Returns: psa_mac_operation_t

psa_mac_sign_setup (function)
Set up a multi-part MAC calculation operation.
psa_status_t psa_mac_sign_setup(psa_mac_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per thedocumentation for psa_mac_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain valid untilthe operation terminates. It must permit the usage

PSA_KEY_USAGE_SIGN_MESSAGE.
alg The MAC algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_MAC(alg) is true.

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 173

∙ The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_SIGN_MESSAGE flag, or it doesnot permit the requested algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a MAC algorithm.
∙ key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a MAC algorithm.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
This function sets up the calculation of the message authentication code (MAC) of a byte string. To verifythe MAC of a message against an expected value, use psa_mac_verify_setup() instead.
The sequence of operations to calculate a MAC is as follows:

1. Allocate a MAC operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_mac_operation_t, e.g. PSA_MAC_OPERATION_INIT.
3. Call psa_mac_sign_setup() to specify the algorithm and key.
4. Call psa_mac_update() zero, one or more times, passing a fragment of the message each time. TheMAC that is calculated is the MAC of the concatenation of these messages in order.
5. At the end of the message, call psa_mac_sign_finish() to finish calculating the MAC value and retrieveit.

After a successful call to psa_mac_sign_setup(), the operation is active, and the application must eventuallyterminate the operation. The following events terminate an operation:
∙ A successful call to psa_mac_sign_finish().
∙ A call to psa_mac_abort().

If psa_mac_sign_setup() returns an error, the operation object is unchanged. If a subsequent function callwith an active operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_mac_abort().
See Multi-part operations on page 27.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 174

psa_mac_verify_setup (function)
Set up a multi-part MAC verification operation.
psa_status_t psa_mac_verify_setup(psa_mac_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per thedocumentation for psa_mac_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain valid untilthe operation terminates. It must permit the usage

PSA_KEY_USAGE_VERIFY_MESSAGE.
alg The MAC algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_MAC(alg) is true.

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_MESSAGE flag, or itdoes not permit the requested algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a MAC algorithm.
∙ key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a MAC algorithm.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 175

Description
This function sets up the verification of the message authentication code (MAC) of a byte string against anexpected value.
The sequence of operations to verify a MAC is as follows:

1. Allocate a MAC operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_mac_operation_t, e.g. PSA_MAC_OPERATION_INIT.
3. Call psa_mac_verify_setup() to specify the algorithm and key.
4. Call psa_mac_update() zero, one or more times, passing a fragment of the message each time. TheMAC that is calculated is the MAC of the concatenation of these messages in order.
5. At the end of the message, call psa_mac_verify_finish() to finish calculating the actual MAC of themessage and verify it against the expected value.

After a successful call to psa_mac_verify_setup(), the operation is active, and the application musteventually terminate the operation. The following events terminate an operation:
∙ A successful call to psa_mac_verify_finish().
∙ A call to psa_mac_abort().

If psa_mac_verify_setup() returns an error, the operation object is unchanged. If a subsequent function callwith an active operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_mac_abort().
See Multi-part operations on page 27.
psa_mac_update (function)
Add a message fragment to a multi-part MAC operation.
psa_status_t psa_mac_update(psa_mac_operation_t * operation,

const uint8_t * input,
size_t input_length);

Parameters
operation Active MAC operation.
input Buffer containing the message fragment to add to the MACcalculation.
input_length Size of the input buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The total input for the operation is too large for the MAC algorithm.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 176

PSA_ERROR_NOT_SUPPORTED The total input for the operation is too large for the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The application must call psa_mac_sign_setup() or psa_mac_verify_setup() before calling this function.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_mac_abort().
psa_mac_sign_finish (function)
Finish the calculation of the MAC of a message.
psa_status_t psa_mac_sign_finish(psa_mac_operation_t * operation,

uint8_t * mac,
size_t mac_size,
size_t * mac_length);

Parameters
operation Active MAC operation.
mac Buffer where the MAC value is to be written.
mac_size Size of the mac buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The exact MAC size is PSA_MAC_LENGTH(key_type, key_bits, alg)where key_type and key_bits are attributes of the key, and alg isthe algorithm used to compute the MAC.
∙ PSA_MAC_MAX_SIZE evaluates to the maximum MAC size of anysupported MAC algorithm.

mac_length On success, the number of bytes that make up the MAC value. This isalways PSA_MAC_LENGTH(key_type, key_bits, alg) where key_type and
key_bits are attributes of the key, and alg is the algorithm used tocompute the MAC.

Returns: psa_status_t
PSA_SUCCESS Success. The first (*mac_length) bytes of mac contain the MAC value.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be an active mac signoperation.
∙ The library requires initializing by a call to psa_crypto_init().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 177

PSA_ERROR_BUFFER_TOO_SMALL The size of the mac buffer is too small. PSA_MAC_LENGTH() or
PSA_MAC_MAX_SIZE can be used to determine a sufficient buffer size.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The application must call psa_mac_sign_setup() before calling this function. This function calculates theMAC of the message formed by concatenating the inputs passed to preceding calls to psa_mac_update().
When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_mac_abort().
. Warning

It is not recommended to use this function when a specific value is expected for the MAC. Call
psa_mac_verify_finish() instead with the expected MAC value.
Comparing integrity or authenticity data such as MAC values with a function such as memcmp() is riskybecause the time taken by the comparison might leak information about the hashed data which couldallow an attacker to guess a valid MAC and thereby bypass security controls.

psa_mac_verify_finish (function)
Finish the calculation of the MAC of a message and compare it with an expected value.
psa_status_t psa_mac_verify_finish(psa_mac_operation_t * operation,

const uint8_t * mac,
size_t mac_length);

Parameters
operation Active MAC operation.
mac Buffer containing the expected MAC value.
mac_length Size of the mac buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success. The expected MAC is identical to the actual MAC of themessage.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be an active mac verifyoperation.
∙ The library requires initializing by a call to psa_crypto_init().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 178

PSA_ERROR_INVALID_SIGNATURE The calculated MAC of the message does not match the value in mac.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The application must call psa_mac_verify_setup() before calling this function. This function calculates theMAC of the message formed by concatenating the inputs passed to preceding calls to psa_mac_update(). Itthen compares the calculated MAC with the expected MAC passed as a parameter to this function.
When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_mac_abort().

Note:
Implementations must make the best effort to ensure that the comparison between the actual MACand the expected MAC is performed in constant time.

psa_mac_abort (function)
Abort a MAC operation.
psa_status_t psa_mac_abort(psa_mac_operation_t * operation);

Parameters
operation Initialized MAC operation.

Returns: psa_status_t
PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
Aborting an operation frees all associated resources except for the operation object itself. Once aborted,the operation object can be reused for another operation by calling psa_mac_sign_setup() or
psa_mac_verify_setup() again.
This function can be called any time after the operation object has been initialized by one of the methodsdescribed in psa_mac_operation_t.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 179

In particular, calling psa_mac_abort() after the operation has been terminated by a call to psa_mac_abort(),
psa_mac_sign_finish() or psa_mac_verify_finish() is safe and has no effect.

10.4.4 Support macros
PSA_ALG_IS_HMAC (macro)
Whether the specified algorithm is an HMAC algorithm.
#define PSA_ALG_IS_HMAC(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an HMAC algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedalgorithm identifier.
Description
HMAC is a family of MAC algorithms that are based on a hash function.
PSA_ALG_IS_BLOCK_CIPHER_MAC (macro)
Whether the specified algorithm is a MAC algorithm based on a block cipher.
#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a MAC algorithm based on a block cipher, 0 otherwise. This macro can return either 0 or 1 if alg isnot a supported algorithm identifier.
PSA_MAC_LENGTH (macro)
The size of the output of psa_mac_compute() and psa_mac_sign_finish(), in bytes.
#define PSA_MAC_LENGTH(key_type, key_bits, alg) \

/* implementation-defined value */

Parameters
key_type The type of the MAC key.
key_bits The size of the MAC key in bits.
alg A MAC algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_MAC(alg) is true.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 180

Returns
The MAC length for the specified algorithm with the specified key parameters.
0 if the MAC algorithm is not recognized.
Either 0 or the correct length for a MAC algorithm that the implementation recognizes, but does notsupport.
Unspecified if the key parameters are not consistent with the algorithm.
Description
If the size of the MAC buffer is at least this large, it is guaranteed that psa_mac_compute() and
psa_mac_sign_finish() will not fail due to an insufficient buffer size.
This is also the MAC length that psa_mac_verify() and psa_mac_verify_finish() expect.
See also PSA_MAC_MAX_SIZE.
PSA_MAC_MAX_SIZE (macro)
A sufficient buffer size for storing the MAC output by psa_mac_verify() and psa_mac_verify_finish(), forany of the supported key types and MAC algorithms.
#define PSA_MAC_MAX_SIZE /* implementation-defined value */

If the size of the MAC buffer is at least this large, it is guaranteed that psa_mac_verify() and
psa_mac_verify_finish() will not fail due to an insufficient buffer size.
See also PSA_MAC_LENGTH().

10.5 Unauthenticated ciphers

. Warning

The unauthenticated cipher API is provided to implement legacy protocols and for use cases where thedata integrity and authenticity is guaranteed by non-cryptographic means.
It is recommended that newer protocols use Authenticated encryption with associated data (AEAD) onpage 207.

The single-part functions for encrypting or decrypting a message using an unauthenticated symmetriccipher are:
∙ psa_cipher_encrypt() to encrypt a message using an unauthenticated symmetric cipher. Theencryption function generates a random initialization vector (IV). Use the multi-part API to provide adeterministic IV: this is not secure in general, but can be secure in some conditions that depend onthe algorithm.
∙ psa_cipher_decrypt() to decrypt a message using an unauthenticated symmetric cipher.

The psa_cipher_operation_t multi-part operation permits alternative initialization parameters and allowsmessages to be processed in fragments. A multi-part cipher operation is used as follows:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 181

1. Initialize the psa_cipher_operation_t object to zero, or by assigning the value of the associated macro
PSA_CIPHER_OPERATION_INIT.

2. Call psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup() to specify the algorithm and key.
3. Provide additional parameters:

∙ When encrypting data, generate or set an IV, nonce, or similar initial value such as an initialcounter value. To generate a random IV, which is recommended in most protocols, call
psa_cipher_generate_iv(). To set the IV, call psa_cipher_set_iv().

∙ When decrypting, set the IV or nonce. To set the IV, call psa_cipher_set_iv().
4. Call the psa_cipher_update() function on successive chunks of the message.
5. Call psa_cipher_finish() to complete the operation and return any final output.

To abort the operation or recover from an error, call psa_cipher_abort().

10.5.1 Cipher algorithms
PSA_ALG_STREAM_CIPHER (macro)
The stream cipher mode of a stream cipher algorithm.
#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)

The underlying stream cipher is determined by the key type. The ARC4, ChaCha20, and XChaCha20ciphers use this algorithm identifier.
ARC4
To use ARC4, use a key type of PSA_KEY_TYPE_ARC4 and algorithm id PSA_ALG_STREAM_CIPHER.
. Warning

The ARC4 cipher is weak and deprecated and is only recommended for use in legacy applications.
The ARC4 cipher does not use an initialization vector (IV). When using a multi-part cipher operation withthe PSA_ALG_STREAM_CIPHER algorithm and an ARC4 key, psa_cipher_generate_iv() and psa_cipher_set_iv()must not be called.
ChaCha20
To use ChaCha20, use a key type of PSA_KEY_TYPE_CHACHA20 and algorithm id PSA_ALG_STREAM_CIPHER.
Implementations must support the variant that is defined in ChaCha20 and Poly1305 for IETF Protocols[RFC8439] §2.4, which has a 96-bit nonce and a 32-bit counter. Implementations can optionally alsosupport the original variant, as defined in ChaCha, a variant of Salsa20 [CHACHA20], which has a 64-bitnonce and a 64-bit counter. Except where noted, the [RFC8439] variant must be used.
ChaCha20 defines a nonce and an initial counter to be provided to the encryption and decryptionoperations. When using a ChaCha20 key with the PSA_ALG_STREAM_CIPHER algorithm, these values areprovided using the initialization vector (IV) functions in the following ways:

∙ A call to psa_cipher_encrypt() will generate a random 12-byte nonce, and set the counter value tozero. The random nonce is output as a 12-byte IV value in the output.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 182

https://datatracker.ietf.org/doc/html/rfc8439.html#section-2.4

∙ A call to psa_cipher_decrypt() will use first 12 bytes of the input buffer as the nonce and set thecounter value to zero.
∙ A call to psa_cipher_generate_iv() on a multi-part cipher operation will generate and return a random12-byte nonce and set the counter value to zero.
∙ A call to psa_cipher_set_iv() on a multi-part cipher operation can support the following IV sizes:

— 12 bytes: the provided IV is used as the nonce, and the counter value is set to zero.
— 16 bytes: the first four bytes of the IV are used as the counter value (encoded as little-endian),and the remaining 12 bytes are used as the nonce.
— 8 bytes: the cipher operation uses the original [CHACHA20] definition of ChaCha20: theprovided IV is used as the 64-bit nonce, and the 64-bit counter value is set to zero.
— It is recommended that implementations do not support other sizes of IV.

XChaCha20
To use XChaCha20, use a key type of PSA_KEY_TYPE_XCHACHA20 and algorithm id PSA_ALG_STREAM_CIPHER.
XChaCha20 is a variation of ChaCha20 that uses a 192-bit nonce and a 64-bit counter. The larger nonceprovides much lower probability of nonce misuse.
When using an XChaCha20 key with the PSA_ALG_STREAM_CIPHER algorithm, the nonce and an initial countervalues are provided using the initialization vector (IV) functions in the following ways:

∙ A call to psa_cipher_encrypt() will generate a random 24-byte nonce, and set the counter value tozero. The random nonce is output as a 24-byte IV value in the output.
∙ A call to psa_cipher_decrypt() will use first 24 bytes of the input buffer as the nonce and set thecounter value to zero.
∙ A call to psa_cipher_generate_iv() on a multi-part cipher operation will generate and return a random24-byte nonce and set the counter value to zero.
∙ A call to psa_cipher_set_iv() on a multi-part cipher operation can support the following IV sizes:

— 24 bytes: the provided IV is used as the nonce, and the counter value is set to zero.
— 32 bytes: the first 8 bytes of the IV are used as the counter value (encoded as little-endian), andthe remaining 24 bytes are used as the nonce.

Other sizes of IV are invalid.
XChaCha20 is defined in XChaCha: eXtended-nonce ChaCha and AEAD_XChaCha20_Poly1305 [XCHACHA].
Compatible key types
PSA_KEY_TYPE_ARC4

PSA_KEY_TYPE_CHACHA20

PSA_KEY_TYPE_XCHACHA20

PSA_ALG_CTR (macro)
A stream cipher built using the Counter (CTR) mode of a block cipher.
#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 183

CTR is a stream cipher which is built from a block cipher. The underlying block cipher is determined by thekey type. For example, to use AES-128-CTR, use this algorithm with a key of type PSA_KEY_TYPE_AES and asize of 128 bits (16 bytes).
The CTR block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block CipherModes of Operation: Methods and Techniques [SP800-38A].
CTR mode operates using a counter block which is the same size as the cipher block length. The counterblock is updated for each block, or a partial final block, that is encrypted or decrypted.
For the PSA_ALG_CTR algorithm, the counter block is initialized from the IV. The counter block is then treatedas a single, big-endian encoded integer, and the counter block is updated by incrementing this integer by 1.
The security of CTR mode depends on using counter block values that are unique across all messagesencrypted using the same key value. This is achieved by using suitable initial counter block values, theappropriate way to do this depends on the application use case:

∙ If the application is using CTR mode to implement a protocol that specifies the construction of the IV,then the application must use a multi-part cipher operation, and call psa_cipher_set_iv() with theappropriate IV for encryption and decryption operations.
Note:
The protocol must use the same counter block update strategy as the one specified here.

∙ If the application is able to construct a unique nonce value for each time the same key is used toencrypt data, then it is recommended that the application uses a multi-part cipher operation, and call
psa_cipher_set_iv() using the nonce as the IV for encryption and decryption operations.
The nonce length, 𝑛 bytes, must satisfy 1 ≤ 𝑛 ≤ 𝑏, where 𝑏 is the cipher block size in bytes. To avoid acounter-block collision with other nonce values, the application must ensure that at most 28(𝑏−𝑛)

blocks of data are encrypted in any single operation.
For example, when using CTR encryption with an AES key, the cipher block size is 16 bytes. Theapplication can provide a 12-byte nonce when setting the IV. This leaves 4 bytes for the counter,allowing up to 232 blocks (64GB) of message data to be encrypted in each message.

∙ Otherwise, it is recommended that the application uses a random IV value when encrypting data, andtransmits the IV along with the ciphertext for use when decrypting the data. This can be achievedwith either the single-part cipher functions or the multi-part cipher operation:
— In a multi-part cipher encryption operation, call psa_cipher_generate_iv(), which returns the IVvalue. To use the same IV in a multi-part cipher decryption operation, call psa_cipher_set_iv().
— A call to psa_cipher_encrypt() will generate a random counter block value. This is the first blockof output. A call to psa_cipher_decrypt() will use first block of the input buffer as the initialcounter block value.

When using PSA_ALG_CTR, if the IV passed to psa_cipher_set_iv() is shorter than a cipher block, the initialcounter block is formed by padding the end of the IV with zero bytes up to the block length.
Note:
The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 184

Compatible key types
PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_CCM_STAR_NO_TAG (macro)
The CCM* cipher mode without authentication.
Added in version 1.2.
#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300)

This is CCM* as specified in IEEE Standard for Low-Rate Wireless Networks [IEEE-CCM] §7, with a tag lengthof 0. For CCM* with a nonzero tag length, use the AEAD algorithm PSA_ALG_CCM.
The underlying block cipher is determined by the key type.
The IV generated or set in the cipher API is used as the nonce in the CCM* operation. An implementationmust support the default IV length of 13. Support for setting a shorter IV is optional.
The maximum message length that can be encrypted is dependent on the length of the IV. See PSA_ALG_CCMfor details of this relationship.
Usage in Zigbee
The Zigbee message encryption algorithm is based on CCM*. This is detailed in zigbee Specification[ZIGBEE] §B.1.1 and §A.

∙ For unauthenticated messages — when tag length 𝑀 = 0 — the PSA_ALG_CCM_STAR_NO_TAG algorithm isused with an AES-128 key in a multi-part cipher operation. The 13-byte IV must be constructed asspecified in [ZIGBEE], and provided to the operation using psa_cipher_set_iv().
Note:
An implementation of Zigbee cannot use the single-part psa_cipher_encrypt() function, as thisgenerates a random IV, which is not valid for the Zigbee protocol.

∙ For authenticated messages — when tag length 𝑀 ∈ {4, 8, 16} — the
PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, tag_length) algorithm is used with an AES-128 key,where tag_length is the required value of 𝑀 . The 13-byte nonce must be constructed as specified in[ZIGBEE].
As the default tag length for CCM is 16, then PSA_ALG_CCM algorithm can be used when 𝑀 = 16.

∙ To enable a single AES-128 key to be used for both the PSA_ALG_CCM_STAR_NO_TAG cipher and
PSA_ALG_CCM AEAD algorithm, the key can be defined with the wildcard PSA_ALG_CCM_STAR_ANY_TAGpermitted algorithm.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 185

Compatible key types
PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_CFB (macro)
A stream cipher built using the Cipher Feedback (CFB) mode of a block cipher.
#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)

The underlying block cipher is determined by the key type. This is the variant of CFB where each iterationencrypts or decrypts a segment of the input that is the same length as the cipher block size. For example,using PSA_ALG_CFB with a key of type PSA_KEY_TYPE_AES will result in the AES-CFB-128 cipher.
CFB mode requires an initialization vector (IV) that is the same size as the cipher block length.

Note:
The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The CFB block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block CipherModes of Operation: Methods and Techniques [SP800-38A], using a segment size 𝑠 equal to the block size 𝑏.The definition in [SP800-38A] is extended to allow an incomplete final block of input, in which case thealgorithm discards the final bytes of the key stream when encrypting or decrypting the final partial block.
Compatible key types
PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_OFB (macro)
A stream cipher built using the Output Feedback (OFB) mode of a block cipher.
#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)

The underlying block cipher is determined by the key type.
OFB mode requires an initialization vector (IV) that is the same size as the cipher block length. OFB moderequires that the IV is a nonce, and must be unique for each use of the mode with the same key.

Note:
The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 186

The OFB block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block CipherModes of Operation: Methods and Techniques [SP800-38A].
Compatible key types
PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_XTS (macro)
The XEX with Ciphertext Stealing (XTS) cipher mode of a block cipher.
#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)

XTS is a cipher mode which is built from a block cipher, designed for use in disk encryption. It requires atleast one full cipher block length of input, but beyond this minimum the input does not need to be a wholenumber of blocks.
XTS mode uses two keys for the underlying block cipher. These are provided by using a key that is twice thenormal key size for the cipher. For example, to use AES-256-XTS the application must create a key withtype PSA_KEY_TYPE_AES and bit size 512.
XTS mode requires an initialization vector (IV) that is the same size as the cipher block length. The IV forXTS is typically defined to be the sector number of the disk block being encrypted or decrypted.
The XTS block cipher mode is defined in 1619-2018 --- IEEE Standard for Cryptographic Protection of Data onBlock-Oriented Storage Devices [IEEE-XTS].
Compatible key types
PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_ECB_NO_PADDING (macro)
The Electronic Codebook (ECB) mode of a block cipher, with no padding.
#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)

. Warning

ECB mode does not protect the confidentiality of the encrypted data except in extremely narrowcircumstances. It is recommended that applications only use ECB if they need to construct an operatingmode that the implementation does not provide. Implementations are encouraged to provide the modesthat applications need in preference to supporting direct access to ECB.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 187

The underlying block cipher is determined by the key type.
This symmetric cipher mode can only be used with messages whose lengths are a multiple of the block sizeof the chosen block cipher.
ECB mode does not accept an initialization vector (IV). When using a multi-part cipher operation with thisalgorithm, psa_cipher_generate_iv() and psa_cipher_set_iv() must not be called.

Note:
The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The ECB block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block CipherModes of Operation: Methods and Techniques [SP800-38A].
Compatible key types
PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_CBC_NO_PADDING (macro)
The Cipher Block Chaining (CBC) mode of a block cipher, with no padding.
#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)

The underlying block cipher is determined by the key type.
This symmetric cipher mode can only be used with messages whose lengths are a multiple of the block sizeof the chosen block cipher.
CBC mode requires an initialization vector (IV) that is the same size as the cipher block length.

Note:
The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The CBC block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block CipherModes of Operation: Methods and Techniques [SP800-38A].
Compatible key types
PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 188

PSA_ALG_CBC_PKCS7 (macro)
The Cipher Block Chaining (CBC) mode of a block cipher, with PKCS#7 padding.
#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)

The underlying block cipher is determined by the key type.
CBC mode requires an initialization vector (IV) that is the same size as the cipher block length.

Note:
The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The CBC block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block CipherModes of Operation: Methods and Techniques [SP800-38A]. The padding operation is defined by PKCS #7:Cryptographic Message Syntax Version 1.5 [RFC2315] §10.3.
Compatible key types
PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_DES

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

10.5.2 Single-part cipher functions
psa_cipher_encrypt (function)
Encrypt a message using a symmetric cipher.
psa_status_t psa_cipher_encrypt(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters
key Identifier of the key to use for the operation. It must permit the usage

PSA_KEY_USAGE_ENCRYPT.
alg The cipher algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_CIPHER(alg) is true.
input Buffer containing the message to encrypt.
input_length Size of the input buffer in bytes.
output Buffer where the output is to be written. The output contains the IVfollowed by the ciphertext proper.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 189

https://datatracker.ietf.org/doc/html/rfc2315.html#section-10.3

output_size Size of the output buffer in bytes. This must be appropriate for theselected algorithm and key:
∙ A sufficient output size is

PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input_length)where key_type is the type of key.
∙ PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input_length) evaluates tothe maximum output size of any supported cipher encryption.

output_length On success, the number of bytes that make up the output.
Returns: psa_status_t

PSA_SUCCESS Success. The first (*output_length) bytes of output contain theencrypted output.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.

PSA_CIPHER_ENCRYPT_OUTPUT_SIZE() or
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE() can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not a cipher algorithm.
∙ key is not compatible with alg.
∙ The input_length is not valid for the algorithm and key type. Forexample, the algorithm is a based on block cipher and requires awhole number of blocks, but the total input size is not a multipleof the block size.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a cipher algorithm.
∙ key is not supported for use with alg.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 190

Description
This function encrypts a message with a random initialization vector (IV). The length of the IV is
PSA_CIPHER_IV_LENGTH(key_type, alg) where key_type is the type of key. The output of psa_cipher_encrypt()is the IV followed by the ciphertext.
Use the multi-part operation interface with a psa_cipher_operation_t object to provide other forms of IV orto manage the IV and ciphertext independently.
psa_cipher_decrypt (function)
Decrypt a message using a symmetric cipher.
psa_status_t psa_cipher_decrypt(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters
key Identifier of the key to use for the operation. It must remain valid untilthe operation terminates. It must permit the usage

PSA_KEY_USAGE_DECRYPT.
alg The cipher algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_CIPHER(alg) is true.
input Buffer containing the message to decrypt. This consists of the IVfollowed by the ciphertext proper.
input_length Size of the input buffer in bytes.
output Buffer where the plaintext is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is
PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, input_length)where key_type is the type of key.

∙ PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(input_length) evaluates tothe maximum output size of any supported cipher decryption.
output_length On success, the number of bytes that make up the output.

Returns: psa_status_t
PSA_SUCCESS Success. The first (*output_length) bytes of output contain theplaintext.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does notpermit the requested algorithm.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 191

PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.
PSA_CIPHER_DECRYPT_OUTPUT_SIZE() or
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE() can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_PADDING The algorithm uses padding, and the input does not contain validpadding.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a cipher algorithm.
∙ key is not compatible with alg.
∙ The input_length is not valid for the algorithm and key type. Forexample, the algorithm is a based on block cipher and requires awhole number of blocks, but the total input size is not a multipleof the block size.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a cipher algorithm.
∙ key is not supported for use with alg.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
This function decrypts a message encrypted with a symmetric cipher.
The input to this function must contain the IV followed by the ciphertext, as output by
psa_cipher_encrypt(). The IV must be PSA_CIPHER_IV_LENGTH(key_type, alg) bytes in length, where key_typeis the type of key.
Use the multi-part operation interface with a psa_cipher_operation_t object to decrypt data which is not inthe expected input format.

10.5.3 Multi-part cipher operations
psa_cipher_operation_t (typedef)
The type of the state object for multi-part cipher operations.
typedef /* implementation-defined type */ psa_cipher_operation_t;

Before calling any function on a cipher operation object, the application must initialize it by any of thefollowing means:
∙ Set the object to all-bits-zero, for example:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 192

psa_cipher_operation_t operation;
memset(&operation, 0, sizeof(operation));

∙ Initialize the object to logical zero values by declaring the object as static or global without an explicitinitializer, for example:
static psa_cipher_operation_t operation;

∙ Initialize the object to the initializer PSA_CIPHER_OPERATION_INIT, for example:
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;

∙ Assign the result of the function psa_cipher_operation_init() to the object, for example:
psa_cipher_operation_t operation;
operation = psa_cipher_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.
PSA_CIPHER_OPERATION_INIT (macro)
This macro returns a suitable initializer for a cipher operation object of type psa_cipher_operation_t.
#define PSA_CIPHER_OPERATION_INIT /* implementation-defined value */

psa_cipher_operation_init (function)
Return an initial value for a cipher operation object.
psa_cipher_operation_t psa_cipher_operation_init(void);

Returns: psa_cipher_operation_t

psa_cipher_encrypt_setup (function)
Set the key for a multi-part symmetric encryption operation.
psa_status_t psa_cipher_encrypt_setup(psa_cipher_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per thedocumentation for psa_cipher_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain valid untilthe operation terminates. It must permit the usage

PSA_KEY_USAGE_ENCRYPT.
alg The cipher algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_CIPHER(alg) is true.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 193

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a cipher algorithm.
∙ key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a cipher algorithm.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The sequence of operations to encrypt a message with a symmetric cipher is as follows:

1. Allocate a cipher operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_cipher_operation_t, e.g. PSA_CIPHER_OPERATION_INIT.
3. Call psa_cipher_encrypt_setup() to specify the algorithm and key.
4. Call either psa_cipher_generate_iv() or psa_cipher_set_iv() to generate or set the initialization vector(IV), if the algorithm requires one. It is recommended to use psa_cipher_generate_iv() unless theprotocol being implemented requires a specific IV value.
5. Call psa_cipher_update() zero, one or more times, passing a fragment of the message each time.
6. Call psa_cipher_finish().

After a successful call to psa_cipher_encrypt_setup(), the operation is active, and the application musteventually terminate the operation. The following events terminate an operation:
∙ A successful call to psa_cipher_finish().
∙ A call to psa_cipher_abort().

If psa_cipher_encrypt_setup() returns an error, the operation object is unchanged. If a subsequent functioncall with an active operation returns an error, the operation enters an error state.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 194

To abandon an active operation, or reset an operation in an error state, call psa_cipher_abort().
See Multi-part operations on page 27.
psa_cipher_decrypt_setup (function)
Set the key for a multi-part symmetric decryption operation.
psa_status_t psa_cipher_decrypt_setup(psa_cipher_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per thedocumentation for psa_cipher_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain valid untilthe operation terminates. It must permit the usage

PSA_KEY_USAGE_DECRYPT.
alg The cipher algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_CIPHER(alg) is true.

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a cipher algorithm.
∙ key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a cipher algorithm.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 195

Description
The sequence of operations to decrypt a message with a symmetric cipher is as follows:

1. Allocate a cipher operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_cipher_operation_t, e.g. PSA_CIPHER_OPERATION_INIT.
3. Call psa_cipher_decrypt_setup() to specify the algorithm and key.
4. Call psa_cipher_set_iv() with the initialization vector (IV) for the decryption, if the algorithm requiresone. This must match the IV used for the encryption.
5. Call psa_cipher_update() zero, one or more times, passing a fragment of the message each time.
6. Call psa_cipher_finish().

After a successful call to psa_cipher_decrypt_setup(), the operation is active, and the application musteventually terminate the operation. The following events terminate an operation:
∙ A successful call to psa_cipher_finish().
∙ A call to psa_cipher_abort().

If psa_cipher_decrypt_setup() returns an error, the operation object is unchanged. If a subsequent functioncall with an active operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_cipher_abort().
See Multi-part operations on page 27.
psa_cipher_generate_iv (function)
Generate an initialization vector (IV) for a symmetric encryption operation.
psa_status_t psa_cipher_generate_iv(psa_cipher_operation_t * operation,

uint8_t * iv,
size_t iv_size,
size_t * iv_length);

Parameters
operation Active cipher operation.
iv Buffer where the generated IV is to be written.
iv_size Size of the iv buffer in bytes. This must be at least

PSA_CIPHER_IV_LENGTH(key_type, alg) where key_type and alg are typeof key and the algorithm respectively that were used to set up thecipher operation.
iv_length On success, the number of bytes of the generated IV.

Returns: psa_status_t
PSA_SUCCESS Success. The first (*iv_length) bytes of iv contain the generated IV.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The cipher algorithm does not use an IV.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 196

∙ The operation state is not valid: it must be active, with no IV set.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the iv buffer is too small. PSA_CIPHER_IV_LENGTH() or
PSA_CIPHER_IV_MAX_SIZE can be used to determine a sufficient buffersize.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
This function generates a random IV, nonce or initial counter value for the encryption operation asappropriate for the chosen algorithm, key type and key size.
The generated IV is always the default length for the key and algorithm: PSA_CIPHER_IV_LENGTH(key_type,
alg), where key_type is the type of key and alg is the algorithm that were used to set up the operation. Togenerate different lengths of IV, use psa_generate_random() and psa_cipher_set_iv().
If the cipher algorithm does not use an IV, calling this function returns a PSA_ERROR_BAD_STATE error. Forthese algorithms, PSA_CIPHER_IV_LENGTH(key_type, alg) will be zero.
The application must call psa_cipher_encrypt_setup() before calling this function.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_cipher_abort().
psa_cipher_set_iv (function)
Set the initialization vector (IV) for a symmetric encryption or decryption operation.
psa_status_t psa_cipher_set_iv(psa_cipher_operation_t * operation,

const uint8_t * iv,
size_t iv_length);

Parameters
operation Active cipher operation.
iv Buffer containing the IV to use.
iv_length Size of the IV in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The cipher algorithm does not use an IV.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 197

∙ The operation state is not valid: it must be an active cipherencrypt operation, with no IV set.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ The chosen algorithm does not use an IV.
∙ iv_length is not valid for the chosen algorithm.

PSA_ERROR_NOT_SUPPORTED iv_length is not supported for use with the operation’s algorithm andkey.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
This function sets the IV, nonce or initial counter value for the encryption or decryption operation.
If the cipher algorithm does not use an IV, calling this function returns a PSA_ERROR_BAD_STATE error. Forthese algorithms, PSA_CIPHER_IV_LENGTH(key_type, alg) will be zero.
The application must call psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup() before calling thisfunction.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_cipher_abort().

Note:
When encrypting, psa_cipher_generate_iv() is recommended instead of using this function, unlessimplementing a protocol that requires a non-random IV.

psa_cipher_update (function)
Encrypt or decrypt a message fragment in an active cipher operation.
psa_status_t psa_cipher_update(psa_cipher_operation_t * operation,

const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 198

Parameters
operation Active cipher operation.
input Buffer containing the message fragment to encrypt or decrypt.
input_length Size of the input buffer in bytes.
output Buffer where the output is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is
PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input_length)where key_type is the type of key and alg is the algorithm thatwere used to set up the operation.

∙ PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input_length) evaluates tothe maximum output size of any supported cipher algorithm.
output_length On success, the number of bytes that make up the returned output.

Returns: psa_status_t
PSA_SUCCESS Success. The first (*output_length) bytes of output contain the outputdata.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, with an IV set ifrequired for the algorithm.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.
PSA_CIPHER_UPDATE_OUTPUT_SIZE() or
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE() can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The total input size passed to this operation is too large for thisparticular algorithm.
PSA_ERROR_NOT_SUPPORTED The total input size passed to this operation is too large for theimplementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 199

Description
The following must occur before calling this function:

1. Call either psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup(). The choice of setup functiondetermines whether this function encrypts or decrypts its input.
2. If the algorithm requires an IV, call psa_cipher_generate_iv() or psa_cipher_set_iv().

psa_cipher_generate_iv() is recommended when encrypting.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_cipher_abort().

Note:
This function does not require the input to be aligned to any particular block boundary. If theimplementation can only process a whole block at a time, it must consume all the input provided, butit might delay the end of the corresponding output until a subsequent call to psa_cipher_update()provides sufficient input, or a subsequent call to psa_cipher_finish() indicates the end of the input.The amount of data that can be delayed in this way is bounded by the associated output size macro:
PSA_CIPHER_UPDATE_OUTPUT_SIZE() or PSA_CIPHER_FINISH_OUTPUT_SIZE().

psa_cipher_finish (function)
Finish encrypting or decrypting a message in a cipher operation.
psa_status_t psa_cipher_finish(psa_cipher_operation_t * operation,

uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters
operation Active cipher operation.
output Buffer where the last part of the output is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is
PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg) where key_type isthe type of key and alg is the algorithm that were used to set upthe operation.

∙ PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE evaluates to the maximumoutput size of any supported cipher algorithm.
output_length On success, the number of bytes that make up the returned output.

Returns: psa_status_t
PSA_SUCCESS Success. The first (*output_length) bytes of output contain the finaloutput.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 200

∙ The operation state is not valid: it must be active, with an IV set ifrequired for the algorithm.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.
PSA_CIPHER_FINISH_OUTPUT_SIZE() or
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_PADDING This is a decryption operation for an algorithm that includes padding,and the ciphertext does not contain valid padding.
PSA_ERROR_INVALID_ARGUMENT The total input size passed to this operation is not valid for thisparticular algorithm. For example, the algorithm is a based on blockcipher and requires a whole number of blocks, but the total input sizeis not a multiple of the block size.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The application must call psa_cipher_encrypt_setup() or psa_cipher_decrypt_setup() before calling thisfunction. The choice of setup function determines whether this function encrypts or decrypts its input.
This function finishes the encryption or decryption of the message formed by concatenating the inputspassed to preceding calls to psa_cipher_update().
When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_cipher_abort().
psa_cipher_abort (function)
Abort a cipher operation.
psa_status_t psa_cipher_abort(psa_cipher_operation_t * operation);

Parameters
operation Initialized cipher operation.

Returns: psa_status_t
PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 201

Description
Aborting an operation frees all associated resources except for the operation object itself. Once aborted,the operation object can be reused for another operation by calling psa_cipher_encrypt_setup() or
psa_cipher_decrypt_setup() again.
This function can be called any time after the operation object has been initialized as described in
psa_cipher_operation_t.
In particular, calling psa_cipher_abort() after the operation has been terminated by a call to
psa_cipher_abort() or psa_cipher_finish() is safe and has no effect.

10.5.4 Support macros
PSA_ALG_IS_STREAM_CIPHER (macro)
Whether the specified algorithm is a stream cipher.
#define PSA_ALG_IS_STREAM_CIPHER(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a stream cipher algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedalgorithm identifier or if it is not a symmetric cipher algorithm.
Description
A stream cipher is a symmetric cipher that encrypts or decrypts messages by applying a bitwise-xor with astream of bytes that is generated from a key.
PSA_ALG_CCM_STAR_ANY_TAG (macro)
A wildcard algorithm that permits the use of the key with CCM* as both an AEAD and an unauthenticatedcipher algorithm.
Added in version 1.2.
#define PSA_ALG_CCM_STAR_ANY_TAG ((psa_algorithm_t)0x04c09300)

If a block-cipher key specifies PSA_ALG_CCM_STAR_ANY_TAG as its permitted algorithm, then the key can be usedwith the PSA_ALG_CCM_STAR_NO_TAG unauthenticated cipher, the PSA_ALG_CCM AEAD algorithm, and truncated
PSA_ALG_CCM AEAD algorithms.
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE (macro)
A sufficient output buffer size for psa_cipher_encrypt(), in bytes.
#define PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 202

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_CIPHER(alg) is true.
input_length Size of the input in bytes.

Returns
A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is notrecognized, or the parameters are incompatible, return 0. An implementation can return either 0 or a correctsize for a key type and cipher algorithm that it recognizes, but does not support.
Description
If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_encrypt() will not faildue to an insufficient buffer size. Depending on the algorithm, the actual size of the output might be smaller.
See also PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE.
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE (macro)
A sufficient output buffer size for psa_cipher_encrypt(), for any of the supported key types and cipheralgorithms.
#define PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */

Parameters
input_length Size of the input in bytes.

Description
If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_encrypt() will not faildue to an insufficient buffer size.
See also PSA_CIPHER_ENCRYPT_OUTPUT_SIZE().
PSA_CIPHER_DECRYPT_OUTPUT_SIZE (macro)
A sufficient output buffer size for psa_cipher_decrypt(), in bytes.
#define PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_CIPHER(alg) is true.
input_length Size of the input in bytes.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 203

Returns
A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is notrecognized, or the parameters are incompatible, return 0. An implementation can return either 0 or a correctsize for a key type and cipher algorithm that it recognizes, but does not support.
Description
If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_decrypt() will not faildue to an insufficient buffer size. Depending on the algorithm, the actual size of the output might be smaller.
See also PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE.
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE (macro)
A sufficient output buffer size for psa_cipher_decrypt(), for any of the supported key types and cipheralgorithms.
#define PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */

Parameters
input_length Size of the input in bytes.

Description
If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_decrypt() will not faildue to an insufficient buffer size.
See also PSA_CIPHER_DECRYPT_OUTPUT_SIZE().
PSA_CIPHER_IV_LENGTH (macro)
The default IV size for a cipher algorithm, in bytes.
#define PSA_CIPHER_IV_LENGTH(key_type, alg) /* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_CIPHER(alg) is true.
Returns
The default IV size for the specified key type and algorithm. If the algorithm does not use an IV, return 0. Ifthe key type or cipher algorithm is not recognized, or the parameters are incompatible, return 0. Animplementation can return either 0 or a correct size for a key type and cipher algorithm that it recognizes,but does not support.
Description
The IV that is generated as part of a call to psa_cipher_encrypt() is always the default IV length for thealgorithm.
This macro can be used to allocate a buffer of sufficient size to store the IV output from
psa_cipher_generate_iv() when using a multi-part cipher operation.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 204

See also PSA_CIPHER_IV_MAX_SIZE.
PSA_CIPHER_IV_MAX_SIZE (macro)
A sufficient buffer size for storing the IV generated by psa_cipher_generate_iv(), for any of the supportedkey types and cipher algorithms.
#define PSA_CIPHER_IV_MAX_SIZE /* implementation-defined value */

If the size of the IV buffer is at least this large, it is guaranteed that psa_cipher_generate_iv() will not faildue to an insufficient buffer size.
See also PSA_CIPHER_IV_LENGTH().
PSA_CIPHER_UPDATE_OUTPUT_SIZE (macro)
A sufficient output buffer size for psa_cipher_update(), in bytes.
#define PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_CIPHER(alg) is true.
input_length Size of the input in bytes.

Returns
A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is notrecognized, or the parameters are incompatible, return 0. An implementation can return either 0 or a correctsize for a key type and cipher algorithm that it recognizes, but does not support.
Description
If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_update() will not fail dueto an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE.
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE (macro)
A sufficient output buffer size for psa_cipher_update(), for any of the supported key types and cipheralgorithms.
#define PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */

Parameters
input_length Size of the input in bytes.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 205

Description
If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_update() will not fail dueto an insufficient buffer size.
See also PSA_CIPHER_UPDATE_OUTPUT_SIZE().
PSA_CIPHER_FINISH_OUTPUT_SIZE (macro)
A sufficient output buffer size for psa_cipher_finish().
#define PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg) \

/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_CIPHER(alg) is true.
Returns
A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is notrecognized, or the parameters are incompatible, return 0. An implementation can return either 0 or a correctsize for a key type and cipher algorithm that it recognizes, but does not support.
Description
If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_finish() will not fail dueto an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE.
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE (macro)
A sufficient output buffer size for psa_cipher_finish(), for any of the supported key types and cipheralgorithms.
#define PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE /* implementation-defined value */

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_finish() will not fail dueto an insufficient buffer size.
See also PSA_CIPHER_FINISH_OUTPUT_SIZE().
PSA_BLOCK_CIPHER_BLOCK_LENGTH (macro)
The block size of a block cipher.
#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) /* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 206

Parameters
type A cipher key type: a value of type psa_key_type_t.

Returns
The block size for a block cipher, or 1 for a stream cipher. The return value is undefined if type is not asupported cipher key type.
Description

Note:
It is possible to build stream cipher algorithms on top of a block cipher, for example CTR mode(PSA_ALG_CTR). This macro only takes the key type into account, so it cannot be used to determine thesize of the data that psa_cipher_update() might buffer for future processing in general.

See also PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE.
PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE (macro)
The maximum block size of a block cipher supported by the implementation.
#define PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE /* implementation-defined value */

See also PSA_BLOCK_CIPHER_BLOCK_LENGTH().

10.6 Authenticated encryption with associated data (AEAD)
The single-part AEAD functions are:

∙ psa_aead_encrypt() to encrypt a message using an authenticated symmetric cipher.
∙ psa_aead_decrypt() to decrypt a message using an authenticated symmetric cipher.

These functions follow the interface recommended by An Interface and Algorithms for AuthenticatedEncryption [RFC5116].
The encryption function requires a nonce to be provided. To generate a random nonce, either call
psa_generate_random() or use the AEAD multi-part API.
The psa_aead_operation_t multi-part operation permits alternative initialization parameters and allowsmessages to be processed in fragments. A multi-part AEAD operation is used as follows:

1. Initialize the psa_aead_operation_t object to zero, or by assigning the value of the associated macro
PSA_AEAD_OPERATION_INIT.

2. Call psa_aead_encrypt_setup() or psa_aead_decrypt_setup() to specify the algorithm and key.
3. Provide additional parameters:

∙ If the algorithm requires it, call psa_aead_set_lengths() to specify the length of thenon-encrypted and encrypted inputs to the operation.
∙ When encrypting, call either psa_aead_generate_nonce() or psa_aead_set_nonce() to generate orset the nonce.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 207

∙ When decrypting, call psa_aead_set_nonce() to set the nonce.
4. Call psa_aead_update_ad() zero or more times with fragments of the non-encrypted additional data.
5. Call psa_aead_update() zero or more times with fragments of the plaintext or ciphertext to encrypt ordecrypt.
6. At the end of the message, call the required finishing function:

∙ To complete an encryption operation, call psa_aead_finish() to compute and returnauthentication tag.
∙ To complete a decryption operation, call psa_aead_verify() to compute the authentication tagand verify it against a reference value.

To abort the operation or recover from an error, call psa_aead_abort().
Note:
Using a multi-part interface to authenticated encryption raises specific issues.

∙ Multi-part authenticated decryption produces intermediate results that are not authenticated.Revealing unauthenticated results, either directly or indirectly through the application’s behavior,can compromise the confidentiality of all inputs that are encrypted with the same key. See thedetailed warning.
∙ For encryption, some common algorithms cannot be processed in a streaming fashion. For SIVmode, the whole plaintext must be known before the encryption can start; the multi-part AEADAPI is not meant to be usable with SIV mode. For CCM mode, the length of the plaintext mustbe known before the encryption can start; the application can call the function

psa_aead_set_lengths() to provide these lengths before providing input.

10.6.1 AEAD algorithms
PSA_ALG_CCM (macro)
The Counter with CBC-MAC (CCM) authenticated encryption algorithm.
#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)

CCM is defined for block ciphers that have a 128-bit block size. The underlying block cipher is determinedby the key type.
To use PSA_ALG_CCM with a multi-part AEAD operation, the application must call psa_aead_set_lengths()before providing the nonce, the additional data and plaintext to the operation.
CCM requires a nonce of between 7 and 13 bytes in length. The length of the nonce affects the maximumlength of the plaintext than can be encrypted or decrypted. If the nonce has length 𝑁 , then the plaintextlength 𝑝𝐿𝑒𝑛 is encoded in 𝐿 = 15−𝑁 octets, this requires that 𝑝𝐿𝑒𝑛 < 28𝐿.
The value for 𝐿 that is used with PSA_ALG_CCM depends on the function used to provide the nonce:

∙ A call to psa_aead_encrypt(), psa_aead_decrypt(), or psa_aead_set_nonce() will set
𝐿 = 15− nonce_length. If the plaintext length cannot be encoded in 𝐿 octets, then a
PSA_ERROR_INVALID_ARGUMENT error is returned.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 208

∙ A call to psa_aead_generate_nonce() on a multi-part cipher operation will select the smallest integer
𝐿 ≥ 2, where 𝑝𝐿𝑒𝑛 < 28𝐿, with 𝑝𝐿𝑒𝑛 being the plaintext_length provided to psa_aead_set_lengths().The call to psa_aead_generate_nonce() will generate and return a random nonce of length 15−𝐿 bytes.

CCM supports authentication tag sizes of 4, 6, 8, 10, 12, 14, and 16 bytes. The default tag length is 16.Shortened tag lengths can be requested using PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, tag_length),where tag_length is a valid CCM tag length.
The CCM block cipher mode is defined in Counter with CBC-MAC (CCM) [RFC3610].
Usage in Zigbee
The CCM* algorithm is required by zigbee Specification [ZIGBEE].

∙ PSA_ALG_CCM, and its truncated variants, can be used to implement CCM* for non-zero tag lengths.
∙ For unauthenticated CCM*, with a zero-length tag, use the PSA_ALG_CCM_STAR_NO_TAG cipher algorithm.

See also Usage in Zigbee under PSA_ALG_CCM_STAR_NO_TAG.
Compatible key types
PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_GCM (macro)
The Galois/Counter Mode (GCM) authenticated encryption algorithm.
#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)

GCM is defined for block ciphers that have a 128-bit block size. The underlying block cipher is determinedby the key type.
GCM requires a nonce of at least 1 byte in length. The maximum supported nonce size is IMPLEMENTATION
DEFINED. Calling psa_aead_generate_nonce() will generate a random 12-byte nonce.
GCM supports authentication tag sizes of 4, 8, 12, 13, 14, 15, and 16 bytes. The default tag length is 16.Shortened tag lengths can be requested using PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_GCM, tag_length),where tag_length is a valid GCM tag length.
The GCM block cipher mode is defined in NIST Special Publication 800-38D: Recommendation for BlockCipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC [SP800-38D].
Compatible key types
PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 209

PSA_ALG_CHACHA20_POLY1305 (macro)
The ChaCha20-Poly1305 AEAD algorithm.
#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)

There are two defined variants of ChaCha20-Poly1305:
∙ An implementation that supports ChaCha20-Poly1305 must support the variant defined byChaCha20 and Poly1305 for IETF Protocols [RFC8439], which has a 96-bit nonce and 32-bit counter.
∙ An implementation can optionally also support the original variant defined by ChaCha, a variant ofSalsa20 [CHACHA20], which has a 64-bit nonce and 64-bit counter.

The variant used for the AEAD encryption or decryption operation, depends on the nonce provided for anAEAD operation using PSA_ALG_CHACHA20_POLY1305:
∙ A nonce provided in a call to psa_aead_encrypt(), psa_aead_decrypt() or psa_aead_set_nonce() must be8 or 12 bytes. The size of nonce will select the appropriate variant of the algorithm.
∙ A nonce generated by a call to psa_aead_generate_nonce() will be 12 bytes, and will use the[RFC8439] variant.

Implementations must support 16-byte tags. It is recommended that truncated tag sizes are rejected.
Compatible key types
PSA_KEY_TYPE_CHACHA20

PSA_ALG_XCHACHA20_POLY1305 (macro)
The XChaCha20-Poly1305 AEAD algorithm.
Added in version 1.2.
#define PSA_ALG_XCHACHA20_POLY1305 ((psa_algorithm_t)0x05100600)

XChaCha20-Poly1305 is a variation of the ChaCha20-Poly1305 AEAD algorithm, but uses a 192-bit nonce.The larger nonce provides much lower probability of nonce misuse.
XChaCha20-Poly1305 requires a 24-byte nonce.
Implementations must support 16-byte tags. It is recommended that truncated tag sizes are rejected.
XChaCha20-Poly1305 is defined in XChaCha: eXtended-nonce ChaCha and AEAD_XChaCha20_Poly1305[XCHACHA].
Compatible key types
PSA_KEY_TYPE_XCHACHA20

PSA_ALG_ASCON_AEAD128 (macro)
The Ascon-AEAD128 AEAD algorithm.
Added in version 1.4.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 210

#define PSA_ALG_ASCON_AEAD128 ((psa_algorithm_t)0x05100700)

There are two variants of Ascon-AEAD128 defined in NIST Special Publication 800-232: Ascon-BasedLightweight Cryptography Standards for Constrained Devices [SP800-232]:
∙ An implementation that supports Ascon-AEAD128 must provide the standard variant, using a 128-bitkey. This is defined in [SP800-232] §4.1.
∙ An implementation can optionally also provide the nonce-masking variant, using a 256-bit key. This isdefined in [SP800-232] §4.2.2.

The variant is selected based on the size of the key.
Both variants require a 128-bit (16 byte) nonce, which must not be reused with the same key.
Implementations must support 16-byte tags. Truncated tags of at least 4 bytes are permitted, but it isrecommended that truncated tag sizes are at least 8 bytes. See [SP800-232] §4.2.1 and §4.3.R4.
Compatible key types
PSA_KEY_TYPE_ASCON

PSA_ALG_AEAD_WITH_SHORTENED_TAG (macro)
Macro to build a AEAD algorithm with a shortened tag.
#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \

/* specification-defined value */

Parameters
aead_alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(aead_alg) is true.
tag_length Desired length of the authentication tag in bytes.

Returns
The corresponding AEAD algorithm with the specified tag length.
Unspecified if aead_alg is not a supported AEAD algorithm or if tag_length is not valid for the specifiedAEAD algorithm.
Description
An AEAD algorithm with a shortened tag is similar to the corresponding AEAD algorithm, but has anauthentication tag that consists of fewer bytes. Depending on the algorithm, the tag length might affect thecalculation of the ciphertext.
The AEAD algorithm with a default length tag can be recovered using
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG().
Compatible key types
The resulting AEAD algorithm is compatible with the same key types as the AEAD algorithm used toconstruct it.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 211

PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG (macro)
An AEAD algorithm with the default tag length.
#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \

/* specification-defined value */

Parameters
aead_alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(aead_alg) is true.
Returns
The corresponding AEAD algorithm with the default tag length for that algorithm.
Description
This macro can be used to construct the AEAD algorithm with default tag length from an AEAD algorithmwith a shortened tag. See also PSA_ALG_AEAD_WITH_SHORTENED_TAG().
Compatible key types
The resulting AEAD algorithm is compatible with the same key types as the AEAD algorithm used toconstruct it.
PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG (macro)
Macro to build an AEAD minimum-tag-length wildcard algorithm.
Added in version 1.1.
#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \

/* specification-defined value */

Parameters
aead_alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(aead_alg) is true.
min_tag_length Desired minimum length of the authentication tag in bytes. This mustbe at least 1 and at most the largest permitted tag length of thealgorithm.

Returns
The corresponding AEAD wildcard algorithm with the specified minimum tag length.
Unspecified if aead_alg is not a supported AEAD algorithm or if min_tag_length is less than 1 or too large forthe specified AEAD algorithm.
Description
A key with a minimum-tag-length AEAD wildcard algorithm as permitted-algorithm policy can be used withall AEAD algorithms sharing the same base algorithm, and where the tag length of the specific algorithm isequal to or larger then the minimum tag length specified by the wildcard algorithm.

Note:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 212

When setting the minimum required tag length to less than the smallest tag length permitted by thebase algorithm, this effectively becomes an ‘any-tag-length-permitted’ policy for that base algorithm.
The AEAD algorithm with a default length tag can be recovered using
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG().
Compatible key types
The resulting wildcard AEAD algorithm is compatible with the same key types as the AEAD algorithm usedto construct it.

10.6.2 Single-part AEAD functions
psa_aead_encrypt (function)
Process an authenticated encryption operation.
psa_status_t psa_aead_encrypt(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * nonce,
size_t nonce_length,
const uint8_t * additional_data,
size_t additional_data_length,
const uint8_t * plaintext,
size_t plaintext_length,
uint8_t * ciphertext,
size_t ciphertext_size,
size_t * ciphertext_length);

Parameters
key Identifier of the key to use for the operation. It must permit the usage

PSA_KEY_USAGE_ENCRYPT.
alg The AEAD algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_AEAD(alg) is true.
nonce Nonce or IV to use.
nonce_length Size of the nonce buffer in bytes. This must be appropriate for theselected algorithm. The default nonce size is

PSA_AEAD_NONCE_LENGTH(key_type, alg) where key_type is the type of
key.

additional_data Additional data that will be authenticated but not encrypted.
additional_data_length Size of additional_data in bytes.
plaintext Data that will be authenticated and encrypted.
plaintext_length Size of plaintext in bytes.
ciphertext Output buffer for the authenticated and encrypted data. Theadditional data is not part of this output. For algorithms where theencrypted data and the authentication tag are defined as separateoutputs, the authentication tag is appended to the encrypted data.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 213

ciphertext_size Size of the ciphertext buffer in bytes. This must be appropriate for theselected algorithm and key:
∙ A sufficient output size is

PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg, plaintext_length)where key_type is the type of key.
∙ PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(plaintext_length) evaluatesto the maximum ciphertext size of any supported AEADencryption.

ciphertext_length On success, the size of the output in the ciphertext buffer.
Returns: psa_status_t

PSA_SUCCESS Success. The first (*ciphertext_length) bytes of ciphertext containthe output.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the ciphertext buffer is too small.

PSA_AEAD_ENCRYPT_OUTPUT_SIZE() or
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE() can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not an AEAD algorithm.
∙ key is not compatible with alg.
∙ nonce_length is not valid for use with alg and key.
∙ additional_data_length or plaintext_length are too large for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not an AEAD algorithm.
∙ key is not supported for use with alg.
∙ nonce_length is not supported for use with alg and key.
∙ additional_data_length or plaintext_length are too large for theimplementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 214

psa_aead_decrypt (function)
Process an authenticated decryption operation.
psa_status_t psa_aead_decrypt(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * nonce,
size_t nonce_length,
const uint8_t * additional_data,
size_t additional_data_length,
const uint8_t * ciphertext,
size_t ciphertext_length,
uint8_t * plaintext,
size_t plaintext_size,
size_t * plaintext_length);

Parameters
key Identifier of the key to use for the operation. It must permit the usage

PSA_KEY_USAGE_DECRYPT.
alg The AEAD algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_AEAD(alg) is true.
nonce Nonce or IV to use.
nonce_length Size of the nonce buffer in bytes. This must be appropriate for theselected algorithm. The default nonce size is

PSA_AEAD_NONCE_LENGTH(key_type, alg) where key_type is the type of
key.

additional_data Additional data that has been authenticated but not encrypted.
additional_data_length Size of additional_data in bytes.
ciphertext Data that has been authenticated and encrypted. For algorithmswhere the encrypted data and the authentication tag are defined asseparate inputs, the buffer must contain the encrypted data followedby the authentication tag.
ciphertext_length Size of ciphertext in bytes.
plaintext Output buffer for the decrypted data.
plaintext_size Size of the plaintext buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is
PSA_AEAD_DECRYPT_OUTPUT_SIZE(key_type, alg,
ciphertext_length) where key_type is the type of key.

∙ PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(ciphertext_length) evaluatesto the maximum plaintext size of any supported AEADdecryption.
plaintext_length On success, the size of the output in the plaintext buffer.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 215

Returns: psa_status_t
PSA_SUCCESS Success. The first (*plaintext_length) bytes of plaintext contain theoutput.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_INVALID_SIGNATURE The ciphertext is not authentic.
PSA_ERROR_BUFFER_TOO_SMALL The size of the plaintext buffer is too small.

PSA_AEAD_DECRYPT_OUTPUT_SIZE() or
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE() can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not an AEAD algorithm.
∙ key is not compatible with alg.
∙ nonce_length is not valid for use with alg and key.
∙ additional_data_length or ciphertext_length are too large for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not an AEAD algorithm.
∙ key is not supported for use with alg.
∙ nonce_length is not supported for use with alg and key.
∙ additional_data_length or plaintext_length are too large for theimplementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

10.6.3 Multi-part AEAD operations

. Warning

When decrypting using a multi-part AEAD operation, there is no guarantee that the input or output isvalid until psa_aead_verify() has returned PSA_SUCCESS.
A call to psa_aead_update() or psa_aead_update_ad() returning PSA_SUCCESS does not indicate that theinput and output is valid.
Until an application calls psa_aead_verify() and it has returned PSA_SUCCESS, the following rules apply to

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 216

input and output data from a multi-part AEAD operation:
∙ Do not trust the input. If the application takes any action that depends on the input data, thisaction will need to be undone if the input turns out to be invalid.
∙ Store the output in a confidential location. In particular, the application must not copy the outputto a memory or storage space which is shared.
∙ Do not trust the output. If the application takes any action that depends on the tentativedecrypted data, this action will need to be undone if the input turns out to be invalid. Furthermore,if an adversary can observe that this action took place, for example, through timing, they might beable to use this fact as an oracle to decrypt any message encrypted with the same key.

An application that does not follow these rules might be vulnerable to maliciously constructed AEADinput data.

psa_aead_operation_t (typedef)
The type of the state object for multi-part AEAD operations.
typedef /* implementation-defined type */ psa_aead_operation_t;

Before calling any function on an AEAD operation object, the application must initialize it by any of thefollowing means:
∙ Set the object to all-bits-zero, for example:

psa_aead_operation_t operation;
memset(&operation, 0, sizeof(operation));

∙ Initialize the object to logical zero values by declaring the object as static or global without an explicitinitializer, for example:
static psa_aead_operation_t operation;

∙ Initialize the object to the initializer PSA_AEAD_OPERATION_INIT, for example:
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;

∙ Assign the result of the function psa_aead_operation_init() to the object, for example:
psa_aead_operation_t operation;
operation = psa_aead_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.
PSA_AEAD_OPERATION_INIT (macro)
This macro returns a suitable initializer for an AEAD operation object of type psa_aead_operation_t.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 217

#define PSA_AEAD_OPERATION_INIT /* implementation-defined value */

psa_aead_operation_init (function)
Return an initial value for an AEAD operation object.
psa_aead_operation_t psa_aead_operation_init(void);

Returns: psa_aead_operation_t

psa_aead_encrypt_setup (function)
Set the key for a multi-part authenticated encryption operation.
psa_status_t psa_aead_encrypt_setup(psa_aead_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per thedocumentation for psa_aead_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain valid untilthe operation terminates. It must permit the usage

PSA_KEY_USAGE_ENCRYPT.
alg The AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
Returns: psa_status_t

PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an AEAD algorithm.
∙ key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not an AEAD algorithm.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 218

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The sequence of operations to encrypt a message with authentication is as follows:

1. Allocate an AEAD operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_aead_operation_t, e.g. PSA_AEAD_OPERATION_INIT.
3. Call psa_aead_encrypt_setup() to specify the algorithm and key.
4. If needed, call psa_aead_set_lengths() to specify the length of the inputs to the subsequent calls to

psa_aead_update_ad() and psa_aead_update(). See the documentation of psa_aead_set_lengths() fordetails.
5. Call either psa_aead_generate_nonce() or psa_aead_set_nonce() to generate or set the nonce. It isrecommended to use psa_aead_generate_nonce() unless the protocol being implemented requires aspecific nonce value.
6. Call psa_aead_update_ad() zero, one or more times, passing a fragment of the non-encryptedadditional authenticated data each time.
7. Call psa_aead_update() zero, one or more times, passing a fragment of the message to encrypt eachtime.
8. Call psa_aead_finish().

After a successful call to psa_aead_encrypt_setup(), the operation is active, and the application musteventually terminate the operation. The following events terminate an operation:
∙ A successful call to psa_aead_finish().
∙ A call to psa_aead_abort().

If psa_aead_encrypt_setup() returns an error, the operation object is unchanged. If a subsequent functioncall with an active operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_aead_abort().
See Multi-part operations on page 27.
psa_aead_decrypt_setup (function)
Set the key for a multi-part authenticated decryption operation.
psa_status_t psa_aead_decrypt_setup(psa_aead_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 219

Parameters
operation The operation object to set up. It must have been initialized as per thedocumentation for psa_aead_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain valid untilthe operation terminates. It must permit the usage

PSA_KEY_USAGE_DECRYPT.
alg The AEAD algorithm to compute: a value of type psa_algorithm_t suchthat PSA_ALG_IS_AEAD(alg) is true.

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an AEAD algorithm.
∙ key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not an AEAD algorithm.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The sequence of operations to decrypt a message with authentication is as follows:

1. Allocate an AEAD operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_aead_operation_t, e.g. PSA_AEAD_OPERATION_INIT.
3. Call psa_aead_decrypt_setup() to specify the algorithm and key.
4. If needed, call psa_aead_set_lengths() to specify the length of the inputs to the subsequent calls to

psa_aead_update_ad() and psa_aead_update(). See the documentation of psa_aead_set_lengths() fordetails.
5. Call psa_aead_set_nonce() with the nonce for the decryption.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 220

6. Call psa_aead_update_ad() zero, one or more times, passing a fragment of the non-encryptedadditional authenticated data each time.
7. Call psa_aead_update() zero, one or more times, passing a fragment of the ciphertext to decrypt eachtime.
8. Call psa_aead_verify().

After a successful call to psa_aead_decrypt_setup(), the operation is active, and the application musteventually terminate the operation. The following events terminate an operation:
∙ A successful call to psa_aead_verify().
∙ A call to psa_aead_abort().

If psa_aead_decrypt_setup() returns an error, the operation object is unchanged. If a subsequent functioncall with an active operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_aead_abort().
See Multi-part operations on page 27.
psa_aead_set_lengths (function)
Declare the lengths of the message and additional data for AEAD.
psa_status_t psa_aead_set_lengths(psa_aead_operation_t * operation,

size_t ad_length,
size_t plaintext_length);

Parameters
operation Active AEAD operation.
ad_length Size of the non-encrypted additional authenticated data in bytes.
plaintext_length Size of the plaintext to encrypt in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, and
psa_aead_set_nonce() and psa_aead_generate_nonce() must nothave been called yet.

∙ The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_ARGUMENT ad_length or plaintext_length are too large for the chosen algorithm.
PSA_ERROR_NOT_SUPPORTED ad_length or plaintext_length are too large for the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 221

Description
The application must call this function before calling psa_aead_set_nonce() or psa_aead_generate_nonce(), ifthe algorithm for the operation requires it. If the algorithm does not require it, calling this function isoptional, but if this function is called then the implementation must enforce the lengths.

∙ For PSA_ALG_CCM, calling this function is required.
∙ For the other AEAD algorithms defined in this specification, calling this function is not required.
∙ For vendor-defined algorithm, refer to the vendor documentation.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().
psa_aead_generate_nonce (function)
Generate a random nonce for an authenticated encryption operation.
psa_status_t psa_aead_generate_nonce(psa_aead_operation_t * operation,

uint8_t * nonce,
size_t nonce_size,
size_t * nonce_length);

Parameters
operation Active AEAD operation.
nonce Buffer where the generated nonce is to be written.
nonce_size Size of the nonce buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is PSA_AEAD_NONCE_LENGTH(key_type, alg)where key_type is the type of key and alg is the algorithm thatwere used to set up the operation.
∙ PSA_AEAD_NONCE_MAX_SIZE evaluates to a sufficient output size forany supported AEAD algorithm.

nonce_length On success, the number of bytes of the generated nonce.
Returns: psa_status_t

PSA_SUCCESS Success. The first (*nonce_length) bytes of nonce contain thegenerated nonce.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be an active AEADencryption operation, with no nonce set.
∙ The operation state is not valid: this is an algorithm whichrequires psa_aead_set_lengths() to be called before setting thenonce.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the nonce buffer is too small. PSA_AEAD_NONCE_LENGTH() or
PSA_AEAD_NONCE_MAX_SIZE can be used to determine a sufficient buffersize.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 222

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
This function generates a random nonce for the authenticated encryption operation with an appropriatesize for the chosen algorithm, key type and key size.
Most algorithms generate a default-length nonce, as returned by PSA_AEAD_NONCE_LENGTH(). Some algorithmscan return a shorter nonce from psa_aead_generate_nonce(), see the individual algorithm descriptions fordetails.
The application must call psa_aead_encrypt_setup() before calling this function. If applicable for thealgorithm, the application must call psa_aead_set_lengths() before calling this function.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().
psa_aead_set_nonce (function)
Set the nonce for an authenticated encryption or decryption operation.
psa_status_t psa_aead_set_nonce(psa_aead_operation_t * operation,

const uint8_t * nonce,
size_t nonce_length);

Parameters
operation Active AEAD operation.
nonce Buffer containing the nonce to use.
nonce_length Size of the nonce in bytes. This must be a valid nonce size for thechosen algorithm. The default nonce size is

PSA_AEAD_NONCE_LENGTH(key_type, alg) where key_type and alg aretype of key and the algorithm respectively that were used to set upthe AEAD operation.
Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, with no nonceset.
∙ The operation state is not valid: this is an algorithm whichrequires psa_aead_set_lengths() to be called before setting thenonce.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 223

∙ The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_ARGUMENT nonce_length is not valid for the chosen algorithm.
PSA_ERROR_NOT_SUPPORTED nonce_length is not supported for use with the operation’s algorithmand key.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
This function sets the nonce for the authenticated encryption or decryption operation.
The application must call psa_aead_encrypt_setup() or psa_aead_decrypt_setup() before calling this function.If applicable for the algorithm, the application must call psa_aead_set_lengths() before calling this function.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().

Note:
When encrypting, psa_aead_generate_nonce() is recommended instead of using this function, unlessimplementing a protocol that requires a non-random IV.

psa_aead_update_ad (function)
Pass additional data to an active AEAD operation.
psa_status_t psa_aead_update_ad(psa_aead_operation_t * operation,

const uint8_t * input,
size_t input_length);

Parameters
operation Active AEAD operation.
input Buffer containing the fragment of additional data.
input_length Size of the input buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.

. Warning

When decrypting, do not trust the additional data until
psa_aead_verify() succeeds.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 224

See the detailed warning.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, have a nonceset, have lengths set if required by the algorithm, and
psa_aead_update() must not have been called yet.

∙ The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_ARGUMENT Excess additional data: the total input length to psa_aead_update_ad()is greater than the additional data length that was previously specifiedwith psa_aead_set_lengths(), or is too large for the chosen AEADalgorithm.
PSA_ERROR_NOT_SUPPORTED The total additional data length is too large for the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
Additional data is authenticated, but not encrypted.
This function can be called multiple times to pass successive fragments of the additional data. This functionmust not be called after passing data to encrypt or decrypt with psa_aead_update().
The following must occur before calling this function:

1. Call either psa_aead_encrypt_setup() or psa_aead_decrypt_setup().
2. Set the nonce with psa_aead_generate_nonce() or psa_aead_set_nonce().

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().
psa_aead_update (function)
Encrypt or decrypt a message fragment in an active AEAD operation.
psa_status_t psa_aead_update(psa_aead_operation_t * operation,

const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 225

Parameters
operation Active AEAD operation.
input Buffer containing the message fragment to encrypt or decrypt.
input_length Size of the input buffer in bytes.
output Buffer where the output is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type,
alg, input_length) where key_type is the type of key and alg isthe algorithm that were used to set up the operation.

∙ PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE(input_length) evaluates to themaximum output size of any supported AEAD algorithm.
output_length On success, the number of bytes that make up the returned output.

Returns: psa_status_t
PSA_SUCCESS Success. The first (*output_length) of output contains the output data.

. Warning

When decrypting, do not use the output until psa_aead_verify()succeeds.
See the detailed warning.

PSA_ERROR_BAD_STATE The following conditions can result in this error:
∙ The operation state is not valid: it must be active, have a nonceset, and have lengths set if required by the algorithm.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.
PSA_AEAD_UPDATE_OUTPUT_SIZE() or PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE()can be used to determine a sufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ Incomplete additional data: the total length of input to

psa_aead_update_ad() is less than the additional data length thatwas previously specified with psa_aead_set_lengths().
∙ Excess input data: the total length of input to psa_aead_update()is greater than the plaintext length that was previously specifiedwith psa_aead_set_lengths(), or is too large for the specific AEADalgorithm.

PSA_ERROR_NOT_SUPPORTED The total input length is too large for the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 226

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The following must occur before calling this function:

1. Call either psa_aead_encrypt_setup() or psa_aead_decrypt_setup(). The choice of setup functiondetermines whether this function encrypts or decrypts its input.
2. Set the nonce with psa_aead_generate_nonce() or psa_aead_set_nonce().
3. Call psa_aead_update_ad() to pass all the additional data.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().

Note:
This function does not require the input to be aligned to any particular block boundary. If theimplementation can only process a whole block at a time, it must consume all the input provided, butit might delay the end of the corresponding output until a subsequent call to psa_aead_update()provides sufficient input, or a subsequent call to psa_aead_finish() or psa_aead_verify() indicates theend of the input. The amount of data that can be delayed in this way is bounded by the associatedoutput size macro: PSA_AEAD_UPDATE_OUTPUT_SIZE(), PSA_AEAD_FINISH_OUTPUT_SIZE(), or
PSA_AEAD_VERIFY_OUTPUT_SIZE().

psa_aead_finish (function)
Finish encrypting a message in an AEAD operation.
psa_status_t psa_aead_finish(psa_aead_operation_t * operation,

uint8_t * ciphertext,
size_t ciphertext_size,
size_t * ciphertext_length,
uint8_t * tag,
size_t tag_size,
size_t * tag_length);

Parameters
operation Active AEAD operation.
ciphertext Buffer where the last part of the ciphertext is to be written.
ciphertext_size Size of the ciphertext buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is PSA_AEAD_FINISH_OUTPUT_SIZE(key_type,
alg) where key_type is the type of key and alg is the algorithmthat were used to set up the operation.

∙ PSA_AEAD_FINISH_OUTPUT_MAX_SIZE evaluates to the maximumoutput size of any supported AEAD algorithm.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 227

ciphertext_length On success, the number of bytes of returned ciphertext.
tag Buffer where the authentication tag is to be written.
tag_size Size of the tag buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The exact tag size is PSA_AEAD_TAG_LENGTH(key_type, key_bits,
alg) where key_type and key_bits are the type and bit-size of thekey, and alg is the algorithm that were used in the call to
psa_aead_encrypt_setup().

∙ PSA_AEAD_TAG_MAX_SIZE evaluates to the maximum tag size of anysupported AEAD algorithm.
tag_length On success, the number of bytes that make up the returned tag.

Returns: psa_status_t
PSA_SUCCESS Success. The first (*tag_length) bytes of tag contain theauthentication tag.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be an active encryptionoperation with a nonce set.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the ciphertext or tag buffer is too small.
PSA_AEAD_FINISH_OUTPUT_SIZE() or PSA_AEAD_FINISH_OUTPUT_MAX_SIZEcan be used to determine the required ciphertext buffer size.
PSA_AEAD_TAG_LENGTH() or PSA_AEAD_TAG_MAX_SIZE can be used todetermine the required tag buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ Incomplete additional data: the total length of input to

psa_aead_update_ad() is less than the additional data length thatwas previously specified with psa_aead_set_lengths().
∙ Incomplete plaintext: the total length of input to

psa_aead_update() is less than the plaintext length that waspreviously specified with psa_aead_set_lengths().
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 228

Description
The operation must have been set up with psa_aead_encrypt_setup().
This function finishes the authentication of the additional data formed by concatenating the inputs passedto preceding calls to psa_aead_update_ad() with the plaintext formed by concatenating the inputs passed topreceding calls to psa_aead_update().
This function has two output buffers:

∙ ciphertext contains trailing ciphertext that was buffered from preceding calls to psa_aead_update().
∙ tag contains the authentication tag.

When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_aead_abort().
psa_aead_verify (function)
Finish authenticating and decrypting a message in an AEAD operation.
psa_status_t psa_aead_verify(psa_aead_operation_t * operation,

uint8_t * plaintext,
size_t plaintext_size,
size_t * plaintext_length,
const uint8_t * tag,
size_t tag_length);

Parameters
operation Active AEAD operation.
plaintext Buffer where the last part of the plaintext is to be written. This is theremaining data from previous calls to psa_aead_update() that could notbe processed until the end of the input.
plaintext_size Size of the plaintext buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient output size is PSA_AEAD_VERIFY_OUTPUT_SIZE(key_type,
alg) where key_type is the type of key and alg is the algorithmthat were used to set up the operation.

∙ PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE evaluates to the maximumoutput size of any supported AEAD algorithm.
plaintext_length On success, the number of bytes of returned plaintext.
tag Buffer containing the expected authentication tag.
tag_length Size of the tag buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success. For a decryption operation, it is now safe to use theadditional data and the plaintext output.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be an active decryptionoperation with a nonce set.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 229

∙ The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_SIGNATURE The calculated authentication tag does not match the value in tag.
PSA_ERROR_BUFFER_TOO_SMALL The size of the plaintext buffer is too small.

PSA_AEAD_VERIFY_OUTPUT_SIZE() or PSA_AEAD_VERIFY_OUTPUT_MAX_SIZEcan be used to determine a sufficient buffer size.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ Incomplete additional data: the total length of input to
psa_aead_update_ad() is less than the additional data length thatwas previously specified with psa_aead_set_lengths().

∙ Incomplete ciphertext: the total length of input to
psa_aead_update() is less than the plaintext length that waspreviously specified with psa_aead_set_lengths().

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The operation must have been set up with psa_aead_decrypt_setup().
This function finishes the authenticated decryption of the message components:

∙ The additional data consisting of the concatenation of the inputs passed to preceding calls to
psa_aead_update_ad().

∙ The ciphertext consisting of the concatenation of the inputs passed to preceding calls to
psa_aead_update().

∙ The tag passed to this function call.
If the authentication tag is correct, this function outputs any remaining plaintext and reports success. If theauthentication tag is not correct, this function returns PSA_ERROR_INVALID_SIGNATURE.
When this function returns successfully, the operation becomes inactive. If this function returns an errorstatus, the operation enters an error state and must be aborted by calling psa_aead_abort().

Implementation note
Implementations must make the best effort to ensure that the comparison between the actual tag andthe expected tag is performed in constant time.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 230

psa_aead_abort (function)
Abort an AEAD operation.
psa_status_t psa_aead_abort(psa_aead_operation_t * operation);

Parameters
operation Initialized AEAD operation.

Returns: psa_status_t
PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
Aborting an operation frees all associated resources except for the operation object itself. Once aborted,the operation object can be reused for another operation by calling psa_aead_encrypt_setup() or
psa_aead_decrypt_setup() again.
This function can be called any time after the operation object has been initialized as described in
psa_aead_operation_t.
In particular, calling psa_aead_abort() after the operation has been terminated by a call to psa_aead_abort(),
psa_aead_finish() or psa_aead_verify() is safe and has no effect.

10.6.4 Support macros
PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER (macro)
Whether the specified algorithm is an AEAD mode on a block cipher.
#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an AEAD algorithm which is an AEAD mode based on a block cipher, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
PSA_AEAD_ENCRYPT_OUTPUT_SIZE (macro)
A sufficient ciphertext buffer size for psa_aead_encrypt(), in bytes.
#define PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg, plaintext_length) \

/* implementation-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 231

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
plaintext_length Size of the plaintext in bytes.

Returns
The AEAD ciphertext size for the specified key type and algorithm. If the key type or AEAD algorithm is notrecognized, or the parameters are incompatible, return 0. An implementation can return either 0 or a correctsize for a key type and AEAD algorithm that it recognizes, but does not support.
Description
If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_encrypt() will not faildue to an insufficient buffer size. Depending on the algorithm, the actual size of the ciphertext might besmaller.
See also PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE.
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE (macro)
A sufficient ciphertext buffer size for psa_aead_encrypt(), for any of the supported key types and AEADalgorithms.
#define PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(plaintext_length) \

/* implementation-defined value */

Parameters
plaintext_length Size of the plaintext in bytes.

Description
If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_encrypt() will not faildue to an insufficient buffer size.
See also PSA_AEAD_ENCRYPT_OUTPUT_SIZE().
PSA_AEAD_DECRYPT_OUTPUT_SIZE (macro)
A sufficient plaintext buffer size for psa_aead_decrypt(), in bytes.
#define PSA_AEAD_DECRYPT_OUTPUT_SIZE(key_type, alg, ciphertext_length) \

/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
ciphertext_length Size of the ciphertext in bytes.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 232

Returns
The AEAD plaintext size for the specified key type and algorithm. If the key type or AEAD algorithm is notrecognized, or the parameters are incompatible, return 0. An implementation can return either 0 or a correctsize for a key type and AEAD algorithm that it recognizes, but does not support.
Description
If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_decrypt() will not fail dueto an insufficient buffer size. Depending on the algorithm, the actual size of the plaintext might be smaller.
See also PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE.
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE (macro)
A sufficient plaintext buffer size for psa_aead_decrypt(), for any of the supported key types and AEADalgorithms.
#define PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(ciphertext_length) \

/* implementation-defined value */

Parameters
ciphertext_length Size of the ciphertext in bytes.

Description
If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_decrypt() will not faildue to an insufficient buffer size.
See also PSA_AEAD_DECRYPT_OUTPUT_SIZE().
PSA_AEAD_NONCE_LENGTH (macro)
The default nonce size for an AEAD algorithm, in bytes.
#define PSA_AEAD_NONCE_LENGTH(key_type, alg) /* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
Returns
The default nonce size for the specified key type and algorithm. If the key type or AEAD algorithm is notrecognized, or the parameters are incompatible, return 0. An implementation can return either 0 or a correctsize for a key type and AEAD algorithm that it recognizes, but does not support.
Description
If the size of the nonce buffer is at least this large, it is guaranteed that psa_aead_generate_nonce() will notfail due to an insufficient buffer size.
For most AEAD algorithms, PSA_AEAD_NONCE_LENGTH() evaluates to the exact size of the nonce generated by
psa_aead_generate_nonce().
See also PSA_AEAD_NONCE_MAX_SIZE.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 233

PSA_AEAD_NONCE_MAX_SIZE (macro)
A sufficient buffer size for storing the nonce generated by psa_aead_generate_nonce(), for any of thesupported key types and AEAD algorithms.
#define PSA_AEAD_NONCE_MAX_SIZE /* implementation-defined value */

If the size of the nonce buffer is at least this large, it is guaranteed that psa_aead_generate_nonce() will notfail due to an insufficient buffer size.
See also PSA_AEAD_NONCE_LENGTH().
PSA_AEAD_UPDATE_OUTPUT_SIZE (macro)
A sufficient output buffer size for psa_aead_update().
#define PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
input_length Size of the input in bytes.

Returns
A sufficient output buffer size for the specified key type and algorithm. If the key type or AEAD algorithm isnot recognized, or the parameters are incompatible, return 0. An implementation can return either 0 or acorrect size for a key type and AEAD algorithm that it recognizes, but does not support.
Description
If the size of the output buffer is at least this large, it is guaranteed that psa_aead_update() will not fail dueto an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE.
PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE (macro)
A sufficient output buffer size for psa_aead_update(), for any of the supported key types and AEADalgorithms.
#define PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */

Parameters
input_length Size of the input in bytes.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 234

Description
If the size of the output buffer is at least this large, it is guaranteed that psa_aead_update() will not fail dueto an insufficient buffer size.
See also PSA_AEAD_UPDATE_OUTPUT_SIZE().
PSA_AEAD_FINISH_OUTPUT_SIZE (macro)
A sufficient ciphertext buffer size for psa_aead_finish().
#define PSA_AEAD_FINISH_OUTPUT_SIZE(key_type, alg) \

/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
Returns
A sufficient ciphertext buffer size for the specified key type and algorithm. If the key type or AEADalgorithm is not recognized, or the parameters are incompatible, return 0. An implementation can returneither 0 or a correct size for a key type and AEAD algorithm that it recognizes, but does not support.
Description
If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_finish() will not faildue to an insufficient ciphertext buffer size. The actual size of the output might be smaller in any given call.
See also PSA_AEAD_FINISH_OUTPUT_MAX_SIZE.
PSA_AEAD_FINISH_OUTPUT_MAX_SIZE (macro)
A sufficient ciphertext buffer size for psa_aead_finish(), for any of the supported key types and AEADalgorithms.
#define PSA_AEAD_FINISH_OUTPUT_MAX_SIZE /* implementation-defined value */

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_finish() will not faildue to an insufficient ciphertext buffer size.
See also PSA_AEAD_FINISH_OUTPUT_SIZE().
PSA_AEAD_TAG_LENGTH (macro)
The length of a tag for an AEAD algorithm, in bytes.
#define PSA_AEAD_TAG_LENGTH(key_type, key_bits, alg) \

/* implementation-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 235

Parameters
key_type The type of the AEAD key.
key_bits The size of the AEAD key in bits.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
Returns
The tag length for the specified algorithm and key. If the AEAD algorithm does not have an identified tagthat can be distinguished from the rest of the ciphertext, return 0. If the AEAD algorithm is not recognized,return 0. An implementation can return either 0 or a correct size for an AEAD algorithm that it recognizes,but does not support.
Description
This is the size of the tag output from psa_aead_finish().
If the size of the tag buffer is at least this large, it is guaranteed that psa_aead_finish() will not fail due to aninsufficient tag buffer size.
See also PSA_AEAD_TAG_MAX_SIZE.
PSA_AEAD_TAG_MAX_SIZE (macro)
A sufficient buffer size for storing the tag output by psa_aead_finish(), for any of the supported key typesand AEAD algorithms.
#define PSA_AEAD_TAG_MAX_SIZE /* implementation-defined value */

If the size of the tag buffer is at least this large, it is guaranteed that psa_aead_finish() will not fail due to aninsufficient buffer size.
See also PSA_AEAD_TAG_LENGTH().
PSA_AEAD_VERIFY_OUTPUT_SIZE (macro)
A sufficient plaintext buffer size for psa_aead_verify(), in bytes.
#define PSA_AEAD_VERIFY_OUTPUT_SIZE(key_type, alg) \

/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.
Returns
A sufficient plaintext buffer size for the specified key type and algorithm. If the key type or AEAD algorithmis not recognized, or the parameters are incompatible, return 0. An implementation can return either 0 or acorrect size for a key type and AEAD algorithm that it recognizes, but does not support.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 236

Description
If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_verify() will not fail dueto an insufficient plaintext buffer size. The actual size of the output might be smaller in any given call.
See also PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE.
PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE (macro)
A sufficient plaintext buffer size for psa_aead_verify(), for any of the supported key types and AEADalgorithms.
#define PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE /* implementation-defined value */

If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_verify() will not fail dueto an insufficient buffer size.
See also PSA_AEAD_VERIFY_OUTPUT_SIZE().

10.7 Key wrapping
Key wrapping is the process of encrypting a key, so that the resulting ciphertext can be stored, ortransported, in a form that maintains the confidentiality of the key material. Key unwrapping reverses thisprocess, extracting the key from the ciphertext. Some key-wrapping schemes also provide integrityprotection, to ensure that modification of the ciphertext can be detected.
Some key-wrapping algorithms operate on arbitrary data, and provide authenticated encryption that isspecifically designed for key values. For example, the AES Key-wrap algorithm AES-KW. For this type ofalgorithm, the Crypto API provides a simple pair of functions, psa_unwrap_key() and psa_wrap_key(), thatunwrap or wrap key data in the default export format. When using one of these key-wrapping algorithms,the key attributes are managed by the application.

Note:
Other key-wrapping schemes define both the format of the wrapped key material and the algorithmthat is used to perform the wrapping. For example PKCS#8 defines EncryptedPrivateKeyInfo, which isalso described in Asymmetric Key Packages [RFC5958]. Wrapped-key formats typically encode the keytype and wrapping algorithm within the output data, and can also include other key attributes. Thisversion of the Crypto API does not support these key-wrapping schemes, but this is planned for afuture version.

10.7.1 Key-wrapping algorithms
PSA_ALG_KW (macro)
A key-wrapping algorithm based on the NIST Key Wrap (KW) mode of a block cipher.
Added in version 1.4.
#define PSA_ALG_KW ((psa_algorithm_t)0x0B400100)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 237

KW is defined for block ciphers that have a 128-bit block size. The underlying block cipher is determined bythe key type.
Keys to be wrapped must have a length equal to a multiple of the ‘semi-block’ size for the block cipher. Thatis, a multiple of 8 bytes.
To wrap keys that are not a multiple of the semi-block size, PSA_ALG_KWP can be used.
This is the NIST Key Wrap algorithm, using any block-cipher that operates on 128-bit blocks, as defined inNIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for KeyWrapping [SP800-38F]. A definition of AES-KW is also found in Advanced Encryption Standard (AES) KeyWrap Algorithm [RFC3394].
Compatible key types
PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

PSA_ALG_KWP (macro)
A key-wrapping algorithm based on the NIST Key Wrap with Padding (KWP) mode of a block cipher.
Added in version 1.4.
#define PSA_ALG_KWP ((psa_algorithm_t)0x0BC00200)

KWP is defined for block ciphers that have a 128-bit block size. The underlying block cipher is determinedby the key type.
This algorithm can wrap a key of any length.
This is the NIST Key Wrap with Padding algorithm, using any block-cipher that operates on 128-bit blocks,as defined in NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methodsfor Key Wrapping [SP800-38F]. A definition of AES-KWP is also found in Advanced Encryption Standard (AES)Key Wrap with Padding Algorithm [RFC5649].
Compatible key types
PSA_KEY_TYPE_AES

PSA_KEY_TYPE_ARIA

PSA_KEY_TYPE_CAMELLIA

PSA_KEY_TYPE_SM4

10.7.2 Key wrapping functions
psa_unwrap_key (function)
Unwrap and import a key using a specified wrapping key.
Added in version 1.4.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 238

psa_status_t psa_unwrap_key(const psa_key_attributes_t * attributes,
psa_key_id_t wrapping_key,
psa_algorithm_t alg,
const uint8_t * data,
size_t data_length,
psa_key_id_t * key);

Parameters
attributes The attributes for the new key.

The following attributes are required for all keys:
∙ The key type determines how the decrypted data buffer isinterpreted.

The following attributes must be set for keys used in cryptographicoperations:
∙ The key permitted-algorithm policy, see Permitted algorithms onpage 101.
∙ The key usage flags, see Key usage flags on page 102.

The following attributes must be set for keys that do not use thedefault volatile lifetime:
∙ The key lifetime, see Key lifetimes on page 90.
∙ The key identifier is required for a key with a persistent lifetime,see Key identifiers on page 98.

The following attributes are optional:
∙ If the key size is nonzero, it must be equal to the key sizedetermined from data.

Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queried bycalling psa_get_key_attributes() with the key’s identifier.

wrapping_key Identifier of the key to use for the unwrapping operation. It mustpermit the usage PSA_KEY_USAGE_UNWRAP.
alg The key-wrapping algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_KEY_WRAP(alg) is true.
data Buffer containing the wrapped key data. The content of this buffer isunwrapped using the algorithm alg, and then interpreted according tothe type declared in attributes.
data_length Size of the data buffer in bytes.
key On success, an identifier for the newly created key. PSA_KEY_ID_NULL onfailure.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 239

Returns: psa_status_t
PSA_SUCCESS Success. If the key is persistent, the key material and the key’smetadata have been saved to persistent storage.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE wrapping_key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:

∙ The wrapping key does not have the PSA_KEY_USAGE_UNWRAP flag,or it does not permit the requested algorithm.
∙ The implementation does not permit creating a key with thespecified attributes due to some implementation-specific policy.

PSA_ERROR_INVALID_SIGNATURE The wrapped key data could not be authenticated.
PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a key-wrapping algorithm.
∙ wrapping_key is not compatible with alg.
∙ The key type is invalid.
∙ The key size is nonzero, and is incompatible with the wrappedkey data in data.
∙ The key lifetime is invalid.
∙ The key identifier is not valid for the key lifetime.
∙ The key usage flags include invalid values.
∙ The key’s permitted-usage algorithm is invalid.
∙ The key attributes, as a whole, are invalid.
∙ The key data is not correctly formatted for the key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a key-wrapping algorithm.
∙ wrapping_key is not supported for use with alg.
∙ The key attributes, as a whole, are not supported, either by theimplementation in general or in the specified storage location.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 240

Description
The key is unwrapped and extracted from the provided data buffer. Its location, policy, and type are takenfrom attributes.
The wrapped key data determines the key size. :code:psa_get_key_bits(attributes) must either match thedetermined key size or be 0.
Implementations must reject an attempt to unwrap a key if the determined key size is 0.

Note:
A call to psa_unwrap_key() first applies the decryption procedure associated with the key-wrappingalgorithm alg, using the wrapping_key key, to the supplied data buffer. The resulting plaintext isretained within the cryptoprocessor, and used with the provided attributes to create a key, as if theywere inputs to psa_import_key().

Note:
The Crypto API does not support asymmetric private key objects outside of a key pair. Whenunwrapping a private key, the corresponding key-pair type is created. If the imported key data doesnot contain the public key, then the implementation will reconstruct the public key from the privatekey as needed.

Implementation note
It is recommended that the implementation supports unwrapping any key data that can be producedby a call to psa_wrap_key(), with the same key-wrapping algorithm and key, and matching keyattributes.
It is recommended that implementations reject wrapped key data if it might be erroneous, forexample, if it is the wrong type or is truncated.

psa_wrap_key (function)
Wrap and export a key using a specified wrapping key.
Added in version 1.4.
psa_status_t psa_wrap_key(psa_key_id_t wrapping_key,

psa_algorithm_t alg,
psa_key_id_t key,
uint8_t * data,
size_t data_size,
size_t * data_length);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 241

Parameters
wrapping_key Identifier of the key to use for the wrapping operation. It must permitthe usage PSA_KEY_USAGE_WRAP.
alg The key-wrapping algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_KEY_WRAP(alg) is true.
key Identifier of the key to wrap. It must permit the usage

PSA_KEY_USAGE_EXPORT.
data Buffer where the wrapped key data is to be written.
data_size Size of the data buffer in bytes. This must be appropriate for the key:

∙ The required output size is
PSA_WRAP_KEY_OUTPUT_SIZE(wrap_key_type, alg, type, bits),where wrap_key_type is the type of the wrapping key, alg is thekey-wrapping algorithm, type is the type of the key beingwrapped, and bits is the bit-size of the key being wrapped.

∙ PSA_WRAP_KEY_PAIR_MAX_SIZE evaluates to the maximum wrappedoutput size of any supported key pair, in any supportedcombination of key-wrapping algorithm and wrapping-key type.
∙ This API defines no maximum size for wrapped symmetric keys.Arbitrarily large data items can be stored in the key store, forexample certificates that correspond to a stored private key orinput material for key derivation.

data_length On success, the number of bytes that make up the wrapped key data.
Returns: psa_status_t

PSA_SUCCESS Success. The first (*data_length) bytes of data contain the wrappedkey.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE The following conditions can result in this error:

∙ wrapping_key is not a valid key identifier.
∙ key is not a valid key identifier.

PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:
∙ The wrapping key does not have the PSA_KEY_USAGE_WRAP flag, or itdoes not permit the requested algorithm.
∙ The key to be wrapped does not have the PSA_KEY_USAGE_EXPORTflag.

PSA_ERROR_BUFFER_TOO_SMALL The size of the data buffer is too small. PSA_WRAP_KEY_OUTPUT_SIZE() or
PSA_WRAP_KEY_PAIR_MAX_SIZE can be used to determine a sufficientbuffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not a key-wrapping algorithm.
∙ wrapping_key is not compatible with alg.
∙ key has a size that is not valid for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 242

∙ alg is not supported or is not a key-wrapping algorithm.
∙ wrapping_key is not supported for use with alg.
∙ The storage location of key does not support export of the key.
∙ The implementation does not support export of keys with thetype of key.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
Wrap a key from the key store into a data buffer using a specified key-wrapping algorithm and key-wrappingkey. On success, the output contains the wrapped key value. The policy of the key to be wrapped musthave the usage flag PSA_KEY_USAGE_EXPORT set.
The output of this function can be passed to psa_unwrap_key(), specifying the same algorithm and wrappingkey, with the same attributes as key, to create an equivalent key object.

Note:
A call to psa_wrap_key() first evaluates the key data for key, as if psa_export_key() is called, butretaining the key data within the cryptoprocessor. If this succeeds, the encryption procedureassociated with the key-wrapping algorithm alg, using the wrapping_key key, is applied to the key data.The resulting ciphertext is then returned.

10.7.3 Support macros
PSA_WRAP_KEY_OUTPUT_SIZE (macro)
Sufficient output buffer size for psa_wrap_key().
Added in version 1.4.
#define PSA_WRAP_KEY_OUTPUT_SIZE(wrap_key_type, alg, key_type, key_bits) \

/* implementation-defined value */

Parameters
wrap_key_type A supported key-wrapping key type.
alg A supported key-wrapping algorithm.
key_type A supported key type.
key_bits The size of the key in bits.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 243

Returns
If the parameters are valid and supported, return a buffer size in bytes that guarantees that psa_wrap_key()will not fail with PSA_ERROR_BUFFER_TOO_SMALL. If the parameters are a valid combination that is not supportedby the implementation, this macro must return either a sensible size or 0. If the parameters are not valid, thereturn value is unspecified.
Description
See also PSA_WRAP_KEY_PAIR_MAX_SIZE.
PSA_WRAP_KEY_PAIR_MAX_SIZE (macro)
Sufficient buffer size for wrapping any asymmetric key pair.
Added in version 1.4.
#define PSA_WRAP_KEY_PAIR_MAX_SIZE /* implementation-defined value */

This value must be a sufficient buffer size when calling psa_wrap_key() to export any asymmetric key pairthat is supported by the implementation, regardless of the exact key type and key size.
See also PSA_WRAP_KEY_OUTPUT_SIZE().

10.8 Key derivation
A key derivation encodes a deterministic method to generate a finite stream of bytes. This data stream iscomputed by the cryptoprocessor and extracted in chunks. If two key-derivation operations are constructedwith the same parameters, then they produce the same output.
A key derivation consists of two phases:

1. Input collection. This is sometimes known as extraction: the operation “extracts” information from theinputs to generate a pseudorandom intermediate secret value.
2. Output generation. This is sometimes known as expansion: the operation “expands” the intermediatesecret value to the desired output length.

The specification defines a multi-part operation API for key derivation that allows:
∙ Multiple key and non-key outputs to be produced from a single derivation operation object.
∙ Key and non-key outputs can be extracted from the key-derivation object, or compared with existingkey and non-key values.
∙ Algorithms that require high-entropy secret inputs. For example PSA_ALG_HKDF.
∙ Algorithms that work with low-entropy secret inputs, or passwords. For example

PSA_ALG_PBKDF2_HMAC().
An implementation with isolation has the following properties:

∙ The intermediate state of the key derivation is not visible to the caller.
∙ If an output of the derivation is a non-exportable key, then this key cannot be recovered outside theisolation boundary.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 244

∙ If an output of the derivation is compared using psa_key_derivation_verify_bytes() or
psa_key_derivation_verify_key(), then the output is not visible to the caller.

Applications use the psa_key_derivation_operation_t type to create key-derivation operations. Theoperation object is used as follows:
1. Initialize a psa_key_derivation_operation_t object to zero or to PSA_KEY_DERIVATION_OPERATION_INIT.
2. Call psa_key_derivation_setup() to select a key-derivation algorithm.
3. Call the functions psa_key_derivation_input_key() or psa_key_derivation_key_agreement() to providethe secret inputs, and psa_key_derivation_input_bytes() or psa_key_derivation_input_integer() toprovide the non-secret inputs, to the key-derivation algorithm. Many key-derivation algorithms takemultiple inputs; the step parameter to these functions indicates which input is being provided. Thedocumentation for each key-derivation algorithm describes the expected inputs for that algorithm andin what order to pass them.
4. Optionally, call psa_key_derivation_set_capacity() to set a limit on the amount of data that can beoutput from the key-derivation operation.
5. Call an output or verification function:

∙ psa_key_derivation_output_key() or psa_key_derivation_output_key_custom() to create a derivedkey.
∙ psa_key_derivation_output_bytes() to export the derived data.
∙ psa_key_derivation_verify_key() to compare a derived key with an existing key value.
∙ psa_key_derivation_verify_bytes() to compare derived data with a buffer.

These functions can be called multiple times to read successive output from the key derivation, untilthe stream is exhausted when its capacity has been reached.
6. Key derivation does not finish in the same way as other multi-part operations. Call

psa_key_derivation_abort() to release the key-derivation operation memory when the object is nolonger required.
To recover from an error, call psa_key_derivation_abort() to release the key-derivation operation memory.
A key-derivation operation cannot be rewound. Once a part of the stream has been output, it cannot beoutput again. This ensures that the same part of the output will not be used for different purposes.

10.8.1 Key-derivation algorithms
PSA_ALG_HKDF (macro)
Macro to build an HKDF algorithm.
#define PSA_ALG_HKDF(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 245

Returns
The corresponding HKDF algorithm. For example, PSA_ALG_HKDF(PSA_ALG_SHA_256) is HKDF usingHMAC-SHA-256.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This is the HMAC-based Extract-and-Expand Key Derivation Function (HKDF) specified by HMAC-basedExtract-and-Expand Key Derivation Function (HKDF) [RFC5869].
This key-derivation algorithm uses the following inputs:

∙ PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the “extract” step. It is optional; if omitted, thederivation uses an empty salt.
∙ PSA_KEY_DERIVATION_INPUT_SECRET is the secret key (input keying material) used in the “extract” step.
∙ PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the “expand” step.

If PSA_KEY_DERIVATION_INPUT_SALT is provided, it must be before PSA_KEY_DERIVATION_INPUT_SECRET.
PSA_KEY_DERIVATION_INPUT_INFO can be provided at any time after setup and before starting to generateoutput.
. Warning

HKDF processes the salt as follows: first hash it with hash_alg if the salt is longer than the block size ofthe hash algorithm; then pad with null bytes up to the block size. As a result, it is possible for distinct saltinputs to result in the same outputs. To ensure unique outputs, it is recommended to use a fixed lengthfor salt values.
Each input may only be passed once.
Compatible key types
PSA_KEY_TYPE_DERIVE (for the secret key)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_HKDF_EXTRACT (macro)
Macro to build an HKDF-Extract algorithm.
Added in version 1.1.
#define PSA_ALG_HKDF_EXTRACT(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 246

Returns
The corresponding HKDF-Extract algorithm. For example, PSA_ALG_HKDF_EXTRACT(PSA_ALG_SHA_256) isHKDF-Extract using HMAC-SHA-256.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This is the Extract step of HKDF as specified by HMAC-based Extract-and-Expand Key Derivation Function(HKDF) [RFC5869] §2.2.
This key-derivation algorithm uses the following inputs:

∙ PSA_KEY_DERIVATION_INPUT_SALT is the salt.
∙ PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the “extract” step.

The inputs are mandatory and must be passed in the order above. Each input may only be passed once.
. Warning

HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF should be used instead if possible.
PSA_ALG_HKDF_EXTRACT is provided as a separate algorithm for the sake of protocols that use it as abuilding block. It may also be a slight performance optimization in applications that use HKDF with thesame salt and key but many different info strings.

. Warning

HKDF processes the salt as follows: first hash it with hash_alg if the salt is longer than the block size ofthe hash algorithm; then pad with null bytes up to the block size. As a result, it is possible for distinct saltinputs to result in the same outputs. To ensure unique outputs, it is recommended to use a fixed lengthfor salt values.
Compatible key types
PSA_KEY_TYPE_DERIVE (for the input keying material)
PSA_KEY_TYPE_RAW_DATA (for the salt)

PSA_ALG_HKDF_EXPAND (macro)
Macro to build an HKDF-Expand algorithm.
Added in version 1.1.
#define PSA_ALG_HKDF_EXPAND(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 247

https://datatracker.ietf.org/doc/html/rfc5869.html#section-2.2

Returns
The corresponding HKDF-Expand algorithm. For example, PSA_ALG_HKDF_EXPAND(PSA_ALG_SHA_256) isHKDF-Expand using HMAC-SHA-256.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This is the Expand step of HKDF as specified by HMAC-based Extract-and-Expand Key Derivation Function(HKDF) [RFC5869] §2.3.
This key-derivation algorithm uses the following inputs:

∙ PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).
∙ PSA_KEY_DERIVATION_INPUT_INFO is the info string.

The inputs are mandatory and must be passed in the order above. Each input may only be passed once.
. Warning

HKDF-Expand is not meant to be used on its own. PSA_ALG_HKDF should be used instead if possible.
PSA_ALG_HKDF_EXPAND is provided as a separate algorithm for the sake of protocols that use it as a buildingblock. It may also be a slight performance optimization in applications that use HKDF with the same saltand key but many different info strings.

Compatible key types
PSA_KEY_TYPE_DERIVE (for the pseudorandom key)
PSA_KEY_TYPE_RAW_DATA (for the info string)

PSA_ALG_SP800_108_COUNTER_HMAC (macro)
Macro to build a NIST SP 800-108 conformant, counter-mode KDF algorithm based on HMAC.
Added in version 1.2.
#define PSA_ALG_SP800_108_COUNTER_HMAC(hash_alg) \

/* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true.
Returns
The corresponding key-derivation algorithm. For example, the counter-mode KDF using HMAC-SHA-256 is
PSA_ALG_SP800_108_COUNTER_HMAC(PSA_ALG_SHA_256).
Unspecified if hash_alg is not a supported hash algorithm.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 248

https://datatracker.ietf.org/doc/html/rfc5869.html#section-2.3

Description
This is an HMAC-based, counter mode key-derivation function, using the construction recommended byNIST Special Publication 800-108r1: Recommendation for Key Derivation Using Pseudorandom Functions[SP800-108], §4.1.
This key-derivation algorithm uses the following inputs:

∙ PSA_KEY_DERIVATION_INPUT_SECRET is the secret input keying material, 𝐾𝐼𝑁 .
∙ PSA_KEY_DERIVATION_INPUT_LABEL is the 𝐿𝑎𝑏𝑒𝑙. It is optional; if omitted, 𝐿𝑎𝑏𝑒𝑙 is a zero-length string. Ifprovided, it must not contain any null bytes.
∙ PSA_KEY_DERIVATION_INPUT_CONTEXT is the 𝐶𝑜𝑛𝑡𝑒𝑥𝑡. It is optional; if omitted, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 is a zero-lengthstring.

Each input can only be passed once. Inputs must be passed in the order above.
This algorithm uses the output length as part of the derivation process. In the derivation this value is 𝐿, therequired output size in bits. After setup, the initial capacity of the key-derivation operation is 229 − 1 bytes(0x1fffffff). The capacity can be set to a lower value by calling psa_key_derivation_set_capacity().
When the first output is requested, the value of 𝐿 is calculated as 𝐿 = 8 * 𝑐𝑎𝑝, where 𝑐𝑎𝑝 is the value of
psa_key_derivation_get_capacity(). Subsequent calls to psa_key_derivation_set_capacity() are notpermitted for this algorithm.
The derivation is constructed as described in [SP800-108] §4.1, with the iteration counter 𝑖 and outputlength 𝐿 encoded as big-endian, 32-bit values. The resulting output stream 𝐾1 || 𝐾2 || 𝐾3 || ... is computedas:

𝐾𝑖 = HMAC(𝐾𝐼𝑁 , [𝑖]4 || 𝐿𝑎𝑏𝑒𝑙 || 0x00 || 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 || [𝐿]4), for 𝑖 = 1, 2, 3, ...

Where [𝑥]𝑛 is the big-endian, 𝑛-byte encoding of the integer 𝑥.
Compatible key types
PSA_KEY_TYPE_HMAC (for the secret key)
PSA_KEY_TYPE_DERIVE (for the secret key)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_SP800_108_COUNTER_CMAC (macro)
Macro to build a NIST SP 800-108 conformant, counter-mode KDF algorithm based on CMAC.
Added in version 1.2.
#define PSA_ALG_SP800_108_COUNTER_CMAC ((psa_algorithm_t)0x08000800)

This is a CMAC-based, counter mode key-derivation function, using the construction recommended byNIST Special Publication 800-108r1: Recommendation for Key Derivation Using Pseudorandom Functions[SP800-108], §4.1.
This key-derivation algorithm uses the following inputs:

∙ PSA_KEY_DERIVATION_INPUT_SECRET is the secret input keying material, 𝐾𝐼𝑁 . This must be a block-cipherkey that is compatible with the CMAC algorithm, and must be input using
psa_key_derivation_input_key(). See also PSA_ALG_CMAC.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 249

∙ PSA_KEY_DERIVATION_INPUT_LABEL is the 𝐿𝑎𝑏𝑒𝑙. It is optional; if omitted, 𝐿𝑎𝑏𝑒𝑙 is a zero-length string. Ifprovided, it must not contain any null bytes.
∙ PSA_KEY_DERIVATION_INPUT_CONTEXT is the 𝐶𝑜𝑛𝑡𝑒𝑥𝑡. It is optional; if omitted, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 is a zero-lengthstring.

Each input can only be passed once. Inputs must be passed in the order above.
This algorithm uses the output length as part of the derivation process. In the derivation this value is 𝐿, therequired output size in bits. After setup, the initial capacity of the key-derivation operation is 229 − 1 bytes(0x1fffffff). The capacity can be set to a lower value by calling psa_key_derivation_set_capacity().
When the first output is requested, the value of 𝐿 is calculated as 𝐿 = 8 * 𝑐𝑎𝑝, where 𝑐𝑎𝑝 is the value of
psa_key_derivation_get_capacity(). Subsequent calls to psa_key_derivation_set_capacity() are notpermitted for this algorithm.
The derivation is constructed as described in [SP800-108] §4.1, with the following details:

∙ The iteration counter 𝑖 and output length 𝐿 are encoded as big-endian, 32-bit values.
∙ The mitigation to make the CMAC-based construction robust is implemented.

The resulting output stream 𝐾1 || 𝐾2 || 𝐾3 || ... is computed as:
𝐾0 = CMAC(𝐾𝐼𝑁 , 𝐿𝑎𝑏𝑒𝑙 || 0x00 || 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 || [𝐿]4)
𝐾𝑖 = CMAC(𝐾𝐼𝑁 , [𝑖]4 || 𝐿𝑎𝑏𝑒𝑙 || 0x00 || 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 || [𝐿]4 || 𝐾0), for 𝑖 = 1, 2, 3, ...

Where [𝑥]𝑛 is the big-endian, 𝑛-byte encoding of the integer 𝑥.
Compatible key types
PSA_KEY_TYPE_AES (for the secret key)
PSA_KEY_TYPE_ARIA (for the secret key)
PSA_KEY_TYPE_CAMELLIA (for the secret key)
PSA_KEY_TYPE_SM4 (for the secret key)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_TLS12_PRF (macro)
Macro to build a TLS-1.2 PRF algorithm.
#define PSA_ALG_TLS12_PRF(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true.
Returns
The corresponding TLS-1.2 PRF algorithm. For example, PSA_ALG_TLS12_PRF(PSA_ALG_SHA_256) represents theTLS 1.2 PRF using HMAC-SHA-256.
Unspecified if hash_alg is not a supported hash algorithm.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 250

Description
TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule, specified in The Transport LayerSecurity (TLS) Protocol Version 1.2 [RFC5246] §5. It is based on HMAC and can be used with either SHA-256or SHA-384.
This key-derivation algorithm uses the following inputs, which must be passed in the order given here:

∙ PSA_KEY_DERIVATION_INPUT_SEED is the seed.
∙ PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.
∙ PSA_KEY_DERIVATION_INPUT_LABEL is the label.

Each input may only be passed once.
For the application to TLS-1.2 key expansion:

∙ The seed is the concatenation of ServerHello.Random + ClientHello.Random.
∙ The label is "key expansion".

Compatible key types
PSA_KEY_TYPE_DERIVE (for the secret key)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_TLS12_PSK_TO_MS (macro)
Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
Changed in version 1.1: Added step to support cipher-suites that include a key-exchange.
#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true.
Returns
The corresponding TLS-1.2 PSK to MS algorithm. For example, PSA_ALG_TLS12_PSK_TO_MS(PSA_ALG_SHA_256)represents the TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.
Unspecified if hash_alg is not a supported hash algorithm.
Description
In a pure-PSK handshake in TLS 1.2, the master secret (MS) is derived from the pre-shared key (PSK)through the application of padding (Pre-Shared Key Ciphersuites for Transport Layer Security (TLS) [RFC4279]§2) and the TLS-1.2 PRF (The Transport Layer Security (TLS) Protocol Version 1.2 [RFC5246] §5). The latter isbased on HMAC and can be used with either SHA-256 or SHA-384.
This key-derivation algorithm uses the following inputs, which must be passed in the order given here:

∙ PSA_KEY_DERIVATION_INPUT_SEED is the seed.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 251

https://datatracker.ietf.org/doc/html/rfc5246.html#section-5
https://datatracker.ietf.org/doc/html/rfc4279.html#section-2
https://datatracker.ietf.org/doc/html/rfc5246.html#section-5

∙ PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the computation of the premastersecret. This input is optional; if omitted, it defaults to a string of null bytes with the same length as thesecret (PSK) input.
∙ PSA_KEY_DERIVATION_INPUT_SECRET is the PSK. The PSK must not be larger than

PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE.
∙ PSA_KEY_DERIVATION_INPUT_LABEL is the label.

Each input may only be passed once.
For the application to TLS-1.2:

∙ The seed, which is forwarded to the TLS-1.2 PRF, is the concatenation of the ClientHello.Random +
ServerHello.Random.

∙ The other secret depends on the key exchange specified in the cipher suite:
— For a plain PSK cipher suite ([RFC4279] §2), omit PSA_KEY_DERIVATION_INPUT_OTHER_SECRET.
— For a DHE-PSK ([RFC4279] §3) or ECDHE-PSK cipher suite (ECDHE_PSK Cipher Suites forTransport Layer Security (TLS) [RFC5489] §2), the other secret should be the output of the

PSA_ALG_FFDH or PSA_ALG_ECDH key agreement performed with the peer. The recommended way topass this input is to use a key-derivation algorithm constructed as PSA_ALG_KEY_AGREEMENT(ka_alg,
PSA_ALG_TLS12_PSK_TO_MS(hash_alg)) and to call psa_key_derivation_key_agreement().Alternatively, this input may be an output of psa_key_agreement() passed with
psa_key_derivation_input_key(), or an equivalent input passed with
psa_key_derivation_input_bytes() or psa_key_derivation_input_key().

— For a RSA-PSK cipher suite ([RFC4279] §4), the other secret should be the 48-byte clientchallenge (the PreMasterSecret of [RFC5246] §7.4.7.1) concatenation of the TLS version and a46-byte random string chosen by the client. On the server, this is typically an output of
psa_asymmetric_decrypt() using PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key-derivationoperation with psa_key_derivation_input_bytes().

∙ The label is "master secret" or "extended master secret".
Compatible key types
PSA_KEY_TYPE_DERIVE (for the PSK)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_TLS12_ECJPAKE_TO_PMS (macro)
The TLS 1.2 ECJPAKE-to-PMS key-derivation algorithm.
Added in version 1.2.
#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t)0x08000609)

This KDF is defined in Elliptic Curve J-PAKE Cipher Suites for Transport Layer Security (TLS) [TLS-ECJPAKE]§8.7. This specifies the use of a KDF to derive the TLS 1.2 session secrets from the output of EC J-PAKEover the secp256r1 Elliptic curve (the 256-bit curve in PSA_ECC_FAMILY_SECP_R1). EC J-PAKE operations canbe performed using a PAKE operation, see Password-authenticated key exchange (PAKE) on page 338.
This KDF takes the shared secret 𝐾 (an uncompressed EC point in case of EC J-PAKE) and calculatesSHA256(𝐾.𝑥).
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 252

https://datatracker.ietf.org/doc/html/rfc4279.html#section-2
https://datatracker.ietf.org/doc/html/rfc4279.html#section-3
https://datatracker.ietf.org/doc/html/rfc5489.html#section-2
https://datatracker.ietf.org/doc/html/rfc4279.html#section-4
https://datatracker.ietf.org/doc/html/rfc5246.html#section-7.4.7.1

This function takes a single input:
∙ PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret 𝐾 from EC J-PAKE. For secp256r1, the input isexactly 65 bytes.
The shared secret can be obtained by calling psa_pake_get_shared_key() on a PAKE operation that isperforming the EC J-PAKE algorithm. See Password-authenticated key exchange (PAKE) on page 338.

The 32-byte output has to be read in a single call to either psa_key_derivation_output_bytes(),
psa_key_derivation_output_key(), or psa_key_derivation_output_key_custom(). The size of the output isdefined as PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE.
Compatible key types
PSA_KEY_TYPE_DERIVE — the secret key is extracted from a PAKE operation by calling
psa_pake_get_shared_key().

PSA_ALG_WPA3_SAE_H2E (macro)
The WPA3-SAE hash-to-element password token key-derivation algorithm.
Added in version 1.4.
#define PSA_ALG_WPA3_SAE_H2E(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.
Description
This KDF is defined in IEEE 802.11-2024: Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) Specifications [IEEE-802.11] §12.4.4. This specifies the hash-to-element procedures for deriving aWPA3-SAE password token from a network SSID and password. The resulting password token is then usedduring a WPA3-SAE PAKE operation.
This key-derivation algorithm uses the following inputs, which must be passed in the order given here:

∙ PSA_KEY_DERIVATION_INPUT_SALT is the network SSID.
∙ PSA_KEY_DERIVATION_INPUT_PASSWORD is the password.
∙ PSA_KEY_DERIVATION_INPUT_INFO is the password identifier. It is optional.

This key derivation algorithm can only be used to derive and output a single key, which is obtained by a callto psa_key_derivation_output_key(). The output has to be read as a key of type PSA_KEY_TYPE_WPA3_SAE_DHor PSA_KEY_TYPE_WPA3_SAE_ECC. Requesting any other key type, or calling psa_key_derivation_output_bytes(),returns an error status.
The hash_alg parameter to PSA_ALG_WPA3_SAE_H2E() determines the hash function used for the derivation.The key attributes of the output key indicate the elliptic curve or finite field group used for the derivation.
If the elliptic curve or finite field group specified in the key attributes is not compatible with the hashfunction used for the derivation, psa_key_derivation_output_bytes() returns PSA_ERROR_INVALID_ARGUMENT.See WPA3-SAE cipher suites on page 381.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 253

WPA3-SAE password tokens on page 72 provides details of the derivation procedures.
Note:
To use a single password key with PSA_ALG_WPA3_SAE_H2E for any WPA3-SAE cipher suite, create thekey with the wildcard PSA_ALG_WPA3_SAE_ANY permitted algorithm.

PSA_ALG_PBKDF2_HMAC (macro)
Macro to build a PBKDF2-HMAC password-hashing or key-stretching algorithm.
Added in version 1.1.
#define PSA_ALG_PBKDF2_HMAC(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true.
Returns
The corresponding PBKDF2-HMAC-XXX algorithm. For example, PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256) isthe algorithm identifier for PBKDF2-HMAC-SHA-256.
Unspecified if hash_alg is not a supported hash algorithm.
Description
PBKDF2 is specified by PKCS #5: Password-Based Cryptography Specification Version 2.1 [RFC8018] §5.2.This macro constructs a PBKDF2 algorithm that uses a pseudorandom function based on HMAC with thespecified hash.
This key-derivation algorithm uses the following inputs, which must be provided in the following order:

∙ PSA_KEY_DERIVATION_INPUT_COST is the iteration count. This input step must be used exactly once.
∙ PSA_KEY_DERIVATION_INPUT_SALT is the salt. This input step must be used one or more times; if usedseveral times, the inputs will be concatenated. This can be used to build the final salt from multiplesources, both public and secret (also known as pepper).
∙ PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed. This input step must be usedexactly once.

Compatible key types
PSA_KEY_TYPE_DERIVE (for password input)
PSA_KEY_TYPE_PASSWORD (for password input)
PSA_KEY_TYPE_PEPPER (for salt input)
PSA_KEY_TYPE_RAW_DATA (for salt input)
PSA_KEY_TYPE_PASSWORD_HASH (for key verification)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 254

https://datatracker.ietf.org/doc/html/rfc8018.html#section-5.2

PSA_ALG_PBKDF2_AES_CMAC_PRF_128 (macro)
The PBKDF2-AES-CMAC-PRF-128 password-hashing or key-stretching algorithm.
Added in version 1.1.
#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)

PBKDF2 is specified by PKCS #5: Password-Based Cryptography Specification Version 2.1 [RFC8018] §5.2.This algorithm specifies the PBKDF2 algorithm using the AES-CMAC-PRF-128 pseudorandom functionspecified by [RFC4615]
This key-derivation algorithm uses the same inputs as PSA_ALG_PBKDF2_HMAC() with the same constraints.
Compatible key types
PSA_KEY_TYPE_DERIVE (for password input)
PSA_KEY_TYPE_PASSWORD (for password input)
PSA_KEY_TYPE_PEPPER (for salt input)
PSA_KEY_TYPE_RAW_DATA (for salt input)
PSA_KEY_TYPE_PASSWORD_HASH (for key verification)

10.8.2 Input step types
psa_key_derivation_step_t (typedef)
Encoding of the step of a key derivation.
typedef uint16_t psa_key_derivation_step_t;

Implementation note
It is recommended that the value 0 is not allocated as a valid key-derivation step.

PSA_KEY_DERIVATION_INPUT_SECRET (macro)
A high-entropy secret input for key derivation.
#define PSA_KEY_DERIVATION_INPUT_SECRET /* implementation-defined value */

This is typically a key of type PSA_KEY_TYPE_DERIVE passed to psa_key_derivation_input_key(), or the sharedsecret resulting from a key agreement obtained via psa_key_derivation_key_agreement().
For some algorithms, a specific type of key is required. For example, see PSA_ALG_SP800_108_COUNTER_CMAC.
The secret can also be a direct input passed to psa_key_derivation_input_bytes(). In this case, thederivation operation cannot be used to derive keys: the operation will not permit a call to
psa_key_derivation_output_key() or psa_key_derivation_output_key_custom().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 255

https://datatracker.ietf.org/doc/html/rfc8018.html#section-5.2

PSA_KEY_DERIVATION_INPUT_OTHER_SECRET (macro)
A high-entropy additional secret input for key derivation.
Added in version 1.1.
#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \

/* implementation-defined value */

This is typically the shared secret resulting from a key agreement obtained via
psa_key_derivation_key_agreement(). It may alternatively be a key of type PSA_KEY_TYPE_DERIVE passed to
psa_key_derivation_input_key(), or a direct input passed to psa_key_derivation_input_bytes().
PSA_KEY_DERIVATION_INPUT_PASSWORD (macro)
A low-entropy secret input for password hashing or key stretching.
Added in version 1.1.
#define PSA_KEY_DERIVATION_INPUT_PASSWORD /* implementation-defined value */

This is usually a key of type PSA_KEY_TYPE_PASSWORD passed to psa_key_derivation_input_key() or a directinput passed to psa_key_derivation_input_bytes() that is a password or passphrase. It can also behigh-entropy secret, for example, a key of type PSA_KEY_TYPE_DERIVE, or the shared secret resulting from akey agreement.
If the secret is a direct input, the derivation operation cannot be used to derive keys: the operation will notpermit a call to psa_key_derivation_output_key() or psa_key_derivation_output_key_custom().
PSA_KEY_DERIVATION_INPUT_LABEL (macro)
A label for key derivation.
#define PSA_KEY_DERIVATION_INPUT_LABEL /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.
PSA_KEY_DERIVATION_INPUT_CONTEXT (macro)
A context for key derivation.
#define PSA_KEY_DERIVATION_INPUT_CONTEXT /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.
PSA_KEY_DERIVATION_INPUT_SALT (macro)
A salt for key derivation.
#define PSA_KEY_DERIVATION_INPUT_SALT /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA or PSA_KEY_TYPE_PEPPER.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 256

PSA_KEY_DERIVATION_INPUT_INFO (macro)
An information string for key derivation.
#define PSA_KEY_DERIVATION_INPUT_INFO /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.
PSA_KEY_DERIVATION_INPUT_SEED (macro)
A seed for key derivation.
#define PSA_KEY_DERIVATION_INPUT_SEED /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.
PSA_KEY_DERIVATION_INPUT_COST (macro)
A cost parameter for password hashing or key stretching.
Added in version 1.1.
#define PSA_KEY_DERIVATION_INPUT_COST /* implementation-defined value */

This must be a direct input, passed to psa_key_derivation_input_integer().

10.8.3 Key-derivation functions
psa_key_derivation_operation_t (typedef)
The type of the state object for key-derivation operations.
typedef /* implementation-defined type */ psa_key_derivation_operation_t;

Before calling any function on a key-derivation operation object, the application must initialize it by any ofthe following means:
∙ Set the object to all-bits-zero, for example:

psa_key_derivation_operation_t operation;
memset(&operation, 0, sizeof(operation));

∙ Initialize the object to logical zero values by declaring the object as static or global without an explicitinitializer, for example:
static psa_key_derivation_operation_t operation;

∙ Initialize the object to the initializer PSA_KEY_DERIVATION_OPERATION_INIT, for example:
psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;

∙ Assign the result of the function psa_key_derivation_operation_init() to the object, for example:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 257

psa_key_derivation_operation_t operation;
operation = psa_key_derivation_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.
PSA_KEY_DERIVATION_OPERATION_INIT (macro)
This macro returns a suitable initializer for a key-derivation operation object of type
psa_key_derivation_operation_t.
#define PSA_KEY_DERIVATION_OPERATION_INIT /* implementation-defined value */

psa_key_derivation_operation_init (function)
Return an initial value for a key-derivation operation object.
psa_key_derivation_operation_t psa_key_derivation_operation_init(void);

Returns: psa_key_derivation_operation_t

psa_key_derivation_setup (function)
Set up a key-derivation operation.
psa_status_t psa_key_derivation_setup(psa_key_derivation_operation_t * operation,

psa_algorithm_t alg);

Parameters
operation The key-derivation operation object to set up. It must have beeninitialized but not set up yet.
alg The algorithm to compute. This must be one of the following:

∙ A key-derivation algorithm: a value of type psa_algorithm_t suchthat PSA_ALG_IS_KEY_DERIVATION(alg) is true.
∙ A key-agreement and key-derivation algorithm: a value of type

psa_algorithm_t such that PSA_ALG_IS_KEY_AGREEMENT(alg) is trueand PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) is false.
Returns: psa_status_t

PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT alg is neither a key-derivation algorithm, nor a key-agreement andkey-derivation algorithm.
PSA_ERROR_NOT_SUPPORTED alg is not supported or is not a key-derivation algorithm, or akey-agreement and key-derivation algorithm.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 258

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
A key-derivation algorithm takes some inputs and uses them to generate a byte stream in a deterministicway. This byte stream can be used to produce keys and other cryptographic material.
A key-agreement and key-derivation algorithm uses a key-agreement protocol to provide a shared secretwhich is used for the key derivation. See psa_key_derivation_key_agreement().
The sequence of operations to derive a key is as follows:

1. Allocate a key-derivation operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_key_derivation_operation_t, e.g. PSA_KEY_DERIVATION_OPERATION_INIT.
3. Call psa_key_derivation_setup() to specify the algorithm.
4. Provide the inputs for the key derivation by calling psa_key_derivation_input_bytes() or

psa_key_derivation_input_key() as appropriate. Which inputs are needed, in what order, whether keysare permitted, and what type of keys depends on the algorithm.
5. Optionally set the operation’s maximum capacity with psa_key_derivation_set_capacity(). This can bedone before, in the middle of, or after providing inputs. For some algorithms, this step is mandatorybecause the output depends on the maximum capacity.
6. To derive a key, call psa_key_derivation_output_key() or psa_key_derivation_output_key_custom(). Toderive a byte string for a different purpose, call psa_key_derivation_output_bytes(). Successive calls tothese functions use successive output bytes calculated by the key-derivation algorithm.
7. Clean up the key-derivation operation object with psa_key_derivation_abort().

After a successful call to psa_key_derivation_setup(), the operation is active, and the application musteventually terminate the operation with a call to psa_key_derivation_abort().
If psa_key_derivation_setup() returns an error, the operation object is unchanged. If a subsequent functioncall with an active operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_key_derivation_abort().
See Multi-part operations on page 27.
psa_key_derivation_get_capacity (function)
Retrieve the current capacity of a key-derivation operation.
psa_status_t psa_key_derivation_get_capacity(const psa_key_derivation_operation_t * operation,

size_t * capacity);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 259

Parameters
operation The operation to query.
capacity On success, the capacity of the operation.

Returns: psa_status_t
PSA_SUCCESS Success. The maximum number of bytes that this key derivation canreturn is (*capacity).
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
The capacity of a key derivation is the maximum number of bytes that it can return. Reading 𝑁 bytes ofoutput from a key-derivation operation reduces its capacity by at least 𝑁 . The capacity can be reduced bymore than 𝑁 in the following situations:

∙ Calling psa_key_derivation_output_key() or psa_key_derivation_output_key_custom() can reduce thecapacity by more than the key size, depending on the type of key being generated. See
psa_key_derivation_output_key() for details of the key-derivation process.

∙ When the psa_key_derivation_operation_t object is operating as a deterministic random bit generator(DBRG), which reduces capacity in whole blocks, even when less than a block is read.
psa_key_derivation_set_capacity (function)
Set the maximum capacity of a key-derivation operation.
psa_status_t psa_key_derivation_set_capacity(psa_key_derivation_operation_t * operation,

size_t capacity);

Parameters
operation The key-derivation operation object to modify.
capacity The new capacity of the operation. It must be less or equal to theoperation’s current capacity.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT capacity is larger than the operation’s current capacity. In this case,the operation object remains valid and its capacity remains unchanged.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 260

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
The capacity of a key-derivation operation is the maximum number of bytes that the key-derivationoperation can return from this point onwards.

Note:
For some algorithms, the capacity value can affect the output of the key derivation. For example, see
PSA_ALG_SP800_108_COUNTER_HMAC.

psa_key_derivation_input_bytes (function)
Provide an input for key derivation or key agreement.
psa_status_t psa_key_derivation_input_bytes(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,
const uint8_t * data,
size_t data_length);

Parameters
operation The key-derivation operation object to use. It must have been set upwith psa_key_derivation_setup() and must not have produced anyoutput yet.
step Which step the input data is for.
data Input data to use.
data_length Size of the data buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid for this input step. This canhappen if the application provides a step out of order or repeatsa step that may not be repeated.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ step is not compatible with the operation’s algorithm.
∙ step does not permit direct inputs.
∙ data_length is too small or too large for step in this particularalgorithm.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ step is not supported with the operation’s algorithm.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 261

∙ data_length is is not supported for step in this particularalgorithm.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
Which inputs are required and in what order depends on the algorithm. Refer to the documentation of eachkey-derivation or key-agreement algorithm for information.
This function passes direct inputs, which is usually correct for non-secret inputs. To pass a secret input,which is normally in a key object, call psa_key_derivation_input_key() instead of this function. Refer to thedocumentation of individual step types (PSA_KEY_DERIVATION_INPUT_xxx values of type
psa_key_derivation_step_t) for more information.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_key_derivation_abort().
psa_key_derivation_input_integer (function)
Provide a numeric input for key derivation or key agreement.
Added in version 1.1.
psa_status_t psa_key_derivation_input_integer(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,
uint64_t value);

Parameters
operation The key-derivation operation object to use. It must have been set upwith psa_key_derivation_setup() and must not have produced anyoutput yet.
step Which step the input data is for.
value The value of the numeric input.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid for this input step. This canhappen if the application provides a step out of order or repeatsa step that may not be repeated.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 262

∙ step is not compatible with the operation’s algorithm.
∙ step does not permit numerical inputs.
∙ value is not valid for step in the operation’s algorithm.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ step is not supported with the operation’s algorithm.
∙ value is not supported for step in the operation’s algorithm.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
Which inputs are required and in what order depends on the algorithm. However, when an algorithmrequires a particular order, numeric inputs usually come first as they tend to be configuration parameters.Refer to the documentation of each key-derivation or key-agreement algorithm for information.
This function is used for inputs which are fixed-size non-negative integers.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_key_derivation_abort().
psa_key_derivation_input_key (function)
Provide an input for key derivation in the form of a key.
psa_status_t psa_key_derivation_input_key(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,
psa_key_id_t key);

Parameters
operation The key-derivation operation object to use. It must have been set upwith psa_key_derivation_setup() and must not have produced anyoutput yet.
step Which step the input data is for.
key Identifier of the key. The key must have an appropriate type for step, itmust permit the usage PSA_KEY_USAGE_DERIVE or

PSA_KEY_USAGE_VERIFY_DERIVATION (see note), and it must permit thealgorithm used by the operation.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 263

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid for this input step. This canhappen if the application provides a step out of order or repeatsa step that may not be repeated.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:

∙ The key has neither the PSA_KEY_USAGE_DERIVE nor the
PSA_KEY_USAGE_VERIFY_DERIVATION usage flag.

∙ The key does not permit the operation’s algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ step is not compatible with the operation’s algorithm.
∙ step does not permit key inputs of the given type, or does notpermit key inputs at all.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ step is not supported with the operation’s algorithm.
∙ Key inputs of the given type are not supported for step in theoperation’s algorithm.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
Which inputs are required and in what order depends on the algorithm. Refer to the documentation of eachkey-derivation or key-agreement algorithm for information.
This function obtains input from a key object, which is usually correct for secret inputs or for non-secretpersonalization strings kept in the key store. To pass a non-secret parameter which is not in the key store,call psa_key_derivation_input_bytes() instead of this function. Refer to the documentation of individualstep types (PSA_KEY_DERIVATION_INPUT_xxx values of type psa_key_derivation_step_t) for more information.

Note:
Once all inputs steps are completed, the following operations are permitted:

∙ psa_key_derivation_output_bytes() — if each input was either a direct input, or a key with usageflag PSA_KEY_USAGE_DERIVE.
∙ psa_key_derivation_output_key() or psa_key_derivation_output_key_custom() — if the input for

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 264

step PSA_KEY_DERIVATION_INPUT_SECRET or PSA_KEY_DERIVATION_INPUT_PASSWORD was a key withusage flag PSA_KEY_USAGE_DERIVE, and every other input was either a direct input or a key withusage flag PSA_KEY_USAGE_DERIVE.
∙ psa_key_derivation_verify_bytes()

∙ psa_key_derivation_verify_key()

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_key_derivation_abort().
psa_key_derivation_output_bytes (function)
Read some data from a key-derivation operation.
psa_status_t psa_key_derivation_output_bytes(psa_key_derivation_operation_t * operation,

uint8_t * output,
size_t output_length);

Parameters
operation The key-derivation operation object to read from.
output Buffer where the output will be written.
output_length Number of bytes to output.

Returns: psa_status_t
PSA_SUCCESS Success. The first output_length bytes of output contain the deriveddata.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, with allrequired input steps complete.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_NOT_PERMITTED One of the inputs was a key whose policy did not permit
PSA_KEY_USAGE_DERIVE.

PSA_ERROR_INSUFFICIENT_DATA The operation’s capacity was less than output_length bytes. In thiscase, the following occurs:
∙ No output is written to the output buffer.
∙ The operation’s capacity is set to zero.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 265

Description
This function calculates output bytes from a key-derivation algorithm and returns those bytes. If the keyderivation’s output is viewed as a stream of bytes, this function consumes the requested number of bytesfrom the stream and returns them to the caller. The operation’s capacity decreases by the number of bytesread.
A request to extract more data than the remaining capacity — output_length >
psa_key_derivation_get_capacity() — fails with PSA_ERROR_INSUFFICIENT_DATA, and sets the remainingcapacity to zero.
If the operation’s capacity is zero, and output_length is zero, then it is IMPLEMENTATION DEFINED whether thisfunction returns PSA_SUCCESS or PSA_ERROR_INSUFFICIENT_DATA.
If this function returns an error status other than PSA_ERROR_INSUFFICIENT_DATA, the operation enters anerror state and must be aborted by calling psa_key_derivation_abort().
psa_key_derivation_output_key (function)
Derive a key from an ongoing key-derivation operation.
psa_status_t psa_key_derivation_output_key(const psa_key_attributes_t * attributes,

psa_key_derivation_operation_t * operation,
psa_key_id_t * key);

Parameters
attributes The attributes for the new key.

The following attributes are required for all keys:
∙ The key type. It must not be an asymmetric public key.
∙ The key size. It must be a valid size for the key type.

The following attributes must be set for keys used in cryptographicoperations:
∙ The key permitted-algorithm policy, see Permitted algorithms onpage 101.If the key type to be created is PSA_KEY_TYPE_PASSWORD_HASH, thenthe permitted-algorithm policy must be either the same as thecurrent operation’s algorithm, or PSA_ALG_NONE.
∙ The key usage flags, see Key usage flags on page 102.

The following attributes must be set for keys that do not use thedefault PSA_KEY_LIFETIME_VOLATILE lifetime:
∙ The key lifetime, see Key lifetimes on page 90.
∙ The key identifier is required for a key with a persistent lifetime,see Key identifiers on page 98.

Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queried bycalling psa_get_key_attributes() with the key’s identifier.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 266

operation The key-derivation operation object to read from.
key On success, an identifier for the newly created key. For persistentkeys, this is the key identifier defined in attributes. PSA_KEY_ID_NULLon failure.

Returns: psa_status_t
PSA_SUCCESS Success. If the key is persistent, the key material and the key’smetadata have been saved to persistent storage.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, with allrequired input steps complete.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:
∙ A PSA_KEY_DERIVATION_INPUT_SECRET or

PSA_KEY_DERIVATION_INPUT_PASSWORD input step was neitherprovided through a key, nor the result of a key agreement.
∙ One of the inputs was a key whose policy did not permit

PSA_KEY_USAGE_DERIVE.
∙ The implementation does not permit creating a key with thespecified attributes due to some implementation-specific policy.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_INSUFFICIENT_DATA There was not enough data to create the desired key. In this case, thefollowing occurs:

∙ No key is generated.
∙ The operation’s capacity is set to zero.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ The key type is invalid, or is an asymmetric public-key type.
∙ The key type is PSA_KEY_TYPE_PASSWORD_HASH, and thepermitted-algorithm policy is not the same as the currentoperation’s algorithm.
∙ The key size is not valid for the key type. Implementations mustreject an attempt to derive a key of size 0.
∙ The key lifetime is invalid.
∙ The key identifier is not valid for the key lifetime.
∙ The key usage flags include invalid values.
∙ The key’s permitted-usage algorithm is invalid.
∙ The key attributes, as a whole, are invalid.

PSA_ERROR_NOT_SUPPORTED The key attributes, as a whole, are not supported, either by theimplementation in general or in the specified storage location.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 267

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
This function calculates output bytes from a key-derivation algorithm and uses those bytes to generate akey deterministically. The key’s location, policy, type and size are taken from attributes.
If the key derivation’s output is viewed as a stream of bytes, this function consumes the required number ofbytes from the stream. The operation’s capacity decreases by the number of bytes used to derive the key.
A request that needs to extract more data than the remaining capacity fails with
PSA_ERROR_INSUFFICIENT_DATA, and sets the remaining capacity to zero.
If this function returns an error status other than PSA_ERROR_INSUFFICIENT_DATA, the operation enters anerror state and must be aborted by calling psa_key_derivation_abort().
How much output is produced and consumed from the operation, and how the key is derived, depends onthe key type. The key-derivation procedures for standard key-derivation algorithms are described in the Keyderivation section of each key definition in Key types on page 53. Implementations can use other methodsfor implementation-specific algorithms.
For algorithms that take a PSA_KEY_DERIVATION_INPUT_SECRET or PSA_KEY_DERIVATION_INPUT_PASSWORD inputstep, the input to that step must be provided with psa_key_derivation_input_key(). Future versions of thisspecification might include additional restrictions on the derived key based on the attributes and strength ofthe secret key.

Note:
This function is equivalent to calling psa_key_derivation_output_key_custom() with theproduction parameters PSA_CUSTOM_KEY_PARAMETERS_INIT and custom_data_length == 0(custom_data is ignored).

psa_key_derivation_output_key_custom (function)
Derive a key from an ongoing key-derivation operation with custom production parameters.
Added in version 1.3.
psa_status_t psa_key_derivation_output_key_custom(const psa_key_attributes_t * attributes,

psa_key_derivation_operation_t * operation,
const psa_custom_key_parameters_t * custom,
const uint8_t * custom_data,
size_t custom_data_length,
psa_key_id_t * key);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 268

Parameters
attributes The attributes for the new key.

The following attributes are required for all keys:
∙ The key type. It must not be an asymmetric public key.
∙ The key size. It must be a valid size for the key type.

The following attributes must be set for keys used in cryptographicoperations:
∙ The key permitted-algorithm policy, see Permitted algorithms onpage 101.If the key type to be created is PSA_KEY_TYPE_PASSWORD_HASH, thenthe permitted-algorithm policy must be either the same as thecurrent operation’s algorithm, or PSA_ALG_NONE.
∙ The key usage flags, see Key usage flags on page 102.

The following attributes must be set for keys that do not use thedefault PSA_KEY_LIFETIME_VOLATILE lifetime:
∙ The key lifetime, see Key lifetimes on page 90.
∙ The key identifier is required for a key with a persistent lifetime,see Key identifiers on page 98.

Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queried bycalling psa_get_key_attributes() with the key’s identifier.

operation The key-derivation operation object to read from.
custom Customized production parameters for the key derivation.

When this is PSA_CUSTOM_KEY_PARAMETERS_INIT with custom_data_length
== 0, this function is equivalent to psa_key_derivation_output_key().

custom_data A buffer containing additional variable-sized production parameters.
custom_data_length Length of custom_data in bytes.
key On success, an identifier for the newly created key. For persistentkeys, this is the key identifier defined in attributes. PSA_KEY_ID_NULLon failure.

Returns: psa_status_t
PSA_SUCCESS Success. If the key is persistent, the key material and the key’smetadata have been saved to persistent storage.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, with allrequired input steps complete.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 269

∙ A PSA_KEY_DERIVATION_INPUT_SECRET or
PSA_KEY_DERIVATION_INPUT_PASSWORD input step was neitherprovided through a key, nor the result of a key agreement.

∙ One of the inputs was a key whose policy did not permit
PSA_KEY_USAGE_DERIVE.

∙ The implementation does not permit creating a key with thespecified attributes due to some implementation-specific policy.
PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_INSUFFICIENT_DATA There was not enough data to create the desired key. In this case, thefollowing occurs:

∙ No key is generated.
∙ The operation’s capacity is set to zero.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ The key type is invalid, or is an asymmetric public-key type.
∙ The key type is PSA_KEY_TYPE_PASSWORD_HASH, and thepermitted-algorithm policy is not the same as the currentoperation’s algorithm.
∙ The key size is not valid for the key type. Implementations mustreject an attempt to derive a key of size 0.
∙ The key lifetime is invalid.
∙ The key identifier is not valid for the key lifetime.
∙ The key usage flags include invalid values.
∙ The key’s permitted-usage algorithm is invalid.
∙ The key attributes, as a whole, are invalid.
∙ The production parameters are invalid.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ The key attributes, as a whole, are not supported, either by theimplementation in general or in the specified storage location.
∙ The production parameters are not supported by theimplementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 270

Description
This function calculates output bytes from a key-derivation algorithm and uses those bytes to generate akey deterministically. The key’s location, policy, type and size are taken from attributes.
This function operates in a similar way to psa_key_derivation_output_key(), but enables explicit productionparameters to be provided when deriving a key. For example, the production parameters can be used toselect an alternative key-derivation process, or configure additional key parameters. See
psa_key_derivation_output_key() for the operation of this function with the default production parameters.
See psa_custom_key_parameters_t for a list of non-default production parameters. See the key typedefinitions in Key types on page 53 for details of the custom production parameters used for key derivation.
psa_key_derivation_verify_bytes (function)
Compare output data from a key-derivation operation to an expected value.
Added in version 1.1.
psa_status_t psa_key_derivation_verify_bytes(psa_key_derivation_operation_t * operation,

const uint8_t * expected_output,
size_t output_length);

Parameters
operation The key-derivation operation object to read from.
expected_output Buffer containing the expected derivation output.
output_length Length of the expected output. This is also the number of bytes thatwill be read.

Returns: psa_status_t
PSA_SUCCESS Success. The output of the key-derivation operation matches

expected_output.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, with allrequired input steps complete.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_SIGNATURE The output of the key-derivation operation does not match the valuein expected_output.
PSA_ERROR_INSUFFICIENT_DATA The operation’s capacity was less than output_length bytes. In thiscase, the operation’s capacity is set to zero.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 271

Description
This function calculates output bytes from a key-derivation algorithm and compares those bytes to anexpected value. If the key derivation’s output is viewed as a stream of bytes, this function destructivelyreads output_length bytes from the stream before comparing them with expected_output. The operation’scapacity decreases by the number of bytes read.
A request to extract more data than the remaining capacity — output_length >
psa_key_derivation_get_capacity() — fails with PSA_ERROR_INSUFFICIENT_DATA, and sets the remainingcapacity to zero.
If the operation’s capacity is zero, and output_length is zero, then it is IMPLEMENTATION DEFINED whether thisfunction returns PSA_SUCCESS or PSA_ERROR_INSUFFICIENT_DATA.
If this function returns an error status other than PSA_ERROR_INSUFFICIENT_DATA, the operation enters anerror state and must be aborted by calling psa_key_derivation_abort().

Note:
A call to psa_key_derivation_verify_bytes() is functionally equivalent to the following code:
uint8_t tmp[output_length];
psa_key_derivation_output_bytes(operation, tmp, output_length);
if (memcmp(expected_output, tmp, output_length) != 0)

return PSA_ERROR_INVALID_SIGNATURE;

However, calling psa_key_derivation_verify_bytes() works even if an input key’s policy does notinclude PSA_KEY_USAGE_DERIVE.

Implementation note
Implementations must make the best effort to ensure that the comparison between the actualkey-derivation output and the expected output is performed in constant time.

psa_key_derivation_verify_key (function)
Compare output data from a key-derivation operation to an expected value stored in a key.
Added in version 1.1.
psa_status_t psa_key_derivation_verify_key(psa_key_derivation_operation_t * operation,

psa_key_id_t expected);

Parameters
operation The key-derivation operation object to read from.
expected A key of type PSA_KEY_TYPE_PASSWORD_HASH containing the expectedoutput. The key must permit the usage

PSA_KEY_USAGE_VERIFY_DERIVATION, and the permitted algorithm mustmatch the operation’s algorithm.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 272

The value of this key is typically computed by a previous call to
psa_key_derivation_output_key() or
psa_key_derivation_output_key_custom().

Returns: psa_status_t
PSA_SUCCESS Success. The output of the key-derivation operation matches the

expected key value.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, with allrequired input steps complete.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE expected is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The expected key does not have the PSA_KEY_USAGE_VERIFY_DERIVATIONflag, or it does not permit the requested algorithm.
PSA_ERROR_INVALID_SIGNATURE The output of the key-derivation operation does not match the valueof the expected key.
PSA_ERROR_INSUFFICIENT_DATA The operation’s capacity was less than the length of the expected key.In this case, the operation’s capacity is set to zero.
PSA_ERROR_INVALID_ARGUMENT The key type is not PSA_KEY_TYPE_PASSWORD_HASH.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
This function calculates output bytes from a key-derivation algorithm and compares those bytes to anexpected value, provided as key of type PSA_KEY_TYPE_PASSWORD_HASH. If the key derivation’s output is viewedas a stream of bytes, this function destructively reads the number of bytes corresponding to the length ofthe expected key from the stream before comparing them with the key value. The operation’s capacitydecreases by the number of bytes read.
A request that needs to extract more data than the remaining capacity fails with
PSA_ERROR_INSUFFICIENT_DATA, and sets the remaining capacity to zero.
If this function returns an error status other than PSA_ERROR_INSUFFICIENT_DATA, the operation enters anerror state and must be aborted by calling psa_key_derivation_abort().

Note:
A call to psa_key_derivation_verify_key() is functionally equivalent to exporting the expected key andcalling psa_key_derivation_verify_bytes() on the result, except that it works when the key cannot beexported.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 273

Implementation note
Implementations must make the best effort to ensure that the comparison between the actualkey-derivation output and the expected output is performed in constant time.

psa_key_derivation_abort (function)
Abort a key-derivation operation.
psa_status_t psa_key_derivation_abort(psa_key_derivation_operation_t * operation);

Parameters
operation The operation to abort.

Returns: psa_status_t
PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
Aborting an operation frees all associated resources except for the operation object itself. Once aborted,the operation object can be reused for another operation by calling psa_key_derivation_setup() again.
This function can be called at any time after the operation object has been initialized as described in
psa_key_derivation_operation_t.
In particular, it is valid to call psa_key_derivation_abort() twice, or to call psa_key_derivation_abort() on anoperation that has not been set up.

10.8.4 Support macros
PSA_ALG_IS_KEY_DERIVATION_STRETCHING (macro)
Whether the specified algorithm is a key-stretching or password-hashing algorithm.
Added in version 1.1.
#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \

/* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 274

Returns
1 if alg is a key-stretching or password-hashing algorithm, 0 otherwise. This macro can return either 0 or 1 if
alg is not a supported key-derivation algorithm algorithm identifier.
Description
A key-stretching or password-hashing algorithm is a key-derivation algorithm that is suitable for use with alow-entropy secret such as a password. Equivalently, it’s a key-derivation algorithm that uses a
PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
PSA_ALG_IS_HKDF (macro)
Whether the specified algorithm is an HKDF algorithm (PSA_ALG_HKDF(hash_alg)).
#define PSA_ALG_IS_HKDF(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an HKDF algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedkey-derivation algorithm identifier.
Description
HKDF is a family of key-derivation algorithms that are based on a hash function and the HMACconstruction.
PSA_ALG_IS_HKDF_EXTRACT (macro)
Whether the specified algorithm is an HKDF-Extract algorithm (PSA_ALG_HKDF_EXTRACT(hash_alg)).
Added in version 1.1.
#define PSA_ALG_IS_HKDF_EXTRACT(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an HKDF-Extract algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported key-derivation algorithm identifier.
PSA_ALG_IS_HKDF_EXPAND (macro)
Whether the specified algorithm is an HKDF-Expand algorithm (PSA_ALG_HKDF_EXPAND(hash_alg)).
Added in version 1.1.
#define PSA_ALG_IS_HKDF_EXPAND(alg) /* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 275

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an HKDF-Expand algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported key-derivation algorithm identifier.
PSA_ALG_IS_SP800_108_COUNTER_HMAC (macro)
Whether the specified algorithm is a key-derivation algorithm constructed using
PSA_ALG_SP800_108_COUNTER_HMAC(hash_alg).
Added in version 1.2.
#define PSA_ALG_IS_SP800_108_COUNTER_HMAC(alg) \

/* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a key-derivation algorithm constructed using PSA_ALG_SP800_108_COUNTER_HMAC(), 0 otherwise. Thismacro can return either 0 or 1 if alg is not a supported key-derivation algorithm identifier.
PSA_ALG_IS_TLS12_PRF (macro)
Whether the specified algorithm is a TLS-1.2 PRF algorithm.
#define PSA_ALG_IS_TLS12_PRF(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a TLS-1.2 PRF algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedkey-derivation algorithm identifier.
PSA_ALG_IS_TLS12_PSK_TO_MS (macro)
Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.
#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 276

Returns
1 if alg is a TLS-1.2 PSK to MS algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported key-derivation algorithm identifier.
PSA_ALG_IS_PBKDF2_HMAC (macro)
Whether the specified algorithm is a PBKDF2-HMAC algorithm.
Added in version 1.1.
#define PSA_ALG_IS_PBKDF2_HMAC(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a PBKDF2-HMAC algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not asupported key-derivation algorithm identifier.
PSA_ALG_IS_WPA3_SAE_H2E (macro)
Whether the specified algorithm is a WPA3-SAE hash-to-element key-derivation algorithm
Added in version 1.4.
#define PSA_ALG_IS_WPA3_SAE_H2E(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a WPA3-SAE hash-to-element algorithm, 0 otherwise. This macro can return either 0 or 1 if alg isnot a supported key-derivation algorithm identifier.
PSA_KEY_DERIVATION_UNLIMITED_CAPACITY (macro)
Use the maximum possible capacity for a key-derivation operation.
#define PSA_KEY_DERIVATION_UNLIMITED_CAPACITY \

/* implementation-defined value */

Use this value as the capacity argument when setting up a key derivation to specify that the operation willuse the maximum possible capacity. The value of the maximum possible capacity depends on thekey-derivation algorithm.
PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE (macro)
This macro returns the maximum supported length of the PSK for the TLS-1.2 PSK-to-MS key derivation.
#define PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE /* implementation-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 277

This implementation-defined value specifies the maximum length for the PSK input used with a
PSA_ALG_TLS12_PSK_TO_MS() key-agreement algorithm.
Quoting Pre-Shared Key Ciphersuites for Transport Layer Security (TLS) [RFC4279] §5.3:

TLS implementations supporting these cipher suites MUST support arbitrary PSK identities upto 128 octets in length, and arbitrary PSKs up to 64 octets in length. Supporting longeridentities and keys is RECOMMENDED.
Therefore, it is recommended that implementations define PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE with a valuegreater than or equal to 64.
PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE (macro)
The size of the output from the TLS 1.2 ECJPAKE-to-PMS key-derivation algorithm, in bytes.
Added in version 1.2.
#define PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE 32

This value can be used when extracting the result of a key-derivation operation that was set up with the
PSA_ALG_TLS12_ECJPAKE_TO_PMS algorithm.

10.9 Asymmetric signature
An asymmetric signature algorithm provides two functions:

∙ Sign: Calculate a message signature using a private, or secret, key.
∙ Verify: Check that a signature matches a message using a public key.

Successful verification indicates that the message signature was calculated using the private key that isassociated with the public key.
In the Crypto API, an asymmetric-sign function requires an asymmetric key pair; and an asymmetric-verifyfunction requires an asymmetric public key or key pair.
Signature schemes
The Crypto API supports the following signature schemes:

∙ RSA signature algorithms on page 280
∙ ECDSA signature algorithms on page 285
∙ EdDSA signature algorithms on page 289

Types of signature algorithm
There are three categories of asymmetric signature algorithm in the Crypto API:

∙ Hash-and-sign algorithms, that have two distinct phases:
— Calculate a hash of the message
— Calculate a signature over the hash

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 278

https://datatracker.ietf.org/doc/html/rfc4279.html#section-5.3

For these algorithms, the asymmetric signature API allows applications to either calculate the fullmessage signature, or calculate the signature of a pre-computed hash. For example, this enables theapplication to use a multi-part hash operation to calculate the hash of a large message, prior tocalculating or verifying a signature on the calculated hash.
The following algorithms are in this category:
PSA_ALG_RSA_PKCS1V15_SIGN

PSA_ALG_RSA_PSS

PSA_ALG_RSA_PSS_ANY_SALT

PSA_ALG_ECDSA

PSA_ALG_DETERMINISTIC_ECDSA

PSA_ALG_ED25519PH

PSA_ALG_ED448PH

∙ Message signature algorithms that do not separate the message processing from the signaturecalculations. This approach can provide better security against certain types of attack.
For these algorithms, it is not possible to inject a pre-computed hash into the middle of the algorithm.An application can choose to calculate a message hash, and sign that instead of the message — butthis is not functionally equivalent to signing the message, and eliminates the security benefits ofsigning the message directly.
Some of these algorithms still permit the signature of a large message to be calculated, or verified, byproviding the message data in fragments. This is possible when the algorithm only processes themessage data once. See the individual algorithm descriptions for details.
The following algorithms are in this category:
PSA_ALG_PURE_EDDSA

PSA_ALG_EDDSA_CTX

∙ Specialized signature algorithms, that use part of a standard signature algorithm within a specificprotocol. It is recommended that these algorithms are only used for that purpose, with inputs asspecified by the higher-level protocol. See the individual algorithm descriptions for details on theirusage.
The following algorithms are in this category:
PSA_ALG_RSA_PKCS1V15_SIGN_RAW

PSA_ALG_ECDSA_ANY

Signature functions
The Crypto API provides several functions for calculating and verifying signatures:

∙ The single-part signature and verification functions, psa_sign_message() and psa_verify_message(),take a message as one of their inputs, and perform the sign or verify algorithm.
These functions can be used on any hash-and-sign, or message signature, algorithms. See also
PSA_ALG_IS_SIGN_MESSAGE().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 279

∙ The single-part functions, psa_sign_hash() and psa_verify_hash(), typically take a message hash asone of their inputs, and perform the sign or verify algorithm.
These functions can be used on any hash-and-sign signature algorithm. It is recommended that theinput to these functions is a hash, computed using the corresponding hash algorithm. To determinewhich hash algorithm to use, the macro PSA_ALG_GET_HASH() can be called on the signature algorithmidentifier.
These functions can also be used on the specialized signature algorithms, with a hash orencoded-hash as input. See also PSA_ALG_IS_SIGN_HASH().

∙ Many modern signature algorithms have been designed to also accept a context parameter to providedomain separation. Version 1.4 of the Crypto API introduced four new functions that accept contexts:
psa_sign_message_with_context(), psa_sign_hash_with_context(), psa_verify_message_with_context(),and psa_verify_hash_with_context().
If called with a zero-length context, these functions produce the same signature as the associatedfunction without a context parameter.

Note:
If a signature scheme treats the absence of a context parameter differently to a zero-lengthcontext, the Crypto API defines distinct algorithm identifiers for the two variants. For example,when using a 255-bit key with EdDSA, PSA_ALG_PURE_EDDSA implements Ed25519 (without acontext) and PSA_ALG_EDDSA_CTX implements Ed25519ctx (with a context, which can bezero-length). See EdDSA signature algorithms on page 289.

It is an error to provide a non-zero-length context with an algorithm that does not accept contexts.
Code written to be cryptographically agile can use the new functions, provided it guards againstproviding a non-zero-length context with an algorithm that does not support them.
The PSA_ALG_SIGN_SUPPORTS_CONTEXT() macro can be used to determine if the implementation of analgorithm supports the use of non-zero-length contexts.

See Asymmetric signature functions on page 294.

10.9.1 RSA signature algorithms
PSA_ALG_RSA_PKCS1V15_SIGN (macro)
The RSA PKCS#1 v1.5 message signature scheme, with hashing.
#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.
Returns
The corresponding RSA PKCS#1 v1.5 signature algorithm.
Unspecified if hash_alg is not a supported hash algorithm.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 280

Description
This hash-and-sign signature algorithm can be used with both the message and hash signature functions.RSA PKCS#1 v1.5 does not have a context parameter. However, the sign or verify with context functionscan be used with a zero-length context.
This signature scheme is defined by PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC8017] §8.2under the name RSASSA-PKCS1-v1_5.
When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is used as 𝐻 from step2 onwards in the message encoding algorithm EMSA-PKCS1-V1_5-ENCODE() in [RFC8017] §9.2. 𝐻 is themessage digest, computed using the hash_alg hash algorithm.
Compatible key types
PSA_KEY_TYPE_RSA_KEY_PAIR

PSA_KEY_TYPE_RSA_PUBLIC_KEY (signature verification only)

PSA_ALG_RSA_PKCS1V15_SIGN_RAW (macro)
The raw RSA PKCS#1 v1.5 signature algorithm, without hashing.
#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW ((psa_algorithm_t) 0x06000200)

This specialized signature algorithm can only be used with the psa_sign_hash() and psa_verify_hash()functions. RSA PKCS#1 v1.5 does not have a context parameter. However, psa_sign_hash_with_context() or
psa_verify_hash_with_context() can be used with a zero-length context.
This signature scheme is defined by PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC8017] §8.2under the name RSASSA-PKCS1-v1_5.
The hash parameter to psa_sign_hash() or psa_verify_hash() is used as 𝑇 from step 3 onwards in themessage encoding algorithm EMSA-PKCS1-V1_5-ENCODE() in [RFC8017] §9.2. 𝑇 is normally the DER encodingof the DigestInfo structure produced by step 2 in the message encoding algorithm, but it can be any bytestring within the available length.
The wildcard key policy PSA_ALG_RSA_PKCS1V15_SIGN(PSA_ALG_ANY_HASH) also permits a key to be used withthe PSA_ALG_RSA_PKCS1V15_SIGN_RAW signature algorithm.
Compatible key types
PSA_KEY_TYPE_RSA_KEY_PAIR

PSA_KEY_TYPE_RSA_PUBLIC_KEY (signature verification only)

PSA_ALG_RSA_PSS (macro)
The RSA PSS message signature scheme, with hashing.
#define PSA_ALG_RSA_PSS(hash_alg) /* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 281

https://datatracker.ietf.org/doc/html/rfc8017.html#section-8.2
https://datatracker.ietf.org/doc/html/rfc8017.html#section-9.2
https://datatracker.ietf.org/doc/html/rfc8017.html#section-8.2
https://datatracker.ietf.org/doc/html/rfc8017.html#section-9.2

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.
Returns
The corresponding RSA PSS signature algorithm.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This hash-and-sign signature algorithm can be used with both the message and hash signature functions.RSA PSS does not have a context parameter. However, the sign or verify with context functions can beused with a zero-length context.
This algorithm is randomized: each invocation returns a different, equally valid signature.
This is the signature scheme defined by [RFC8017] §8.1 under the name RSASSA-PSS, with the followingoptions:

∙ The mask generation function is MGF1 defined by [RFC8017] Appendix B.
∙ When creating a signature, the salt length is equal to the length of the hash, or the largest possiblesalt length for the algorithm and key size if that is smaller than the hash length.
∙ When verifying a signature, the salt length must be equal to the length of the hash, or the largestpossible salt length for the algorithm and key size if that is smaller than the hash length.
∙ The specified hash algorithm, hash_alg, is used to hash the input message, to create the salted hash,and for the mask generation.

When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is the message digest,computed using the hash_alg hash algorithm.
Note:
The PSA_ALG_RSA_PSS_ANY_SALT() algorithm is equivalent to PSA_ALG_RSA_PSS() when creating asignature, but permits any salt length when verifying a signature.

Compatible key types
PSA_KEY_TYPE_RSA_KEY_PAIR

PSA_KEY_TYPE_RSA_PUBLIC_KEY (signature verification only)

PSA_ALG_RSA_PSS_ANY_SALT (macro)
The RSA PSS message signature scheme, with hashing. This variant permits any salt length for signatureverification.
Added in version 1.1.
#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) /* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 282

https://datatracker.ietf.org/doc/html/rfc8017.html#section-8.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.
Returns
The corresponding RSA PSS signature algorithm.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This hash-and-sign signature algorithm can be used with both the message and hash signature functions.RSA PSS does not have a context parameter. However, the sign or verify with context functions can beused with a zero-length context.
This algorithm is randomized: each invocation returns a different, equally valid signature.
This is the signature scheme defined by [RFC8017] §8.1 under the name RSASSA-PSS, with the followingoptions:

∙ The mask generation function is MGF1 defined by [RFC8017] Appendix B.
∙ When creating a signature, the salt length is equal to the length of the hash, or the largest possiblesalt length for the algorithm and key size if that is smaller than the hash length.
∙ When verifying a signature, any salt length permitted by the RSASSA-PSS signature algorithm isaccepted.
∙ The specified hash algorithm, hash_alg, is used to hash the input message, to create the salted hash,and for the mask generation.

When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is the message digest,computed using the hash_alg hash algorithm.
Note:
The PSA_ALG_RSA_PSS() algorithm is equivalent to PSA_ALG_RSA_PSS_ANY_SALT() when creating asignature, but is strict about the permitted salt length when verifying a signature.

Compatible key types
PSA_KEY_TYPE_RSA_KEY_PAIR

PSA_KEY_TYPE_RSA_PUBLIC_KEY (signature verification only)

PSA_ALG_IS_RSA_PKCS1V15_SIGN (macro)
Whether the specified algorithm is an RSA PKCS#1 v1.5 signature algorithm.
#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) /* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 283

https://datatracker.ietf.org/doc/html/rfc8017.html#section-8.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an RSA PKCS#1 v1.5 signature algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
PSA_ALG_IS_RSA_PSS (macro)
Whether the specified algorithm is an RSA PSS signature algorithm.
#define PSA_ALG_IS_RSA_PSS(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an RSA PSS signature algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description
This macro returns 1 for algorithms constructed using either PSA_ALG_RSA_PSS() or
PSA_ALG_RSA_PSS_ANY_SALT().
PSA_ALG_IS_RSA_PSS_ANY_SALT (macro)
Whether the specified algorithm is an RSA PSS signature algorithm that permits any salt length.
Added in version 1.1.
#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an RSA PSS signature algorithm that permits any salt length, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description
An RSA PSS signature algorithm that permits any salt length is constructed using
PSA_ALG_RSA_PSS_ANY_SALT().
See also PSA_ALG_IS_RSA_PSS() and PSA_ALG_IS_RSA_PSS_STANDARD_SALT().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 284

PSA_ALG_IS_RSA_PSS_STANDARD_SALT (macro)
Whether the specified algorithm is an RSA PSS signature algorithm that requires the standard salt length.
Added in version 1.1.
#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an RSA PSS signature algorithm that requires the standard salt length, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description
An RSA PSS signature algorithm that requires the standard salt length is constructed using
PSA_ALG_RSA_PSS().
See also PSA_ALG_IS_RSA_PSS() and PSA_ALG_IS_RSA_PSS_ANY_SALT().

10.9.2 ECDSA signature algorithms
PSA_ALG_ECDSA (macro)
The randomized ECDSA signature scheme, with hashing.
#define PSA_ALG_ECDSA(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.
Returns
The corresponding randomized ECDSA signature algorithm.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This hash-and-sign signature algorithm can be used with both the message and hash signature functions.ECDSA does not have a context parameter. However, the sign or verify with context functions can be usedwith a zero-length context.
When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is the message digest,computed using the hash_alg hash algorithm.
This algorithm is randomized: each invocation returns a different, equally valid signature.
The ECDSA signature scheme is defined by SEC 1: Elliptic Curve Cryptography [SEC1], and also by Public KeyCryptography For The Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA) [X9-62],with a random per-message secret number 𝑘.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 285

The representation of the signature as a byte string consists of the concatenation of the signature values 𝑟and 𝑠. Each of 𝑟 and 𝑠 is encoded as a big-endian 𝑚-octet string, where 𝑚 is the integer for which
28(𝑚−1) ≤ 𝑞 < 28𝑚, and 𝑞 is the order of the elliptic curve.
When based on the same hash algorithm, the verification operations for PSA_ALG_ECDSA and
PSA_ALG_DETERMINISTIC_ECDSA are identical. A signature created using PSA_ALG_ECDSA can be verified with thesame key using either PSA_ALG_ECDSA or PSA_ALG_DETERMINISTIC_ECDSA. Similarly, a signature created using
PSA_ALG_DETERMINISTIC_ECDSA can be verified with the same key using either PSA_ALG_ECDSA or
PSA_ALG_DETERMINISTIC_ECDSA.

Note:
A verifier cannot determine whether a signature was produced with deterministic ECDSA or withrandomized ECDSA: it is only possible to verify that a signature was made with ECDSA with theprivate key corresponding to the public key used for the verification.

When PSA_ALG_ECDSA(hash_alg) is used as a permitted algorithm in a key policy, this permits:
∙ PSA_ALG_ECDSA(hash_alg) as the algorithm in a call to any signing function.
∙ PSA_ALG_ECDSA(hash_alg) or PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) as the algorithm in a call to anysignature verification function.

Compatible key types
PSA_KEY_TYPE_ECC_KEY_PAIR(family)

PSA_KEY_TYPE_ECC_PUBLIC_KEY(family) (signature verification only)

where family is a Weierstrass Elliptic curve family. That is, one of the following values:
∙ PSA_ECC_FAMILY_SECT_XX

∙ PSA_ECC_FAMILY_SECP_XX

∙ PSA_ECC_FAMILY_FRP

∙ PSA_ECC_FAMILY_BRAINPOOL_P_R1

PSA_ALG_ECDSA_ANY (macro)
The randomized ECDSA signature scheme, without hashing.
#define PSA_ALG_ECDSA_ANY ((psa_algorithm_t) 0x06000600)

This specialized signature algorithm can only be used with the psa_sign_hash() and psa_verify_hash()functions. ECDSA does not have a context parameter. However, psa_sign_hash_with_context() or
psa_verify_hash_with_context() can be used with a zero-length context.
This algorithm is randomized: each invocation returns a different, equally valid signature.
This is the same signature scheme as PSA_ALG_ECDSA, but without specifying a hash algorithm, and skippingthe message hashing operation.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 286

. Warning

This algorithm is only recommended to sign or verify a sequence of bytes that are a pre-computed hash.Note that the input is padded with zeros on the left or truncated on the right as required to fit the curvesize.
This algorithm cannot be used with the wildcard key policy PSA_ALG_ECDSA(PSA_ALG_ANY_HASH). It is onlypermitted when PSA_ALG_ECDSA_ANY is the key’s permitted-algorithm policy.
Compatible key types
PSA_KEY_TYPE_ECC_KEY_PAIR(family)

PSA_KEY_TYPE_ECC_PUBLIC_KEY(family) (signature verification only)

where family is a Weierstrass Elliptic curve family. That is, one of the following values:
∙ PSA_ECC_FAMILY_SECT_XX

∙ PSA_ECC_FAMILY_SECP_XX

∙ PSA_ECC_FAMILY_FRP

∙ PSA_ECC_FAMILY_BRAINPOOL_P_R1

PSA_ALG_DETERMINISTIC_ECDSA (macro)
Deterministic ECDSA signature scheme, with hashing.
#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.
Returns
The corresponding deterministic ECDSA signature algorithm.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This hash-and-sign signature algorithm can be used with both the message and hash signature functions.ECDSA does not have a context parameter. However, the sign or verify with context functions can be usedwith a zero-length context.
When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is the message digest,computed using the hash_alg hash algorithm.
This is the deterministic ECDSA signature scheme defined by Deterministic Usage of the Digital SignatureAlgorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) [RFC6979].
The representation of a signature is the same as with PSA_ALG_ECDSA.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 287

When based on the same hash algorithm, the verification operations for PSA_ALG_ECDSA and
PSA_ALG_DETERMINISTIC_ECDSA are identical. A signature created using PSA_ALG_ECDSA can be verified with thesame key using either PSA_ALG_ECDSA or PSA_ALG_DETERMINISTIC_ECDSA. Similarly, a signature created using
PSA_ALG_DETERMINISTIC_ECDSA can be verified with the same key using either PSA_ALG_ECDSA or
PSA_ALG_DETERMINISTIC_ECDSA.

Note:
A verifier cannot determine whether a signature was produced with deterministic ECDSA or withrandomized ECDSA: it is only possible to verify that a signature was made with ECDSA with theprivate key corresponding to the public key used for the verification.

When PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) is used as a permitted algorithm in a key policy, this permits:
∙ PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) as the algorithm in a call to any signing function.
∙ PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) or PSA_ALG_ECDSA(hash_alg) as the algorithm in a call to anysignature verification function.

Compatible key types
PSA_KEY_TYPE_ECC_KEY_PAIR(family)

PSA_KEY_TYPE_ECC_PUBLIC_KEY(family) (signature verification only)

where family is a Weierstrass Elliptic curve family. That is, one of the following values:
∙ PSA_ECC_FAMILY_SECT_XX

∙ PSA_ECC_FAMILY_SECP_XX

∙ PSA_ECC_FAMILY_FRP

∙ PSA_ECC_FAMILY_BRAINPOOL_P_R1

PSA_ALG_IS_ECDSA (macro)
Whether the specified algorithm is ECDSA.
#define PSA_ALG_IS_ECDSA(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an ECDSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 288

PSA_ALG_IS_DETERMINISTIC_ECDSA (macro)
Whether the specified algorithm is deterministic ECDSA.
#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a deterministic ECDSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description
See also PSA_ALG_IS_ECDSA() and PSA_ALG_IS_RANDOMIZED_ECDSA().
PSA_ALG_IS_RANDOMIZED_ECDSA (macro)
Whether the specified algorithm is randomized ECDSA.
#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a randomized ECDSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description
See also PSA_ALG_IS_ECDSA() and PSA_ALG_IS_DETERMINISTIC_ECDSA().

10.9.3 EdDSA signature algorithms
The PureEdDSA and HashEdDSA digital signature algorithms are defined by Edwards-Curve Digital SignatureAlgorithm (EdDSA) [RFC8032]. They are used with the Edwards25519 and Edwards448 elliptic curve keys,see PSA_ECC_FAMILY_TWISTED_EDWARDS.

∙ PureEdDSA is a set of message-signing algorithms, that cannot be split into a hash step, followed by asignature or verification step.
∙ HashEdDSA is a pair of hash-and-sign algorithms, with a specified hash algorithm associated witheach key size.

Both PureEdDSA and HashEdDSA can be used with contexts, which enables domain-separation whensignatures are made of different message structures with the same key. For EdDSA, the context is anarbitrary byte string between zero and 255 bytes in length.
The development of EdDSA resulted in a total of five distinct algorithms:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 289

∙ Ed25519: the original PureEdDSA algorithm for the Edwards25519 curve, which does not accept acontext.
∙ Ed25519ctx: a second PureEdDSA algorithm for the Edwards25519 curve, with a context parameter.
∙ Ed448: the PureEdDSA algorithm for the Edwards448 curve, with a context parameter.
∙ Ed25519ph: the HashEdDSA algorithm for the Edwards25519 curve, with a context parameter.
∙ Ed448ph: the HashEdDSA algorithm for the Edwards448 curve, with a context parameter.

Table 16 shows the algorithm identifiers in the Crypto API, and how they are used to select the appropriateEdDSA algorithm.
Table 16 EdDSA algorithm identifiers

Algorithm identifier With 255-bit
key

With 448-bit
key

Sign/verify
hash

Support non-zero-length
context

PSA_ALG_PURE_EDDSA Ed25519 Ed448 No No
PSA_ALG_ED25519PH Ed25519ph Invalid Yes Yes
PSA_ALG_ED448PH Invalid Ed448ph Yes Yes
PSA_ALG_EDDSA_CTX Ed25519ctx Ed448 No Yes

Note:
Ed25519ctx produces a distinct signature to Ed25519, even with a zero-length context.

PSA_ALG_PURE_EDDSA (macro)
Edwards-curve digital signature algorithm without pre-hashing (PureEdDSA), with zero-length context.
Added in version 1.1.
#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)

This message-signature algorithm can be used with the psa_sign_message() and psa_verify_message()functions. With a zero-length context, PSA_ALG_PURE_EDDSA can also be used with the
psa_sign_message_with_context() and psa_verify_message_with_context() functions. It cannot be used tosign hashes.
This is the PureEdDSA digital signature algorithm defined by Edwards-Curve Digital Signature Algorithm(EdDSA) [RFC8032], with zero-length context.
PureEdDSA requires an elliptic curve key on a twisted Edwards curve (see PSA_ECC_FAMILY_TWISTED_EDWARDS).The following curves are supported:

∙ Edwards25519: the Ed25519 algorithm is computed. The output signature is a 64-byte string: theconcatenation of 𝑅 and 𝑆 as defined by [RFC8032] §5.1.6.
∙ Edwards448: the Ed448 algorithm is computed, with a zero-length context. The output signature is a114-byte string: the concatenation of 𝑅 and 𝑆 as defined by [RFC8032] §5.2.6.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 290

https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.1.6
https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.2.6

Note:
To sign or verify the pre-computed hash of a message using EdDSA, the HashEdDSA algorithms(PSA_ALG_ED25519PH and PSA_ALG_ED448PH) can be used. The signature produced by HashEdDSA isdistinct from that produced by PureEdDSA.

Note:
To sign or verify a message with a non-zero-length context using PureEdDSA, use the
PSA_ALG_EDDSA_CTX algorithm.
With an Edwards25519 curve key, PSA_ALG_EDDSA_CTX with a zero-length context creates differentsignatures to PSA_ALG_PURE_EDDSA.

Compatible key types
PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_TWISTED_EDWARDS)

PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_TWISTED_EDWARDS) (signature verification only)

PSA_ALG_EDDSA_CTX (macro)
Edwards-curve digital signature algorithm without pre-hashing (PureEdDSA), with a context.
Added in version 1.4.
#define PSA_ALG_EDDSA_CTX ((psa_algorithm_t) 0x06000A00)

This message-signature algorithm can be used with both the message and message with context signaturefunctions. It cannot be used to sign hashes.
This is the PureEdDSA digital signature algorithm defined by Edwards-Curve Digital Signature Algorithm(EdDSA) [RFC8032], with a context parameter. The context parameter can be between zero and 255 bytesin length.
PureEdDSA requires an elliptic curve key on a twisted Edwards curve (see PSA_ECC_FAMILY_TWISTED_EDWARDS).The following curves are supported:

∙ Edwards25519: the Ed25519ctx algorithm is computed. The output signature is a 64-byte string: theconcatenation of 𝑅 and 𝑆 as defined by [RFC8032] §5.1.6.
∙ Edwards448: the Ed448 algorithm is computed, with a zero-length context. The output signature is a114-byte string: the concatenation of 𝑅 and 𝑆 as defined by [RFC8032] §5.2.6.

To use a non-zero-length context, use the message-signature functions that accept a context parameter,
psa_sign_message_with_context() and psa_verify_message_with_context() The psa_sign_message() and
psa_verify_message() functions use a zero-length context when computing or verifying signatures.

Note:
To sign or verify the pre-computed hash of a message using EdDSA, the HashEdDSA algorithms(PSA_ALG_ED25519PH and PSA_ALG_ED448PH) can be used. The signature produced by HashEdDSA is

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 291

https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.1.6
https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.2.6

distinct from that produced by PureEdDSA.

Note:
With an Edwards25519 curve key, PSA_ALG_EDDSA_CTX with a zero-length context creates differentsignatures to PSA_ALG_PURE_EDDSA.

Usage
This is a message signing algorithm. To calculate a signature, use one of the following approaches:

∙ Call psa_sign_message() or psa_sign_message_with_context() with the message.
Verifying a signature is similar, using psa_verify_message() or psa_verify_message_with_context().
Compatible key types
PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_TWISTED_EDWARDS)

PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_TWISTED_EDWARDS) (signature verification only)

PSA_ALG_ED25519PH (macro)
Edwards-curve digital signature algorithm with pre-hashing (HashEdDSA), using the Edwards25519 curve.
Added in version 1.1.
#define PSA_ALG_ED25519PH ((psa_algorithm_t) 0x0600090B)

This hash-and-sign signature algorithm can be used with both the message and hash signature functions.
This calculates the Ed25519ph algorithm as specified in Edwards-Curve Digital Signature Algorithm (EdDSA)[RFC8032] §5.1, and requires an Edwards25519 curve key.
The pre-hash function is SHA-512, see PSA_ALG_SHA_512. When used to sign or verify a hash, the hashparameter is the SHA-512 message digest.
The signature functions without a context parameter use a zero-length context when computing orverifying signatures. To use a non-zero-length context, use the signature functions that accept a contextparameter, such as psa_sign_hash_with_context() or psa_verify_message_with_context() The contextparameter can be between zero and 255 bytes in length.

Implementation note
When used to sign or verify a hash, the hash parameter to the call should be used as PH(𝑀) in thealgorithms defined in [RFC8032] §5.1.

Usage
This is a hash-and-sign algorithm. To calculate a signature, use one of the following approaches:

∙ Call psa_sign_message() or psa_sign_message_with_context() with the message.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 292

https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.1
https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.1

∙ Calculate the SHA-512 hash of the message with psa_hash_compute(), or with a multi-part hashoperation, using the hash algorithm PSA_ALG_SHA_512. Then sign the calculated hash with
psa_sign_hash() or psa_sign_hash_with_context().

Verifying a signature is similar, using one of the following approaches:
∙ Call psa_verify_message(), or psa_verify_message_with_context() with the message.
∙ Calculate the SHA-512 hash of the message with psa_hash_compute(), or with a multi-part hashoperation, using the hash algorithm PSA_ALG_SHA_512. Then sign the calculated hash with

psa_verify_hash() or psa_verify_hash_with_context().
Compatible key types
PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_TWISTED_EDWARDS)

PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_TWISTED_EDWARDS) (signature verification only)

PSA_ALG_ED448PH (macro)
Edwards-curve digital signature algorithm with pre-hashing (HashEdDSA), using the Edwards448 curve.
Added in version 1.1.
#define PSA_ALG_ED448PH ((psa_algorithm_t) 0x06000915)

This hash-and-sign signature algorithm can be used with both the message and hash signature functions.
This calculates the Ed448ph algorithm as specified in Edwards-Curve Digital Signature Algorithm (EdDSA)[RFC8032] §5.2, and requires an Edwards448 curve key.
The pre-hash function is the first 64 bytes of the output from SHAKE256, see PSA_ALG_SHAKE256_512. Whenused to sign or verify a hash, the hash parameter is the truncated SHAKE256 message digest.
The signature functions without a context parameter use a zero-length context when computing orverifying signatures. To use a non-zero-length context, use the signature functions that accept a contextparameter, for example, psa_sign_hash_with_context() or psa_verify_message_with_context() The contextparameter can be between zero and 255 bytes in length.

Implementation note
When used to sign or verify a hash, the hash parameter to the call should be used as PH(𝑀) in thealgorithms defined in [RFC8032] §5.2.

Usage
This is a hash-and-sign algorithm. To calculate a signature, use one of the following approaches:

∙ Call psa_sign_message(), or psa_sign_message_with_context() with the message.
∙ Calculate the first 64 bytes of the SHAKE256 output of the message with psa_hash_compute(), or witha multi-part hash operation, using the hash algorithm PSA_ALG_SHAKE256_512. Then sign the calculatedhash with psa_sign_hash() or psa_sign_hash_with_context().

Verifying a signature is similar, using one of the following approaches:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 293

https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.2
https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.2

∙ Call psa_verify_message(), or psa_verify_message_with_context() with the message.
∙ Calculate the first 64 bytes of the SHAKE256 output of the message with psa_hash_compute(), or witha multi-part hash operation, using the hash algorithm PSA_ALG_SHAKE256_512. Then sign the calculatedhash with psa_verify_hash() or psa_verify_hash_with_context().

Compatible key types
PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_TWISTED_EDWARDS)

PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_TWISTED_EDWARDS) (signature verification only)

PSA_ALG_IS_HASH_EDDSA (macro)
Whether the specified algorithm is HashEdDSA.
Added in version 1.1.
#define PSA_ALG_IS_HASH_EDDSA(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a HashEdDSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.

10.9.4 Asymmetric signature functions
psa_sign_message (function)
Sign a message with a private key. For hash-and-sign algorithms, this includes the hashing step.
psa_status_t psa_sign_message(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * signature,
size_t signature_size,
size_t * signature_length);

Parameters
key Identifier of the key to use for the operation. It must be an asymmetrickey pair. The key must permit the usage PSA_KEY_USAGE_SIGN_MESSAGE.
alg An asymmetric signature algorithm: a value of type psa_algorithm_tsuch that PSA_ALG_IS_SIGN_MESSAGE(alg) is true.
input The input message to sign.
input_length Size of the input buffer in bytes.
signature Buffer where the signature is to be written.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 294

signature_size Size of the signature buffer in bytes. This must be appropriate for theselected algorithm and key:
∙ The required signature size is PSA_SIGN_OUTPUT_SIZE(key_type,

key_bits, alg) where key_type and key_bits are the type andbit-size respectively of key.
∙ PSA_SIGNATURE_MAX_SIZE evaluates to the maximum signature sizeof any supported signature algorithm.

signature_length On success, the number of bytes that make up the returned signaturevalue.
Returns: psa_status_t

PSA_SUCCESS Success. The first (*signature_length) bytes of signature contain thesignature value.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_SIGN_MESSAGE flag, or it doesnot permit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the signature buffer is too small. PSA_SIGN_OUTPUT_SIZE() or

PSA_SIGNATURE_MAX_SIZE can be used to determine a sufficient buffersize.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an asymmetric signature algorithm that permits signinga message.
∙ key is not an asymmetric key pair, that is compatible with alg.
∙ input_length is too large for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported, or is not an asymmetric signature algorithmthat permits signing a message.
∙ key is not supported for use with alg.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 295

Description
If the algorithm has a context parameter, a zero-length context is used. To provide a context value, use
psa_sign_message_with_context() instead.

Note:
To perform a multi-part hash-and-sign signature algorithm, first use a multi-part hash operation andthen pass the resulting hash to psa_sign_hash(). PSA_ALG_GET_HASH(alg) can be used to determine thehash algorithm to use.

psa_sign_message_with_context (function)
Sign a message with a private key using a supplied context. For hash-and-sign algorithms, this includes thehashing step.
Added in version 1.4.
psa_status_t psa_sign_message_with_context(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * context,
size_t context_length,
uint8_t * signature,
size_t signature_size,
size_t * signature_length);

Parameters
key Identifier of the key to use for the operation. It must be an asymmetrickey pair. The key must permit the usage PSA_KEY_USAGE_SIGN_MESSAGE.
alg An asymmetric signature algorithm: a value of type psa_algorithm_tsuch that PSA_ALG_IS_SIGN_MESSAGE(alg) is true.
input The input message to sign.
input_length Size of the input buffer in bytes.
context The context to use for this signature.
context_length Size of the context buffer in bytes.
signature Buffer where the signature is to be written.
signature_size Size of the signature buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The required signature size is PSA_SIGN_OUTPUT_SIZE(key_type,
key_bits, alg) where key_type and key_bits are the type andbit-size respectively of key.

∙ PSA_SIGNATURE_MAX_SIZE evaluates to the maximum signature sizeof any supported signature algorithm.
signature_length On success, the number of bytes that make up the returned signaturevalue.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 296

Returns: psa_status_t
PSA_SUCCESS Success. The first (*signature_length) bytes of signature contain thesignature value.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_SIGN_MESSAGE flag, or it doesnot permit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the signature buffer is too small. PSA_SIGN_OUTPUT_SIZE() or

PSA_SIGNATURE_MAX_SIZE can be used to determine a sufficient buffersize.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an asymmetric signature algorithm that permits signinga message with a non-zero-length context.
∙ key is not an asymmetric key pair, that is compatible with alg.
∙ input_length is too large for the algorithm and key type.
∙ context_length is not valid for the algorithm and key type.
∙ context is not a valid input value for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported, or is not an asymmetric signature algorithmthat permits signing a message.
∙ key is not supported for use with alg.
∙ The implementation does not support this value of

context_length for alg.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
If a context parameter is not required, psa_sign_message() can be used instead.

Note:
To perform a multi-part hash-and-sign signature algorithm, first use a multi-part hash operation andthen pass the resulting hash to psa_sign_hash_with_context(). PSA_ALG_GET_HASH(alg) can be used todetermine the hash algorithm to use.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 297

psa_verify_message (function)
Verify the signature of a message with a public key. For hash-and-sign algorithms, this includes the hashingstep.
psa_status_t psa_verify_message(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * signature,
size_t signature_length);

Parameters
key Identifier of the key to use for the operation. It must be a public key oran asymmetric key pair. The key must permit the usage

PSA_KEY_USAGE_VERIFY_MESSAGE.
alg An asymmetric signature algorithm: a value of type psa_algorithm_tsuch that PSA_ALG_IS_SIGN_MESSAGE(alg) is true.
input The message whose signature is to be verified.
input_length Size of the input buffer in bytes.
signature Buffer containing the signature to verify.
signature_length Size of the signature buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success. The signature is valid.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_MESSAGE flag, or itdoes not permit the requested algorithm.
PSA_ERROR_INVALID_SIGNATURE signature is not the result of signing the input message with algorithm

alg using the private key corresponding to key.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an asymmetric signature algorithm that permitsverifying a message.
∙ key is not a public key or an asymmetric key pair, that iscompatible with alg.
∙ input_length is too large for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported, or is not an asymmetric signature algorithmthat permits verifying a message.
∙ key is not supported for use with alg.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 298

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
If the algorithm has a context parameter, a zero-length context is used. To provide a context value, use
psa_verify_message_with_context() instead.

Note:
To perform a multi-part hash-and-sign signature verification algorithm, first use a multi-part hashoperation to hash the message and then pass the resulting hash to psa_verify_hash().
PSA_ALG_GET_HASH(alg) can be used to determine the hash algorithm to use.

psa_verify_message_with_context (function)
Verify the signature of a message with a public key and a supplied context. For hash-and-sign algorithms,this includes the hashing step.
Added in version 1.4.
psa_status_t psa_verify_message_with_context(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * context,
size_t context_length,
const uint8_t * signature,
size_t signature_length);

Parameters
key Identifier of the key to use for the operation. It must be a public key oran asymmetric key pair. The key must permit the usage

PSA_KEY_USAGE_VERIFY_MESSAGE.
alg An asymmetric signature algorithm: a value of type psa_algorithm_tsuch that PSA_ALG_IS_SIGN_MESSAGE(alg) is true.
input The message whose signature is to be verified.
input_length Size of the input buffer in bytes.
context The context to use for this signature.
context_length Size of the context buffer in bytes.
signature Buffer containing the signature to verify.
signature_length Size of the signature buffer in bytes.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 299

Returns: psa_status_t
PSA_SUCCESS Success. The signature is valid.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_MESSAGE flag, or itdoes not permit the requested algorithm.
PSA_ERROR_INVALID_SIGNATURE signature is not the result of signing the input message with algorithm

alg using the private key corresponding to key.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an asymmetric signature algorithm that permitsverifying a message with a non-zero-length context.
∙ key is not a public key or an asymmetric key pair, that iscompatible with alg.
∙ input_length is too large for the algorithm and key type.
∙ context_length is not valid for the algorithm and key type.
∙ context is not a valid input value for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported, or is not an asymmetric signature algorithmthat permits verifying a message.
∙ key is not supported for use with alg.
∙ The implementation does not support this value of

context_length for alg.
∙ input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
If a context parameter is not required, psa_verify_message() can be used instead.

Note:
To perform a multi-part hash-and-sign signature verification algorithm, first use a multi-part hashoperation to hash the message and then pass the resulting hash to psa_verify_hash_with_context().
PSA_ALG_GET_HASH(alg) can be used to determine the hash algorithm to use.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 300

psa_sign_hash (function)
Sign a pre-computed hash with a private key.
psa_status_t psa_sign_hash(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * hash,
size_t hash_length,
uint8_t * signature,
size_t signature_size,
size_t * signature_length);

Parameters
key Identifier of the key to use for the operation. It must be an asymmetrickey pair. The key must permit the usage PSA_KEY_USAGE_SIGN_HASH.
alg An asymmetric signature algorithm that separates the hash and signoperations: a value of type psa_algorithm_t such that

PSA_ALG_IS_SIGN_HASH(alg) is true.
hash The input to sign. This is usually the hash of a message.

See the description of this function, or the description of individualsignature algorithms, for details of the acceptable inputs.
hash_length Size of the hash buffer in bytes.
signature Buffer where the signature is to be written.
signature_size Size of the signature buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The required signature size is PSA_SIGN_OUTPUT_SIZE(key_type,
key_bits, alg) where key_type and key_bits are the type andbit-size respectively of key.

∙ PSA_SIGNATURE_MAX_SIZE evaluates to the maximum signature sizeof any supported signature algorithm.
signature_length On success, the number of bytes that make up the returned signaturevalue.

Returns: psa_status_t
PSA_SUCCESS Success. The first (*signature_length) bytes of signature contain thesignature value.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_SIGN_HASH flag, or it does notpermit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the signature buffer is too small. PSA_SIGN_OUTPUT_SIZE() or

PSA_SIGNATURE_MAX_SIZE can be used to determine a sufficient buffersize.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an asymmetric signature algorithm that permits signing
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 301

a pre-computed hash.
∙ key is not an asymmetric key pair, that is compatible with alg.
∙ hash_length is not valid for the algorithm and key type.
∙ hash is not a valid input value for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported, or is not an asymmetric signature algorithmthat permits signing a pre-computed hash.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
For hash-and-sign signature algorithms, the hash input to this function is the hash of the message to sign.The algorithm used to calculate this hash is encoded in the signature algorithm. For such algorithms,
hash_length must equal the length of the hash output: hash_length ==
PSA_HASH_LENGTH(PSA_ALG_GET_HASH(alg)).
Specialized signature algorithms can apply a padding or encoding to the hash. In such cases, the encodedhash must be passed to this function. For example, see PSA_ALG_RSA_PKCS1V15_SIGN_RAW.
If the algorithm has a context parameter, a zero-length context is used. To provide a context value, use
psa_sign_hash_with_context() instead.
psa_sign_hash_with_context (function)
Sign a pre-computed hash with a private key and a supplied context.
Added in version 1.4.
psa_status_t psa_sign_hash_with_context(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * hash,
size_t hash_length,
const uint8_t * context,
size_t context_length,
uint8_t * signature,
size_t signature_size,
size_t * signature_length);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 302

Parameters
key Identifier of the key to use for the operation. It must be an asymmetrickey pair. The key must permit the usage PSA_KEY_USAGE_SIGN_HASH.
alg An asymmetric signature algorithm that separates the hash and signoperations: a value of type psa_algorithm_t such that

PSA_ALG_IS_SIGN_HASH(alg) is true.
hash The input to sign. This is usually the hash of a message.

See the description of this function, or the description of individualsignature algorithms, for details of the acceptable inputs.
hash_length Size of the hash buffer in bytes.
context The context to use for this signature.
context_length Size of the context buffer in bytes.
signature Buffer where the signature is to be written.
signature_size Size of the signature buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The required signature size is PSA_SIGN_OUTPUT_SIZE(key_type,
key_bits, alg) where key_type and key_bits are the type andbit-size respectively of key.

∙ PSA_SIGNATURE_MAX_SIZE evaluates to the maximum signature sizeof any supported signature algorithm.
signature_length On success, the number of bytes that make up the returned signaturevalue.

Returns: psa_status_t
PSA_SUCCESS Success. The first (*signature_length) bytes of signature contain thesignature value.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_SIGN_HASH flag, or it does notpermit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the signature buffer is too small. PSA_SIGN_OUTPUT_SIZE() or

PSA_SIGNATURE_MAX_SIZE can be used to determine a sufficient buffersize.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an asymmetric signature algorithm that permits signinga pre-computed hash with a context.
∙ key is not an asymmetric key pair, that is compatible with alg.
∙ hash_length is not valid for the algorithm and key type.
∙ hash is not a valid input value for the algorithm and key type.
∙ context_length is not valid for the algorithm and key type.
∙ context is not a valid input value for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 303

∙ alg is not supported, or is not an asymmetric signature algorithmthat permits signing a pre-computed hash.
∙ The implementation does not support this value of

context_length for alg.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
For hash-and-sign signature algorithms, the hash input to this function is the hash of the message to sign.The algorithm used to calculate this hash is encoded in the signature algorithm. For such algorithms,
hash_length must equal the length of the hash output: hash_length ==
PSA_HASH_LENGTH(PSA_ALG_GET_HASH(alg)).
Specialized signature algorithms can apply a padding or encoding to the hash. In such cases, the encodedhash must be passed to this function. For example, see PSA_ALG_RSA_PKCS1V15_SIGN_RAW.
If a context parameter is not required, psa_sign_hash() can be used instead.
psa_verify_hash (function)
Verify the signature of a hash or short message using a public key.
psa_status_t psa_verify_hash(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * hash,
size_t hash_length,
const uint8_t * signature,
size_t signature_length);

Parameters
key Identifier of the key to use for the operation. It must be a public key oran asymmetric key pair. The key must permit the usage

PSA_KEY_USAGE_VERIFY_HASH.
alg An asymmetric signature algorithm that separates the hash and signoperations: a value of type psa_algorithm_t such that

PSA_ALG_IS_SIGN_HASH(alg) is true.
hash The input whose signature is to be verified. This is usually the hash ofa message.

See the description of this function, or the description of individualsignature algorithms, for details of the acceptable inputs.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 304

hash_length Size of the hash buffer in bytes.
signature Buffer containing the signature to verify.
signature_length Size of the signature buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success. The signature is valid.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_HASH flag, or it doesnot permit the requested algorithm.
PSA_ERROR_INVALID_SIGNATURE signature is not the result of signing hash with algorithm alg using theprivate key corresponding to key.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an asymmetric signature algorithm that permitsverifying a pre-computed hash.
∙ key is not a public key or an asymmetric key pair, that iscompatible with alg.
∙ hash_length is not valid for the algorithm and key type.
∙ hash is not a valid input value for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported, or is not an asymmetric signature algorithmthat permits verifying a pre-computed hash.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
For hash-and-sign signature algorithms, the hash input to this function is the hash of the message to verify.The algorithm used to calculate this hash is encoded in the signature algorithm. For such algorithms,
hash_length must equal the length of the hash output: hash_length ==
PSA_HASH_LENGTH(PSA_ALG_GET_HASH(alg)).
Specialized signature algorithms can apply a padding or encoding to the hash. In such cases, the encodedhash must be passed to this function. For example, see PSA_ALG_RSA_PKCS1V15_SIGN_RAW.
If the algorithm has a context parameter, a zero-length context is used. To provide a context value, use
psa_verify_hash_with_context() instead.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 305

psa_verify_hash_with_context (function)
Verify the signature of a hash or short message using a public key and a supplied context.
Added in version 1.4.
psa_status_t psa_verify_hash_with_context(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * hash,
size_t hash_length,
const uint8_t * context,
size_t context_length,
const uint8_t * signature,
size_t signature_length);

Parameters
key Identifier of the key to use for the operation. It must be a public key oran asymmetric key pair. The key must permit the usage

PSA_KEY_USAGE_VERIFY_HASH.
alg An asymmetric signature algorithm that separates the hash and signoperations: a value of type psa_algorithm_t such that

PSA_ALG_IS_SIGN_HASH(alg) is true.
hash The input whose signature is to be verified. This is usually the hash ofa message.

See the description of this function, or the description of individualsignature algorithms, for details of the acceptable inputs.
hash_length Size of the hash buffer in bytes.
context The context to use for this signature.
context_length Size of the context buffer in bytes.
signature Buffer containing the signature to verify.
signature_length Size of the signature buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success. The signature is valid.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_HASH flag, or it doesnot permit the requested algorithm.
PSA_ERROR_INVALID_SIGNATURE signature is not the result of signing hash with algorithm alg using theprivate key corresponding to key.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an asymmetric signature algorithm that permitsverifying a pre-computed hash with a context.
∙ key is not a public key or an asymmetric key pair, that iscompatible with alg.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 306

∙ hash_length is not valid for the algorithm and key type.
∙ hash is not a valid input value for the algorithm and key type.
∙ context_length is not valid for the algorithm and key type.
∙ context is not a valid input value for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported, or is not an asymmetric signature algorithmthat permits verifying a pre-computed hash.
∙ The implementation does not support this value of

context_length for alg.
∙ key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
For hash-and-sign signature algorithms, the hash input to this function is the hash of the message to verify.The algorithm used to calculate this hash is encoded in the signature algorithm. For such algorithms,
hash_length must equal the length of the hash output: hash_length ==
PSA_HASH_LENGTH(PSA_ALG_GET_HASH(alg)).
Specialized signature algorithms can apply a padding or encoding to the hash. In such cases, the encodedhash must be passed to this function. For example, see PSA_ALG_RSA_PKCS1V15_SIGN_RAW.
If a context parameter is not required, psa_verify_hash() can be used instead.

10.9.5 Support macros
PSA_ALG_IS_SIGN_MESSAGE (macro)
Whether the specified algorithm is a signature algorithm that can be used with psa_sign_message() and
psa_verify_message().
#define PSA_ALG_IS_SIGN_MESSAGE(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a signature algorithm that can be used to sign a message. 0 if alg is a signature algorithm that canonly be used to sign a pre-computed hash. 0 if alg is not a signature algorithm. This macro can return either
0 or 1 if alg is not a supported algorithm identifier.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 307

Description
This macro evaluates to 1 for hash-and-sign and message-signature algorithms.
PSA_ALG_IS_SIGN_HASH (macro)
Whether the specified algorithm is a signature algorithm that can be used with psa_sign_hash() and
psa_verify_hash().
#define PSA_ALG_IS_SIGN_HASH(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a signature algorithm that can be used to sign a hash. 0 if alg is a signature algorithm that can onlybe used to sign a message. 0 if alg is not a signature algorithm. This macro can return either 0 or 1 if alg isnot a supported algorithm identifier.
Description
This macro evaluates to 1 for hash-and-sign and specialized signature algorithms.
PSA_ALG_IS_HASH_AND_SIGN (macro)
Whether the specified algorithm is a hash-and-sign algorithm that signs exactly the hash value.
#define PSA_ALG_IS_HASH_AND_SIGN(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a hash-and-sign algorithm that signs exactly the hash value, 0 otherwise. This macro can returneither 0 or 1 if alg is not a supported algorithm identifier.
A wildcard signature algorithm policy, using PSA_ALG_ANY_HASH, returns the same value as the signaturealgorithm parameterized with a valid hash algorithm.
Description
This macro identifies algorithms that can be used with psa_sign_hash() that use the exact message hashvalue as an input the signature operation. For example, if PSA_ALG_IS_HASH_AND_SIGN(alg) is true, thefollowing call sequence is equivalent to psa_sign_message(key, alg, msg, msg_len, ...):
uint8_t hash[PSA_HASH_MAX_SIZE];
size_t hash_len;
psa_hash_compute(PSA_ALG_GET_HASH(alg), msg, msg_len,

hash, sizeof(hash), &hash_len);
psa_sign_hash(key, alg, hash, hash_len, ...);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 308

PSA_ALG_SIGN_SUPPORTS_CONTEXT (macro)
Whether the specified signature algorithm can be used with a non-zero-length context.
Added in version 1.4.
#define PSA_ALG_SIGN_SUPPORTS_CONTEXT(alg) /* implementation-defined value */

Parameters
alg A signature algorithm identifier: a value of type psa_algorithm_t suchthat PSA_ALG_IS_SIGN(alg) is true.

Returns
1 if alg is a signature algorithm that can be used with a non-zero-length context. 0 if alg is a signaturealgorithm that cannot be used with a non-zero-length context. This macro can return either 0 or 1 if alg isnot a supported signature algorithm identifier.
A wildcard signature algorithm policy, using PSA_ALG_ANY_HASH, returns the same value as the signaturealgorithm parameterized with a valid hash algorithm.
Description
This macro identifies signature algorithms that have a context parameter, and can be used with theappropriate functions that support non-zero-length contexts.
PSA_ALG_ANY_HASH (macro)
When setting a hash-and-sign algorithm in a key policy, permit any hash algorithm.
#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)

This value can be used to form the permitted-algorithm attribute of a key policy for a signature algorithmthat is parametrized by a hash. A key with this policy can then be used to perform operations using thesame signature algorithm parametrized with any supported hash. A signature algorithm created using thismacro is a wildcard algorithm, and PSA_ALG_IS_WILDCARD() will return true.
This value must not be used to build other algorithms that are parametrized over a hash. For any valid useof this macro to build an algorithm alg, PSA_ALG_IS_HASH_AND_SIGN(alg) is true.
This value cannot be used to build an algorithm specification to perform an operation. If used in this way,the operation will fail with an error.
Usage
For example, suppose that PSA_xxx_SIGNATURE is one of the following macros:

∙ PSA_ALG_RSA_PKCS1V15_SIGN

∙ PSA_ALG_RSA_PSS

∙ PSA_ALG_RSA_PSS_ANY_SALT

∙ PSA_ALG_ECDSA

∙ PSA_ALG_DETERMINISTIC_ECDSA

The following sequence of operations shows how PSA_ALG_ANY_HASH can be used in a key policy:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 309

1. Set the key usage flags using PSA_ALG_ANY_HASH, for example:
psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_MESSAGE); // or VERIFY_MESSAGE
psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE(PSA_ALG_ANY_HASH));

2. Import or generate key material.
3. Call psa_sign_message() or psa_verify_message(), passing an algorithm built from PSA_xxx_SIGNATUREand a specific hash. Each call to sign or verify a message can use a different hash algorithm.

psa_sign_message(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_256), ...);
psa_sign_message(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA_512), ...);
psa_sign_message(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), ...);

PSA_SIGN_OUTPUT_SIZE (macro)
Sufficient signature buffer size for psa_sign_message() and psa_sign_hash().
#define PSA_SIGN_OUTPUT_SIZE(key_type, key_bits, alg) \

/* implementation-defined value */

Parameters
key_type An asymmetric key type. This can be a key-pair type or a public-keytype.
key_bits The size of the key in bits.
alg The signature algorithm.

Returns
A sufficient signature buffer size for the specified asymmetric signature algorithm and key parameters. Animplementation can return either 0 or a correct size for an asymmetric signature algorithm and keyparameters that it recognizes, but does not support. If the parameters are not valid, the return value isunspecified.
Description
If the size of the signature buffer is at least this large, it is guaranteed that psa_sign_message() and
psa_sign_hash() will not fail due to an insufficient buffer size. The actual size of the output might be smallerin any given call.
See also PSA_SIGNATURE_MAX_SIZE.
PSA_SIGNATURE_MAX_SIZE (macro)
A sufficient signature buffer size for psa_sign_message() and psa_sign_hash(), for any of the supported keytypes and asymmetric signature algorithms.
#define PSA_SIGNATURE_MAX_SIZE /* implementation-defined value */

If the size of the signature buffer is at least this large, it is guaranteed that psa_sign_message() and
psa_sign_hash() will not fail due to an insufficient buffer size.
See also PSA_SIGN_OUTPUT_SIZE().
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 310

10.10 Asymmetric encryption
Asymmetric encryption is provided through the functions psa_asymmetric_encrypt() and
psa_asymmetric_decrypt().

10.10.1 Asymmetric encryption algorithms
PSA_ALG_RSA_PKCS1V15_CRYPT (macro)
The RSA PKCS#1 v1.5 asymmetric encryption algorithm.
#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)

This encryption scheme is defined by PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC8017] §7.2under the name RSAES-PKCS-v1_5.
Compatible key types
PSA_KEY_TYPE_RSA_KEY_PAIR

PSA_KEY_TYPE_RSA_PUBLIC_KEY (asymmetric encryption only)

PSA_ALG_RSA_OAEP (macro)
The RSA OAEP asymmetric encryption algorithm.
#define PSA_ALG_RSA_OAEP(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true. The hash algorithm is used forMGF1.
Returns
The corresponding RSA OAEP encryption algorithm.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This encryption scheme is defined by [RFC8017] §7.1 under the name RSAES-OAEP, with the followingoptions:

∙ The mask generation function MGF1 defined in [RFC8017] Appendix B.2.1.
∙ The specified hash algorithm is used to hash the label, and for the mask generation function.

Compatible key types
PSA_KEY_TYPE_RSA_KEY_PAIR

PSA_KEY_TYPE_RSA_PUBLIC_KEY (asymmetric encryption only)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 311

https://datatracker.ietf.org/doc/html/rfc8017.html#section-7.2
https://datatracker.ietf.org/doc/html/rfc8017.html#section-7.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B.2.1

10.10.2 Asymmetric encryption functions
psa_asymmetric_encrypt (function)
Encrypt a short message with a public key.
psa_status_t psa_asymmetric_encrypt(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * salt,
size_t salt_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters
key Identifer of the key to use for the operation. It must be a public key oran asymmetric key pair. It must permit the usage

PSA_KEY_USAGE_ENCRYPT.
alg The asymmetric encryption algorithm to compute: a value of type

psa_algorithm_t such that PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) istrue.
input The message to encrypt.
input_length Size of the input buffer in bytes.
salt A salt or label, if supported by the encryption algorithm. If thealgorithm does not support a salt, pass NULL. If the algorithm supportsan optional salt, pass NULL to indicate that there is no salt.
salt_length Size of the salt buffer in bytes. If salt is NULL, pass 0.
output Buffer where the encrypted message is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The required output size is
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits, alg)where key_type and key_bits are the type and bit-sizerespectively of key.

∙ PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE evaluates to themaximum output size of any supported asymmetric encryption.
output_length On success, the number of bytes that make up the returned output.

Returns: psa_status_t
PSA_SUCCESS Success. The first (*output_length) bytes of output contain theencrypted output.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does not

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 312

permit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.

PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE() or
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not an asymmetric encryption algorithm.
∙ key is not a public key or an asymmetric key pair, that iscompatible with alg.
∙ input_length is not valid for the algorithm and key type.
∙ salt_length is not valid for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not an asymmetric encryptionalgorithm.
∙ key is not supported for use with alg.
∙ input_length or salt_length are too large for the implementation.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
∙ For PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is supported.

psa_asymmetric_decrypt (function)
Decrypt a short message with a private key.
psa_status_t psa_asymmetric_decrypt(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * salt,
size_t salt_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 313

Parameters
key Identifier of the key to use for the operation. It must be an asymmetrickey pair. It must permit the usage PSA_KEY_USAGE_DECRYPT.
alg The asymmetric encryption algorithm to compute: a value of type

psa_algorithm_t such that PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) istrue.
input The message to decrypt.
input_length Size of the input buffer in bytes.
salt A salt or label, if supported by the encryption algorithm. If thealgorithm does not support a salt, pass NULL. If the algorithm supportsan optional salt, pass NULL to indicate that there is no salt.
salt_length Size of the salt buffer in bytes. If salt is NULL, pass 0.
output Buffer where the decrypted message is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ The required output size is
PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg)where key_type and key_bits are the type and bit-sizerespectively of key.

∙ PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE evaluates to themaximum output size of any supported asymmetric decryption.
output_length On success, the number of bytes that make up the returned output.

Returns: psa_status_t
PSA_SUCCESS Success. The first (*output_length) bytes of output contain thedecrypted output.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does notpermit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.

PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE() or
PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_PADDING The algorithm uses padding, and the input does not contain validpadding.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not an asymmetric encryption algorithm.
∙ key is not an asymmetric key pair, that is compatible with alg.
∙ input_length is not valid for the algorithm and key type.
∙ salt_length is not valid for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 314

∙ alg is not supported or is not an asymmetric encryptionalgorithm.
∙ key is not supported for use with alg.
∙ input_length or salt_length are too large for the implementation.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
∙ For PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is supported.

10.10.3 Support macros
PSA_ALG_IS_RSA_OAEP (macro)
Whether the specified algorithm is an RSA OAEP encryption algorithm.
#define PSA_ALG_IS_RSA_OAEP(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an RSA OAEP algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE (macro)
Sufficient output buffer size for psa_asymmetric_encrypt().
#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \

/* implementation-defined value */

Parameters
key_type An asymmetric key type, either a key pair or a public key.
key_bits The size of the key in bits.
alg An asymmetric encryption algorithm: a value of type psa_algorithm_tsuch that PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) is true.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 315

Returns
A sufficient output buffer size for the specified asymmetric encryption algorithm and key parameters. Animplementation can return either 0 or a correct size for an asymmetric encryption algorithm and keyparameters that it recognizes, but does not support. If the parameters are not valid, the return value isunspecified.
Description
If the size of the output buffer is at least this large, it is guaranteed that psa_asymmetric_encrypt() will notfail due to an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE.
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE (macro)
A sufficient output buffer size for psa_asymmetric_encrypt(), for any of the supported key types andasymmetric encryption algorithms.
#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE \

/* implementation-defined value */

If the size of the output buffer is at least this large, it is guaranteed that psa_asymmetric_encrypt() will notfail due to an insufficient buffer size.
See also PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE().
PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE (macro)
Sufficient output buffer size for psa_asymmetric_decrypt().
#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \

/* implementation-defined value */

Parameters
key_type An asymmetric key type, either a key pair or a public key.
key_bits The size of the key in bits.
alg An asymmetric encryption algorithm: a value of type psa_algorithm_tsuch that PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) is true.

Returns
A sufficient output buffer size for the specified asymmetric encryption algorithm and key parameters. Animplementation can return either 0 or a correct size for an asymmetric encryption algorithm and keyparameters that it recognizes, but does not support. If the parameters are not valid, the return value isunspecified.
Description
If the size of the output buffer is at least this large, it is guaranteed that psa_asymmetric_decrypt() will notfail due to an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 316

PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE (macro)
A sufficient output buffer size for psa_asymmetric_decrypt(), for any of the supported key types andasymmetric encryption algorithms.
#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE \

/* implementation-defined value */

If the size of the output buffer is at least this large, it is guaranteed that psa_asymmetric_decrypt() will notfail due to an insufficient buffer size.
See also PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE().

10.11 Key agreement
Three functions are provided for a Diffie-Hellman-style key agreement where each party combines its ownprivate key with the peer’s public key, to produce a shared secret value:

∙ A call to psa_key_agreement() will compute the shared secret and store the result in a new derivationkey.
∙ If the resulting shared secret will be used for a single key derivation, a key-derivation operation can beused with the psa_key_derivation_key_agreement() input function. This calculates the shared secretand inputs it directly to the key-derivation operation.
∙ Where an application needs direct access to the shared secret, it can call psa_raw_key_agreement()instead.

Using psa_key_agreement() or psa_key_derivation_key_agreement() is recommended, as these do not exposethe shared secret to the application.
Note:
In general the shared secret is not directly suitable for use as a key because it is biased.

10.11.1 Key-agreement algorithms
PSA_ALG_FFDH (macro)
The finite field Diffie-Hellman (DH) key-agreement algorithm.
#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)

This standalone key-agreement algorithm can be used directly in a call to psa_key_agreement() or
psa_raw_key_agreement(), or combined with a key-derivation operation using PSA_ALG_KEY_AGREEMENT() foruse with psa_key_derivation_key_agreement().
When used as a key’s permitted-algorithm policy, the following uses are permitted:

∙ In a call to psa_key_agreement() or psa_raw_key_agreement(), with algorithm PSA_ALG_FFDH.
∙ In a call to psa_key_derivation_key_agreement(), with any combined key-agreement and key-derivationalgorithm constructed with PSA_ALG_FFDH.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 317

When used as part of a multi-part key-derivation operation, this implements a Diffie-Hellmankey-agreement scheme using a single finite field Diffie-Hellman key pair for each participant. This includesthe dhEphem, dhOneFlow, and dhStatic schemes. The input step PSA_KEY_DERIVATION_INPUT_SECRET is usedwhen providing the secret and peer keys to the operation.
The shared secret produced by this key-agreement algorithm is 𝑔𝑎𝑏 in big-endian format. It is ⌈(𝑚/8)⌉ byteslong where 𝑚 is the size of the prime 𝑝 in bits.
This key-agreement scheme is defined by NIST Special Publication 800-56A: Recommendation for Pair-WiseKey-Establishment Schemes Using Discrete Logarithm Cryptography [SP800-56A] §5.7.1.1 under the nameFFC DH.
Compatible key types
PSA_KEY_TYPE_DH_KEY_PAIR()

PSA_ALG_ECDH (macro)
The elliptic curve Diffie-Hellman (ECDH) key-agreement algorithm.
#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)

This standalone key-agreement algorithm can be used directly in a call to psa_key_agreement() or
psa_raw_key_agreement(), or combined with a key-derivation operation using PSA_ALG_KEY_AGREEMENT() foruse with psa_key_derivation_key_agreement().
When used as a key’s permitted-algorithm policy, the following uses are permitted:

∙ In a call to psa_key_agreement() or psa_raw_key_agreement(), with algorithm PSA_ALG_ECDH.
∙ In a call to psa_key_derivation_key_agreement(), with any combined key-agreement and key-derivationalgorithm constructed with PSA_ALG_ECDH.

When used as part of a multi-part key-derivation operation, this implements a Diffie-Hellmankey-agreement scheme using a single elliptic curve key pair for each participant. This includes the Ephemeralunified model, the Static unified model, and the One-pass Diffie-Hellman schemes. The input step
PSA_KEY_DERIVATION_INPUT_SECRET is used when providing the secret and peer keys to the operation.
The shared secret produced by key agreement is the x-coordinate of the shared secret point. It is always
⌈(𝑚/8)⌉ bytes long where 𝑚 is the bit size associated with the curve, i.e. the bit size of the order of thecurve’s coordinate field. When 𝑚 is not a multiple of 8, the byte containing the most significant bit of theshared secret is padded with zero bits. The byte order is either little-endian or big-endian depending on thecurve type.

∙ For Montgomery curves (curve family PSA_ECC_FAMILY_MONTGOMERY), the shared secret is thex-coordinate of 𝑍 = 𝑑𝐴𝑄𝐵 = 𝑑𝐵𝑄𝐴 in little-endian byte order.
— For Curve25519, this is the X25519 function defined in Curve25519: new Diffie-Hellman speedrecords [Curve25519]. The bit size 𝑚 is 255.
— For Curve448, this is the X448 function defined in Ed448-Goldilocks, a new elliptic curve[Curve448]. The bit size 𝑚 is 448.

∙ For Weierstrass curves (curve families PSA_ECC_FAMILY_SECP_XX, PSA_ECC_FAMILY_SECT_XX,
PSA_ECC_FAMILY_BRAINPOOL_P_R1 and PSA_ECC_FAMILY_FRP) the shared secret is the x-coordinate of
𝑍 = ℎ𝑑𝐴𝑄𝐵 = ℎ𝑑𝐵𝑄𝐴 in big-endian byte order. This is the Elliptic Curve Cryptography Cofactor

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 318

Diffie-Hellman primitive defined by SEC 1: Elliptic Curve Cryptography [SEC1] §3.3.2 as, and also asECC CDH by NIST Special Publication 800-56A: Recommendation for Pair-Wise Key-EstablishmentSchemes Using Discrete Logarithm Cryptography [SP800-56A] §5.7.1.2.
— Over prime fields (curve families PSA_ECC_FAMILY_SECP_XX, PSA_ECC_FAMILY_BRAINPOOL_P_R1 and

PSA_ECC_FAMILY_FRP), the bit size is 𝑚 = ⌈log2(𝑝)⌉ for the field F𝑝.— Over binary fields (curve families PSA_ECC_FAMILY_SECT_XX), the bit size is 𝑚 for the field F2𝑚 .
Note:
The cofactor Diffie-Hellman primitive is equivalent to the standard elliptic curve Diffie-Hellmancalculation 𝑍 = 𝑑𝐴𝑄𝐵 = 𝑑𝐵𝑄𝐴 ([SEC1] §3.3.1) for curves where the cofactor ℎ is 1. This is truefor all curves in the PSA_ECC_FAMILY_SECP_XX, PSA_ECC_FAMILY_BRAINPOOL_P_R1, and
PSA_ECC_FAMILY_FRP families.

Compatible key types
PSA_KEY_TYPE_ECC_KEY_PAIR(family)

where family is a Weierstrass or Montgomery Elliptic curve family. That is, one of the following values:
∙ PSA_ECC_FAMILY_SECT_XX

∙ PSA_ECC_FAMILY_SECP_XX

∙ PSA_ECC_FAMILY_FRP

∙ PSA_ECC_FAMILY_BRAINPOOL_P_R1

∙ PSA_ECC_FAMILY_MONTGOMERY

PSA_ALG_KEY_AGREEMENT (macro)
Macro to build a combined algorithm that chains a key agreement with a key derivation.
#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \

/* specification-defined value */

Parameters
ka_alg A key-agreement algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_KEY_AGREEMENT(ka_alg) is true.
kdf_alg A key-derivation algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_KEY_DERIVATION(kdf_alg) is true.
Returns
The corresponding key-agreement and key-derivation algorithm.
Unspecified if ka_alg is not a supported key-agreement algorithm or kdf_alg is not a supportedkey-derivation algorithm.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 319

Description
A combined key-agreement algorithm is used with a multi-part key-derivation operation, using a call to
psa_key_derivation_key_agreement().
The component parts of a key-agreement algorithm can be extracted using
PSA_ALG_KEY_AGREEMENT_GET_BASE() and PSA_ALG_KEY_AGREEMENT_GET_KDF().
Compatible key types
The resulting combined key-agreement algorithm is compatible with the same key types as the standalonekey-agreement algorithm used to construct it.

10.11.2 Standalone key agreement
psa_key_agreement (function)
Perform a key agreement and return the shared secret as a derivation key.
Added in version 1.2.
psa_status_t psa_key_agreement(psa_key_id_t private_key,

const uint8_t * peer_key,
size_t peer_key_length,
psa_algorithm_t alg,
const psa_key_attributes_t * attributes,
psa_key_id_t * key);

Parameters
private_key Identifier of the private key to use. It must permit the usage

PSA_KEY_USAGE_DERIVE.
peer_key Public key of the peer. The peer key data is parsed with the type

PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) where type is the type of
private_key, and with the same bit-size as private_key. The peer keymust be in the format that psa_import_key() accepts for this public-keytype. These formats are described with the public-key type in Keytypes on page 53.

peer_key_length Size of peer_key in bytes.
alg The standalone key-agreement algorithm to compute: a value of type

psa_algorithm_t such that PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg)is true.
attributes The attributes for the new key.

The following attributes are required for all keys:
∙ The key type, which must be one of PSA_KEY_TYPE_DERIVE,

PSA_KEY_TYPE_RAW_DATA, PSA_KEY_TYPE_HMAC, or
PSA_KEY_TYPE_PASSWORD.Implementations must support the PSA_KEY_TYPE_DERIVE and
PSA_KEY_TYPE_RAW_DATA key types.

The following attributes must be set for keys used in cryptographicoperations:
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 320

∙ The key permitted-algorithm policy, see Permitted algorithms onpage 101.
∙ The key usage flags, see Key usage flags on page 102.

The following attributes must be set for keys that do not use thedefault PSA_KEY_LIFETIME_VOLATILE lifetime:
∙ The key lifetime, see Key lifetimes on page 90.
∙ The key identifier is required for a key with a persistent lifetime,see Key identifiers on page 98.

The following attributes are optional:
∙ If the key size is nonzero, it must be equal to the output size ofthe key agreement, in bits.The output size, in bits, of the key agreement is 8 *

PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(type, bits), where type and
bits are the type and bit-size of private_key.
Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queried bycalling psa_get_key_attributes() with the key’s identifier.

key On success, an identifier for the newly created key. PSA_KEY_ID_NULL onfailure.
Returns: psa_status_t

PSA_SUCCESS Success. The new key contains the share secret. If the key ispersistent, the key material and the key’s metadata have been saved topersistent storage.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE private_key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:

∙ private_key does not have the PSA_KEY_USAGE_DERIVE flag, or itdoes not permit the requested algorithm.
∙ The implementation does not permit creating a key with thespecified attributes due to some implementation-specific policy.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a key-agreement algorithm.
∙ private_key is not compatible with alg.
∙ peer_key is not a valid public key corresponding to private_key.
∙ The output key attributes in attributes are not valid :

— The key type is not valid for key-agreement output.
— The key size is nonzero, and is not the size of the shared

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 321

secret.
— The key lifetime is invalid.
— The key identifier is not valid for the key lifetime.
— The key usage flags include invalid values.
— The key’s permitted-usage algorithm is invalid.
— The key attributes, as a whole, are invalid.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a key-agreement algorithm.
∙ private_key is not supported for use with alg.
∙ The output key attributes, as a whole, are not supported, eitherby the implementation in general or in the specified storagelocation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
A key-agreement algorithm takes two inputs: a private key private_key, and a public key peer_key. The resultof this function is a shared secret, returned as a derivation key.
The new key’s location, policy, and type are taken from attributes.
The size of the returned key is always the bit-size of the shared secret, rounded up to a whole number ofbytes.
This key can be used as input to a key-derivation operation using psa_key_derivation_input_key().
. Warning

The shared secret resulting from a key-agreement algorithm such as finite field Diffie-Hellman or ellipticcurve Diffie-Hellman has biases. This makes it unsuitable for use as key material, for example, as an AESkey. Instead, it is recommended that a key-derivation algorithm is applied to the result, to deriveunbiased cryptographic keys.

psa_raw_key_agreement (function)
Perform a key agreement and return the shared secret.
psa_status_t psa_raw_key_agreement(psa_algorithm_t alg,

psa_key_id_t private_key,
const uint8_t * peer_key,

(continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 322

(continued from previous page)
size_t peer_key_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters
alg The standalone key-agreement algorithm to compute: a value of type

psa_algorithm_t such that PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg)is true.
private_key Identifier of the private key to use. It must permit the usage

PSA_KEY_USAGE_DERIVE.
peer_key Public key of the peer. The peer key data is parsed with the type

PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) where type is the type of
private_key, and with the same bit-size as private_key. The peer keymust be in the format that psa_import_key() accepts for this public-keytype. These formats are described with the public-key type in Keytypes on page 53.

peer_key_length Size of peer_key in bytes.
output Buffer where the shared secret is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for thekeys:

∙ The required output size is
PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(type, bits), where type and
bits are the type and bit-size of private_key.

∙ PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE evaluates to themaximum output size of any supported standalonekey-agreement algorithm.
output_length On success, the number of bytes that make up the returned output.

Returns: psa_status_t
PSA_SUCCESS Success. The first (*output_length) bytes of output contain the sharedsecret.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE private_key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED private_key does not have the PSA_KEY_USAGE_DERIVE flag, or it doesnot permit the requested algorithm.
PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.

PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE() or
PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not a key-agreement algorithm.
∙ private_key is not compatible with alg.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 323

∙ peer_key is not a valid public key corresponding to private_key.
PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

∙ alg is not supported or is not a key-agreement algorithm.
∙ private_key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
A key-agreement algorithm takes two inputs: a private key private_key, and a public key peer_key. The resultof this function is a shared secret, returned in the output buffer.
. Warning

The result of a key-agreement algorithm such as finite field Diffie-Hellman or elliptic curveDiffie-Hellman has biases, and is not suitable for direct use as key material, for example, as an AES key.Instead it is recommended that the result is used as input to a key-derivation algorithm.
To chain a key agreement with a key derivation, either use psa_key_agreement() to obtain the result ofthe key agreement as a derivation key, or use psa_key_derivation_key_agreement() and other functionsfrom the key-derivation interface.

10.11.3 Combining key agreement and key derivation
psa_key_derivation_key_agreement (function)
Perform a key agreement and use the shared secret as input to a key derivation.
psa_status_t psa_key_derivation_key_agreement(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,
psa_key_id_t private_key,
const uint8_t * peer_key,
size_t peer_key_length);

Parameters
operation The key-derivation operation object to use. It must have been set upwith psa_key_derivation_setup() with a combined key-agreement andkey-derivation algorithm alg: a value of type psa_algorithm_t such that

PSA_ALG_IS_KEY_AGREEMENT(alg) is true and
PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg) is false.
The operation must be ready for an input of the type given by step.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 324

step Which step the input data is for.
private_key Identifier of the private key to use. It must permit the usage

PSA_KEY_USAGE_DERIVE.
peer_key Public key of the peer. The peer key data is parsed with the type

PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) where type is the type of
private_key, and with the same bit-size as private_key. The peer keymust be in the format that psa_import_key() accepts for this public-keytype. These formats are described with the public-key type in Keytypes on page 53.

peer_key_length Size of peer_key in bytes.
Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid for this key-agreement step.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE private_key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED private_key does not have the PSA_KEY_USAGE_DERIVE flag, or it doesnot permit the operation’s algorithm.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ The operation’s algorithm is not a key-agreement algorithm.
∙ step does not permit an input resulting from a key agreement.
∙ private_key is not compatible with the operation’s algorithm.
∙ peer_key is not a valid public key corresponding to private_key.

PSA_ERROR_NOT_SUPPORTED private_key is not supported for use with the operation’s algorithm.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
A key-agreement algorithm takes two inputs: a private key private_key, and a public key peer_key. The resultof this function is a shared secret, which is directly input to the key-derivation operation. Output from thekey-derivation operation can then be used as keys and other cryptographic material.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_key_derivation_abort().

Note:
This function cannot be used when the resulting shared secret is required for multiple key derivations.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 325

Instead, the application can call psa_key_agreement() to obtain the shared secret as a derivation key.This key can be used as input to as many key-derivation operations as required.

10.11.4 Support macros
PSA_ALG_KEY_AGREEMENT_GET_BASE (macro)
Get the standalone key-agreement algorithm from a combined key-agreement and key-derivation algorithm.
#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) /* specification-defined value */

Parameters
alg A key-agreement algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_KEY_AGREEMENT(alg) is true.
Returns
The underlying standalone key-agreement algorithm if alg is a key-agreement algorithm.
Unspecified if alg is not a key-agreement algorithm or if it is not supported by the implementation.
Description
See also PSA_ALG_KEY_AGREEMENT() and PSA_ALG_KEY_AGREEMENT_GET_KDF().
PSA_ALG_KEY_AGREEMENT_GET_KDF (macro)
Get the key-derivation algorithm used in a combined key-agreement and key-derivation algorithm.
#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) /* specification-defined value */

Parameters
alg A key-agreement algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_KEY_AGREEMENT(alg) is true.
Returns
The underlying key-derivation algorithm if alg is a key-agreement algorithm.
Unspecified if alg is not a key-agreement algorithm or if it is not supported by the implementation.
Description
See also PSA_ALG_KEY_AGREEMENT() and PSA_ALG_KEY_AGREEMENT_GET_BASE().
PSA_ALG_IS_STANDALONE_KEY_AGREEMENT (macro)
Whether the specified algorithm is a standalone key-agreement algorithm.
Added in version 1.2.
#define PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg) \

/* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 326

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a standalone key-agreement algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is nota supported algorithm identifier.
Description
A standalone key-agreement algorithm is one that does not specify a key-derivation function. Usually,standalone key-agreement algorithms are constructed directly with a PSA_ALG_xxx macro while combinedkey-agreement algorithms are constructed with PSA_ALG_KEY_AGREEMENT().
The standalone key-agreement algorithm can be extracted from a combined key-agreement algorithmidentifier using PSA_ALG_KEY_AGREEMENT_GET_BASE().
PSA_ALG_IS_RAW_KEY_AGREEMENT (macro)
Whether the specified algorithm is a standalone key-agreement algorithm.
Deprecated since version 1.2: Use PSA_ALG_IS_STANDALONE_KEY_AGREEMENT() instead.
#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \

PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg)

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

PSA_ALG_IS_FFDH (macro)
Whether the specified algorithm is a finite field Diffie-Hellman algorithm.
#define PSA_ALG_IS_FFDH(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a finite field Diffie-Hellman algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is nota supported key-agreement algorithm identifier.
Description
This includes the standalone finite field Diffie-Hellman algorithm, as well as finite field Diffie-Hellmancombined with any supported key-derivation algorithm.
PSA_ALG_IS_ECDH (macro)
Whether the specified algorithm is an elliptic curve Diffie-Hellman algorithm.
#define PSA_ALG_IS_ECDH(alg) /* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 327

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an elliptic curve Diffie-Hellman algorithm, 0 otherwise. This macro can return either 0 or 1 if alg isnot a supported key-agreement algorithm identifier.
Description
This includes the standalone elliptic curve Diffie-Hellman algorithm, as well as elliptic curve Diffie-Hellmancombined with any supported key-derivation algorithm.
PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE (macro)
Sufficient output buffer size for psa_raw_key_agreement().
#define PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(key_type, key_bits) \

/* implementation-defined value */

Parameters
key_type A supported key type.
key_bits The size of the key in bits.

Returns
A sufficient output buffer size for the specified key type and size. An implementation can return either 0 ora correct size for a key type and size that it recognizes, but does not support. If the parameters are not valid,the return value is unspecified.
Description
If the size of the output buffer is at least this large, it is guaranteed that psa_raw_key_agreement() will not faildue to an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE.
PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE (macro)
Sufficient output buffer size for psa_raw_key_agreement(), for any of the supported key types andkey-agreement algorithms.
#define PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE \

/* implementation-defined value */

If the size of the output buffer is at least this large, it is guaranteed that psa_raw_key_agreement() will not faildue to an insufficient buffer size.
See also PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 328

10.12 Key encapsulation
A key-encapsulation algorithm can be used by two participants to establish a shared secret key over a publicchannel. The shared secret key can then be used with symmetric-key cryptographic algorithms.Key-encapsulation algorithms are often referred to as ‘key-encapsulation mechanisms’ or KEMs.
In a key-encapsulation algorithm, participants A and B establish a shared secret as follows:

1. Participant A generates a key pair: a private decapsulation key, and a public encapsulation key.
2. The public encapsulation key is made available to participant B.
3. Participant B uses the encapsulation key to generate one copy of a shared secret, and some ciphertext.
4. The ciphertext is transferred to participant A.
5. Participant A uses the private decapsulation key to compute another copy of the shared secret.

Typically, the shared secret is used as input to a key-derivation function, to create keys for securecommunication between participants A and B. However, some key-encapsulation algorithms result in auniformly pseudorandom shared secret, which is suitable to be used directly as a cryptographic key.
Applications can use the resulting keys for different use cases. For example:

∙ Encrypting and authenticating a single non-interactive message from participant B to participant A.
∙ Securing an interactive communication channel between participants A and B.

10.12.1 Elliptic Curve Integrated Encryption Scheme
The Elliptic Curve Integrated Encryption Scheme (ECIES) was first proposed by Shoup, then improved byBallare and Rogaway.
The original specification permitted a number of variants. The Crypto API uses the version specified in SEC1: Elliptic Curve Cryptography [SEC1].
The full ECIES scheme uses an elliptic-curve key agreement between the recipient’s static public key and anephemeral private key, to establish encryption and authentication keys for secure transmission ofarbitrary-length messages to the recipient.
An application using ECIES must select all of the following parameters:

∙ The elliptic curve for the initial key agreement.
∙ The KDF to derive the symmetric keys, and any label used in that derivation.
∙ The encryption and MAC algorithms.
∙ The additional data to include when computing the authentication.

The Crypto API presents the key-agreement step of ECIES as a key-encapsulation algorithm. The keyderivation, encryption, and authentication steps are left to the application.
Implementation note
It is possible that some applications may need to use alternative versions of ECIES to interoperatewith legacy systems.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 329

While the application can implement this using key agreement functions, an implementation canchoose to add these as a convenience with an IMPLEMENTATION DEFINED key-encapsulation algorithmidentifier.

PSA_ALG_ECIES_SEC1 (macro)
The Elliptic Curve Integrated Encryption Scheme (ECIES).
Added in version 1.3.
#define PSA_ALG_ECIES_SEC1 ((psa_algorithm_t)0x0c000100)

This key-encapsulation algorithm is defined by SEC 1: Elliptic Curve Cryptography [SEC1] §5.1 under thename Elliptic Curve Integrated Encryption Scheme.
A call to psa_encapsulate() carries out steps 1 to 4 of the ECIES encryption process described in [SEC1]§5.1.3:

∙ The elliptic curve to use is determined by the key.
∙ The public-key part of the input key is used as 𝑄𝑉 .
∙ Cofactor ECDH is used to perform the key agreement.
∙ The octet string 𝑍 is output as the shared secret key.
∙ The ephemeral public key 𝑅 is output as the ciphertext.

A call to psa_decapsulate() carries out steps 2 to 5 of the ECIES decryption process described in [SEC1]§5.1.4:
∙ The elliptic curve to use is determined by the key.
∙ The ciphertext is decoded as 𝑅.
∙ The private key of the input key is used as 𝑑𝑉 .
∙ Cofactor ECDH is used to perform the key agreement.
∙ The octet string 𝑍 is output as the shared secret key.

The ciphertext produced by PSA_ALG_ECIES_SEC1 is not authenticated. In the full ECIES scheme, theauthentication of the encrypted message using a key derived from the shared secret provides assurancethat the message has not been manipulated.
The shared secret key that is produced by PSA_ALG_ECIES_SEC1 is not suitable for use as an encryption key. Itmust be used as an input to a key derivation operation to produce additional cryptographic keys.
Compatible key types
PSA_KEY_TYPE_ECC_KEY_PAIR(family)

PSA_KEY_TYPE_ECC_PUBLIC_KEY(family) (encapsulaton only)

where family is a Weierstrass or Montgomery Elliptic curve family. That is, one of the following values:
∙ PSA_ECC_FAMILY_SECT_XX

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 330

∙ PSA_ECC_FAMILY_SECP_XX

∙ PSA_ECC_FAMILY_FRP

∙ PSA_ECC_FAMILY_BRAINPOOL_P_R1

∙ PSA_ECC_FAMILY_MONTGOMERY

10.12.2 Key-encapsulation functions
psa_encapsulate (function)
Use a public key to generate a new shared secret key and associated ciphertext.
Added in version 1.3.
psa_status_t psa_encapsulate(psa_key_id_t key,

psa_algorithm_t alg,
const psa_key_attributes_t * attributes,
psa_key_id_t * output_key,
uint8_t * ciphertext,
size_t ciphertext_size,
size_t * ciphertext_length);

Parameters
key Identifier of the key to use for the encapsulation. It must be a publickey or an asymmetric key pair. It must permit the usage

PSA_KEY_USAGE_ENCRYPT.
alg The key-encapsulation algorithm to use: a value of type

psa_algorithm_t such that PSA_ALG_IS_KEY_ENCAPSULATION(alg) is true.
attributes The attributes for the output key. This function uses the attributes asfollows:

∙ The key type. All key-encapsulation algorithms can output a keyof type PSA_KEY_TYPE_DERIVE or PSA_KEY_TYPE_HMAC.Key-encapsulation algorithms that produce a uniformlypseudorandom shared secret, can also output block-cipher keytypes, for example PSA_KEY_TYPE_AES. Refer to the documentationof individual key-encapsulation algorithms for more information.
The following attributes must be set for keys used in cryptographicoperations:

∙ The key permitted-algorithm policy, see Permitted algorithms onpage 101.
∙ The key usage flags, see Key usage flags on page 102.

The following attributes must be set for keys that do not use thedefault PSA_KEY_LIFETIME_VOLATILE lifetime:
∙ The key lifetime, see Key lifetimes on page 90.
∙ The key identifier is required for a key with a persistent lifetime,see Key identifiers on page 98.

The following attributes are optional:
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 331

∙ If the key size is nonzero, it must be equal to the size, in bits, ofthe shared secret.
Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queried bycalling psa_get_key_attributes() with the key’s identifier.

output_key On success, an identifier for the newly created shared secret key.
PSA_KEY_ID_NULL on failure.

ciphertext Buffer where the ciphertext output is to be written.
ciphertext_size Size of the ciphertext buffer in bytes. This must be appropriate for theselected algorithm and key:

∙ A sufficient ciphertext size is
PSA_ENCAPSULATE_CIPHERTEXT_SIZE(type, bits, alg), where typeand bits are the type and bit-size of key.

∙ PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE evaluates to the maximumciphertext size of any supported key-encapsulation algorithm.
ciphertext_length On success, the number of bytes that make up the ciphertext value.

Returns: psa_status_t
PSA_SUCCESS Success. The bytes of ciphertext contain the data to be sent to theother participant, and output_key contains the identifier for the sharedsecret key.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:

∙ key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does notpermit the requested algorithm.
∙ The implementation does not permit creating a key with thespecified attributes due to some implementation-specific policy.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_BUFFER_TOO_SMALL The size of the ciphertext buffer is too small.

PSA_ENCAPSULATE_CIPHERTEXT_SIZE() or
PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE can be used to determine asufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ alg is not a key-encapsulation algorithm.
∙ key is not a public key or an asymmetric key pair, that iscompatible with alg.
∙ The output key attributes in attributes are not valid:

— The key type is not valid for the shared secret.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 332

— The key size is nonzero, and is not the size of the sharedsecret.
— The key lifetime is invalid.
— The key identifier is not valid for the key lifetime.
— The key usage flags include invalid values.
— The key’s permitted-usage algorithm is invalid.
— The key attributes, as a whole, are invalid.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ alg is not supported or is not a key-encapsulation algorithm.
∙ key is not supported for use with alg.
∙ The output key attributes in attributes, as a whole, are notsupported, either by the implementation in general or in thespecified storage location.

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The output_key location, policy, and type are taken from attributes.
The size of the returned key is always the bit-size of the shared secret, rounded up to a whole number ofbytes. The size of the shared secret is dependent on the key-encapsulation algorithm and the type and sizeof key.
It is recommended that the shared secret key is used as an input to a key derivation operation to produceadditional cryptographic keys. For some key-encapsulation algorithms, the shared secret key is also suitablefor use as a key in cryptographic operations such as encryption. Refer to the documentation of individualkey-encapsulation algorithms for more information.
The output ciphertext is to be sent to the other participant, who uses the decapsulation key to extractanother copy of the shared secret key.
psa_decapsulate (function)
Use a private key to decapsulate a shared secret key from a ciphertext.
Added in version 1.3.
psa_status_t psa_decapsulate(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * ciphertext,

(continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 333

(continued from previous page)
size_t ciphertext_length,
const psa_key_attributes_t * attributes,
psa_key_id_t * output_key);

Parameters
key Identifier of the key to use for the decapsulation. It must be anasymmetric key pair. It must permit the usage PSA_KEY_USAGE_DECRYPT.
alg The key-encapsulation algorithm to use: a value of type

psa_algorithm_t such that PSA_ALG_IS_KEY_ENCAPSULATION(alg) is true.
ciphertext The ciphertext received from the other participant.
ciphertext_length Size of the ciphertext buffer in bytes.
attributes The attributes for the output key. This function uses the attributes asfollows:

∙ The key type. All key-encapsulation algorithms can output a keyof type PSA_KEY_TYPE_DERIVE or PSA_KEY_TYPE_HMAC.Key-encapsulation algorithms that produce a uniformlypseudorandom shared secret, can also output block-cipher keytypes, for example PSA_KEY_TYPE_AES. Refer to the documentationof individual key-encapsulation algorithms for more information.
The following attributes must be set for keys used in cryptographicoperations:

∙ The key permitted-algorithm policy, see Permitted algorithms onpage 101.
∙ The key usage flags, see Key usage flags on page 102.

The following attributes must be set for keys that do not use thedefault PSA_KEY_LIFETIME_VOLATILE lifetime:
∙ The key lifetime, see Key lifetimes on page 90.
∙ The key identifier is required for a key with a persistent lifetime,see Key identifiers on page 98.

The following attributes are optional:
∙ If the key size is nonzero, it must be equal to the size, in bits, ofthe shared secret.

Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queried bycalling psa_get_key_attributes() with the key’s identifier.

output_key On success, an identifier for the newly created shared secret key.
PSA_KEY_ID_NULL on failure.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 334

Returns: psa_status_t
PSA_SUCCESS Success. output_key contains the identifier for the shared secret key.

Note:
In some key-encapsulation algorithms, decapsulation failure isnot reported with a explicit error code. Instead, an incorrect,pseudorandom key is output.

PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:

∙ key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does notpermit the requested algorithm.
∙ The implementation does not permit creating a key with thespecified attributes due to some implementation-specific policy.

PSA_ERROR_INVALID_SIGNATURE Authentication of the ciphertext fails.
Note:
Some key-encapsulation algorithms do not report anauthentication failure explicitly. Instead, an incorrect,pseudorandom key is output.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ alg is not a key-encapsulation algorithm.
∙ key is not an asymmetric key pair, that is compatible with alg.
∙ The output key attributes in attributes are not valid:

— The key type is not valid for the shared secret.
— The key size is nonzero, and is not the size of the sharedsecret.
— The key lifetime is invalid.
— The key identifier is not valid for the key lifetime.
— The key usage flags include invalid values.
— The key’s permitted-usage algorithm is invalid.
— The key attributes, as a whole, are invalid.

∙ ciphertext is obviously invalid for the selected algorithm and key.For example, the implementation can detect that it has anincorrect length.
PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

∙ alg is not supported or is not a key-encapsulation algorithm.
∙ key is not supported for use with alg.
∙ The output key attributes in attributes, as a whole, are not

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 335

supported, either by the implementation in general or in thespecified storage location.
PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The output_key location, policy, and type are taken from attributes.
The size of the returned key is always the bit-size of the shared secret, rounded up to a whole number ofbytes. The size of the shared secret is dependent on the key-encapsulation algorithm and the type and sizeof key.
It is recommended that the shared secret key is used as an input to a key derivation operation to produceadditional cryptographic keys. For some key-encapsulation algorithms, the shared secret key is also suitablefor use as a key in cryptographic operations such as encryption. Refer to the documentation of individualkey-encapsulation algorithms for more information.
If the key-encapsulation protocol is executed correctly then, with overwhelming probability, the two copiesof the shared secret are identical. However, the protocol does not protect one participant against the otherparticipant executing it incorrectly, or against a third party modifying data in transit.
. Warning

A PSA_SUCCESS result from psa_decapsulate() does not guarantee that the output key is identical to thekey produced by the call to psa_encapsulate(). For example, PSA_SUCCESS can be returned with amismatched shared secret key value in the following situations:
∙ The key-encapsulation algorithm does not authenticate the ciphertext. Manipulated or corruptedciphertext will not be detected during decapsulation.
∙ The key-encapsulation algorithm reports authentication failure implicitly, by returning apseudorandom key value. This is done to prevent disclosing information to an attacker that hasmanipulated the ciphertext.
∙ The key-encapsulation algorithm is probablistic, and will extremely rarely result in non-identical keyvalues.

It is strongly recommended that the application uses the output key in a way that will confirm that theshared secret keys are identical.

Implementation note

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 336

For key-encapsulation algorithms which involve data padding when computing the ciphertext, thedecapsulation algorithm must not report a distinct error status if invalid padding is detected.
Instead, it is recommended that the decapsulation fails implicitly when invalid padding is detected,returning a pseudorandom key.

10.12.3 Support macros
PSA_ENCAPSULATE_CIPHERTEXT_SIZE (macro)
Sufficient ciphertext buffer size for psa_encapsulate(), in bytes.
Added in version 1.3.
#define PSA_ENCAPSULATE_CIPHERTEXT_SIZE(key_type, key_bits, alg) \

/* implementation-defined value */

Parameters
key_type A key type that is compatible with algorithm alg.
key_bits The size of the key in bits.
alg A key-encapsulation algorithm: a value of type psa_algorithm_t suchthat PSA_ALG_IS_KEY_ENCAPSULATION(alg) is true.

Returns
A sufficient ciphertext buffer size for the specified algorithm, key type, and size. An implementation canreturn either 0 or a correct size for an algorithm, key type, and size that it recognizes, but does not support.If the parameters are not valid, the return value is unspecified.
Description
If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_encapsulate() will not faildue to an insufficient buffer size. The actual size of the ciphertext might be smaller in any given call.
See also PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE.
PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE (macro)
Sufficient ciphertext buffer size for psa_encapsulate(), for any of the supported key types andkey-encapsulation algorithms.
Added in version 1.3.
#define PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE /* implementation-defined value */

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_encapsulate() will not faildue to an insufficient buffer size.
See also PSA_ENCAPSULATE_CIPHERTEXT_SIZE().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 337

10.13 Password-authenticated key exchange (PAKE)
PAKE protocols provide an interactive method for two or more parties to establish cryptographic keysbased on knowledge of a low entropy secret, such as a password.
These can provide strong security for communication from a weak password, because the password is notdirectly communicated as part of the key exchange.
This chapter is divided into the following sections:

∙ Common API for PAKE — the common interface elements, including the PAKE operation.
∙ The J-PAKE protocol on page 366 — the J-PAKE protocol, and the associated interface elements.
∙ The SPAKE2+ protocol on page 371 — the SPAKE2+ protocols, and the associated interface elements.
∙ The WPA3-SAE protocol on page 381 — the WPA3-SAE protocol, and the associated interfaceelements.

10.13.1 Common API for PAKE
This section defines all of the common interfaces used to carry out a PAKE protocol:

∙ PAKE primitives
∙ PAKE cipher suites on page 342
∙ PAKE roles on page 347
∙ PAKE step types on page 349
∙ Multi-part PAKE operations on page 352
∙ PAKE support macros on page 364

10.13.2 PAKE primitives
A PAKE algorithm specifies a sequence of interactions between the participants. Many PAKE algorithms aredesigned to allow different cryptographic primitives to be used for the key establishment operation, so longas all the participants are using the same underlying cryptography.
The cryptographic primitive for a PAKE operation is specified using a psa_pake_primitive_t value, which canbe constructed using the PSA_PAKE_PRIMITIVE() macro, or can be provided as a numerical constant value.
A PAKE primitive is required when constructing a PAKE cipher-suite object, psa_pake_cipher_suite_t, whichfully specifies the PAKE operation to be carried out.
psa_pake_primitive_t (typedef)
Encoding of the primitive associated with the PAKE.
Added in version 1.1.
typedef uint32_t psa_pake_primitive_t;

PAKE primitive values are constructed using PSA_PAKE_PRIMITIVE().
Figure 2 on page 339 shows how the components of the primitive are encoded into a psa_pake_primitive_tvalue.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 338

01516232431

PAKE-BITSPAKE-FAMILYPAKE_TYPE

Figure 2 PAKE primitive encoding

The components of a PAKE primitive value can be extracted using the PSA_PAKE_PRIMITIVE_GET_TYPE(),
PSA_PAKE_PRIMITIVE_GET_FAMILY(), and PSA_PAKE_PRIMITIVE_GET_BITS(). These can be used to set keyattributes for keys used in PAKE algorithms. SPAKE2+ registration on page 372 provides an example of thisusage.
psa_pake_primitive_type_t (typedef)
Encoding of the type of the PAKE’s primitive.
Added in version 1.1.
typedef uint8_t psa_pake_primitive_type_t;

The range of PAKE primitive type values is divided as follows:
0x00 Reserved as an invalid primitive type.
0x01 - 0x7f Specification-defined primitive type. Primitive types defined by this standard always have bit7 clear. Unallocated primitive type values in this range are reserved for future use.
0x80 - 0xff Implementation-defined primitive type. Implementations that define additional primitivetypes must use an encoding with bit 7 set.

For specification-defined primitive types, see PSA_PAKE_PRIMITIVE_TYPE_ECC and PSA_PAKE_PRIMITIVE_TYPE_DH.
PSA_PAKE_PRIMITIVE_TYPE_ECC (macro)
The PAKE primitive type indicating the use of elliptic curves.
Added in version 1.1.
#define PSA_PAKE_PRIMITIVE_TYPE_ECC ((psa_pake_primitive_type_t)0x01)

The values of the family and bits components of the PAKE primitive identify a specific elliptic curve, usingthe same mapping that is used for ECC keys. See the definition of psa_ecc_family_t. Here family and bitsrefer to the values used to construct the PAKE primitive using PSA_PAKE_PRIMITIVE().
Input and output during the operation can involve group elements and scalar values:

∙ The format for group elements is the same as that for public keys on the specific elliptic curve. SeeKey format within the definition of PSA_KEY_TYPE_ECC_PUBLIC_KEY().
∙ The format for scalars is the same as that for private keys on the specific elliptic curve. See Key formatwithin the definition of PSA_KEY_TYPE_ECC_KEY_PAIR().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 339

PSA_PAKE_PRIMITIVE_TYPE_DH (macro)
The PAKE primitive type indicating the use of a finite field Diffie-Hellman group.
Added in version 1.1.
#define PSA_PAKE_PRIMITIVE_TYPE_DH ((psa_pake_primitive_type_t)0x02)

The values of the family and bits components of the PAKE primitive identify a specific finite fieldDiffie-Hellman group, using the same mapping that is used for finite field Diffie-Hellman keys. See thedefinition of psa_dh_family_t. Here family and bits refer to the values used to construct the PAKE primitiveusing PSA_PAKE_PRIMITIVE().
Input and output during the operation can involve group elements and scalar values:

∙ The format for group elements is the same as that for public keys in the specific finite fieldDiffie-Hellman group. See Key format within the definition of PSA_KEY_TYPE_DH_PUBLIC_KEY().
∙ The format for scalars is the same as that for private keys in the specific finite field Diffie-Hellmangroup. See Key format within the definition of PSA_KEY_TYPE_DH_PUBLIC_KEY().

psa_pake_family_t (typedef)
Encoding of the family of the primitive associated with the PAKE.
Added in version 1.1.
typedef uint8_t psa_pake_family_t;

For more information on the family values, see PSA_PAKE_PRIMITIVE_TYPE_ECC and
PSA_PAKE_PRIMITIVE_TYPE_DH.
PSA_PAKE_PRIMITIVE (macro)
Construct a PAKE primitive from type, family and bit-size.
Added in version 1.1.
#define PSA_PAKE_PRIMITIVE(pake_type, pake_family, pake_bits) \

/* specification-defined value */

Parameters
pake_type The type of the primitive: a value of type psa_pake_primitive_type_t.
pake_family The family of the primitive. The type and interpretation of thisparameter depends on pake_type. For more information, see

PSA_PAKE_PRIMITIVE_TYPE_ECC and PSA_PAKE_PRIMITIVE_TYPE_DH.
pake_bits The bit-size of the primitive: a value of type size_t. The interpretationof this parameter depends on pake_type and family. For moreinformation, see PSA_PAKE_PRIMITIVE_TYPE_ECC and

PSA_PAKE_PRIMITIVE_TYPE_DH.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 340

Returns: psa_pake_primitive_t
The constructed primitive value. Return 0 if the requested primitive can’t be encoded as
psa_pake_primitive_t.
Description
A PAKE primitive value is used to specify a PAKE operation, as part of a PAKE cipher suite.
PSA_PAKE_PRIMITIVE_GET_TYPE (macro)
Extract the PAKE primitive type from a PAKE primitive.
Added in version 1.2.
#define PSA_PAKE_PRIMITIVE_GET_TYPE(pake_primitive) \

/* specification-defined value */

Parameters
pake_primitive A PAKE primitive: a value of type psa_pake_primitive_t.

Returns: psa_pake_primitive_type_t
The PAKE primitive type, if pake_primitive is a supported PAKE primitive. Unspecified if pake_primitive isnot a supported PAKE primitive.
PSA_PAKE_PRIMITIVE_GET_FAMILY (macro)
Extract the family from a PAKE primitive.
Added in version 1.2.
#define PSA_PAKE_PRIMITIVE_GET_FAMILY(pake_primitive) \

/* specification-defined value */

Parameters
pake_primitive A PAKE primitive: a value of type psa_pake_primitive_t.

Returns: psa_pake_family_t
The PAKE primitive family, if pake_primitive is a supported PAKE primitive. Unspecified if pake_primitive isnot a supported PAKE primitive.
Description
For more information on the family values, see PSA_PAKE_PRIMITIVE_TYPE_ECC and
PSA_PAKE_PRIMITIVE_TYPE_DH.
PSA_PAKE_PRIMITIVE_GET_BITS (macro)
Extract the bit-size from a PAKE primitive.
Added in version 1.2.
#define PSA_PAKE_PRIMITIVE_GET_BITS(pake_primitive) \

/* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 341

Parameters
pake_primitive A PAKE primitive: a value of type psa_pake_primitive_t.

Returns: size_t
The PAKE primitive bit-size, if pake_primitive is a supported PAKE primitive. Unspecified if pake_primitive isnot a supported PAKE primitive.
Description
For more information on the bit-size values, see PSA_PAKE_PRIMITIVE_TYPE_ECC and
PSA_PAKE_PRIMITIVE_TYPE_DH.

10.13.3 PAKE cipher suites
Most PAKE algorithms have parameters that must be specified by the application. These parameters includethe following:

∙ The cryptographic primitive used for key establishment, specified using a PAKE primitive.
∙ A cryptographic hash algorithm.
∙ Whether the application requires the shared secret before, or after, it is confirmed.

The hash algorithm is encoded into the PAKE algorithm identifier. The psa_pake_cipher_suite_t object isused to fully specify a PAKE operation, combining the PAKE protocol with all of the above parameters.
A PAKE cipher suite is required when setting up a PAKE operation in psa_pake_setup().
psa_pake_cipher_suite_t (typedef)
The type of an object describing a PAKE cipher suite.
Added in version 1.1.
typedef /* implementation-defined type */ psa_pake_cipher_suite_t;

This is the object that represents the cipher suite used for a PAKE algorithm. The PAKE cipher suitespecifies the PAKE algorithm, and the options selected for that algorithm. The cipher suite includes thefollowing attributes:
∙ The PAKE algorithm itself.
∙ The hash algorithm, encoded within the PAKE algorithm.
∙ The PAKE primitive, which identifies the prime order group used for the key exchange operation. SeePAKE primitives on page 338.
∙ Whether to confirm the shared secret.

This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.
Before calling any function on a PAKE cipher suite object, the application must initialize it by any of thefollowing means:

∙ Set the object to all-bits-zero, for example:
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 342

psa_pake_cipher_suite_t cipher_suite;
memset(&cipher_suite, 0, sizeof(cipher_suite));

∙ Initialize the object to logical zero values by declaring the object as static or global without an explicitinitializer, for example:
static psa_pake_cipher_suite_t cipher_suite;

∙ Initialize the object to the initializer PSA_PAKE_CIPHER_SUITE_INIT, for example:
psa_pake_cipher_suite_t cipher_suite = PSA_PAKE_CIPHER_SUITE_INIT;

∙ Assign the result of the function psa_pake_cipher_suite_init() to the object, for example:
psa_pake_cipher_suite_t cipher_suite;
cipher_suite = psa_pake_cipher_suite_init();

Following initialization, the cipher-suite object contains the following values:

Attribute Value

algorithm PSA_ALG_NONE — an invalid algorithm identifier.
primitive 0 — an invalid PAKE primitive.
key confirmation PSA_PAKE_CONFIRMED_KEY — requesting that the secret key is confirmed before it canbe returned.

Valid algorithm, primitive, and key confirmation values must be set when using a PAKE cipher suite.
Implementation note
Implementations are recommended to define the cipher-suite object as a simple data structure, withfields corresponding to the individual cipher suite attributes. In such an implementation, each function
psa_pake_cs_set_xxx() sets a field and the corresponding function psa_pake_cs_get_xxx() retrievesthe value of the field.
An implementation can report attribute values that are equivalent to the original one, but have adifferent encoding. For example, an implementation can use a more compact representation forattributes where many bit-patterns are invalid or not supported, and store all values that it does notsupport as a special marker value. In such an implementation, after setting an invalid value, thecorresponding get function returns an invalid value which might not be the one that was originallystored.

PSA_PAKE_CIPHER_SUITE_INIT (macro)
This macro returns a suitable initializer for a PAKE cipher suite object of type psa_pake_cipher_suite_t.
Added in version 1.1.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 343

#define PSA_PAKE_CIPHER_SUITE_INIT /* implementation-defined value */

psa_pake_cipher_suite_init (function)
Return an initial value for a PAKE cipher suite object.
Added in version 1.1.
psa_pake_cipher_suite_t psa_pake_cipher_suite_init(void);

Returns: psa_pake_cipher_suite_t

psa_pake_cs_get_algorithm (function)
Retrieve the PAKE algorithm from a PAKE cipher suite.
Added in version 1.1.
psa_algorithm_t psa_pake_cs_get_algorithm(const psa_pake_cipher_suite_t* cipher_suite);

Parameters
cipher_suite The cipher suite object to query.

Returns: psa_algorithm_t
The PAKE algorithm stored in the cipher suite object.
Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like macro.

psa_pake_cs_set_algorithm (function)
Declare the PAKE algorithm for the cipher suite.
Added in version 1.1.
void psa_pake_cs_set_algorithm(psa_pake_cipher_suite_t* cipher_suite,

psa_algorithm_t alg);

Parameters
cipher_suite The cipher suite object to write to.
alg The PAKE algorithm to write: a value of type psa_algorithm_t suchthat PSA_ALG_IS_PAKE(alg) is true.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 344

Returns: void
Description
This function overwrites any PAKE algorithm previously set in cipher_suite.

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like macro.

psa_pake_cs_get_primitive (function)
Retrieve the primitive from a PAKE cipher suite.
Added in version 1.1.
psa_pake_primitive_t psa_pake_cs_get_primitive(const psa_pake_cipher_suite_t* cipher_suite);

Parameters
cipher_suite The cipher suite object to query.

Returns: psa_pake_primitive_t
The primitive stored in the cipher suite object.
Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like macro.

psa_pake_cs_set_primitive (function)
Declare the primitive for a PAKE cipher suite.
Added in version 1.1.
void psa_pake_cs_set_primitive(psa_pake_cipher_suite_t* cipher_suite,

psa_pake_primitive_t primitive);

Parameters
cipher_suite The cipher suite object to write to.
primitive The PAKE primitive to write: a value of type psa_pake_primitive_t. Ifthis is 0, the primitive type in cipher_suite becomes unspecified.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 345

Returns: void
Description
This function overwrites any primitive previously set in cipher_suite.

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like macro.

PSA_PAKE_CONFIRMED_KEY (macro)
A key confirmation value that indicates an confirmed key in a PAKE cipher suite.
Added in version 1.2.
#define PSA_PAKE_CONFIRMED_KEY 0

This key confirmation value will result in the PAKE algorithm exchanging data to verify that the shared key isidentical for both parties. This is the default key confirmation value in an initialized PAKE cipher suite object.
Some algorithms do not include confirmation of the shared key.
PSA_PAKE_UNCONFIRMED_KEY (macro)
A key confirmation value that indicates an unconfirmed key in a PAKE cipher suite.
Added in version 1.2.
#define PSA_PAKE_UNCONFIRMED_KEY 1

This key confirmation value will result in the PAKE algorithm terminating prior to confirming that theresulting shared key is identical for both parties.
Some algorithms do not support returning an unconfirmed shared key.
. Warning

When the shared key is not confirmed as part of the PAKE operation, the application is responsible formitigating risks that arise from the possible mismatch in the output keys.

psa_pake_cs_get_key_confirmation (function)
Retrieve the key confirmation from a PAKE cipher suite.
Added in version 1.2.
uint32_t psa_pake_cs_get_key_confirmation(const psa_pake_cipher_suite_t* cipher_suite);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 346

Parameters
cipher_suite The cipher suite object to query.

Returns: uint32_t
A key confirmation value: either PSA_PAKE_CONFIRMED_KEY or PSA_PAKE_UNCONFIRMED_KEY.
Description

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like macro.

psa_pake_cs_set_key_confirmation (function)
Declare the key confirmation from a PAKE cipher suite.
Added in version 1.2.
void psa_pake_cs_set_key_confirmation(psa_pake_cipher_suite_t* cipher_suite,

uint32_t key_confirmation);

Parameters
cipher_suite The cipher suite object to write to.
key_confirmation The key confirmation value to write: either PSA_PAKE_CONFIRMED_KEY or

PSA_PAKE_UNCONFIRMED_KEY.
Returns: void
Description
This function overwrites any key confirmation previously set in cipher_suite.
The documentation of individual PAKE algorithms specifies which key confirmation values are valid for thealgorithm.

Implementation note
This is a simple accessor function that is not required to validate its inputs. It can be efficientlyimplemented as a static inline function or a function-like macro.

10.13.4 PAKE roles
Some PAKE algorithms need to know which role each participant is taking in the algorithm. For example:

∙ Augmented PAKE algorithms typically have a client and a server participant.
∙ Some symmetric PAKE algorithms assign an order to the two participants.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 347

psa_pake_role_t (typedef)
Encoding of the application role in a PAKE algorithm.
Added in version 1.1.
typedef uint8_t psa_pake_role_t;

This type is used to encode the application’s role in the algorithm being executed. For more information seethe documentation of individual PAKE role constants.
PSA_PAKE_ROLE_NONE (macro)
A value to indicate no role in a PAKE algorithm.
Added in version 1.1.
#define PSA_PAKE_ROLE_NONE ((psa_pake_role_t)0x00)

This value can be used in a call to psa_pake_set_role() for symmetric PAKE algorithms which do not assignroles.
PSA_PAKE_ROLE_FIRST (macro)
The first peer in a balanced PAKE.
Added in version 1.1.
#define PSA_PAKE_ROLE_FIRST ((psa_pake_role_t)0x01)

Although balanced PAKE algorithms are symmetric, some of them need the peers to be ordered for thetranscript calculations. If the algorithm does not need a specific ordering, then either do not call
psa_pake_set_role(), or use PSA_PAKE_ROLE_NONE as the role parameter.
PSA_PAKE_ROLE_SECOND (macro)
The second peer in a balanced PAKE.
Added in version 1.1.
#define PSA_PAKE_ROLE_SECOND ((psa_pake_role_t)0x02)

Although balanced PAKE algorithms are symmetric, some of them need the peers to be ordered for thetranscript calculations. If the algorithm does not need a specific ordering, then either do not call
psa_pake_set_role(), or use PSA_PAKE_ROLE_NONE as the role parameter.
PSA_PAKE_ROLE_CLIENT (macro)
The client in an augmented PAKE.
Added in version 1.1.
#define PSA_PAKE_ROLE_CLIENT ((psa_pake_role_t)0x11)

Augmented PAKE algorithms need to differentiate between client and server.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 348

PSA_PAKE_ROLE_SERVER (macro)
The server in an augmented PAKE.
Added in version 1.1.
#define PSA_PAKE_ROLE_SERVER ((psa_pake_role_t)0x12)

Augmented PAKE algorithms need to differentiate between client and server.

10.13.5 PAKE step types
psa_pake_step_t (typedef)
Encoding of input and output steps for a PAKE algorithm.
Added in version 1.1.
typedef uint8_t psa_pake_step_t;

Some PAKE algorithms need to exchange more data than a single key share. This type encodes additionalinput and output steps for such algorithms.
PSA_PAKE_STEP_KEY_SHARE (macro)
A key share being sent to or received from a PAKE participant.
Added in version 1.1.
#define PSA_PAKE_STEP_KEY_SHARE ((psa_pake_step_t)0x01)

The format for both input and output using this step is the same as the format for public keys on the groupspecified by the PAKE operation’s primitive.
The public-key formats are defined in the documentation for psa_export_public_key().
For information regarding how the group is determined, consult the documentation PSA_PAKE_PRIMITIVE().
PSA_PAKE_STEP_ZK_PUBLIC (macro)
A Schnorr NIZKP public key being sent to or received from a PAKE participant.
Added in version 1.1.
#define PSA_PAKE_STEP_ZK_PUBLIC ((psa_pake_step_t)0x02)

This is the ephemeral public key in the Schnorr Non-Interactive Zero-Knowledge Proof, this is the valuedenoted by V in [RFC8235].
The format for both input and output at this step is the same as that for public keys on the group specifiedby the PAKE operation’s primitive.
For more information on the format, consult the documentation of psa_export_public_key().
For information regarding how the group is determined, consult the documentation PSA_PAKE_PRIMITIVE().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 349

PSA_PAKE_STEP_ZK_PROOF (macro)
A Schnorr NIZKP proof being sent to or received from a PAKE participant.
Added in version 1.1.
#define PSA_PAKE_STEP_ZK_PROOF ((psa_pake_step_t)0x03)

This is the proof in the Schnorr Non-Interactive Zero-Knowledge Proof, this is the value denoted by r in[RFC8235].
Both for input and output, the value at this step is an integer less than the order of the group specified bythe PAKE operation’s primitive. The format depends on the group as well:

∙ For Montgomery curves, the encoding is little endian.
∙ For other elliptic curves, and for finite field Diffie-Hellman groups, the encoding is big endian. See[SEC1] §2.3.8.

In both cases leading zeroes are permitted as long as the length in bytes does not exceed the byte length ofthe group order.
For information regarding how the group is determined, consult the documentation PSA_PAKE_PRIMITIVE().
PSA_PAKE_STEP_CONFIRM (macro)
A key confirmation value being sent to or received from a PAKE participant.
Added in version 1.2.
#define PSA_PAKE_STEP_CONFIRM ((psa_pake_step_t)0x04)

This value is used during the key confirmation phase of a PAKE protocol. The use of this step, and format ofthe value depends on the algorithm and cipher suite:
∙ For a SPAKE2+ algorithm, the format for both input and output at this step is the same as the outputof the MAC algorithm specified in the cipher suite. See SPAKE2+ operation on page 374.
∙ For a WPA3-SAE algorithm, the format for both input and output at this step is a 2-byte little-endiansend-confirm counter, followed by the confirm value, which is the output from the hash algorithmspecified in the cipher suite. See WPA3-SAE operation on page 384.

PSA_PAKE_STEP_SALT (macro)
A salt value used for deriving shared secrets within a PAKE operation.
Added in version 1.4.
#define PSA_PAKE_STEP_SALT ((psa_pake_step_t)0x05)

This input can be used during the key exchange phase of a PAKE protocol. The use of this step, and formatof the value depends on the algorithm and cipher suite:
∙ For a WPA3-SAE algorithm, a salt value must be provided as defined in [IEEE-802.11] §12.4.5.4. SeeWPA3-SAE operation on page 384.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 350

PSA_PAKE_STEP_COMMIT (macro)
A commitment value being sent to or received from a PAKE participant.
Added in version 1.4.
#define PSA_PAKE_STEP_COMMIT ((psa_pake_step_t)0x06)

This input and output is used during the key exchange phase of a PAKE protocol. The use of this step, andformat of the value depends on the algorithm and cipher suite:
∙ For a WPA3-SAE algorithm, the format for input and output at this step is a concatenation of thecommit-scalar and COMMIT-ELEMENT values, as defined in [IEEE-802.11] §12.4.7.3.
See WPA3-SAE operation on page 384.

Note:
These values are adjacent in the WPA3-SAE Authentication frame defined in [IEEE-802.11]§9.3.3.11. The concatenated value can be output directly to, or input directly from, the framebuffer.

PSA_PAKE_STEP_CONFIRM_COUNT (macro)
A counter used as part of key confirmation.
Added in version 1.4.
#define PSA_PAKE_STEP_CONFIRM_COUNT ((psa_pake_step_t)0x07)

This value is input during the key confirmation phase of a PAKE protocol. It enables multiple confirmationattempts to result in distinct confirmation values. The use of this step, and format of the value depends onthe algorithm and cipher suite:
∙ For a WPA3-SAE algorithm, the format for input at this step is the 2-byte little-endian send-confirmcounter. See WPA3-SAE operation on page 384.

PSA_PAKE_STEP_KEY_ID (macro)
A key identifier value from a PAKE operation.
Added in version 1.4.
#define PSA_PAKE_STEP_KEY_ID ((psa_pake_step_t)0x08)

This value can be output from a PAKE operation following key confirmation. The use of this step, andformat of the value depends on the algorithm and cipher suite:
∙ For a WPA3-SAE algorithm, the format of the output at this step is the 16-byte PMKID. SeeWPA3-SAE operation on page 384.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 351

10.13.6 Multi-part PAKE operations
psa_pake_operation_t (typedef)
The type of the state object for PAKE operations.
Added in version 1.1.
typedef /* implementation-defined type */ psa_pake_operation_t;

Before calling any function on a PAKE operation object, the application must initialize it by any of thefollowing means:
∙ Set the object to all-bits-zero, for example:

psa_pake_operation_t operation;
memset(&operation, 0, sizeof(operation));

∙ Initialize the object to logical zero values by declaring the object as static or global without an explicitinitializer, for example:
static psa_pake_operation_t operation;

∙ Initialize the object to the initializer PSA_PAKE_OPERATION_INIT, for example:
psa_pake_operation_t operation = PSA_PAKE_OPERATION_INIT;

∙ Assign the result of the function psa_pake_operation_init() to the object, for example:
psa_pake_operation_t operation;
operation = psa_pake_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of thisobject will result in implementation-specific behavior, and are non-portable.
PSA_PAKE_OPERATION_INIT (macro)
This macro returns a suitable initializer for a PAKE operation object of type psa_pake_operation_t.
Added in version 1.1.
#define PSA_PAKE_OPERATION_INIT /* implementation-defined value */

psa_pake_operation_init (function)
Return an initial value for a PAKE operation object.
Added in version 1.1.
psa_pake_operation_t psa_pake_operation_init(void);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 352

Returns: psa_pake_operation_t

psa_pake_setup (function)
Setup a password-authenticated key exchange.
Added in version 1.1.
Changed in version 1.2: Added key to the operation setup.
psa_status_t psa_pake_setup(psa_pake_operation_t * operation,

psa_key_id_t password_key,
const psa_pake_cipher_suite_t * cipher_suite);

Parameters
operation The operation object to set up. It must have been initialized as per thedocumentation for psa_pake_operation_t and not yet in use.
password_key Identifier of the key holding the password or a value derived from thepassword. It must remain valid until the operation terminates.

The valid key types depend on the PAKE algorithm, and participantrole. Refer to the documentation of individual PAKE algorithms formore information.
The key must permit the usage PSA_KEY_USAGE_DERIVE.

cipher_suite The cipher suite to use. A PAKE cipher suite fully characterizes a PAKEalgorithm, including the PAKE algorithm.
The cipher suite must be compatible with the key type of password_key.

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be inactive.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE password_key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED password_key does not have the PSA_KEY_USAGE_DERIVE flag, or it doesnot permit the algorithm in cipher_suite.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ The algorithm in cipher_suite is not a PAKE algorithm, orencodes an invalid hash algorithm.
∙ The PAKE primitive in cipher_suite is not compatible with thePAKE algorithm.
∙ The key confirmation value in cipher_suite is not compatible withthe PAKE algorithm and primitive.
∙ The key type or key size of password_key is not compatible with

cipher_suite.
PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

∙ The algorithm in cipher_suite is not a supported PAKE algorithm,or encodes an unsupported hash algorithm.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 353

∙ The PAKE primitive in cipher_suite is not supported or notcompatible with the PAKE algorithm.
∙ The key confirmation value in cipher_suite is not supported, ornot compatible, with the PAKE algorithm and primitive.
∙ The key type or key size of password_key is not supported with

cipher suite.
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The sequence of operations to set up a password-authenticated key exchange operation is as follows:

1. Allocate a PAKE operation object which will be passed to all the functions listed here.
2. Initialize the operation object with one of the methods described in the documentation for

psa_pake_operation_t. For example, using PSA_PAKE_OPERATION_INIT.
3. Call psa_pake_setup() to specify the cipher suite and provide the password or password-derived key.
4. Call psa_pake_set_xxx() functions on the operation to complete the setup. The exact sequence of

psa_pake_set_xxx() functions that needs to be called depends on the algorithm in use.
A typical sequence of calls to perform a password-authenticated key exchange:

1. Call psa_pake_output(operation, PSA_PAKE_STEP_KEY_SHARE, ...) to get the key share that needs to besent to the peer.
2. Call psa_pake_input(operation, PSA_PAKE_STEP_KEY_SHARE, ...) to provide the key share that wasreceived from the peer.
3. Depending on the algorithm additional calls to psa_pake_output() and psa_pake_input() might benecessary.
4. Call psa_pake_get_shared_key() to access the shared secret.

Refer to the documentation of individual PAKE algorithms for details on the required set up and operationfor each algorithm, and for constraints on the format and content of valid passwords.
After a successful call to psa_pake_setup(), the operation is active, and the application must eventuallyterminate the operation. The following events terminate an operation:

∙ A successful call to psa_pake_get_shared_key().
∙ A call to psa_pake_abort().

If psa_pake_setup() returns an error, the operation object is unchanged. If a subsequent function call with anactive operation returns an error, the operation enters an error state.
To abandon an active operation, or reset an operation in an error state, call psa_pake_abort().
See Multi-part operations on page 27.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 354

psa_pake_set_role (function)
Set the application role for a password-authenticated key exchange.
Added in version 1.1.
psa_status_t psa_pake_set_role(psa_pake_operation_t * operation,

psa_pake_role_t role);

Parameters
operation Active PAKE operation.
role A value of type psa_pake_role_t indicating the application role in thePAKE algorithm. See PAKE roles on page 347.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, and
psa_pake_set_role(), psa_pake_input(), and psa_pake_output()must not have been called yet.

∙ The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ role is not a valid PAKE role in the operation’s algorithm.
∙ role is not compatible with the operation’s key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:
∙ role is not a valid PAKE role, or is not supported for theoperation’s algorithm.
∙ role is not supported with the operation’s key type.

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
Not all PAKE algorithms need to differentiate the communicating participants. For PAKE algorithms that donot require a role to be specified, the application can do either of the following:

∙ Not call psa_pake_set_role() on the PAKE operation.
∙ Call psa_pake_set_role() with the PSA_PAKE_ROLE_NONE role.

Refer to the documentation of individual PAKE algorithms for more information.
psa_pake_set_user (function)
Set the user ID for a password-authenticated key exchange.
Added in version 1.1.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 355

psa_status_t psa_pake_set_user(psa_pake_operation_t * operation,
const uint8_t * user_id,
size_t user_id_len);

Parameters
operation Active PAKE operation.
user_id The user ID to authenticate with.
user_id_len Size of the user_id buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, and
psa_pake_set_user(), psa_pake_input(), and psa_pake_output()must not have been called yet.

∙ The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_ARGUMENT user_id is not valid for the operation’s algorithm and cipher suite.
PSA_ERROR_NOT_SUPPORTED The value of user_id is not supported by the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
Call this function to set the user ID. For PAKE algorithms that associate a user identifier with bothparticipants in the session, also call psa_pake_set_peer() with the peer ID. For PAKE algorithms thatassociate a single user identifier with the session, call psa_pake_set_user() only.
Refer to the documentation of individual PAKE algorithms for more information.
psa_pake_set_peer (function)
Set the peer ID for a password-authenticated key exchange.
Added in version 1.1.
psa_status_t psa_pake_set_peer(psa_pake_operation_t * operation,

const uint8_t * peer_id,
size_t peer_id_len);

Parameters
operation Active PAKE operation.
peer_id The peer’s ID to authenticate.
peer_id_len Size of the peer_id buffer in bytes.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 356

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, and
psa_pake_set_peer(), psa_pake_input(), and psa_pake_output()must not have been called yet.

∙ Calling psa_pake_set_peer() is invalid with the operation’salgorithm.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT peer_id is not valid for the operation’s algorithm and cipher suite.
PSA_ERROR_NOT_SUPPORTED The value of peer_id is not supported by the implementation.
PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
Call this function in addition to psa_pake_set_user() for PAKE algorithms that associate a user identifier withboth participants in the session. For PAKE algorithms that associate a single user identifier with the session,call psa_pake_set_user() only.
Refer to the documentation of individual PAKE algorithms for more information.
psa_pake_set_context (function)
Set the context data for a password-authenticated key exchange.
Added in version 1.2.
psa_status_t psa_pake_set_context(psa_pake_operation_t * operation,

const uint8_t * context,
size_t context_len);

Parameters
operation Active PAKE operation.
context The peer’s ID to authenticate.
context_len Size of the context buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active, and
psa_pake_set_context(), psa_pake_input(), and psa_pake_output()must not have been called yet.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 357

∙ Calling psa_pake_set_context() is invalid with the operation’salgorithm.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT context is not valid for the operation’s algorithm and cipher suite.
PSA_ERROR_NOT_SUPPORTED The value of context is not supported by the implementation.
PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
Call this function for PAKE algorithms that accept additional context data as part of the protocol setup.
Refer to the documentation of individual PAKE algorithms for more information.
psa_pake_output (function)
Get output for a step of a password-authenticated key exchange.
Added in version 1.1.
psa_status_t psa_pake_output(psa_pake_operation_t * operation,

psa_pake_step_t step,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters
operation Active PAKE operation.
step The step of the algorithm for which the output is requested.
output Buffer where the output is to be written. The format of the outputdepends on the step, see PAKE step types on page 349.
output_size Size of the output buffer in bytes. This must be appropriate for thecipher suite and output step:

∙ A sufficient output size is PSA_PAKE_OUTPUT_SIZE(alg, primitive,
step) where alg and primitive are the PAKE algorithm andprimitive in the operation’s cipher suite, and step is the outputstep.

∙ PSA_PAKE_OUTPUT_MAX_SIZE evaluates to the maximum output sizeof any supported PAKE algorithm, primitive and step.
output_length On success, the number of bytes of the returned output.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 358

Returns: psa_status_t
PSA_SUCCESS Success. The first (*output_length) bytes of output contain the output.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active and fully set up,and this call must conform to the algorithm’s requirements forordering of input and output steps.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small. PSA_PAKE_OUTPUT_SIZE() or
PSA_PAKE_OUTPUT_MAX_SIZE can be used to determine a sufficient buffersize.

PSA_ERROR_INVALID_ARGUMENT step is not compatible with the operation’s algorithm.
PSA_ERROR_NOT_SUPPORTED step is not supported with the operation’s algorithm.
PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
Depending on the algorithm being executed, you might need to call this function several times or you mightnot need to call this at all.
The exact sequence of calls to perform a password-authenticated key exchange depends on the algorithmin use. Refer to the documentation of individual PAKE algorithms for more information.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_pake_abort().
psa_pake_input (function)
Provide input for a step of a password-authenticated key exchange.
Added in version 1.1.
psa_status_t psa_pake_input(psa_pake_operation_t * operation,

psa_pake_step_t step,
const uint8_t * input,
size_t input_length);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 359

Parameters
operation Active PAKE operation.
step The step for which the input is provided.
input Buffer containing the input. The format of the input depends on the

step, see PAKE step types on page 349.
input_length Size of the input buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The operation state is not valid: it must be active and fully set up,and this call must conform to the algorithm’s requirements forordering of input and output steps.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_SIGNATURE The verification fails for a PSA_PAKE_STEP_ZK_PROOF or
PSA_PAKE_STEP_CONFIRM input step.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ step is not compatible with the operation’s algorithm.
∙ The input is not valid for the operation’s algorithm, cipher suite or

step.
PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

∙ step is not supported with the operation’s algorithm.
∙ The input is not supported for the operation’s algorithm, ciphersuite or step.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
Depending on the algorithm being executed, you might need to call this function several times or you mightnot need to call this at all.
The exact sequence of calls to perform a password-authenticated key exchange depends on the algorithmin use. Refer to the documentation of individual PAKE algorithms for more information.
PSA_PAKE_INPUT_SIZE() or PSA_PAKE_INPUT_MAX_SIZE can be used to allocate buffers of sufficient size totransfer inputs that are received from the peer into the operation.
If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_pake_abort().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 360

psa_pake_get_shared_key (function)
Extract the shared secret from the PAKE as a key.
Added in version 1.2.
psa_status_t psa_pake_get_shared_key(psa_pake_operation_t * operation,

const psa_key_attributes_t * attributes,
psa_key_id_t * key);

Parameters
operation Active PAKE operation.
attributes The attributes for the new key.

The following attributes are required for all keys:
∙ The key type. All PAKE algorithms can output a key of type

PSA_KEY_TYPE_DERIVE or PSA_KEY_TYPE_HMAC. PAKE algorithms thatproduce a pseudorandom shared secret, can also outputblock-cipher key types, for example PSA_KEY_TYPE_AES. Refer tothe documentation of individual PAKE algorithms for moreinformation.
The following attributes must be set for keys used in cryptographicoperations:

∙ The key permitted-algorithm policy, see Permitted algorithms onpage 101.
∙ The key usage flags, see Key usage flags on page 102.

The following attributes must be set for keys that do not use thedefault PSA_KEY_LIFETIME_VOLATILE lifetime:
∙ The key lifetime, see Key lifetimes on page 90.
∙ The key identifier is required for a key with a persistent lifetime,see Key identifiers on page 98.

The following attributes are optional:
∙ If the key size is nonzero, it must be equal to the size of the PAKEshared secret.

Note:
This is an input parameter: it is not updated with the final keyattributes. The final attributes of the new key can be queried bycalling psa_get_key_attributes() with the key’s identifier.

key On success, an identifier for the newly created key. PSA_KEY_ID_NULL onfailure.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 361

Returns: psa_status_t
PSA_SUCCESS Success. If the key is persistent, the key material and the key’smetadata have been saved to persistent storage.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ The state of PAKE operation operation is not valid: it must beready to return the shared secret.For an unconfirmed key, this will be when the key-exchangeoutput and input steps are complete, but prior to anykey-confirmation output and input steps.For a confirmed key, this will be when all key-exchange andkey-confirmation output and input steps are complete.
∙ The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_NOT_PERMITTED The implementation does not permit creating a key with the specifiedattributes due to some implementation-specific policy.
PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already apersistent key with the given identifier.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ The key type is not valid for output from this operation’salgorithm.
∙ The key size is nonzero.
∙ The key lifetime is invalid.
∙ The key identifier is not valid for the key lifetime.
∙ The key usage flags include invalid values.
∙ The key’s permitted-usage algorithm is invalid.
∙ The key attributes, as a whole, are invalid.

PSA_ERROR_NOT_SUPPORTED The key attributes, as a whole, are not supported for creation from aPAKE secret, either by the implementation in general or in thespecified storage location.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The shared secret is retrieved as a key. Its location, policy, and type are taken from attributes.
The size of the returned key is always the bit-size of the PAKE shared secret, rounded up to a wholenumber of bytes. The size of the shared secret is dependent on the PAKE algorithm and cipher suite.
This is the final call in a PAKE operation, which retrieves the shared secret as a key. It is recommended thatthis key is used as an input to a key-derivation operation to produce additional cryptographic keys. For

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 362

some PAKE algorithms, the shared secret is also suitable for use as a key in cryptographic operations suchas encryption. Refer to the documentation of individual PAKE algorithms for more information.
Depending on the key confirmation requested in the cipher suite, psa_pake_get_shared_key() must be calledeither before or after the key-confirmation output and input steps for the PAKE algorithm. The keyconfirmation affects the guarantees that can be made about the shared key:
Unconfirmed key If the cipher suite used to set up the operation requested an unconfirmed key, theapplication must call psa_pake_get_shared_key() after the key-exchange output andinput steps are completed. The PAKE algorithm provides a cryptographic guaranteethat only a peer who used the same password, and identity inputs, is able tocompute the same key. However, there is no guarantee that the peer is theparticipant it claims to be, and was able to compute the same key.

Since the peer is not authenticated, no action should be taken that assumes thatthe peer is who it claims to be. For example, do not access restricted resources onthe peer’s behalf until an explicit authentication has succeeded.
Note:
Some PAKE algorithms do not enable the output of the shared secret until ithas been confirmed.

Confirmed key If the cipher suite used to set up the operation requested a confirmed key, theapplication must call psa_pake_get_shared_key() after the key-exchange andkey-confirmation output and input steps are completed.
Following key confirmation, the PAKE algorithm provides a cryptographic guaranteethat the peer used the same password and identity inputs, and has computed theidentical shared secret key.

Note:
Some PAKE algorithms do not include any key-confirmation steps.

The exact sequence of calls to perform a password-authenticated key exchange depends on the algorithmin use. Refer to the documentation of individual PAKE algorithms for more information.
When this function returns successfully, operation becomes inactive. If this function returns an error status,the operation enters an error state and must be aborted by calling psa_pake_abort().
psa_pake_abort (function)
Abort a PAKE operation.
Added in version 1.1.
psa_status_t psa_pake_abort(psa_pake_operation_t * operation);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 363

Parameters
operation Initialized PAKE operation.

Returns: psa_status_t
PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
Aborting an operation frees all associated resources except for the operation object itself. Once aborted,the operation object can be reused for another operation by calling psa_pake_setup() again.
This function can be called any time after the operation object has been initialized as described in
psa_pake_operation_t.
In particular, calling psa_pake_abort() after the operation has been terminated by a call to psa_pake_abort()or psa_pake_get_shared_key() is safe and has no effect.

10.13.7 PAKE support macros
PSA_PAKE_OUTPUT_SIZE (macro)
Sufficient output buffer size for psa_pake_output(), in bytes.
Added in version 1.1.
#define PSA_PAKE_OUTPUT_SIZE(alg, primitive, output_step) \

/* implementation-defined value */

Parameters
alg A PAKE algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_PAKE(alg) is true.
primitive A primitive of type psa_pake_primitive_t that is compatible withalgorithm alg.
output_step A value of type psa_pake_step_t that is valid for the algorithm alg.

Returns
A sufficient output buffer size for the specified PAKE algorithm, primitive, and output step. Animplementation can return either 0 or a correct size for a PAKE algorithm, primitive, and output step that itrecognizes, but does not support. If the parameters are not valid, the return value is unspecified.
Description
If the size of the output buffer is at least this large, it is guaranteed that psa_pake_output() will not fail dueto an insufficient buffer size. The actual size of the output might be smaller in any given call.
See also PSA_PAKE_OUTPUT_MAX_SIZE

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 364

PSA_PAKE_OUTPUT_MAX_SIZE (macro)
Sufficient output buffer size for psa_pake_output() for any of the supported PAKE algorithms, primitives andoutput steps.
Added in version 1.1.
#define PSA_PAKE_OUTPUT_MAX_SIZE /* implementation-defined value */

If the size of the output buffer is at least this large, it is guaranteed that psa_pake_output() will not fail dueto an insufficient buffer size.
See also PSA_PAKE_OUTPUT_SIZE().
PSA_PAKE_INPUT_SIZE (macro)
Sufficient buffer size for inputs to psa_pake_input().
Added in version 1.1.
#define PSA_PAKE_INPUT_SIZE(alg, primitive, input_step) \

/* implementation-defined value */

Parameters
alg A PAKE algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_PAKE(alg) is true.
primitive A primitive of type psa_pake_primitive_t that is compatible withalgorithm alg.
input_step A value of type psa_pake_step_t that is valid for the algorithm alg.

Returns
A sufficient buffer size for the specified PAKE algorithm, primitive, and input step. An implementation canreturn either 0 or a correct size for a PAKE algorithm, primitive, and output step that it recognizes, but doesnot support. If the parameters are not valid, the return value is unspecified.
Description
The value returned by this macro is guaranteed to be large enough for any valid input to psa_pake_input() inan operation with the specified parameters.
This macro can be useful when transferring inputs from the peer into the PAKE operation.
See also PSA_PAKE_INPUT_MAX_SIZE

PSA_PAKE_INPUT_MAX_SIZE (macro)
Sufficient buffer size for inputs to psa_pake_input() for any of the supported PAKE algorithms, primitivesand input steps.
Added in version 1.1.
#define PSA_PAKE_INPUT_MAX_SIZE /* implementation-defined value */

This macro can be useful when transferring inputs from the peer into the PAKE operation.
See also PSA_PAKE_INPUT_SIZE().
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 365

10.13.8 The J-PAKE protocol
J-PAKE is the password-authenticated key exchange by juggling protocol, defined by J-PAKE:Password-Authenticated Key Exchange by Juggling [RFC8236]. This protocol uses the Schnorr Non-InteractiveZero-Knowledge Proof (NIZKP), as defined by Schnorr Non-interactive Zero-Knowledge Proof [RFC8235].
J-PAKE is a balanced PAKE, without key confirmation.
J-PAKE cipher suites
When setting up a PAKE cipher suite to use the J-PAKE protocol:

∙ Use the PSA_ALG_JPAKE() algorithm, parameterized by the required hash algorithm.
∙ Use a PAKE primitive for the required elliptic curve, or finite field group.
∙ J-PAKE does not confirm the shared secret key that results from the key exchange.

For example, the following code creates a cipher suite to select J-PAKE using P-256 with the SHA-256 hashfunction:
psa_pake_cipher_suite_t cipher_suite = PSA_PAKE_CIPHER_SUITE_INIT;

psa_pake_cs_set_algorithm(&cipher_suite, PSA_ALG_JPAKE(PSA_ALG_SHA_256));
psa_pake_cs_set_primitive(&cipher_suite,

PSA_PAKE_PRIMITIVE(PSA_PAKE_PRIMITIVE_TYPE_ECC,
PSA_ECC_FAMILY_SECP_R1, 256));

psa_pake_cs_set_key_confirmation(&cipher_suite, PSA_PAKE_UNCONFIRMED_KEY);

More information on selecting a specific elliptic curve or finite field Diffie-Hellman group is provided withthe PSA_PAKE_PRIMITIVE_TYPE_ECC and PSA_PAKE_PRIMITIVE_TYPE_DH constants.
J-PAKE password processing
The PAKE operation for J-PAKE expects a key of type type PSA_KEY_TYPE_PASSWORD orPSA_KEY_TYPE_PASSWORD_HASH`. The same key value must be provided to the PAKE operation in bothparticipants.
The key can be the password text itself, in an agreed character encoding, or some value derived from thepassword, as required by a higher level protocol. For low-entropy passwords, it is recommended that akey-stretching derivation algorithm, such as PBKDF2, is used, and the resulting password hash is used asthe key input to the PAKE operation.
J-PAKE operation
The J-PAKE operation follows the protocol shown in Figure 3 on page 367.
Setup
J-PAKE does not assign roles to the participants, so it is not necessary to call psa_pake_set_role().
J-PAKE requires both an application and a peer identity. If the peer identity provided to psa_pake_set_peer()does not match the data received from the peer, then the call to psa_pake_input() for the
PSA_PAKE_STEP_ZK_PROOF step will fail with PSA_ERROR_INVALID_SIGNATURE.
J-PAKE does not use a context. A call to psa_pake_set_context() for a J-PAKE operation will fail with
PSA_ERROR_BAD_STATE.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 366

User Peer

Shared information: cipher suite, secret s, UserId, and PeerId

psa_pake_setup()
psa_pake_set_user()
psa_pake_set_peer()

Generate x1 and x2
Compute public keys g1 and g2
Compute ZKP (V1, r1) for g1 and (V2, r2) for g2

Generate x3 and x4
Compute public keys g3 and g4
Compute ZKPs (V3, r3) for g3 and (V4, r4) for g4

psa_pake_output() for g1, V1, r1, g2, V2 , and r2

(g1, V1, r1, g2, V2, r2)

(g3, V3, r3, g4, V4, r4)

psa_pake_input() for g3, V3, r3, g4, V4 , and r4

Verify ZKPs and compute A and ZKP (V5, r5) for x2*s Verify ZKPs and compute B and ZKP (V6, r6) for x4*s

psa_pake_output() for A, V5, and r5

(A, V5, r5)

(B, V6, r6)

psa_pake_input() for B, V6, and r6

Verify ZKP and compute Ka Verify ZKP and compute Kb

If both sides used the same secret s, then Ka = Kb

psa_pake_get_shared_key() to extract Ka

Figure 3 The J-PAKE protocol
The variable names 𝑥1, 𝑔1, and so on, are taken from the finite field implementation of J-PAKE in [RFC8236] §2.Details of the computation for the key shares and zero-knowledge proofs are in [RFC8236] and [RFC8235].

The following steps demonstrate the application code for ‘User’ in Figure 3. The code flow for the ‘Peer’ isthe same as for ‘User’, as J-PAKE is a balanced PAKE.
1. To prepare a J-PAKE operation, initialize and set up a psa_pake_operation_t object by calling thefollowing functions:

psa_pake_operation_t jpake = PSA_PAKE_OPERATION_INIT;
(continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 367

https://datatracker.ietf.org/doc/html/rfc8236.html#section-2

(continued from previous page)
psa_pake_setup(&jpake, pake_key, &cipher_suite);
psa_pake_set_user(&jpake, ...);
psa_pake_set_peer(&jpake, ...);

See J-PAKE cipher suites on page 366 and J-PAKE password processing on page 366 for details on therequirements for the cipher suite and key.
The key material is used as an array of bytes, which is converted to an integer as described in SEC 1:Elliptic Curve Cryptography [SEC1] §2.3.8, before reducing it modulo 𝑞. Here, 𝑞 is the order of thegroup defined by the cipher-suite primitive. psa_pake_setup() will return an error if the result of theconversion and reduction is 0.

Key exchange
After setup, the key exchange flow for J-PAKE is as follows:

2. Round one.
The application can either extract the round one output values first, and then provide the round oneinputs that are received from the Peer; or provide the peer inputs first, and then extract the outputs.
To get the first round data that needs to be sent to the peer, make the following calls to
psa_pake_output(), in the order shown:
// Get g1
psa_pake_output(&jpake, PSA_PAKE_STEP_KEY_SHARE, ...);
// Get V1, the ZKP public key for x1
psa_pake_output(&jpake, PSA_PAKE_STEP_ZK_PUBLIC, ...);
// Get r1, the ZKP proof for x1
psa_pake_output(&jpake, PSA_PAKE_STEP_ZK_PROOF, ...);
// Get g2
psa_pake_output(&jpake, PSA_PAKE_STEP_KEY_SHARE, ...);
// Get V2, the ZKP public key for x2
psa_pake_output(&jpake, PSA_PAKE_STEP_ZK_PUBLIC, ...);
// Get r2, the ZKP proof for x2
psa_pake_output(&jpake, PSA_PAKE_STEP_ZK_PROOF, ...);

To provide the first round data received from the peer to the operation, make the following calls to
psa_pake_input(), in the order shown:
// Set g3
psa_pake_input(&jpake, PSA_PAKE_STEP_KEY_SHARE, ...);
// Set V3, the ZKP public key for x3
psa_pake_input(&jpake, PSA_PAKE_STEP_ZK_PUBLIC, ...);
// Set r3, the ZKP proof for x3
psa_pake_input(&jpake, PSA_PAKE_STEP_ZK_PROOF, ...);
// Set g4
psa_pake_input(&jpake, PSA_PAKE_STEP_KEY_SHARE, ...);
// Set V4, the ZKP public key for x4
psa_pake_input(&jpake, PSA_PAKE_STEP_ZK_PUBLIC, ...);
// Set r4, the ZKP proof for x4
psa_pake_input(&jpake, PSA_PAKE_STEP_ZK_PROOF, ...);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 368

3. Round two.
The application can either extract the round two output values first, and then provide the round twoinputs that are received from the Peer; or provide the peer inputs first, and then extract the outputs.
To get the second round data that needs to be sent to the peer, make the following calls to
psa_pake_output(), in the order shown:
// Get A
psa_pake_output(&jpake, PSA_PAKE_STEP_KEY_SHARE, ...);
// Get V5, the ZKP public key for x2*s
psa_pake_output(&jpake, PSA_PAKE_STEP_ZK_PUBLIC, ...);
// Get r5, the ZKP proof for x2*s
psa_pake_output(&jpake, PSA_PAKE_STEP_ZK_PROOF, ...);

To provide the second round data received from the peer to the operation, make the following calls to
psa_pake_input(), in the order shown:
// Set B
psa_pake_input(&jpake, PSA_PAKE_STEP_KEY_SHARE, ...);
// Set V6, the ZKP public key for x4*s
psa_pake_input(&jpake, PSA_PAKE_STEP_ZK_PUBLIC, ...);
// Set r6, the ZKP proof for x4*s
psa_pake_input(&jpake, PSA_PAKE_STEP_ZK_PROOF, ...);

Extract shared secret
4. To use the shared secret, extract it as a key-derivation key. For example, to extract a derivation key forHKDF-SHA-256:

// Set up the key attributes
psa_key_attributes_t att = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_type(&att, PSA_KEY_TYPE_DERIVE);
psa_set_key_usage_flags(&att, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&att, PSA_ALG_HKDF(PSA_ALG_SHA_256));

// Get Ka=Kb=K
psa_key_id_t shared_key;
psa_pake_get_shared_key(&jpake, &att, &shared_key);

For more information about the format of the values which are passed for each step, see PAKE step types onpage 349.
If the verification of a Zero-knowledge proof provided by the peer fails, then the corresponding call to
psa_pake_input() for the PSA_PAKE_STEP_ZK_PROOF step will return PSA_ERROR_INVALID_SIGNATURE.
The shared secret that is produced by J-PAKE is not suitable for use as an encryption key. It must be usedas an input to a key-derivation operation to produce additional cryptographic keys.
. Warning

At the end of this sequence there is a cryptographic guarantee that only a peer that used the samepassword is able to compute the same key. But there is no guarantee that the peer is the participant it

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 369

claims to be, or that the peer used the same password during the exchange.
At this point, authentication is implicit — material encrypted or authenticated using the computed keycan only be decrypted or verified by someone with the same key. The peer is not authenticated at thispoint, and no action should be taken by the application which assumes that the peer is authenticated,for example, by accessing restricted resources.
To make the authentication explicit, there are various methods to confirm that both parties have thesame key. See [RFC8236] §5 for two examples.

10.13.9 J-PAKE algorithms
PSA_ALG_JPAKE (macro)
Macro to build the Password-authenticated key exchange by juggling (J-PAKE) algorithm.
Added in version 1.1.
Changed in version 1.2: Parameterize J-PAKE algorithm by hash.
#define PSA_ALG_JPAKE(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true.
Returns
A J-PAKE algorithm, parameterized by a specific hash.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This is J-PAKE as defined by [RFC8236], instantiated with the following parameters:

∙ The primitive group can be either an elliptic curve or defined over a finite field.
∙ The Schnorr NIZKP, using the same group as the J-PAKE algorithm.
∙ The cryptographic hash function, hash_alg.

J-PAKE does not confirm the shared secret key that results from the key exchange.
The shared secret that is produced by J-PAKE is not suitable for use as an encryption key. It must be usedas an input to a key-derivation operation to produce additional cryptographic keys.
See The J-PAKE protocol on page 366 for the J-PAKE protocol flow and how to implement it with the CryptoAPI.
Compatible key types
PSA_KEY_TYPE_PASSWORD

PSA_KEY_TYPE_PASSWORD_HASH

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 370

https://datatracker.ietf.org/doc/html/rfc8236.html#section-5

PSA_ALG_IS_JPAKE (macro)
Whether the specified algorithm is a J-PAKE algorithm.
Added in version 1.2.
#define PSA_ALG_IS_JPAKE(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a J-PAKE algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supported PAKEalgorithm identifier.
Description
J-PAKE algorithms are constructed using PSA_ALG_JPAKE(hash_alg).

10.13.10 The SPAKE2+ protocol
SPAKE2+ is the augmented password-authenticated key exchange protocol, defined by SPAKE2+, anAugmented Password-Authenticated Key Exchange (PAKE) Protocol [RFC9383]. SPAKE2+ includesconfirmation of the shared secret key that results from the key exchange.
SPAKE2+ is required by Matter Specification, Version 1.2 [MATTER], as MATTER_PAKE. [MATTER] uses anearlier draft of the SPAKE2+ protocol, SPAKE2+, an Augmented PAKE (Draft 02) [SPAKE2P-2].
Although the operation of the PAKE is similar for both of these variants, they have different key schedulesfor the derivation of the shared secret.
SPAKE2+ cipher suites
SPAKE2+ is instantiated with the following parameters:

∙ An elliptic curve group.
∙ A cryptographic hash function.
∙ A key-derivation function.
∙ A keyed MAC function.

Valid combinations of these parameters are defined in the table of cipher suites in [RFC9383] §4.
When setting up a PAKE cipher suite to use the SPAKE2+ protocol defined in [RFC9383]:

∙ For cipher-suites that use HMAC for key confirmation, use the PSA_ALG_SPAKE2P_HMAC() algorithm,parameterized by the required hash algorithm.
∙ For cipher-suites that use CMAC-AES-128 for key confirmation, use the PSA_ALG_SPAKE2P_CMAC()algorithm, parameterized by the required hash algorithm.
∙ Use a PAKE primitive for the required elliptic curve.

For example, the following code creates a cipher suite to select SPAKE2+ using edwards25519 with theSHA-256 hash function:
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 371

https://datatracker.ietf.org/doc/html/rfc9383.html#section-4

psa_pake_cipher_suite_t cipher_suite = PSA_PAKE_CIPHER_SUITE_INIT;

psa_pake_cs_set_algorithm(&cipher_suite, PSA_ALG_SPAKE2P_HMAC(PSA_ALG_SHA_256));
psa_pake_cs_set_primitive(&cipher_suite,

PSA_PAKE_PRIMITIVE(PSA_PAKE_PRIMITIVE_TYPE_ECC,
PSA_ECC_FAMILY_TWISTED_EDWARDS, 255));

When setting up a PAKE cipher suite to use the SPAKE2+ protocol used by [MATTER]:
∙ Use the PSA_ALG_SPAKE2P_MATTER algorithm.
∙ Use the PSA_PAKE_PRIMITIVE(PSA_PAKE_PRIMITIVE_TYPE_ECC, PSA_ECC_FAMILY_SECP_R1, 256) PAKEprimitive.

The following code creates a cipher suite to select the [MATTER] variant of SPAKE2+:
psa_pake_cipher_suite_t cipher_suite = PSA_PAKE_CIPHER_SUITE_INIT;

psa_pake_cs_set_algorithm(&cipher_suite, PSA_ALG_SPAKE2P_MATTER);
psa_pake_cs_set_primitive(&cipher_suite,

PSA_PAKE_PRIMITIVE(PSA_PAKE_PRIMITIVE_TYPE_ECC,
PSA_ECC_FAMILY_SECP_R1, 256));

SPAKE2+ registration
The SPAKE2+ protocol has distinct roles for the two participants:

∙ The Prover takes the role of client. It uses the protocol to prove that it knows the secret password, andproduce a shared secret.
∙ The Verifier takes the role of server. It uses the protocol to verify the client’s proof, and produce ashared secret.

The registration phase of SPAKE2+ provides the initial password processing, described in [RFC9383] §3.2.The result of registration is two pairs of values — (𝑤0, 𝑤1) and (𝑤0, 𝐿) — that need to be provided duringthe authentication phase to the Prover and Verifier, respectively. The design of SPAKE2+ ensures thatknowledge of (𝑤0, 𝐿) does not enable an attacker to determine the password, or to compute 𝑤1.
In the Crypto API, the registration output values are managed as an asymmetric key pair:

∙ The Prover values, (𝑤0, 𝑤1), are stored in a key of type PSA_KEY_TYPE_SPAKE2P_KEY_PAIR().
∙ The Verifier values, (𝑤0, 𝐿), are stored in a key of type PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY(), or derivedfrom the matching PSA_KEY_TYPE_SPAKE2P_KEY_PAIR().

The SPAKE2+ key types are parameterized by the same elliptic curve as the SPAKE2+ cipher suite.
The key pair is derived from the initial SPAKE2+ password prior to starting the PAKE operation. It isrecommended to use a key-stretching derivation algorithm, for example PBKDF2. This process can takeplace immediately before the PAKE operation, or derived at some earlier point and stored by theparticipant. Alternatively, the Verifier can be provisioned with the PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY() forthe protocol, by the Prover, or some other agent. Figure 4 on page 373 illustrates some example SPAKE2+key-derivation flows.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 372

https://datatracker.ietf.org/doc/html/rfc9383.html#section-3.2

The resulting SPAKE2+ key pair must be protected at least as well as the password. The public key, exportedfrom the key pair, does not need to be kept confidential. It is recommended that the Verifier stores only thepublic key, because disclosure of the public key does not enable an attacker to impersonate the Prover.
Prover (Client role) Verifier (Server role)

Initial information : cipher suite, PBKDF-params, password

psa_key_derivation_setup(PBKDF)
psa_key_derivation_input_key(password)
psa_key_derivation_input_xxx() for PBKDF-params

psa_key_derivation_output_key(SPAKE2P_KEY_PAIR)
Compute key pair (w0, w1)

alt [Independent registration]

psa_key_derivation_setup(PBKDF)
psa_key_derivation_input_key(password)
psa_key_derivation_input_xxx() for PBKDF-params

psa_key_derivation_output_key(SPAKE2P_KEY_PAIR)
Compute key pair (w0, w1)

[Connected registration]

psa_export_public_key()
Compute L and output w0 || L

Registration record (w0 || L)

psa_import_key(SPAKE2P_PUBLIC_KEY) from w0 || L
Import public key (w0, L)

Use key pair for authentication flow Use key for authentication flow

Figure 4 Examples of SPAKE2+ key-derivation procedures
The variable names 𝑤0, 𝑤1, and 𝐿 are taken from the description of SPAKE2+ in [RFC9383].Details of the computation for the key-derivation values are in [RFC9383] §3.2.

The following steps demonstrate the derivation of a SPAKE2+ key pair using PBKDF2-HMAC-SHA256, foruse with a SPAKE2+ cipher suite, cipher_suite. See SPAKE2+ cipher suites on page 371 for an example ofhow to construct the cipher suite object.
1. Allocate and initialize a key-derivation object:

psa_key_derivation_operation_t pbkdf = PSA_KEY_DERIVATION_OPERATION_INIT;

2. Setup the key derivation from the SPAKE2+ password, password_key, and parameters pbkdf2_params:
psa_key_derivation_setup(&pbkdf, PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256));
psa_key_derivation_input_key(&pbkdf, PSA_KEY_DERIVATION_INPUT_PASSWORD, password_key);
psa_key_derivation_input_integer(&pbkdf, PSA_KEY_DERIVATION_INPUT_COST, pbkdf2_params.cost);
psa_key_derivation_input_bytes(&pbkdf, PSA_KEY_DERIVATION_INPUT_SALT,

&pbkdf2_params.salt, pbkdf2_params.salt_len);

3. Allocate and initialize a key attributes object:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 373

https://datatracker.ietf.org/doc/html/rfc9383.html#section-3.2

psa_key_attributes_t att = PSA_KEY_ATTRIBUTES_INIT;

4. Set the key type, size, and policy from the cipher_suite object:
const psa_pake_primitive_t primitive = psa_pake_cs_get_primitive(&cipher_suite);

psa_set_key_type(&att,
PSA_KEY_TYPE_SPAKE2P_KEY_PAIR(PSA_PAKE_PRIMITIVE_GET_FAMILY(primitive)));

psa_set_key_bits(&att, PSA_PAKE_PRIMITIVE_GET_BITS(primitive));
psa_set_key_usage_flags(&att, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&att, psa_pake_cs_get_algorithm(&cipher_suite));

5. Derive the key:
psa_key_id_t spake2p_key;
psa_key_derivation_output_key(&att, &pbkdf, &spake2p_key);
psa_key_derivation_abort(&pbkdf);

See SPAKE2+ keys on page 86 for details of the key types, key-pair derivation, and public-key format.
SPAKE2+ operation
The SPAKE2+ operation follows the protocol shown in Figure 5 on page 375.
Setup
In SPAKE2+, the Prover uses the PSA_PAKE_ROLE_CLIENT role, and the Verifier uses the PSA_PAKE_ROLE_SERVERrole.
The key passed to the Prover must be a SPAKE2+ key pair, which is derived as recommended in SPAKE2+registration on page 372. The key passed to the Verifier can either be a SPAKE2+ key pair, or a SPAKE2+public key. A SPAKE2+ public key is imported from data that is output by calling psa_export_public_key() ona SPAKE2+ key pair.
Both participants in SPAKE2+ have an optional identity. If no identity value is provided, then a zero-lengthstring is used for that identity in the protocol. If the participants do not supply the same identity values tothe protocol, the computed secrets will be different, and key confirmation will fail.
Participants in SPAKE2+ can optionally provide a context:

∙ If psa_pake_set_context() is called, then the context and its encoded length are included in theSPAKE2+ transcript computation. This includes the case of a zero-length context.
∙ If psa_pake_set_context() is not called, then the context and its encoded length are omitted entirelyfrom the SPAKE2+ transcript computation. See [RFC9383] §3.3.

If the participants do not supply the same context value to the protocol, the computed secrets will bedifferent, and key confirmation will fail.
The following steps demonstrate the application code for both Prover and Verifier in Figure 5 on page 375.
Prover To prepare a SPAKE2+ operation for the Prover, initialize and set up a psa_pake_operation_tobject by calling the following functions:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 374

https://datatracker.ietf.org/doc/html/rfc9383.html#section-3.3

Prover (Client role) Verifier (Server role)

Shared information : cipher suite, ProverId , VerifierId , and Context

Registration record (w0, L) derived from passwordProver 'key pair' (w0, w1) derived from password

psa_pake_setup() with key (w0, w1)
psa_pake_set_role(PSA_PAKE_ROLE_CLIENT)
psa_pake_set_user(ProverId)
psa_pake_set_peer(VerifierId)
psa_pake_set_context(Context)

psa_pake_output() for shareP = X
Generate key share X

(shareP)

psa_pake_setup() with key (w0, L) or key (w0, w1)
psa_pake_set_role(PSA_PAKE_ROLE_SERVER)
psa_pake_set_user(VerifierId)
psa_pake_set_peer(ProverId)
psa_pake_set_context(Context)

psa_pake_input() for shareP
Validate shareP

psa_pake_output() for shareV = Y
Generate key share Y

psa_pake_output() for confirmV
Compute K_shared, confirmP' and confirmV

(shareV , confirmV)

psa_pake_input() for shareV
Validate shareV

psa_pake_input() for confirmVCompute K_shared,
confirmP and confirmV'

Verify confirmV' = confirmV

psa_pake_output() for confirmP

(confirmP)

psa_pake_get_shared_key() to extract K_shared

psa_pake_input() for confirmP
Verify confirmP' = confirmP

psa_pake_get_shared_key() to extract K_shared

Figure 5 The SPAKE2+ authentication and key confirmation protocol
The variable names 𝑤0, 𝑤1, 𝐿, and so on, are taken from the description of SPAKE2+ in [RFC9383].Details of the computation for the key shares is in [RFC9383] §3.3 and confirmation values in [RFC9383] §3.4.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 375

https://datatracker.ietf.org/doc/html/rfc9383.html#section-3.3
https://datatracker.ietf.org/doc/html/rfc9383.html#section-3.4

psa_pake_operation_t spake2p_p = PSA_PAKE_OPERATION_INIT;

psa_pake_setup(&spake2p_p, pake_key_p, &cipher_suite);
psa_pake_set_role(&spake2p_p, PSA_PAKE_ROLE_CLIENT);

The key pake_key_p is a SPAKE2+ key pair, PSA_KEY_TYPE_SPAKE2P_KEY_PAIR(). See SPAKE2+cipher suites on page 371 for details on constructing a suitable cipher suite.
Prover Provide any additional, optional, parameters:

psa_pake_set_user(&spake2p_p, ...); // Prover identity
psa_pake_set_peer(&spake2p_p, ...); // Verifier identity
psa_pake_set_context(&spake2p_p, ...); // Optional context

Verifier To prepare a SPAKE2+ operation for the Verifier, initialize and set up a psa_pake_operation_tobject by calling the following functions:
psa_pake_operation_t spake2p_v = PSA_PAKE_OPERATION_INIT;

psa_pake_setup(&spake2p_v, pake_key_v, &cipher_suite);
psa_pake_set_role(&spake2p_v, PSA_PAKE_ROLE_SERVER);

The key pake_key_v is a SPAKE2+ key pair, PSA_KEY_TYPE_SPAKE2P_KEY_PAIR(), or public key,
PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY(). See SPAKE2+ cipher suites on page 371 for details onconstructing a suitable cipher suite.

Verifier Provide any additional, optional, parameters:
psa_pake_set_user(&spake2p_v, ...); // Verifier identity
psa_pake_set_peer(&spake2p_v, ...); // Prover identity
psa_pake_set_context(&spake2p_v, ...); // Optional context

Key exchange and confirmation
After setup, the key exchange and confirmation flow for SPAKE2+ is as follows.

Note:
The sequence of calls for the Prover, and the sequence for the Verifier, must be in exactly this order.

Prover To get the key share to send to the Verifier, call:
// Get shareP
psa_pake_output(&spake2p_p, PSA_PAKE_STEP_KEY_SHARE, ...);

Verifier To provide and validate the key share received from the Prover, call:
// Set shareP
psa_pake_input(&spake2p_v, PSA_PAKE_STEP_KEY_SHARE, ...);

Verifier To get the Verifier key share and confirmation value to send to the Prover, call:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 376

// Get shareV
psa_pake_output(&spake2p_v, PSA_PAKE_STEP_KEY_SHARE, ...);
// Get confirmV
psa_pake_output(&spake2p_v, PSA_PAKE_STEP_CONFIRM, ...);

Prover To provide and validate the key share and verify the confirmation value received from theVerifier, call:
// Set shareV
psa_pake_input(&spake2p_p, PSA_PAKE_STEP_KEY_SHARE, ...);
// Set confirmV
psa_pake_input(&spake2p_p, PSA_PAKE_STEP_KEY_CONFIRM, ...);

Prover To get the Prover key confirmation value to send to the Verifier, call:
// Get confirmP
psa_pake_output(&spake2p_p, PSA_PAKE_STEP_CONFIRM, ...);

Verifier To verify the confirmation value received from the Prover, call:
// Set confirmP
psa_pake_input(&spake2p_v, PSA_PAKE_STEP_CONFIRM, ...);

Extract shared secret
Prover To use the shared secret, extract it as a key-derivation key. For example, to extract aderivation key for HKDF-SHA-256:

// Set up the key attributes
psa_key_attributes_t att = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_type(&att, PSA_KEY_TYPE_DERIVE);
psa_set_key_usage_flags(&att, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&att, PSA_ALG_HKDF(PSA_ALG_SHA_256));

// Get K_shared
psa_key_id_t shared_key;
psa_pake_get_shared_key(&spake2p_p, &att, &shared_key);

Verifier To use the shared secret, extract it as a key-derivation key. The same key attributes can beused as the Prover:
// Get K_shared
psa_key_id_t shared_key;
psa_pake_get_shared_key(&spake2p_v, &att, &shared_key);

The shared secret that is produced by SPAKE2+ is pseudorandom. Although it can be used directly as anencryption key, it is recommended to use the shared secret as an input to a key-derivation operation toproduce additional cryptographic keys.
For more information about the format of the values which are passed for each step, see PAKE step types onpage 349.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 377

If the validation of a key share fails, then the corresponding call to psa_pake_input() for the
PSA_PAKE_STEP_KEY_SHARE step will return PSA_ERROR_INVALID_ARGUMENT. If the verification of a keyconfirmation value fails, then the corresponding call to psa_pake_input() for the PSA_PAKE_STEP_CONFIRM stepwill return PSA_ERROR_INVALID_SIGNATURE.

10.13.11 SPAKE2+ algorithms
PSA_ALG_SPAKE2P_HMAC (macro)
Macro to build the SPAKE2+ algorithm, using HMAC-based key confirmation.
Added in version 1.2.
#define PSA_ALG_SPAKE2P_HMAC(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true.
Returns
A SPAKE2+ algorithm, using HMAC for key confirmation, parameterized by a specific hash.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This is SPAKE2+, as defined by SPAKE2+, an Augmented Password-Authenticated Key Exchange (PAKE)Protocol [RFC9383], for cipher suites that use HMAC for key confirmation. SPAKE2+ cipher suites arespecified in [RFC9383] §4. See SPAKE2+ cipher suites on page 371.
The shared secret that is produced by SPAKE2+ is pseudorandom. Although it can be used directly as anencryption key, it is recommended to use the shared secret as an input to a key-derivation operation toproduce additional cryptographic keys.
See The SPAKE2+ protocol on page 371 for the SPAKE2+ protocol flow and how to implement it with theCrypto API.
Compatible key types
PSA_KEY_TYPE_SPAKE2P_KEY_PAIR

PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY (verification only)

PSA_ALG_SPAKE2P_CMAC (macro)
Macro to build the SPAKE2+ algorithm, using CMAC-based key confirmation.
Added in version 1.2.
#define PSA_ALG_SPAKE2P_CMAC(hash_alg) /* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 378

https://datatracker.ietf.org/doc/html/rfc9383.html#section-4

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true.
Returns
A SPAKE2+ algorithm, using CMAC for key confirmation, parameterized by a specific hash.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This is SPAKE2+, as defined by SPAKE2+, an Augmented Password-Authenticated Key Exchange (PAKE)Protocol [RFC9383], for cipher suites that use CMAC-AES-128 for key confirmation. SPAKE2+ cipher suitesare specified in [RFC9383] §4. The cipher suite’s hash algorithm is used as input to PSA_ALG_SPAKE2P_CMAC().
The shared secret that is produced by SPAKE2+ is pseudorandom. Although it can be used directly as anencryption key, it is recommended to use the shared secret as an input to a key-derivation operation toproduce additional cryptographic keys.
See The SPAKE2+ protocol on page 371 for the SPAKE2+ protocol flow and how to implement it with theCrypto API.
Compatible key types
PSA_KEY_TYPE_SPAKE2P_KEY_PAIR

PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY (verification only)

PSA_ALG_SPAKE2P_MATTER (macro)
The SPAKE2+ algorithm, as used by the Matter v1 specification.
Added in version 1.2.
#define PSA_ALG_SPAKE2P_MATTER ((psa_algorithm_t)0x0A000609)

This is the PAKE algorithm specified as MATTER_PAKE in Matter Specification, Version 1.2 [MATTER]. This isbased on draft-02 of the SPAKE2+ protocol, SPAKE2+, an Augmented PAKE (Draft 02) [SPAKE2P-2].[MATTER] specifies a single SPAKE2+ cipher suite, P256-SHA256-HKDF-HMAC-SHA256.
The shared secret that is produced by this operation must be processed as directed by the [MATTER]specification.
This algorithm uses the same SPAKE2+ key types, key derivation, protocol flow, and the API usagedescribed in The SPAKE2+ protocol on page 371. However, the following aspects are different:

∙ The key schedule is different. This affects the computation of the shared secret and key confirmationvalues.
∙ The protocol inputs and outputs have been renamed between draft-02 and the final RFC, as follows:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 379

https://datatracker.ietf.org/doc/html/rfc9383.html#section-4

RFC 9383 Draft-02

shareP pA
shareV pB
confirmP cA
confirmV cB
K_shared Ke

Compatible key types
PSA_KEY_TYPE_SPAKE2P_KEY_PAIR

PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY (verification only)

PSA_ALG_IS_SPAKE2P (macro)
Whether the specified algorithm is a SPAKE2+ algorithm.
Added in version 1.2.
#define PSA_ALG_IS_SPAKE2P(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a SPAKE2+ algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedPAKE algorithm identifier.
Description
SPAKE2+ algorithms are constructed using PSA_ALG_SPAKE2P_HMAC(hash_alg),
PSA_ALG_SPAKE2P_CMAC(hash_alg), or PSA_ALG_SPAKE2P_MATTER.
PSA_ALG_IS_SPAKE2P_HMAC (macro)
Whether the specified algorithm is a SPAKE2+ algorithm that uses a HMAC-based key confirmation.
Added in version 1.2.
#define PSA_ALG_IS_SPAKE2P_HMAC(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 380

Returns
1 if alg is a SPAKE2+ algorithm that uses a HMAC-based key confirmation, 0 otherwise. This macro canreturn either 0 or 1 if alg is not a supported PAKE algorithm identifier.
Description
SPAKE2+ algorithms, using HMAC-based key confirmation, are constructed using
PSA_ALG_SPAKE2P_HMAC(hash_alg).
PSA_ALG_IS_SPAKE2P_CMAC (macro)
Whether the specified algorithm is a SPAKE2+ algorithm that uses a CMAC-based key confirmation.
Added in version 1.2.
#define PSA_ALG_IS_SPAKE2P_CMAC(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a SPAKE2+ algorithm that uses a CMAC-based key confirmation, 0 otherwise. This macro canreturn either 0 or 1 if alg is not a supported PAKE algorithm identifier.
Description
SPAKE2+ algorithms, using CMAC-based key confirmation, are constructed using
PSA_ALG_SPAKE2P_CMAC(hash_alg).

10.13.12 The WPA3-SAE protocol
WPA3-SAE is a balanced, password-authenticated key exchange protocol, defined by IEEE 802.11-2024:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications [IEEE-802.11]. It is used asthe authentication and key exchange protocol for WLAN access points and mesh networks. WPA3-SAEincludes confirmation of the shared secret key that results from the key exchange.
WPA3-SAE cipher suites
WPA3-SAE is instantiated with the following parameters:

∙ An elliptic curve group or a finite field cyclic group.
∙ A cryptographic hash function.

[IEEE-802.11] describes three variants of the WPA3-SAE algorithm. These differ in the method used togenerate a password element (PWE) from the password, and in the size of the key confirmation key(SAE-KCK) and pairwise master key (PMK).
Table 17 on page 382 summarizes the properties of the different algorithm variants.

Table 17WPA3-SAE algorithm variants

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 381

Algorithm variant PWE method Hash algorithm SAE-KCK size PMK size

Looping Looping SHA-256 256 256
Hash-to-element Hash-to-element SHA-256

SHA-384
SHA-512

256
384
512

256
256
256

Group-dependent-hash Hash-to-element SHA-256
SHA-384
SHA-512

256
384
512

256
384
512

When setting up a PAKE cipher suite to use the WPA3-SAE protocol:
∙ For the looping variant, use the PSA_ALG_WPA3_SAE_FIXED(PSA_ALG_SHA_256) algorithm.
∙ For the hash-to-element variant, use the PSA_ALG_WPA3_SAE_FIXED(hash_alg) algorithm, where hash_algis the required hash algorithm.
∙ For the group-dependent-hash variant, use the PSA_ALG_WPA3_SAE_GDH(hash_alg) algorithm, where

hash_alg is the required hash algorithm.
∙ Use a PAKE primitive for the required elliptic curve or finite field group.

Valid elliptic curves and finite field groups for WPA3-SAE are defined in [IEEE-802.11] §12.4.4.1. For thehash-to-element and group-dependent-hash variants, the required hash algorithm is determined from thesize of the prime for the cyclic group. See Table 12-1 in [IEEE-802.11] §12.4.2.
If the hash algorithm in the cipher suite is not compatible with the WPA3-SAE algorithm and PAKEprimitive, the call to psa_pake_setup() will fail with PSA_ERROR_INVALID_ARGUMENT.
For example, the following code creates a PAKE cipher suite for WPA3-SAE using hash-to-element over thesecp256r1 elliptic curve (IANA group 19):
psa_pake_cipher_suite_t cipher_suite = PSA_PAKE_CIPHER_SUITE_INIT;

psa_pake_cs_set_algorithm(&cipher_suite, PSA_ALG_WPA3_SAE_FIXED(PSA_ALG_SHA_256));
psa_pake_cs_set_primitive(&cipher_suite,

PSA_PAKE_PRIMITIVE(PSA_PAKE_PRIMITIVE_TYPE_ECC,
PSA_ECC_FAMILY_SECP_R1, 256));

WPA3-SAE password processing
WPA3-SAE defines the following two methods for deriving the password element PWE from the password:
Looping method Repeatedly sample candidate element values using a hash computed from thepassword, until a valid element is found. This derivation occurs as part of theauthentication flow.
Hash-to-elementmethod Derive a password token element PT from the password, using the hash-to-curveprocedure for elliptic curve groups, and a direct method for finite field groups. Thisderivation can be carried out when the network SSID and password is provisionedto the device, and PT is stored as part of the configuration.

During authentication, PWE is derived from PT.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 382

The hash-to-element method is recommended, as it is less vulnerable to timing-based attacks, and reducesthe authentication time.
Figure 6 illustrates the password processing required prior to the WPA3-SAE authentication flow.

station (STA)

Initial information : cipher suite, SSID, password [, password-identifier]

alt [Hash-to-element generation of password element]

psa_key_derivation_setup(WPA3_SAE_H2E)
psa_key_derivation_input_bytes(SALT = SSID)
psa_key_derivation_input_key(PASSWORD = password)

opt
psa_key_derivation_input_bytes(INFO = password-identifier)

psa_key_derivation_output_key(WPA3_SAE_XX)
Compute password token PT

Use PT for authentication flow

[Generation of the password element by looping]

Use password for authentication flow

Figure 6WPA3-SAE password processing
For both methods, the password must be imported as a key of type PSA_KEY_TYPE_PASSWORD. The passwordmust be encoded as defined in [IEEE-802.11] §12.4.3.

Note:
[IEEE-802.11] specifies that the same password is used for any configured WPA3-SAE cipher suites,and with any configured PWE-derivation methods. The wildcard key policy PSA_ALG_WPA3_SAE_ANYpermits a password key to be used for any valid derivation method, and with any valid WPA3-SAEcipher suite.

Looping method
Provide the password key directly to the WPA3-SAE PAKE operation in the call to psa_pake_setup().
Hash-to-element method
To use the hash-to-element method:

1. A WPA3-SAE password token is derived from the WPA3-SAE password, using a key-derivationoperation with the PSA_ALG_WPA3_SAE_H2E() algorithm. The PSA_ALG_WPA3_SAE_H2E() algorithm isparameterized by the hash used in the required WPA3-SAE cipher suite.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 383

The password token is output from the key-derivation operation as a key of type
PSA_KEY_TYPE_WPA3_SAE_ECC() or PSA_KEY_TYPE_WPA3_SAE_DH(). The key type is parameterized by theelliptic curve or finite field Diffie-Hellman group used in the required WPA3-SAE cipher suite.
The password token key must be protected at least as well as the password.

2. Pass the password token key to the WPA3-SAE PAKE operation in the call to psa_pake_setup().
Note:
The wildcard key policy PSA_ALG_WPA3_SAE_ANY permits a password token key to be used with both the
PSA_ALG_WPA3_SAE_FIXED() and PSA_ALG_WPA3_SAE_GDH() PAKE algorithms.

The following steps demonstrate the derivation of a password token for use with thegroup-dependent-hash variant of WPA3-SAE. The selected cipher suite in the example is IANA Group 20:ECC using secp384r1, hash function SHA-384.
1. Allocate and initialize a key-derivation object:

psa_key_derivation_operation_t h2e_kdf = PSA_KEY_DERIVATION_OPERATION_INIT;

2. Setup the key derivation from the WPA3-SAE password, password_key, with network SSID ssid:
psa_key_derivation_setup(&h2e_kdf, PSA_ALG_WPA3_SAE_H2E(PSA_ALG_SHA_384));
psa_key_derivation_input_bytes(&h2e_kdf, PSA_KEY_DERIVATION_INPUT_SALT, ssid, ssid_len);
psa_key_derivation_input_key(&h2e_kdf, PSA_KEY_DERIVATION_INPUT_PASSWORD, password_key);

3. Allocate and initialize a key attributes object:
psa_key_attributes_t pt_att = PSA_KEY_ATTRIBUTES_INIT;

4. Set the key type, size, and policy:
psa_set_key_type(&pt_att,

PSA_KEY_TYPE_WPA3_SAE_ECC(PSA_ECC_FAMILY_SECP_R1));
psa_set_key_bits(&pt_att, 384);
psa_set_key_usage_flags(&pt_att, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&pt_att, PSA_ALG_WPA3_SAE_GDH(PSA_ALG_SHA_384));

5. Derive the password token key:
psa_key_id_t pt_key;
psa_key_derivation_output_key(&pt_att, &h2e_kdf, &pt_key);
psa_key_derivation_abort(&h2e_kdf);

See WPA3-SAE password tokens on page 72 for details of the key types and key derivation.
WPA3-SAE operation
The WPA3-SAE authentication operation follows the protocol shown in Figure 7 on page 385.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 384

STA-A STA-B

Shared information: cipher suite, STA-A-MAC , STA-B-MAC
If generating PWE by looping: password
If generating PWE by hash-to-element: PT

psa_pake_setup()
psa_pake_set_user(STA-A-MAC)
psa_pake_set_peer(STA-B-MAC)

Provide either password or PT to
psa_pake_setup() depending
on PWE generation method

psa_pake_output() for commit-scalar || COMMIT-ELEMENTGenerate rand, mask; compute
commit-scalar, COMMIT-ELEMENT

SAE Commit frame (commit-scalar, COMMIT-ELEMENT)

SAE Commit frame (peer-commit-scalar, PEER-COMMIT-ELEMENT)

psa_pake_input() for peer-commit-scalar || PEER-COMMIT-ELEMENT
Validate inputs; compute k

psa_pake_input() for salt
Compute SAE-KCK, PMK

loop [Until SAE Confirm frame is successfully delivered to STA-B]

psa_pake_input() for send-confirm counter

psa_pake_output() for send-confirm || confirm
Compute confirm

SAE Confirm frame (send-confirm, confirm)

SAE Confirm frame (peer-send-confirm, peer-confirm)

psa_pake_input() for peer-send-confirm || peer-confirmCompute and validate
peer-verify = peer-confirm

opt

psa_pake_output() for PMKID

psa_pake_get_shared_key() to extract PMK

Figure 7 The WPA3-SAE authentication and key confirmation protocol
The variable names commit-scalar, COMMIT-ELEMENT, peer-commit-scalar, and so on, are taken from the description of WPA3-SAEin [IEEE-802.11] §12.4.5.

Setup
The type of keys used to set up a PAKE multi-part operation for WPA3-SAE depends on the variant ofWPA3-SAE that is required:

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 385

∙ For the Looping variant, use a PSA_KEY_TYPE_PASSWORD key containing the secret password.
∙ For the Hash-to-element and Group-dependent-hash variants, use a PSA_KEY_TYPE_WPA3_SAE_ECC or

PSA_KEY_TYPE_WPA3_SAE_DH key that is derived from the secret password, as described in WPA3-SAEpassword processing on page 382.
WPA-SAE does not assign roles to the participants, so it is not necessary to call psa_pake_set_role().
WPA-SAE requires the MAC addresses of both participants, which are provided to the PAKE multi-partoperation as the user and peer identities.
WPA-SAE does not use a context. A call to psa_pake_set_context() for a WPA-SAE operation will fail with
PSA_ERROR_BAD_STATE.
The following steps demonstrate the application code for STA-A in Figure 7 on page 385. The flow forSTA-B is the same as for STA-A, as WPA3-SAE is a balanced PAKE.

1. To prepare a WPA3-SAE operation, initialize and set up a psa_pake_operation_t object by calling thefollowing functions:
psa_pake_operation_t wpa3_sae = PSA_PAKE_OPERATION_INIT;

psa_pake_setup(&wpa3_sae, pt_key, &cipher_suite);
psa_pake_set_user(&wpa3_sae, &sta_a_mac, mac_length);
psa_pake_set_peer(&wpa3_sae, &sta_b_mac, mac_length);

See WPA3-SAE cipher suites on page 381 and WPA3-SAE password processing on page 382 for detailson the requirements for the cipher suite and key.
Commit

2. Exchange commitment values to establish shared secret and confirmation keys.
The application can either extract the commitment values first, and then provide the commitmentvalues that are received from the peer; or provide the peer inputs first, and then extract the outputs.
To get the commitment values to send to STA-B, call:
// Get commit-scalar || COMMIT-ELEMENT
psa_pake_output(&wpa3_sae, PSA_PAKE_STEP_COMMIT, ...);

To provide and validate the commitment values from STA-B, call:
// Set peer-commit-scalar || PEER-COMMIT-ELEMENT
psa_pake_input(&wpa3_sae, PSA_PAKE_STEP_COMMIT, ...);

3. Provide the salt used for shared secret derivation, as described in [IEEE-802.11] §12.4.5.4. ForHash-to-element and Group-dependent-hash variants, this is the list of rejected groups.
// Set salt
psa_pake_input(&wpa3_sae, PSA_PAKE_STEP_SALT, ...);

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 386

Confirm
4. Exchange and verify confirmation values.

WPA3-SAE can make multiple attempts to confirm key establishment, to mitigate frame losses thatcan occur. To prevent replay of confirmation messages, each attempt generates a distinct confirmationvalue by including a confirmation counter value.
The application can either extract a confirmation value first, and then provide a confirmation valuereceived from the peer; or provide the peer input first, and then extract the output.
To get a confirmation value to send to STA-B, the confirmation counter value 𝑠𝑒𝑛𝑑−𝑐𝑜𝑛𝑓𝑖𝑟𝑚 must beupdated before extracting the combined send-confirm || confirm value, as follows:
// Set send-confirm counter
psa_pake_input(&wpa3_sae, PSA_PAKE_STEP_SEND_CONFIRM, ...);
// Get combined send-confirm || confirm value
psa_pake_output(&wpa3_sae, PSA_PAKE_STEP_CONFIRM, ...);

To verify a confirmation value received from the peer, call:
// Set combined peer-send-confirm || peer-confirm value
psa_pake_input(&wpa3_sae, PSA_PAKE_STEP_CONFIRM, ...);

Note:
The application is permitted to request new confirmation values, or verify additional peerconfirmation values, even after a peer confirmation value has been successfully verified.

Extract shared secret
5. Optionally, to extract the identity of the shared secret key, PMKID, call:

// Get PMKID
psa_pake_output(&wpa3_sae, PSA_PAKE_STEP_KEY_ID, ...);

6. To use the shared secret, extract it as a key-derivation key. For example, to extract a derivation key forHKDF-SHA-256:
// Set up the key attributes
psa_key_attributes_t att = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_type(&att, PSA_KEY_TYPE_DERIVE);
psa_set_key_usage_flags(&att, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&att, PSA_ALG_HKDF(PSA_ALG_SHA_256));

// Get K_shared
psa_key_id_t shared_key;
psa_pake_get_shared_key(&spake2p_p, &att, &shared_key);

The shared secret that is produced by WPA3-SAE is pseudorandom. Although it can be used directly as anencryption key, it is recommended to use the shared secret as an input to a key-derivation operation toproduce additional cryptographic keys.
For more information about the format of the values which are passed for each step, see PAKE step types onpage 349.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 387

If the validation of a commitment value fails, then the corresponding call to psa_pake_input() for the
PSA_PAKE_STEP_COMMIT step will return PSA_ERROR_INVALID_ARGUMENT. If the verification of a confirmation valuefails, then the corresponding call to psa_pake_input() for the PSA_PAKE_STEP_CONFIRM step will return
PSA_ERROR_INVALID_SIGNATURE.

10.13.13 WPA3-SAE algorithms
PSA_ALG_WPA3_SAE_FIXED (macro)
Macro to build the WPA3-SAE algorithm, with fixed-sized PMK output key.
Added in version 1.4.
#define PSA_ALG_WPA3_SAE_FIXED(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true.
Returns
A WPA3-SAE algorithm, for the Looping or Hash-to-element variants, parameterized by a specific hash.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This is WPA3-SAE, as defined by IEEE 802.11-2024: Wireless LAN Medium Access Control (MAC) and PhysicalLayer (PHY) Specifications [IEEE-802.11] §12.4, using the Looping or Hash-to-element password elementderivation procedure, with fixed-sized PMK output key.
The hash algorithm specified must match one of the supported WPA3-SAE cipher suites. See WPA3-SAEcipher suites on page 381.
The shared secret that is produced by WPA3-SAE is pseudorandom. Although it can be used directly as anencryption key, it is recommended to use the shared secret as an input to a key-derivation operation toproduce additional cryptographic keys.
See The WPA3-SAE protocol on page 381 for the WPA3-SAE protocol flow and how to implement it withthe Crypto API.
Compatible key types
PSA_KEY_TYPE_PASSWORD

PSA_KEY_TYPE_WPA3_SAE_ECC

PSA_KEY_TYPE_WPA3_SAE_DH

PSA_ALG_WPA3_SAE_GDH (macro)
Macro to build the WPA3-SAE algorithm, with group-dependent size of the PMK output key.
Added in version 1.4.
#define PSA_ALG_WPA3_SAE_GDH(hash_alg) /* specification-defined value */

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 388

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true.
Returns
A WPA3-SAE algorithm, for the group-dependent-hash variant, parameterized by a specific hash.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This is WPA3-SAE, as defined by IEEE 802.11-2024: Wireless LAN Medium Access Control (MAC) and PhysicalLayer (PHY) Specifications [IEEE-802.11] §12.4, using the hash-to-element password element derivationprocedure, with group-dependent size for the PMK output key.
The hash algorithm specified must match one of the supported WPA3-SAE cipher suites. See WPA3-SAEcipher suites on page 381.
The shared secret that is produced by WPA3-SAE is pseudorandom. Although it can be used directly as anencryption key, it is recommended to use the shared secret as an input to a key-derivation operation toproduce additional cryptographic keys.
See The WPA3-SAE protocol on page 381 for the WPA3-SAE protocol flow and how to implement it withthe Crypto API.
Compatible key types
PSA_KEY_TYPE_WPA3_SAE_ECC

PSA_KEY_TYPE_WPA3_SAE_DH

PSA_ALG_IS_WPA3_SAE (macro)
Whether the specified algorithm is a WPA3-SAE algorithm.
Added in version 1.4.
#define PSA_ALG_IS_WPA3_SAE(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a WPA3-SAE algorithm, 0 otherwise. This macro can return either 0 or 1 if alg is not a supportedPAKE algorithm identifier.
Description
WPA3-SAE algorithms are constructed using PSA_ALG_WPA3_SAE_FIXED(hash_alg) or
PSA_ALG_WPA3_SAE_GDH(hash_alg).

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 389

PSA_ALG_IS_WPA3_SAE_FIXED (macro)
Whether the specified algorithm is a WPA3-SAE algorithm with a fixed-sized output key.
Added in version 1.4.
#define PSA_ALG_IS_WPA3_SAE_FIXED(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a WPA3-SAE algorithm with a fixed-sized output key, 0 otherwise. This macro can return either 0or 1 if alg is not a supported PAKE algorithm identifier.
Description
WPA3-SAE algorithms with a fixed-sized output key, are constructed using
PSA_ALG_WPA3_SAE_FIXED(hash_alg).
PSA_ALG_IS_WPA3_SAE_GDH (macro)
Whether the specified algorithm is a WPA3-SAE algorithm with a group-dependent size for the output key.
Added in version 1.4.
#define PSA_ALG_IS_WPA3_SAE_GDH(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a WPA3-SAE algorithm with a group-dependent size for the output key, 0 otherwise. This macrocan return either 0 or 1 if alg is not a supported PAKE algorithm identifier.
Description
WPA3-SAE algorithms with a group-dependent size for the output key, are constructed using
PSA_ALG_WPA3_SAE_GDH(hash_alg).
PSA_ALG_WPA3_SAE_ANY (macro)
A wildcard algorithm for WPA3-SAE password keys and password token keys.
Added in version 1.4.
#define PSA_ALG_WPA3_SAE_ANY ((psa_algorithm_t)0x0a0088ff)

If a password key (key type PSA_KEY_TYPE_PASSWORD) specifies PSA_ALG_WPA3_SAE_ANY as its permittedalgorithm, then the key can be used for any WPA3-SAE cipher suite with the PSA_ALG_WPA3_SAE_H2Ekey-derivation algorithm, and with the PSA_ALG_WPA3_SAE_FIXED PAKE algorithm.
If a WPA3-SAE password token key specifies PSA_ALG_WPA3_SAE_ANY as its permitted algorithm, then the keycan be used with both the PSA_ALG_WPA3_SAE_FIXED() and PSA_ALG_WPA3_SAE_GDH() PAKE algorithms.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 390

10.14 Other cryptographic services
10.14.1 Random number generation
psa_generate_random (function)
Generate random bytes.
psa_status_t psa_generate_random(uint8_t * output,

size_t output_size);

Parameters
output Output buffer for the generated data.
output_size Number of bytes to generate and output.

Returns: psa_status_t
PSA_SUCCESS Success. output contains output_size bytes of generated random data.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

. Warning

This function can fail! Callers MUST check the return status and MUST NOT use the content of theoutput buffer if the return status is not PSA_SUCCESS.

Note:
To generate a random key, use psa_generate_key() or psa_generate_key_custom() instead.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 391

Appendix A: Example header file
Each implementation of the Crypto API must provide a header file named psa/crypto.h, in which the APIelements in this specification are defined.
This appendix provides a example of the psa/crypto.h header file with all of the API elements. This can beused as a starting point or reference for an implementation.

Note:
Not all of the API elements are fully defined. An implementation must provide the full definition.
The header will not compile without these missing definitions, and might require reordering to satisfyC compilation rules.

A.1 psa/crypto.h
/* This file is a reference template for implementation of the
* PSA Certified Crypto API v1.3
*/

#ifndef PSA_CRYPTO_H
#define PSA_CRYPTO_H

#include <stddef.h>
#include <stdint.h>

#include "psa/error.h"

#ifdef __cplusplus
extern "C" {
#endif

#define PSA_CRYPTO_API_VERSION_MAJOR 1
#define PSA_CRYPTO_API_VERSION_MINOR 4
psa_status_t psa_crypto_init(void);
#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
typedef uint32_t psa_key_id_t;
typedef /* implementation-defined type */ psa_key_attributes_t;
#define PSA_KEY_ATTRIBUTES_INIT /* implementation-defined value */
psa_key_attributes_t psa_key_attributes_init(void);
psa_status_t psa_get_key_attributes(psa_key_id_t key,

psa_key_attributes_t * attributes);
void psa_reset_key_attributes(psa_key_attributes_t * attributes);
typedef uint16_t psa_key_type_t;
#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) /* specification-defined value */

(continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 392

(continued from previous page)
#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_KEY_PAIR(type) /* specification-defined value */
typedef uint8_t psa_ecc_family_t;
#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) 0x17)
#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)
#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)
#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family_t) 0x27)
#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)
#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)
#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)
#define PSA_ECC_FAMILY_FRP ((psa_ecc_family_t) 0x33)
#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) 0x41)
#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
typedef uint8_t psa_dh_family_t;
#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
#define PSA_DH_FAMILY_RFC3526 ((psa_dh_family_t) 0x05)
void psa_set_key_type(psa_key_attributes_t * attributes,

psa_key_type_t type);
psa_key_type_t psa_get_key_type(const psa_key_attributes_t * attributes);
size_t psa_get_key_bits(const psa_key_attributes_t * attributes);
void psa_set_key_bits(psa_key_attributes_t * attributes,

size_t bits);
#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)0x1203)
#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)
#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)
#define PSA_KEY_TYPE_SM4 ((psa_key_type_t)0x2405)
#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)0x2004)
#define PSA_KEY_TYPE_XCHACHA20 ((psa_key_type_t)0x2007)
#define PSA_KEY_TYPE_ASCON ((psa_key_type_t)0x2008)
#define PSA_KEY_TYPE_WPA3_SAE_ECC(curve) /* specification-defined value */
#define PSA_KEY_TYPE_WPA3_SAE_DH(group) /* specification-defined value */
#define PSA_KEY_TYPE_IS_WPA3_SAE_ECC(type) /* specification-defined value */
#define PSA_KEY_TYPE_WPA3_SAE_ECC_GET_FAMILY(type) \

/* specification-defined value */
#define PSA_KEY_TYPE_IS_WPA3_SAE_DH(type) /* specification-defined value */
#define PSA_KEY_TYPE_WPA3_SAE_DH_GET_FAMILY(type) \

/* specification-defined value */
#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001) (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 393

(continued from previous page)
#define PSA_KEY_TYPE_IS_RSA(type) /* specification-defined value */
#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) /* specification-defined value */
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) /* specification-defined value */
#define PSA_KEY_TYPE_IS_ECC(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) /* specification-defined value */
#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) /* specification-defined value */
#define PSA_KEY_TYPE_DH_KEY_PAIR(group) /* specification-defined value */
#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) /* specification-defined value */
#define PSA_KEY_TYPE_IS_DH(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) /* specification-defined value */
#define PSA_KEY_TYPE_DH_GET_FAMILY(type) /* specification-defined value */
#define PSA_KEY_TYPE_SPAKE2P_KEY_PAIR(curve) /* specification-defined value */
#define PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY(curve) \

/* specification-defined value */
#define PSA_KEY_TYPE_IS_SPAKE2P(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_SPAKE2P_KEY_PAIR(type) \

/* specification-defined value */
#define PSA_KEY_TYPE_IS_SPAKE2P_PUBLIC_KEY(type) \

/* specification-defined value */
#define PSA_KEY_TYPE_SPAKE2P_GET_FAMILY(type) /* specification-defined value */
#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \

/* specification-defined value */
#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \

/* specification-defined value */
typedef uint32_t psa_key_lifetime_t;
typedef uint8_t psa_key_persistence_t;
typedef uint32_t psa_key_location_t;
#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)
#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) 0xff)
#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
#define PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT ((psa_key_location_t) 0x000001)
void psa_set_key_lifetime(psa_key_attributes_t * attributes,

psa_key_lifetime_t lifetime);
psa_key_lifetime_t psa_get_key_lifetime(const psa_key_attributes_t * attributes);
#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \

((psa_key_persistence_t) ((lifetime) & 0x000000ff))
#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \

((psa_key_location_t) ((lifetime) >> 8))
#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \

(PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == PSA_KEY_PERSISTENCE_VOLATILE)
#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \

((location) << 8 | (persistence))
#define PSA_KEY_ID_NULL ((psa_key_id_t)0) (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 394

(continued from previous page)
#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)0x3fffffff)
#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)0x7fffffff)
void psa_set_key_id(psa_key_attributes_t * attributes,

psa_key_id_t id);
psa_key_id_t psa_get_key_id(const psa_key_attributes_t * attributes);
typedef uint32_t psa_algorithm_t;
void psa_set_key_algorithm(psa_key_attributes_t * attributes,

psa_algorithm_t alg);
psa_algorithm_t psa_get_key_algorithm(const psa_key_attributes_t * attributes);
typedef uint32_t psa_key_usage_t;
#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
#define PSA_KEY_USAGE_CACHE ((psa_key_usage_t)0x00000004)
#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
#define PSA_KEY_USAGE_DERIVE_PUBLIC ((psa_key_usage_t)0x00000080)
#define PSA_KEY_USAGE_WRAP ((psa_key_usage_t)0x00010000)
#define PSA_KEY_USAGE_UNWRAP ((psa_key_usage_t)0x00020000)
void psa_set_key_usage_flags(psa_key_attributes_t * attributes,

psa_key_usage_t usage_flags);
psa_key_usage_t psa_get_key_usage_flags(const psa_key_attributes_t * attributes);
psa_status_t psa_check_key_usage(psa_key_id_t key,

psa_algorithm_t alg,
psa_key_usage_t usage);

psa_status_t psa_import_key(const psa_key_attributes_t * attributes,
const uint8_t * data,
size_t data_length,
psa_key_id_t * key);

typedef struct psa_custom_key_parameters_t {
uint32_t flags;

} psa_custom_key_parameters_t;
#define PSA_CUSTOM_KEY_PARAMETERS_INIT { 0 }
psa_status_t psa_generate_key(const psa_key_attributes_t * attributes,

psa_key_id_t * key);
psa_status_t psa_generate_key_custom(const psa_key_attributes_t * attributes,

const psa_custom_key_parameters_t * custom,
const uint8_t * custom_data,
size_t custom_data_length,
psa_key_id_t * key);

psa_status_t psa_copy_key(psa_key_id_t source_key, (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 395

(continued from previous page)
const psa_key_attributes_t * attributes,
psa_key_id_t * target_key);

psa_status_t psa_attach_key(const psa_key_attributes_t * attributes,
const uint8_t * label,
size_t label_length,
psa_key_id_t * key);

psa_status_t psa_destroy_key(psa_key_id_t key);
psa_status_t psa_purge_key(psa_key_id_t key);
psa_status_t psa_export_key(psa_key_id_t key,

uint8_t * data,
size_t data_size,
size_t * data_length);

psa_status_t psa_export_public_key(psa_key_id_t key,
uint8_t * data,
size_t data_size,
size_t * data_length);

#define PSA_EXPORT_KEY_OUTPUT_SIZE(key_type, key_bits) \
/* implementation-defined value */

#define PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(key_type, key_bits) \
/* implementation-defined value */

#define PSA_EXPORT_KEY_PAIR_MAX_SIZE /* implementation-defined value */
#define PSA_EXPORT_PUBLIC_KEY_MAX_SIZE /* implementation-defined value */
#define PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE /* implementation-defined value */
#define PSA_ALG_NONE ((psa_algorithm_t)0)
#define PSA_ALG_IS_HASH(alg) /* specification-defined value */
#define PSA_ALG_IS_XOF(alg) /* specification-defined value */
#define PSA_ALG_IS_MAC(alg) /* specification-defined value */
#define PSA_ALG_IS_CIPHER(alg) /* specification-defined value */
#define PSA_ALG_IS_AEAD(alg) /* specification-defined value */
#define PSA_ALG_IS_KEY_WRAP(alg) /* specification-defined value */
#define PSA_ALG_IS_KEY_DERIVATION(alg) /* specification-defined value */
#define PSA_ALG_IS_SIGN(alg) /* specification-defined value */
#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) /* specification-defined value */
#define PSA_ALG_IS_KEY_AGREEMENT(alg) /* specification-defined value */
#define PSA_ALG_IS_PAKE(alg) /* specification-defined value */
#define PSA_ALG_IS_KEY_ENCAPSULATION(alg) /* specification-defined value */
#define PSA_ALG_IS_WILDCARD(alg) /* specification-defined value */
#define PSA_ALG_GET_HASH(alg) /* specification-defined value */
#define PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)
#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)
#define PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)
#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)
#define PSA_ALG_AES_MMO_ZIGBEE ((psa_algorithm_t)0x02000007)
#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)
#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)
#define PSA_ALG_SHA_256 ((psa_algorithm_t)0x02000009)
#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)
#define PSA_ALG_SHA_512 ((psa_algorithm_t)0x0200000b) (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 396

(continued from previous page)
#define PSA_ALG_SHA_512_224 ((psa_algorithm_t)0x0200000c)
#define PSA_ALG_SHA_512_256 ((psa_algorithm_t)0x0200000d)
#define PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
#define PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
#define PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)
#define PSA_ALG_SM3 ((psa_algorithm_t)0x02000014)
#define PSA_ALG_ASCON_HASH256 ((psa_algorithm_t)0x02000019)
psa_status_t psa_hash_compute(psa_algorithm_t alg,

const uint8_t * input,
size_t input_length,
uint8_t * hash,
size_t hash_size,
size_t * hash_length);

psa_status_t psa_hash_compare(psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * hash,
size_t hash_length);

typedef /* implementation-defined type */ psa_hash_operation_t;
#define PSA_HASH_OPERATION_INIT /* implementation-defined value */
psa_hash_operation_t psa_hash_operation_init(void);
psa_status_t psa_hash_setup(psa_hash_operation_t * operation,

psa_algorithm_t alg);
psa_status_t psa_hash_update(psa_hash_operation_t * operation,

const uint8_t * input,
size_t input_length);

psa_status_t psa_hash_finish(psa_hash_operation_t * operation,
uint8_t * hash,
size_t hash_size,
size_t * hash_length);

psa_status_t psa_hash_verify(psa_hash_operation_t * operation,
const uint8_t * hash,
size_t hash_length);

psa_status_t psa_hash_abort(psa_hash_operation_t * operation);
psa_status_t psa_hash_suspend(psa_hash_operation_t * operation,

uint8_t * hash_state,
size_t hash_state_size,
size_t * hash_state_length);

psa_status_t psa_hash_resume(psa_hash_operation_t * operation,
const uint8_t * hash_state,
size_t hash_state_length);

psa_status_t psa_hash_clone(const psa_hash_operation_t * source_operation,
psa_hash_operation_t * target_operation);

#define PSA_HASH_LENGTH(alg) /* implementation-defined value */
#define PSA_HASH_MAX_SIZE /* implementation-defined value */
#define PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) /* specification-defined value */ (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 397

(continued from previous page)
#define PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE /* implementation-defined value */
#define PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH ((size_t)4)
#define PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) \

/* specification-defined value */
#define PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) \

/* specification-defined value */
#define PSA_HASH_BLOCK_LENGTH(alg) /* implementation-defined value */
#define PSA_ALG_SHAKE128 ((psa_algorithm_t)0x0D000100)
#define PSA_ALG_SHAKE256 ((psa_algorithm_t)0x0D000200)
#define PSA_ALG_ASCON_XOF128 ((psa_algorithm_t)0x0D000300)
#define PSA_ALG_ASCON_CXOF128 ((psa_algorithm_t)0x0D008300)
typedef /* implementation-defined type */ psa_xof_operation_t;
#define PSA_XOF_OPERATION_INIT /* implementation-defined value */
psa_xof_operation_t psa_xof_operation_init(void);
psa_status_t psa_xof_setup(psa_xof_operation_t * operation,

psa_algorithm_t alg);
psa_status_t psa_xof_set_context(psa_xof_operation_t * operation,

const uint8_t * context,
size_t context_length);

psa_status_t psa_xof_update(psa_xof_operation_t * operation,
const uint8_t * input,
size_t input_length);

psa_status_t psa_xof_output(psa_xof_operation_t * operation,
uint8_t * output,
size_t output_length);

psa_status_t psa_xof_abort(psa_xof_operation_t * operation);
#define PSA_ALG_XOF_HAS_CONTEXT(alg) /* specification-defined value */
#define PSA_ALG_HMAC(hash_alg) /* specification-defined value */
#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)
#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \

/* specification-defined value */
#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) /* specification-defined value */
#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \

/* specification-defined value */
psa_status_t psa_mac_compute(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * mac,
size_t mac_size,
size_t * mac_length);

psa_status_t psa_mac_verify(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * mac,
size_t mac_length); (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 398

(continued from previous page)
typedef /* implementation-defined type */ psa_mac_operation_t;
#define PSA_MAC_OPERATION_INIT /* implementation-defined value */
psa_mac_operation_t psa_mac_operation_init(void);
psa_status_t psa_mac_sign_setup(psa_mac_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

psa_status_t psa_mac_verify_setup(psa_mac_operation_t * operation,
psa_key_id_t key,
psa_algorithm_t alg);

psa_status_t psa_mac_update(psa_mac_operation_t * operation,
const uint8_t * input,
size_t input_length);

psa_status_t psa_mac_sign_finish(psa_mac_operation_t * operation,
uint8_t * mac,
size_t mac_size,
size_t * mac_length);

psa_status_t psa_mac_verify_finish(psa_mac_operation_t * operation,
const uint8_t * mac,
size_t mac_length);

psa_status_t psa_mac_abort(psa_mac_operation_t * operation);
#define PSA_ALG_IS_HMAC(alg) /* specification-defined value */
#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) /* specification-defined value */
#define PSA_MAC_LENGTH(key_type, key_bits, alg) \

/* implementation-defined value */
#define PSA_MAC_MAX_SIZE /* implementation-defined value */
#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)0x04800100)
#define PSA_ALG_CTR ((psa_algorithm_t)0x04c01000)
#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300)
#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)
#define PSA_ALG_OFB ((psa_algorithm_t)0x04c01200)
#define PSA_ALG_XTS ((psa_algorithm_t)0x0440ff00)
#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)0x04404400)
#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)
#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
psa_status_t psa_cipher_encrypt(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

psa_status_t psa_cipher_decrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length); (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 399

(continued from previous page)
typedef /* implementation-defined type */ psa_cipher_operation_t;
#define PSA_CIPHER_OPERATION_INIT /* implementation-defined value */
psa_cipher_operation_t psa_cipher_operation_init(void);
psa_status_t psa_cipher_encrypt_setup(psa_cipher_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

psa_status_t psa_cipher_decrypt_setup(psa_cipher_operation_t * operation,
psa_key_id_t key,
psa_algorithm_t alg);

psa_status_t psa_cipher_generate_iv(psa_cipher_operation_t * operation,
uint8_t * iv,
size_t iv_size,
size_t * iv_length);

psa_status_t psa_cipher_set_iv(psa_cipher_operation_t * operation,
const uint8_t * iv,
size_t iv_length);

psa_status_t psa_cipher_update(psa_cipher_operation_t * operation,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

psa_status_t psa_cipher_finish(psa_cipher_operation_t * operation,
uint8_t * output,
size_t output_size,
size_t * output_length);

psa_status_t psa_cipher_abort(psa_cipher_operation_t * operation);
#define PSA_ALG_IS_STREAM_CIPHER(alg) /* specification-defined value */
#define PSA_ALG_CCM_STAR_ANY_TAG ((psa_algorithm_t)0x04c09300)
#define PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */
#define PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */
#define PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */
#define PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */
#define PSA_CIPHER_IV_LENGTH(key_type, alg) /* implementation-defined value */
#define PSA_CIPHER_IV_MAX_SIZE /* implementation-defined value */
#define PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */
#define PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */
#define PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg) \

/* implementation-defined value */
#define PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE /* implementation-defined value */
#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) /* specification-defined value */
#define PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE /* implementation-defined value */ (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 400

(continued from previous page)
#define PSA_ALG_CCM ((psa_algorithm_t)0x05500100)
#define PSA_ALG_GCM ((psa_algorithm_t)0x05500200)
#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
#define PSA_ALG_XCHACHA20_POLY1305 ((psa_algorithm_t)0x05100600)
#define PSA_ALG_ASCON_AEAD128 ((psa_algorithm_t)0x05100700)
#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \

/* specification-defined value */
#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \

/* specification-defined value */
#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \

/* specification-defined value */
psa_status_t psa_aead_encrypt(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * nonce,
size_t nonce_length,
const uint8_t * additional_data,
size_t additional_data_length,
const uint8_t * plaintext,
size_t plaintext_length,
uint8_t * ciphertext,
size_t ciphertext_size,
size_t * ciphertext_length);

psa_status_t psa_aead_decrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * nonce,
size_t nonce_length,
const uint8_t * additional_data,
size_t additional_data_length,
const uint8_t * ciphertext,
size_t ciphertext_length,
uint8_t * plaintext,
size_t plaintext_size,
size_t * plaintext_length);

typedef /* implementation-defined type */ psa_aead_operation_t;
#define PSA_AEAD_OPERATION_INIT /* implementation-defined value */
psa_aead_operation_t psa_aead_operation_init(void);
psa_status_t psa_aead_encrypt_setup(psa_aead_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

psa_status_t psa_aead_decrypt_setup(psa_aead_operation_t * operation,
psa_key_id_t key,
psa_algorithm_t alg);

psa_status_t psa_aead_set_lengths(psa_aead_operation_t * operation,
size_t ad_length,
size_t plaintext_length);

psa_status_t psa_aead_generate_nonce(psa_aead_operation_t * operation,
uint8_t * nonce,
size_t nonce_size, (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 401

(continued from previous page)
size_t * nonce_length);

psa_status_t psa_aead_set_nonce(psa_aead_operation_t * operation,
const uint8_t * nonce,
size_t nonce_length);

psa_status_t psa_aead_update_ad(psa_aead_operation_t * operation,
const uint8_t * input,
size_t input_length);

psa_status_t psa_aead_update(psa_aead_operation_t * operation,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

psa_status_t psa_aead_finish(psa_aead_operation_t * operation,
uint8_t * ciphertext,
size_t ciphertext_size,
size_t * ciphertext_length,
uint8_t * tag,
size_t tag_size,
size_t * tag_length);

psa_status_t psa_aead_verify(psa_aead_operation_t * operation,
uint8_t * plaintext,
size_t plaintext_size,
size_t * plaintext_length,
const uint8_t * tag,
size_t tag_length);

psa_status_t psa_aead_abort(psa_aead_operation_t * operation);
#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) /* specification-defined value */
#define PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg, plaintext_length) \

/* implementation-defined value */
#define PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(plaintext_length) \

/* implementation-defined value */
#define PSA_AEAD_DECRYPT_OUTPUT_SIZE(key_type, alg, ciphertext_length) \

/* implementation-defined value */
#define PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(ciphertext_length) \

/* implementation-defined value */
#define PSA_AEAD_NONCE_LENGTH(key_type, alg) /* implementation-defined value */
#define PSA_AEAD_NONCE_MAX_SIZE /* implementation-defined value */
#define PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \

/* implementation-defined value */
#define PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE(input_length) \

/* implementation-defined value */
#define PSA_AEAD_FINISH_OUTPUT_SIZE(key_type, alg) \

/* implementation-defined value */
#define PSA_AEAD_FINISH_OUTPUT_MAX_SIZE /* implementation-defined value */
#define PSA_AEAD_TAG_LENGTH(key_type, key_bits, alg) \

/* implementation-defined value */
#define PSA_AEAD_TAG_MAX_SIZE /* implementation-defined value */ (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 402

(continued from previous page)
#define PSA_AEAD_VERIFY_OUTPUT_SIZE(key_type, alg) \

/* implementation-defined value */
#define PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE /* implementation-defined value */
#define PSA_ALG_KW ((psa_algorithm_t)0x0B400100)
#define PSA_ALG_KWP ((psa_algorithm_t)0x0BC00200)
psa_status_t psa_unwrap_key(const psa_key_attributes_t * attributes,

psa_key_id_t wrapping_key,
psa_algorithm_t alg,
const uint8_t * data,
size_t data_length,
psa_key_id_t * key);

psa_status_t psa_wrap_key(psa_key_id_t wrapping_key,
psa_algorithm_t alg,
psa_key_id_t key,
uint8_t * data,
size_t data_size,
size_t * data_length);

#define PSA_WRAP_KEY_OUTPUT_SIZE(wrap_key_type, alg, key_type, key_bits) \
/* implementation-defined value */

#define PSA_WRAP_KEY_PAIR_MAX_SIZE /* implementation-defined value */
#define PSA_ALG_HKDF(hash_alg) /* specification-defined value */
#define PSA_ALG_HKDF_EXTRACT(hash_alg) /* specification-defined value */
#define PSA_ALG_HKDF_EXPAND(hash_alg) /* specification-defined value */
#define PSA_ALG_SP800_108_COUNTER_HMAC(hash_alg) \

/* specification-defined value */
#define PSA_ALG_SP800_108_COUNTER_CMAC ((psa_algorithm_t)0x08000800)
#define PSA_ALG_TLS12_PRF(hash_alg) /* specification-defined value */
#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) /* specification-defined value */
#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t)0x08000609)
#define PSA_ALG_WPA3_SAE_H2E(hash_alg) /* specification-defined value */
#define PSA_ALG_PBKDF2_HMAC(hash_alg) /* specification-defined value */
#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
typedef uint16_t psa_key_derivation_step_t;
#define PSA_KEY_DERIVATION_INPUT_SECRET /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \

/* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_PASSWORD /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_LABEL /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_CONTEXT /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_SALT /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_INFO /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_SEED /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_COST /* implementation-defined value */
typedef /* implementation-defined type */ psa_key_derivation_operation_t;
#define PSA_KEY_DERIVATION_OPERATION_INIT /* implementation-defined value */
psa_key_derivation_operation_t psa_key_derivation_operation_init(void);
psa_status_t psa_key_derivation_setup(psa_key_derivation_operation_t * operation,

psa_algorithm_t alg); (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 403

(continued from previous page)
psa_status_t psa_key_derivation_get_capacity(const psa_key_derivation_operation_t * operation,

size_t * capacity);
psa_status_t psa_key_derivation_set_capacity(psa_key_derivation_operation_t * operation,

size_t capacity);
psa_status_t psa_key_derivation_input_bytes(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,
const uint8_t * data,
size_t data_length);

psa_status_t psa_key_derivation_input_integer(psa_key_derivation_operation_t * operation,
psa_key_derivation_step_t step,
uint64_t value);

psa_status_t psa_key_derivation_input_key(psa_key_derivation_operation_t * operation,
psa_key_derivation_step_t step,
psa_key_id_t key);

psa_status_t psa_key_derivation_output_bytes(psa_key_derivation_operation_t * operation,
uint8_t * output,
size_t output_length);

psa_status_t psa_key_derivation_output_key(const psa_key_attributes_t * attributes,
psa_key_derivation_operation_t * operation,
psa_key_id_t * key);

psa_status_t psa_key_derivation_output_key_custom(const psa_key_attributes_t * attributes,
psa_key_derivation_operation_t * operation,
const psa_custom_key_parameters_t * custom,
const uint8_t * custom_data,
size_t custom_data_length,
psa_key_id_t * key);

psa_status_t psa_key_derivation_verify_bytes(psa_key_derivation_operation_t * operation,
const uint8_t * expected_output,
size_t output_length);

psa_status_t psa_key_derivation_verify_key(psa_key_derivation_operation_t * operation,
psa_key_id_t expected);

psa_status_t psa_key_derivation_abort(psa_key_derivation_operation_t * operation);
#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \

/* specification-defined value */
#define PSA_ALG_IS_HKDF(alg) /* specification-defined value */
#define PSA_ALG_IS_HKDF_EXTRACT(alg) /* specification-defined value */
#define PSA_ALG_IS_HKDF_EXPAND(alg) /* specification-defined value */
#define PSA_ALG_IS_SP800_108_COUNTER_HMAC(alg) \

/* specification-defined value */
#define PSA_ALG_IS_TLS12_PRF(alg) /* specification-defined value */
#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) /* specification-defined value */
#define PSA_ALG_IS_PBKDF2_HMAC(alg) /* specification-defined value */
#define PSA_ALG_IS_WPA3_SAE_H2E(alg) /* specification-defined value */
#define PSA_KEY_DERIVATION_UNLIMITED_CAPACITY \

/* implementation-defined value */
#define PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE /* implementation-defined value */
#define PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE 32
#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) /* specification-defined value */ (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 404

(continued from previous page)
#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW ((psa_algorithm_t) 0x06000200)
#define PSA_ALG_RSA_PSS(hash_alg) /* specification-defined value */
#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) /* specification-defined value */
#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) /* specification-defined value */
#define PSA_ALG_IS_RSA_PSS(alg) /* specification-defined value */
#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) /* specification-defined value */
#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) /* specification-defined value */
#define PSA_ALG_ECDSA(hash_alg) /* specification-defined value */
#define PSA_ALG_ECDSA_ANY ((psa_algorithm_t) 0x06000600)
#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) /* specification-defined value */
#define PSA_ALG_IS_ECDSA(alg) /* specification-defined value */
#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) /* specification-defined value */
#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) /* specification-defined value */
#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)
#define PSA_ALG_EDDSA_CTX ((psa_algorithm_t) 0x06000A00)
#define PSA_ALG_ED25519PH ((psa_algorithm_t) 0x0600090B)
#define PSA_ALG_ED448PH ((psa_algorithm_t) 0x06000915)
#define PSA_ALG_IS_HASH_EDDSA(alg) /* specification-defined value */
psa_status_t psa_sign_message(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * signature,
size_t signature_size,
size_t * signature_length);

psa_status_t psa_sign_message_with_context(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * context,
size_t context_length,
uint8_t * signature,
size_t signature_size,
size_t * signature_length);

psa_status_t psa_verify_message(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * signature,
size_t signature_length);

psa_status_t psa_verify_message_with_context(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * context,
size_t context_length,
const uint8_t * signature,
size_t signature_length); (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 405

(continued from previous page)
psa_status_t psa_sign_hash(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * hash,
size_t hash_length,
uint8_t * signature,
size_t signature_size,
size_t * signature_length);

psa_status_t psa_sign_hash_with_context(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * hash,
size_t hash_length,
const uint8_t * context,
size_t context_length,
uint8_t * signature,
size_t signature_size,
size_t * signature_length);

psa_status_t psa_verify_hash(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * hash,
size_t hash_length,
const uint8_t * signature,
size_t signature_length);

psa_status_t psa_verify_hash_with_context(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * hash,
size_t hash_length,
const uint8_t * context,
size_t context_length,
const uint8_t * signature,
size_t signature_length);

#define PSA_ALG_IS_SIGN_MESSAGE(alg) /* specification-defined value */
#define PSA_ALG_IS_SIGN_HASH(alg) /* specification-defined value */
#define PSA_ALG_IS_HASH_AND_SIGN(alg) /* specification-defined value */
#define PSA_ALG_SIGN_SUPPORTS_CONTEXT(alg) /* implementation-defined value */
#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
#define PSA_SIGN_OUTPUT_SIZE(key_type, key_bits, alg) \

/* implementation-defined value */
#define PSA_SIGNATURE_MAX_SIZE /* implementation-defined value */
#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)
#define PSA_ALG_RSA_OAEP(hash_alg) /* specification-defined value */
psa_status_t psa_asymmetric_encrypt(psa_key_id_t key,

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * salt,
size_t salt_length,
uint8_t * output,
size_t output_size, (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 406

(continued from previous page)
size_t * output_length);

psa_status_t psa_asymmetric_decrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * salt,
size_t salt_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

#define PSA_ALG_IS_RSA_OAEP(alg) /* specification-defined value */
#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \

/* implementation-defined value */
#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE \

/* implementation-defined value */
#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \

/* implementation-defined value */
#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE \

/* implementation-defined value */
#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
#define PSA_ALG_ECDH ((psa_algorithm_t)0x09020000)
#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \

/* specification-defined value */
psa_status_t psa_key_agreement(psa_key_id_t private_key,

const uint8_t * peer_key,
size_t peer_key_length,
psa_algorithm_t alg,
const psa_key_attributes_t * attributes,
psa_key_id_t * key);

psa_status_t psa_raw_key_agreement(psa_algorithm_t alg,
psa_key_id_t private_key,
const uint8_t * peer_key,
size_t peer_key_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

psa_status_t psa_key_derivation_key_agreement(psa_key_derivation_operation_t * operation,
psa_key_derivation_step_t step,
psa_key_id_t private_key,
const uint8_t * peer_key,
size_t peer_key_length);

#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) /* specification-defined value */
#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) /* specification-defined value */
#define PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg) \

/* specification-defined value */
#define PSA_ALG_IS_RAW_KEY_AGREEMENT(alg) \

PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg)
#define PSA_ALG_IS_FFDH(alg) /* specification-defined value */ (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 407

(continued from previous page)
#define PSA_ALG_IS_ECDH(alg) /* specification-defined value */
#define PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(key_type, key_bits) \

/* implementation-defined value */
#define PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE \

/* implementation-defined value */
#define PSA_ALG_ECIES_SEC1 ((psa_algorithm_t)0x0c000100)
psa_status_t psa_encapsulate(psa_key_id_t key,

psa_algorithm_t alg,
const psa_key_attributes_t * attributes,
psa_key_id_t * output_key,
uint8_t * ciphertext,
size_t ciphertext_size,
size_t * ciphertext_length);

psa_status_t psa_decapsulate(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * ciphertext,
size_t ciphertext_length,
const psa_key_attributes_t * attributes,
psa_key_id_t * output_key);

#define PSA_ENCAPSULATE_CIPHERTEXT_SIZE(key_type, key_bits, alg) \
/* implementation-defined value */

#define PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE /* implementation-defined value */
typedef uint32_t psa_pake_primitive_t;
typedef uint8_t psa_pake_primitive_type_t;
#define PSA_PAKE_PRIMITIVE_TYPE_ECC ((psa_pake_primitive_type_t)0x01)
#define PSA_PAKE_PRIMITIVE_TYPE_DH ((psa_pake_primitive_type_t)0x02)
typedef uint8_t psa_pake_family_t;
#define PSA_PAKE_PRIMITIVE(pake_type, pake_family, pake_bits) \

/* specification-defined value */
#define PSA_PAKE_PRIMITIVE_GET_TYPE(pake_primitive) \

/* specification-defined value */
#define PSA_PAKE_PRIMITIVE_GET_FAMILY(pake_primitive) \

/* specification-defined value */
#define PSA_PAKE_PRIMITIVE_GET_BITS(pake_primitive) \

/* specification-defined value */
typedef /* implementation-defined type */ psa_pake_cipher_suite_t;
#define PSA_PAKE_CIPHER_SUITE_INIT /* implementation-defined value */
psa_pake_cipher_suite_t psa_pake_cipher_suite_init(void);
psa_algorithm_t psa_pake_cs_get_algorithm(const psa_pake_cipher_suite_t* cipher_suite);
void psa_pake_cs_set_algorithm(psa_pake_cipher_suite_t* cipher_suite,

psa_algorithm_t alg);
psa_pake_primitive_t psa_pake_cs_get_primitive(const psa_pake_cipher_suite_t* cipher_suite);
void psa_pake_cs_set_primitive(psa_pake_cipher_suite_t* cipher_suite,

psa_pake_primitive_t primitive);
#define PSA_PAKE_CONFIRMED_KEY 0
#define PSA_PAKE_UNCONFIRMED_KEY 1
uint32_t psa_pake_cs_get_key_confirmation(const psa_pake_cipher_suite_t* cipher_suite);
void psa_pake_cs_set_key_confirmation(psa_pake_cipher_suite_t* cipher_suite, (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 408

(continued from previous page)
uint32_t key_confirmation);

typedef uint8_t psa_pake_role_t;
#define PSA_PAKE_ROLE_NONE ((psa_pake_role_t)0x00)
#define PSA_PAKE_ROLE_FIRST ((psa_pake_role_t)0x01)
#define PSA_PAKE_ROLE_SECOND ((psa_pake_role_t)0x02)
#define PSA_PAKE_ROLE_CLIENT ((psa_pake_role_t)0x11)
#define PSA_PAKE_ROLE_SERVER ((psa_pake_role_t)0x12)
typedef uint8_t psa_pake_step_t;
#define PSA_PAKE_STEP_KEY_SHARE ((psa_pake_step_t)0x01)
#define PSA_PAKE_STEP_ZK_PUBLIC ((psa_pake_step_t)0x02)
#define PSA_PAKE_STEP_ZK_PROOF ((psa_pake_step_t)0x03)
#define PSA_PAKE_STEP_CONFIRM ((psa_pake_step_t)0x04)
#define PSA_PAKE_STEP_SALT ((psa_pake_step_t)0x05)
#define PSA_PAKE_STEP_COMMIT ((psa_pake_step_t)0x06)
#define PSA_PAKE_STEP_CONFIRM_COUNT ((psa_pake_step_t)0x07)
#define PSA_PAKE_STEP_KEY_ID ((psa_pake_step_t)0x08)
typedef /* implementation-defined type */ psa_pake_operation_t;
#define PSA_PAKE_OPERATION_INIT /* implementation-defined value */
psa_pake_operation_t psa_pake_operation_init(void);
psa_status_t psa_pake_setup(psa_pake_operation_t * operation,

psa_key_id_t password_key,
const psa_pake_cipher_suite_t * cipher_suite);

psa_status_t psa_pake_set_role(psa_pake_operation_t * operation,
psa_pake_role_t role);

psa_status_t psa_pake_set_user(psa_pake_operation_t * operation,
const uint8_t * user_id,
size_t user_id_len);

psa_status_t psa_pake_set_peer(psa_pake_operation_t * operation,
const uint8_t * peer_id,
size_t peer_id_len);

psa_status_t psa_pake_set_context(psa_pake_operation_t * operation,
const uint8_t * context,
size_t context_len);

psa_status_t psa_pake_output(psa_pake_operation_t * operation,
psa_pake_step_t step,
uint8_t * output,
size_t output_size,
size_t * output_length);

psa_status_t psa_pake_input(psa_pake_operation_t * operation,
psa_pake_step_t step,
const uint8_t * input,
size_t input_length);

psa_status_t psa_pake_get_shared_key(psa_pake_operation_t * operation,
const psa_key_attributes_t * attributes,
psa_key_id_t * key);

psa_status_t psa_pake_abort(psa_pake_operation_t * operation);
#define PSA_PAKE_OUTPUT_SIZE(alg, primitive, output_step) \

/* implementation-defined value */ (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 409

(continued from previous page)
#define PSA_PAKE_OUTPUT_MAX_SIZE /* implementation-defined value */
#define PSA_PAKE_INPUT_SIZE(alg, primitive, input_step) \

/* implementation-defined value */
#define PSA_PAKE_INPUT_MAX_SIZE /* implementation-defined value */
#define PSA_ALG_JPAKE(hash_alg) /* specification-defined value */
#define PSA_ALG_IS_JPAKE(alg) /* specification-defined value */
#define PSA_ALG_SPAKE2P_HMAC(hash_alg) /* specification-defined value */
#define PSA_ALG_SPAKE2P_CMAC(hash_alg) /* specification-defined value */
#define PSA_ALG_SPAKE2P_MATTER ((psa_algorithm_t)0x0A000609)
#define PSA_ALG_IS_SPAKE2P(alg) /* specification-defined value */
#define PSA_ALG_IS_SPAKE2P_HMAC(alg) /* specification-defined value */
#define PSA_ALG_IS_SPAKE2P_CMAC(alg) /* specification-defined value */
#define PSA_ALG_WPA3_SAE_FIXED(hash_alg) /* specification-defined value */
#define PSA_ALG_WPA3_SAE_GDH(hash_alg) /* specification-defined value */
#define PSA_ALG_IS_WPA3_SAE(alg) /* specification-defined value */
#define PSA_ALG_IS_WPA3_SAE_FIXED(alg) /* specification-defined value */
#define PSA_ALG_IS_WPA3_SAE_GDH(alg) /* specification-defined value */
#define PSA_ALG_WPA3_SAE_ANY ((psa_algorithm_t)0x0a0088ff)
psa_status_t psa_generate_random(uint8_t * output,

size_t output_size);

#ifdef __cplusplus
}
#endif

#endif // PSA_CRYPTO_H

Appendix B: Algorithm and key type encoding
Algorithm identifiers (psa_algorithm_t) and key types (psa_key_type_t) in the Crypto API are structuredinteger values.

∙ Algorithm identifier encoding describes the encoding scheme for algorithm identifiers
∙ Key type encoding on page 421 describes the encoding scheme for key types

B.1 Algorithm identifier encoding
Algorithm identifiers are 32-bit integer values of the type psa_algorithm_t. Algorithm identifier values havethe structure shown in Figure 8 on page 411.
Table 18 on page 411 describes the meaning of the bit-fields — some of the bit-fields are used in differentways by different algorithm categories.

Table 18 Bit fields in an algorithm identifier

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 410

0781516212223243031

HT1LEN/T2BSCATV

Figure 8 Encoding of psa_algorithm_t

Field Bits Description

V [31] Flag to indicate an implementation-defined algorithm identifier, when V=1.
Algorithm identifiers defined by this specification always have V=0.

CAT [30:24] Algorithm category. See Algorithm categories.
S [23] For a cipher algorithm, this flag indicates a stream cipher when S=1.

For a key-wrapping algorithm, this flag indicates an algorithm that acceptsnon-aligned input lengths when S=1.
For a key-derivation algorithm, this flag indicates a key-stretching orpassword-hashing algorithm when S=1.

B [22] Flag to indicate an algorithm built on a block cipher, when B=1.
LEN/T2 [21:16] LEN is the length of a MAC or AEAD tag, T2 is a key-agreement algorithm sub-type.
T1 [15:8] Algorithm sub-type for most algorithm categories.
H [7:0] Hash algorithm sub-type, also used in any algorithm that is parameterized by a hash.

B.1.1 Algorithm categories
The CAT field in an algorithm identifier takes the values shown in Table 19 on page 412.

Table 19 Algorithm identifier categories

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 411

Algorithm category CAT Category details

None 0x00 See PSA_ALG_NONE

Hash 0x02 See Hash algorithm encoding
XOF 0x0D See XOF algorithm encoding on page 413
MAC 0x03 See MAC algorithm encoding on page 414
Cipher 0x04 See Cipher algorithm encoding on page 415
AEAD 0x05 See AEAD algorithm encoding on page 415
Key wrapping 0x0B See Key-wrapping algorithm encoding on page 416
Key derivation 0x08 See Key-derivation algorithm encoding on page 417
Asymmetric signature 0x06 See Asymmetric signature algorithm encoding on page 417
Asymmetric encryption 0x07 See Asymmetric encryption algorithm encoding on page 418
Key agreement 0x09 See Key-agreement algorithm encoding on page 419
Key encapsulation 0x0C See Key-encapsulation algorithm encoding on page 419
PAKE 0x0A See PAKE algorithm encoding on page 420

B.1.2 Hash algorithm encoding
The algorithm identifier for hash algorithms defined in this specification are encoded as shown in Figure 9.

0781516212223243031

HASH-TYPE00000x020

Figure 9 Hash algorithm encoding
The defined values for HASH-TYPE are shown in Table 20 on page 413.

Table 20 Hash algorithm sub-type values

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 412

Hash algorithm HASH-TYPE Algorithm identifier Algorithm value

MD2 0x01 PSA_ALG_MD2 0x02000001

MD4 0x02 PSA_ALG_MD4 0x02000002

MD5 0x03 PSA_ALG_MD5 0x02000003

RIPEMD-160 0x04 PSA_ALG_RIPEMD160 0x02000004

SHA1 0x05 PSA_ALG_SHA_1 0x02000005

AES-MMO (Zigbee) 0x07 PSA_ALG_AES_MMO_ZIGBEE 0x02000007

SHA-224 0x08 PSA_ALG_SHA_224 0x02000008

SHA-256 0x09 PSA_ALG_SHA_256 0x02000009

SHA-384 0x0A PSA_ALG_SHA_384 0x0200000A

SHA-512 0x0B PSA_ALG_SHA_512 0x0200000B

SHA-512/224 0x0C PSA_ALG_SHA_512_224 0x0200000C

SHA-512/256 0x0D PSA_ALG_SHA_512_256 0x0200000D

SHA3-224 0x10 PSA_ALG_SHA3_224 0x02000010

SHA3-256 0x11 PSA_ALG_SHA3_256 0x02000011

SHA3-384 0x12 PSA_ALG_SHA3_384 0x02000012

SHA3-512 0x13 PSA_ALG_SHA3_512 0x02000013

SM3 0x14 PSA_ALG_SM3 0x02000014

SHAKE256-512 0x15 PSA_ALG_SHAKE256_512 0x02000015

Ascon-Hash256 0x19 PSA_ALG_ASCON_HASH256 0x02000019

wildcard a 0xFF PSA_ALG_ANY_HASH 0x020000FF

a. The wildcard hash PSA_ALG_ANY_HASH can be used to parameterize a signature algorithm which defines akey usage policy, permitting any hash algorithm to be specified in a signature operation using the key.

B.1.3 XOF algorithm encoding
The algorithm identifier for XOF algorithms defined in this specification are encoded as shown in Figure 10.

078141516212223243031

0XOF-TYPEC0000x0D0

Figure 10 XOF algorithm encoding
A C value of 1 indicates that the XOF algorithm has a context parameter. The defined values for C andXOF-TYPE are shown in Table 21 on page 414.

Table 21 XOF algorithm sub-type values

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 413

XOF algorithm C XOF-TYPE Algorithm identifier Algorithm value

SHAKE128 0 0x01 PSA_ALG_SHAKE128 0x0D000100

SHAKE256 0 0x02 PSA_ALG_SHAKE256 0x0D000200

Ascon-XOF128 0 0x03 PSA_ALG_ASCON_XOF128 0x0D000300

Ascon-CXOF128 1 0x03 PSA_ALG_ASCON_CXOF128 0x0D008300

B.1.4 MAC algorithm encoding
The algorithm identifier for MAC algorithms defined in this specification are encoded as shown in Figure 11.

078141516212223243031

HASH-TYPE or 0MAC-TYPEWLENB10x030

Figure 11MAC algorithm encoding
The defined values for B and MAC-TYPE are shown in Table 22.
LEN = 0 specifies a default length output MAC, other values for LEN specify a truncated MAC.
W is a flag to indicate a wildcard permitted-algorithm policy:

∙ W = 0 indicates a specific MAC algorithm and MAC length.
∙ W = 1 indicates a wildcard key usage policy, which permits the MAC algorithm with a MAC length ofat least LEN to be specified in a MAC operation using the key. LEN must not be zero.

H = HASH-TYPE (see Table 20 on page 413) for hash-based MAC algorithms, otherwise H = 0.
Table 22MAC algorithm sub-type values

MAC algorithm B MAC-TYPE Algorithm identifier Algorithm value

HMAC 0 0x00 PSA_ALG_HMAC(hash_alg) 0x038000hh a b
CBC-MAC c 1 0x01 PSA_ALG_CBC_MAC 0x03c00100 a
CMAC c 1 0x02 PSA_ALG_CMAC 0x03c00200 a

a. This is the default algorithm identifier, specifying a standard length tag. PSA_ALG_TRUNCATED_MAC()generates identifiers with non-default LEN values. PSA_ALG_AT_LEAST_THIS_LENGTH_MAC() generatespermitted-algorithm policies with W = 1.
b. hh is the HASH-TYPE for the hash algorithm, hash_alg, used to construct the MAC algorithm.
c. This is a MAC constructed using an underlying block cipher. The block cipher is determined by the keytype that is provided to the MAC operation.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 414

B.1.5 Cipher algorithm encoding
The algorithm identifier for CIPHER algorithms defined in this specification are encoded as shown in Figure12.

0781516212223243031

0CIPHER-TYPE0BS0x040

Figure 12 CIPHER algorithm encoding
The defined values for S, B, and CIPHER-TYPE are shown in Table 23.

Table 23 Cipher algorithm sub-type values
Cipher algorithm S B CIPHER-TYPE Algorithm identifier Algorithm value

Stream cipher a 1 0 0x01 PSA_ALG_STREAM_CIPHER 0x04800100

CTR mode b 1 1 0x10 PSA_ALG_CTR 0x04C01000

CFB mode b 1 1 0x11 PSA_ALG_CFB 0x04C01100

OFB mode b 1 1 0x12 PSA_ALG_OFB 0x04C01200

CCM* with zero-length tag b 1 1 0x13 PSA_ALG_CCM_STAR_NO_TAG 0x04C01300

CCM* wildcard c 1 1 0x93 PSA_ALG_CCM_STAR_ANY_TAG 0x04c09300

XTS mode b 0 1 0xFF PSA_ALG_XTS 0x0440FF00

CBC mode without padding b 0 1 0x40 PSA_ALG_CBC_NO_PADDING 0x04404000

CBC mode with PKCS#7 padding b 0 1 0x41 PSA_ALG_CBC_PKCS7 0x04404100

ECB mode without padding b 0 1 0x44 PSA_ALG_ECB_NO_PADDING 0x04404400

a. The stream cipher algorithm identifier PSA_ALG_STREAM_CIPHER is used with specific stream cipher keytypes, such as PSA_KEY_TYPE_CHACHA20.
b. This is a cipher mode of an underlying block cipher. The block cipher is determined by the key typethat is provided to the cipher operation.
c. The wildcard algorithm PSA_ALG_CCM_STAR_ANY_TAG permits a key to be used with any CCM* algorithm:unauthenticated cipher PSA_ALG_CCM_STAR_NO_TAG, and AEAD algorithm PSA_ALG_CCM.

B.1.6 AEAD algorithm encoding
The algorithm identifier for AEAD algorithms defined in this specification are encoded as shown in Figure13.

078141516212223243031

0AEAD-TYPEWLENB00x050

Figure 13 AEAD algorithm encoding

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 415

The defined values for B and AEAD-TYPE are shown in Table 24.
LEN = 1..31 specifies the output tag length.
W is a flag to indicate a wildcard permitted-algorithm policy:

∙ W = 0 indicates a specific AEAD algorithm and tag length.
∙ W = 1 indicates a wildcard key usage policy, which permits the AEAD algorithm with a tag length of atleast LEN to be specified in an AEAD operation using the key.

Table 24 AEAD algorithm sub-type values
AEAD algorithm B AEAD-TYPE Algorithm identifier Algorithm value

CCM a 1 0x01 PSA_ALG_CCM 0x05500100 b
GCM a 1 0x02 PSA_ALG_GCM 0x05500200 b
ChaCha20-Poly1305 0 0x05 PSA_ALG_CHACHA20_POLY1305 0x05100500 b
XChaCha20-Poly1305 0 0x06 PSA_ALG_XCHACHA20_POLY1305 0x05100600 b
Ascon-AEAD128 0 0x07 PSA_ALG_ASCON_AEAD128 0x05100700 b

a. This is an AEAD mode of an underlying block cipher. The block cipher is determined by the key typethat is provided to the AEAD operation.
b. This is the default algorithm identifier, specifying the default tag length for the algorithm.

PSA_ALG_AEAD_WITH_SHORTENED_TAG() generates identifiers with alternative LEN values.
PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG() generates wildcard permitted-algorithm policies withW = 1.

B.1.7 Key-wrapping algorithm encoding
The algorithm identifier for key-wrapping algorithms defined in this specification are encoded as shown inFigure 14.

0781516212223243031

0WRAP-TYPE0BS0x0B0

Figure 14 Key-wrapping algorithm encoding
The defined values for S, B, and WRAP-TYPE are shown in Table 25.

Table 25 Key-wrapping algorithm sub-type values
Key-wrapping algorithm S B WRAP-TYPE Algorithm identifier Algorithm value

AES-KW 0 1 0x01 PSA_ALG_KW 0x0B400100

AES-KWP 1 1 0x02 PSA_ALG_KWP 0x0BC00200

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 416

B.1.8 Key-derivation algorithm encoding
The algorithm identifier for key-derivation algorithms defined in this specification are encoded as shown inFigure 15.

0781516212223243031

HASH-TYPEKDF-TYPE00S0x080

Figure 15 Key-derivation algorithm encoding
The defined values for S and KDF-TYPE are shown in Table 26.
The permitted values of HASH-TYPE (see Table 20 on page 413) depend on the specific KDF algorithm.

Table 26 Key-derivation algorithm sub-type values
Key-derivation algorithm S KDF-

TYPE
Algorithm identifier Algorithm

value

HKDF 0 0x01 PSA_ALG_HKDF(hash) 0x080001hh a
TLS-1.2 PRF 0 0x02 PSA_ALG_TLS12_PRF(hash) 0x080002hh a
TLS-1.2 PSK-to-MasterSecret 0 0x03 PSA_ALG_TLS12_PSK_TO_MS(hash) 0x080003hh a
HKDF-Extract 0 0x04 PSA_ALG_HKDF_EXTRACT(hash) 0x080004hh a
HKDF-Expand 0 0x05 PSA_ALG_HKDF_EXPAND(hash) 0x080005hh a
TLS 1.2 ECJPAKE-to-PMS 0 0x06 PSA_ALG_TLS12_ECJPAKE_TO_PMS 0x08000609

SP 800-108 Counter HMAC 0 0x07 PSA_ALG_SP800_108_COUNTER_HMAC(hash) 0x080007hh a
SP 800-108 Counter CMAC 0 0x08 PSA_ALG_SP800_108_COUNTER_CMAC 0x08000800

PBKDF2-HMAC 1 0x01 PSA_ALG_PBKDF2_HMAC(hash) 0x088001hh a
PBKDF2-AES-CMAC-PRF-128 1 0x02 PSA_ALG_PBKDF2_AES_CMAC_PRF_128 0x08800200

WPA3-SAE Hash-to-element 1 0x04 PSA_ALG_WPA3_SAE_H2E(hash) 0x088004hh a

a. hh is the HASH-TYPE for the hash algorithm, hash, used to construct the key-derivation algorithm.

B.1.9 Asymmetric signature algorithm encoding
The algorithm identifier for asymmetric signature algorithms defined in this specification are encoded asshown in Figure 16.

0781516212223243031

HASH-TYPE or 0SIGN-TYPE0000x060

Figure 16 Asymmetric signature algorithm encoding
The defined values for SIGN-TYPE are shown in Table 27 on page 418.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 417

H = HASH-TYPE (see Table 20 on page 413) for message signature algorithms that are parameterized by ahash algorithm, otherwise H = 0.
Table 27 Asymmetric signature algorithm sub-type values

Signature algorithm SIGN-TYPE Algorithm identifier Algorithm value

RSA PKCS#1 v1.5 0x02 PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) 0x060002hh a
RSA PKCS#1 v1.5 no hash b 0x02 PSA_ALG_RSA_PKCS1V15_SIGN_RAW 0x06000200

RSA PSS 0x03 PSA_ALG_RSA_PSS(hash_alg) 0x060003hh a
RSA PSS any salt length 0x13 PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) 0x060013hh a
Randomized ECDSA 0x06 PSA_ALG_ECDSA(hash_alg) 0x060006hh a
Randomized ECDSA no hash b 0x06 PSA_ALG_ECDSA_ANY 0x06000600

Deterministic ECDSA 0x07 PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) 0x060007hh a
PureEdDSA without context 0x08 PSA_ALG_PURE_EDDSA 0x06000800

HashEdDSA 0x09 PSA_ALG_ED25519PH and PSA_ALG_ED448PH 0x060009hh c
PureEdDSA with context 0x0a PSA_ALG_EDDSA_CTX 0x06000a00

a. hh is the HASH-TYPE for the hash algorithm, hash_alg, used to construct the signature algorithm.
b. Asymmetric signature algorithms without hashing can only be used with psa_sign_hash() and

psa_verify_hash().
c. The HASH-TYPE for HashEdDSA is determined by the curve. SHA-512 is used for Ed25519ph, andthe first 64 bytes of output from SHAKE256 is used for Ed448ph.

B.1.10 Asymmetric encryption algorithm encoding
The algorithm identifier for asymmetric encryption algorithms defined in this specification are encoded asshown in Figure 17.

0781516212223243031

HASH-TYPE or 0ENCRYPT-TYPE0000x070

Figure 17 Asymmetric encryption algorithm encoding
The defined values for ENCRYPT-TYPE are shown in Table 28.
H = HASH-TYPE (see Table 20 on page 413) for asymmetric encryption algorithms that are parameterizedby a hash algorithm, otherwise H = 0.

Table 28 Asymmetric encryption algorithm sub-type values
Asymmetric encryption algorithm ENCRYPT-TYPE Algorithm identifier Algorithm value

RSA PKCS#1 v1.5 0x02 PSA_ALG_RSA_PKCS1V15_CRYPT 0x07000200

RSA OAEP 0x03 PSA_ALG_RSA_OAEP(hash_alg) 0x070003hh a

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 418

a. hh is the HASH-TYPE for the hash algorithm, hash_alg, used to construct the encryption algorithm.

B.1.11 Key-agreement algorithm encoding
A key-agreement algorithm identifier can either be for the standalone key-agreement algorithm, or for acombined key-agreement with key-derivation algorithm. The former can only be used with
psa_key_agreement() and psa_raw_key_agreement(), while the latter are used with
psa_key_derivation_key_agreement().
The algorithm identifier for standalone key-agreement algorithms defined in this specification are encodedas shown in Figure 18.

0781516212223243031

00KA-TYPE000x090

Figure 18 Standalone key-agreement algorithm encoding
The defined values for KA-TYPE are shown in Table 29.

Table 29 Key-agreement algorithm sub-type values
Key-agreement algorithm KA-TYPE Algorithm identifier Algorithm value

FFDH 0x01 PSA_ALG_FFDH 0x09010000

ECDH 0x02 PSA_ALG_ECDH 0x09020000

A combined key agreement is constructed by a bitwise OR of the standalone key-agreement algorithmidentifier and the key-derivation algorithm identifier. This operation is provided by the
PSA_ALG_KEY_AGREEMENT() macro.

0781516212223243031

HASH-TYPEKDF-TYPEKA-TYPE000x090

Figure 19 Combined key-agreement algorithm encoding
The underlying standalone key-agreement algorithm can be extracted from the KA-TYPE field, and thekey-derivation algorithm from the KDF-TYPE and HASH-TYPE fields.

B.1.12 Key-encapsulation algorithm encoding
The algorithm identifier for key-encapsulation algorithms defined in this specification are encoded as shownin Figure 20 on page 420.
The defined values for ENCAPS-TYPE are shown in Table 30 on page 420.

Table 30 Encapsulation algorithm sub-type values

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 419

0781516212223243031

0ENCAPS-TYPE0000x0C0

Figure 20 Encapsulation algorithm encoding

Encapsulation algorithm ENCAPS-TYPE Algorithm identifier Algorithm value

ECIES (SEC1) 0x01 PSA_ALG_ECIES_SEC1 0x0C000100

B.1.13 PAKE algorithm encoding
The algorithm identifier for PAKE algorithms defined in this specification are encoded as shown in Figure 21.

0781516212223243031

HASH-TYPEPAKE-TYPE0000x0A0

Figure 21 PAKE algorithm encoding
The defined values for PAKE-TYPE are shown in Table 31.
The permitted values of HASH-TYPE (see Table 20 on page 413) depend on the specific PAKE algorithm.

Table 31 PAKE algorithm sub-type values
PAKE algorithm PAKE-TYPE Algorithm identifier Algorithm value

J-PAKE 0x01 PSA_ALG_JPAKE(hash) 0x0A0001hh a
SPAKE2+ with HMAC 0x04 PSA_ALG_SPAKE2P_HMAC(hash) 0x0A0004hh a
SPAKE2+ with CMAC 0x05 PSA_ALG_SPAKE2P_CMAC(hash) 0x0A0005hh a
SPAKE2+ for Matter 0x06 PSA_ALG_SPAKE2P_MATTER 0x0A000609

WPA3-SAE 0x08 PSA_ALG_WPA3_SAE_FIXED(hash) 0x0A0008hh a
WPA3-SAE (GDH) 0x09 PSA_ALG_WPA3_SAE_GDH(hash) 0x0A0009hh a
WPA3-SAE wildcard b c 0x88 PSA_ALG_WPA3_SAE_ANY 0x0A0088FF

a. hh is the HASH-TYPE for the hash algorithm, hash, used to construct the key-derivation algorithm.
b. The wildcard algorithm PSA_ALG_WPA3_SAE_ANY permits a password key to be used for any WPA3-SAEcipher suite with the PSA_ALG_WPA3_SAE_H2E key-derivation algorithm, and with the

PSA_ALG_WPA3_SAE_FIXED PAKE algorithm.
c. The wildcard algorithm PSA_ALG_WPA3_SAE_ANY permits a WPA3-SAE password token key to be used forboth the PSA_ALG_WPA3_SAE_FIXED and PSA_ALG_WPA3_SAE_GDH PAKE algorithms.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 420

B.2 Key type encoding
Key types are 16-bit integer values of the type psa_key_type_t. Key type values have the structure shown inFigure 22.

011112131415

Pcategory-specific typeCATAV

Figure 22 Encoding of psa_key_type_t
Table 32 describes the meaning of the bit-fields — some of bit-fields are used in different ways by differentkey type categories.

Table 32 Bit fields in a key type
Field Bits Description

V [15] Flag to indicate an implementation-defined key type, when V=1.
Key types defined by this specification always have V=0.

A [14] Flag to indicate an asymmetric key type, when A=1.
CAT [13:12] Key type category. See Key type categories.
category-specific type [11:1] The meaning of this field is specific to each key category.
P [0] Parity bit. Valid key type values have even parity.

B.2.1 Key type categories
The A and CAT fields in a key type take the values shown in Table 33.

Table 33 Key type categories
Key type category A CAT Category details

None 0 0 See PSA_KEY_TYPE_NONE

Raw data 0 1 See Raw key encoding
Symmetric key 0 2 See Symmetric key encoding on page 422
Structured key 0 3 See Structured key encoding on page 423
Asymmetric public key 1 0 See Asymmetric key encoding on page 424
Asymmetric key pair 1 3 See Asymmetric key encoding on page 424

B.2.2 Raw key encoding
The key type for raw keys defined in this specification are encoded as shown in Figure 23 on page 422.
The defined values for RAW-TYPE, SUB-TYPE, and P are shown in Table 34 on page 422.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 421

01781112131415

PSUB-TYPERAW-TYPE100

Figure 23 Raw key encoding

Table 34 Raw key sub-type values
Raw key type RAW-TYPE SUB-TYPE P Key type Key type value

Raw data 0 0 1 PSA_KEY_TYPE_RAW_DATA 0x1001

HMAC 1 0 0 PSA_KEY_TYPE_HMAC 0x1100

Derivation secret 2 0 0 PSA_KEY_TYPE_DERIVE 0x1200

Password 2 1 1 PSA_KEY_TYPE_PASSWORD 0x1203

Password hash 2 2 1 PSA_KEY_TYPE_PASSWORD_HASH 0x1205

Derivation pepper 2 3 0 PSA_KEY_TYPE_PEPPER 0x1206

B.2.3 Symmetric key encoding
The key type for symmetric keys defined in this specification are encoded as shown in Figure 24.

0178101112131415

PSYM-TYPEBLK0200

Figure 24 Symmetric key encoding
For block-based cipher keys, the block size for the cipher algorithm is 2BLK.
The defined values for BLK, SYM-TYPE and P are shown in Table 35.

Table 35 Symmetric key sub-type values
Symmetric key type BLK SYM-TYPE P Key type Key type value

ARC4 0 1 0 PSA_KEY_TYPE_ARC4 0x2002

ChaCha20 0 2 0 PSA_KEY_TYPE_CHACHA20 0x2004

XChaCha20 0 3 1 PSA_KEY_TYPE_XCHACHA20 0x2007

Ascon 0 4 0 PSA_KEY_TYPE_ASCON 0x2008

DES 3 0 1 PSA_KEY_TYPE_DES 0x2301

AES 4 0 0 PSA_KEY_TYPE_AES 0x2400

CAMELLIA 4 1 1 PSA_KEY_TYPE_CAMELLIA 0x2403

SM4 4 2 1 PSA_KEY_TYPE_SM4 0x2405

ARIA 4 3 0 PSA_KEY_TYPE_ARIA 0x2406

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 422

B.2.4 Structured key encoding
The key type for structured keys defined in this specification are encoded as shown in Figure 25.

01671112131415

PFAMILYSTRUCT-TYPE300

Figure 25 Encoding of structured keys
The defined values for STRUCT-TYPE are shown in Table 36.
The defined values for FAMILY depend on the STRUCT-TYPE value. See the details for each structured keysub-type.

Table 36 Structured key sub-type values
Structured key type STRUCT-TYPE Details

WPA3-SAE password token 5, 6 See WPA3-SAE password token encoding

WPA3-SAE password token encoding
WPA3-SAE is defined to use either elliptic curve or finite field groups. These use distinct STRUCT-TYPEvalues, and use the same FAMILY values as elliptic curve and finite field Diffie-Hellman key types.
WPA3-SAE password tokens using elliptic curves
The key type for WPA3-SAE password tokens using elliptic curves defined in this specification are encodedas shown in Figure 26.

01671112131415

PECC-FAMILY5300

Figure 26 Encoding of WPA3-SAE password token using elliptic curves
The defined values for ECC-FAMILY and P are shown in Table 37.

Table 37WPA3-SAE password token ECC family values
WPA3-SAE suite ECC-FAMILY P ECC family a Key value

SECP R1 0x09 0 PSA_ECC_FAMILY_SECP_R1 0x3292

Brainpool-P R1 0x18 0 PSA_ECC_FAMILY_BRAINPOOL_P_R1 0x32b0

a. The elliptic curve family values defined in the API also include the parity bit. The password token keytype value is constructed from the elliptic curve family using PSA_KEY_TYPE_WPA3_SAE_ECC(family).

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 423

WPA3-SAE password tokens using finite fields
The key type for WPA3-SAE password tokens using finite fields defined in this specification are encoded asshown in Figure 27.

01671112131415

PDH-FAMILY6300

Figure 27 Encoding of WPA3-SAE password token using finite fields
The defined values for DH-FAMILY and P are shown in Table 38.
RFC3526 defines a set of FF groups that are recommended for use with WPA3-SAE (those with primes>=3072 bits)

Table 38WPA3-SAE password token finite field Diffie-Hellman family values
WPA3-SAE suite DH-FAMILY P DH family a Key value

RFC3526 0x02 1 PSA_DH_FAMILY_RFC3526 0x3305

a. The finite field Diffie Hellman family values defined in the API also include the parity bit. Thepassword token key type value is constructed from the finite field Diffie Hellman family using
PSA_KEY_TYPE_WPA3_SAE_DH(family).

B.2.5 Asymmetric key encoding
The key type for asymmetric keys defined in this specification are encoded as shown in Figure 28.

01671112131415

PFAMILYASYM-TYPEPAIR10

Figure 28 Asymmetric key encoding
PAIR is either 0 for a public key, or 3 for a key pair.
The defined values for ASYM-TYPE are shown in Table 39.
The defined values for FAMILY depend on the ASYM-TYPE value. See the details for each asymmetric keysub-type.

Table 39 Asymmetric key sub-type values
Asymmetric key type ASYM-TYPE Details

Non-parameterized 0 See Non-parameterized asymmetric key encoding on page 425
Elliptic Curve 2 See Elliptic curve key encoding on page 425
Diffie-Hellman 4 See Finite field Diffie Hellman key encoding on page 426
SPAKE2+ 8 See SPAKE2+ key encoding on page 427

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 424

Non-parameterized asymmetric key encoding
The key type for non-parameterized asymmetric keys defined in this specification are encoded as shown inFigure 29.

01671112131415

PNP-FAMILY0PAIR10

Figure 29 Non-parameterized asymmetric keys encoding
PAIR is either 0 for a public key, or 3 for a key pair.
The defined values for NP-FAMILY and P are shown in Table 40.

Table 40 Non-parameterized asymmetric key family values
Key family Public/pair PAIR NP-FAMILY P Key type Key value

RSA Public key 0 0 1 PSA_KEY_TYPE_RSA_PUBLIC_KEY 0x4001

Key pair 3 0 1 PSA_KEY_TYPE_RSA_KEY_PAIR 0x7001

Elliptic curve key encoding
The key type for elliptic curve keys defined in this specification are encoded as shown in Figure 30.

01671112131415

PECC-FAMILY2PAIR10

Figure 30 Elliptic curve key encoding
PAIR is either 0 for a public key, or 3 for a key pair.
The defined values for ECC-FAMILY and P are shown in Table 41 on page 426.

Table 41 ECC key family values

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 425

ECC key family ECC-FAMILY P ECC family a Public-key value Key-pair value

SECP K1 0x0B 1 PSA_ECC_FAMILY_SECP_K1 0x4117 0x7117

SECP R1 0x09 0 PSA_ECC_FAMILY_SECP_R1 0x4112 0x7112

SECP R2 0x0D 1 PSA_ECC_FAMILY_SECP_R2 0x411B 0x711B

SECT K1 0x13 1 PSA_ECC_FAMILY_SECT_K1 0x4127 0x7127

SECT R1 0x11 0 PSA_ECC_FAMILY_SECT_R1 0x4122 0x7122

SECT R2 0x15 1 PSA_ECC_FAMILY_SECT_R2 0x412B 0x712B

Brainpool-P R1 0x18 0 PSA_ECC_FAMILY_BRAINPOOL_P_R1 0x4130 0x7130

FRP 0x19 1 PSA_ECC_FAMILY_FRP 0x4133 0x7133

Montgomery 0x20 1 PSA_ECC_FAMILY_MONTGOMERY 0x4141 0x7141

Twisted Edwards 0x21 0 PSA_ECC_FAMILY_TWISTED_EDWARDS 0x4142 0x7142

a. The elliptic curve family values defined in the API also include the parity bit. The key type value isconstructed from the elliptic curve family using either PSA_KEY_TYPE_ECC_PUBLIC_KEY(family) or
PSA_KEY_TYPE_ECC_KEY_PAIR(family) as required.

Finite field Diffie Hellman key encoding
The key type for finite field Diffie Hellman keys defined in this specification are encoded as shown in Figure31.

01671112131415

PDH-FAMILY4PAIR10

Figure 31 Finite field Diffie Hellman key encoding
PAIR is either 0 for a public key, or 3 for a key pair.
The defined values for DH-FAMILY and P are shown in Table 42.

Table 42 Finite field Diffie Hellman key group values
DH key group DH-FAMILY P DH family a Public-key value Key-pair value

RFC7919 0x01 1 PSA_DH_FAMILY_RFC7919 0x4203 0x7203

a. The finite field Diffie Hellman group family values defined in the API also include the parity bit. Thekey type value is constructed from the finite field Diffie Hellman family using either
PSA_KEY_TYPE_DH_PUBLIC_KEY(family) or PSA_KEY_TYPE_DH_KEY_PAIR(family) as required.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 426

SPAKE2+ key encoding
The key type for SPAKE2+ keys defined in this specification are encoded as shown in Figure 32.

01671112131415

PECC-FAMILY8PAIR10

Figure 32 SPAKE2+ key encoding
PAIR is either 0 for a public key, or 3 for a key pair.
The defined values for ECC-FAMILY and P are shown in Table 43.

Table 43 SPAKE2+ key family values
SPAKE2+ group ECC-FAMILY P ECC family a Public-key value Key-pair value

SECP R1 0x09 0 PSA_ECC_FAMILY_SECP_R1 0x4412 0x7412

Twisted Edwards 0x21 0 PSA_ECC_FAMILY_TWISTED_EDWARDS 0x4442 0x7442

a. The elliptic curve family values defined in the API also include the parity bit. The key type value isconstructed from the elliptic curve family using either PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY(family) or
PSA_KEY_TYPE_SPAKE2P_KEY_PAIR(family) as required.

Appendix C: Example macro implementations
This appendix provides example implementations of the function-like macros that havespecification-defined values.

Note:
In a future version of this specification, these example implementations will be replaced with apseudo-code representation of the macro’s computation in the macro description.

The examples here provide correct results for the valid inputs defined by each API, for an implementationthat supports all of the defined algorithms and key types. An implementation can provide alternativedefinitions of these macros:
∙ If the implementation does not support all of the algorithms or key types, it can provide a simplerdefinition of applicable macros.
∙ If the implementation provides vendor-specific algorithms or key types, it needs to extend thedefinitions of applicable macros.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 427

C.1 Algorithm macros
#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \

((((aead_alg) & ~0x003f8000) == 0x05400100) ? PSA_ALG_CCM : \
(((aead_alg) & ~0x003f8000) == 0x05400200) ? PSA_ALG_GCM : \
(((aead_alg) & ~0x003f8000) == 0x05000500) ? PSA_ALG_CHACHA20_POLY1305 : \
PSA_ALG_NONE)

#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
(PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | 0x00008000)

#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
((psa_algorithm_t) (((aead_alg) & ~0x003f8000) | (((tag_length) & 0x3f) << 16)))

#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
(PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | 0x00008000)

#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
((psa_algorithm_t) (0x06000700 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_ECDSA(hash_alg) \
((psa_algorithm_t) (0x06000600 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
((psa_algorithm_t) ((mac_alg) & ~0x003f8000))

#define PSA_ALG_GET_HASH(alg) \
(((alg) & 0x000000ff) == 0 ? PSA_ALG_NONE : 0x02000000 | ((alg) & 0x000000ff))

#define PSA_ALG_HKDF(hash_alg) \
((psa_algorithm_t) (0x08000100 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HKDF_EXPAND(hash_alg) \
((psa_algorithm_t) (0x08000500 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HKDF_EXTRACT(hash_alg) \
((psa_algorithm_t) (0x08000400 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HMAC(hash_alg) \
((psa_algorithm_t) (0x03800000 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_IS_AEAD(alg) \
(((alg) & 0x7f000000) == 0x05000000)

#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
(((alg) & 0x7f400000) == 0x05400000)

#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
(((alg) & 0x7f000000) == 0x07000000)

(continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 428

(continued from previous page)
#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \

(((alg) & 0x7fc00000) == 0x03c00000)

#define PSA_ALG_IS_CIPHER(alg) \
(((alg) & 0x7f000000) == 0x04000000)

#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
(((alg) & ~0x000000ff) == 0x06000700)

#define PSA_ALG_IS_ECDH(alg) \
(((alg) & 0x7fff0000) == 0x09020000)

#define PSA_ALG_IS_ECDSA(alg) \
(((alg) & ~0x000001ff) == 0x06000600)

#define PSA_ALG_IS_FFDH(alg) \
(((alg) & 0x7fff0000) == 0x09010000)

#define PSA_ALG_IS_HASH(alg) \
(((alg) & 0x7f000000) == 0x02000000)

#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
(PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg))

#define PSA_ALG_IS_HASH_EDDSA(alg) \
(((alg) & ~0x000000ff) == 0x06000900)

#define PSA_ALG_IS_HKDF(alg) \
(((alg) & ~0x000000ff) == 0x08000100)

#define PSA_ALG_IS_HKDF_EXPAND(alg) \
(((alg) & ~0x000000ff) == 0x08000500)

#define PSA_ALG_IS_HKDF_EXTRACT(alg) \
(((alg) & ~0x000000ff) == 0x08000400)

#define PSA_ALG_IS_HMAC(alg) \
(((alg) & 0x7fc0ff00) == 0x03800000)

#define PSA_ALG_IS_JPAKE(alg) \
(((alg) & ~0x000000ff) == 0x0a000100)

#define PSA_ALG_IS_KEY_AGREEMENT(alg) \
(((alg) & 0x7f000000) == 0x09000000)

#define PSA_ALG_IS_KEY_DERIVATION(alg) \ (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 429

(continued from previous page)
(((alg) & 0x7f000000) == 0x08000000)

#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
(((alg) & 0x7f800000) == 0x08800000)

#define PSA_ALG_IS_KEY_ENCAPSULATION(alg) \
(((alg) & 0x7f000000) == 0x0c000000)

#define PSA_ALG_IS_KEY_WRAP(alg) \
(((alg) & 0x7f000000) == 0x0b000000)

#define PSA_ALG_IS_MAC(alg) \
(((alg) & 0x7f000000) == 0x03000000)

#define PSA_ALG_IS_PAKE(alg) \
(((alg) & 0x7f000000) == 0x0a000000)

#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
(((alg) & ~0x000000ff) == 0x08800100)

#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
(((alg) & ~0x000000ff) == 0x06000600)

#define PSA_ALG_IS_RSA_OAEP(alg) \
(((alg) & ~0x000000ff) == 0x07000300)

#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
(((alg) & ~0x000000ff) == 0x06000200)

#define PSA_ALG_IS_RSA_PSS(alg) \
(((alg) & ~0x000010ff) == 0x06000300)

#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
(((alg) & ~0x000000ff) == 0x06001300)

#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
(((alg) & ~0x000000ff) == 0x06000300)

#define PSA_ALG_IS_SIGN(alg) \
(((alg) & 0x7f000000) == 0x06000000)

#define PSA_ALG_IS_SIGN_HASH(alg) \
(PSA_ALG_IS_SIGN(alg) && \
(alg) != PSA_ALG_PURE_EDDSA && (alg) != PSA_ALG_EDDSA_CTX)

#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
(PSA_ALG_IS_SIGN(alg) && \
(alg) != PSA_ALG_ECDSA_ANY && (alg) != PSA_ALG_RSA_PKCS1V15_SIGN_RAW) (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 430

(continued from previous page)
#define PSA_ALG_IS_SP800_108_COUNTER_HMAC(alg) \

(((alg) & ~0x000000ff) == 0x08000700)

#define PSA_ALG_IS_SPAKE2P(alg) \
(((alg) & ~0x000003ff) == 0x0a000400)

#define PSA_ALG_IS_SPAKE2P_CMAC(alg) \
(((alg) & ~0x000000ff) == 0x0a000500)

#define PSA_ALG_IS_SPAKE2P_HMAC(alg) \
(((alg) & ~0x000000ff) == 0x0a000400)

#define PSA_ALG_IS_STANDALONE_KEY_AGREEMENT(alg) \
(((alg) & 0x7f00ffff) == 0x09000000)

#define PSA_ALG_IS_STREAM_CIPHER(alg) \
(((alg) & 0x7f800000) == 0x04800000)

#define PSA_ALG_IS_TLS12_PRF(alg) \
(((alg) & ~0x000000ff) == 0x08000200)

#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
(((alg) & ~0x000000ff) == 0x08000300)

#define PSA_ALG_IS_WILDCARD(alg) \
(PSA_ALG_GET_HASH(alg) == PSA_ALG_ANY_HASH || \
((alg) & 0x7f008000) == 0x03008000 || \
((alg) & 0x7f008000) == 0x05008000 || \
(alg) == PSA_ALG_CCM_STAR_ANY_TAG)

#define PSA_ALG_IS_WPA3_SAE(alg) \
(((alg) & ~0x000001ff) == 0x0a000800)

#define PSA_ALG_IS_WPA3_SAE_FIXED(alg) \
(((alg) & ~0x000000ff) == 0x0a000800)

#define PSA_ALG_IS_WPA3_SAE_GDH(alg) \
(((alg) & ~0x000000ff) == 0x0a000900)

#define PSA_ALG_IS_WPA3_SAE_H2E(alg) \
(((alg) & ~0x000000ff) == 0x08800400)

#define PSA_ALG_IS_XOF(alg) \
(((alg) & 0x7f000000) == 0x0D000000)

#define PSA_ALG_JPAKE(hash_alg) \
((psa_algorithm_t) (0x0a000100 | ((hash_alg) & 0x000000ff))) (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 431

(continued from previous page)
#define PSA_ALG_KEY_AGREEMENT(ka_alg, kdf_alg) \

((ka_alg) | (kdf_alg))

#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
((psa_algorithm_t) ((alg) & 0xff7f0000))

#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) \
((psa_algorithm_t) ((alg) & 0xfe80ffff))

#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
((psa_algorithm_t) (0x08800100 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_RSA_OAEP(hash_alg) \
((psa_algorithm_t) (0x07000300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
((psa_algorithm_t) (0x06000200 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_RSA_PSS(hash_alg) \
((psa_algorithm_t) (0x06000300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) \
((psa_algorithm_t) (0x06001300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_SP800_108_COUNTER_HMAC(hash_alg) \
((psa_algorithm_t) (0x08000700 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_SPAKE2P_CMAC(hash_alg) \
((psa_algorithm_t) (0x0a000500 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_SPAKE2P_HMAC(hash_alg) \
((psa_algorithm_t) (0x0a000400 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_TLS12_PRF(hash_alg) \
((psa_algorithm_t) (0x08000200 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
((psa_algorithm_t) (0x08000300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
((psa_algorithm_t) (((mac_alg) & ~0x003f8000) | (((mac_length) & 0x3f) << 16)))

#define PSA_ALG_WPA3_SAE_FIXED(hash_alg) \
((psa_algorithm_t) (0x0a000800 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_WPA3_SAE_GDH(hash_alg) \
((psa_algorithm_t) (0x0a000900 | ((hash_alg) & 0x000000ff))) (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 432

(continued from previous page)
#define PSA_ALG_WPA3_SAE_H2E(hash_alg) \

((psa_algorithm_t) (0x08800400 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_XOF_HAS_CONTEXT(alg) \
(((alg) & 0x00008000) != 0)

#define PSA_PAKE_PRIMITIVE(pake_type, pake_family, pake_bits) \
((pake_bits & 0xFFFF) != pake_bits) ? 0 : \
((psa_pake_primitive_t) (((pake_type) << 24 | \

(pake_family) << 16) | (pake_bits)))

#define PSA_PAKE_PRIMITIVE_GET_BITS(pake_primitive) \
((size_t)(pake_primitive & 0xFFFF))

#define PSA_PAKE_PRIMITIVE_GET_FAMILY(pake_primitive) \
((psa_pake_family_t)((pake_primitive >> 16) & 0xFF))

#define PSA_PAKE_PRIMITIVE_GET_TYPE(pake_primitive) \
((psa_pake_primitive_type_t)((pake_primitive >> 24) & 0xFF))

C.2 Key type macros
#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \

(1u << (((type) >> 8) & 7))

#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
((psa_dh_family_t) ((type) & 0x007f))

#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
((psa_key_type_t) (0x7200 | ((group) & 0x007f)))

#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
((psa_key_type_t) (0x4200 | ((group) & 0x007f)))

#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) \
((psa_ecc_family_t) ((type) & 0x007f))

#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
((psa_key_type_t) (0x7100 | ((curve) & 0x007f)))

#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
((psa_key_type_t) (0x4100 | ((curve) & 0x007f)))

#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
(((type) & 0x4000) == 0x4000)

(continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 433

(continued from previous page)
#define PSA_KEY_TYPE_IS_DH(type) \

((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & 0xff80) == 0x4200)

#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
(((type) & 0xff80) == 0x7200)

#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
(((type) & 0xff80) == 0x4200)

#define PSA_KEY_TYPE_IS_ECC(type) \
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & 0xff80) == 0x4100)

#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
(((type) & 0xff80) == 0x7100)

#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
(((type) & 0xff80) == 0x4100)

#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
(((type) & 0x7000) == 0x7000)

#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
(((type) & 0x7000) == 0x4000)

#define PSA_KEY_TYPE_IS_RSA(type) \
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == 0x4001)

#define PSA_KEY_TYPE_IS_SPAKE2P(type) \
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & 0xff80) == 0x4400)

#define PSA_KEY_TYPE_IS_SPAKE2P_KEY_PAIR(type) \
(((type) & 0xff80) == 0x7400)

#define PSA_KEY_TYPE_IS_SPAKE2P_PUBLIC_KEY(type) \
(((type) & 0xff80) == 0x4400)

#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
(((type) & 0x7000) == 0x1000 || ((type) & 0x7000) == 0x2000)

#define PSA_KEY_TYPE_IS_WPA3_SAE_DH(type) \
(((type) & 0xff80) == 0x3300)

#define PSA_KEY_TYPE_IS_WPA3_SAE_ECC(type) \
(((type) & 0xff80) == 0x3280)

#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \
((psa_key_type_t) ((type) | 0x3000)) (continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 434

(continued from previous page)
#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \

((psa_key_type_t) ((type) & ~0x3000))

#define PSA_KEY_TYPE_SPAKE2P_GET_FAMILY(type) \
((psa_ecc_family_t) ((type) & 0x007f))

#define PSA_KEY_TYPE_SPAKE2P_KEY_PAIR(curve) \
((psa_key_type_t) (0x7400 | ((curve) & 0x007f)))

#define PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY(curve) \
((psa_key_type_t) (0x4400 | ((curve) & 0x007f)))

#define PSA_KEY_TYPE_WPA3_SAE_DH_GET_FAMILY(type) \
((psa_dh_family_t) ((type) & 0x007f))

#define PSA_KEY_TYPE_WPA3_SAE_DH(family) \
((psa_key_type_t) (0x3300 | ((family) & 0x007f)))

#define PSA_KEY_TYPE_WPA3_SAE_ECC_GET_FAMILY(type) \
((psa_ecc_family_t) ((type) & 0x007f))

#define PSA_KEY_TYPE_WPA3_SAE_ECC(curve) \
((psa_key_type_t) (0x3280 | ((curve) & 0x007f)))

C.3 Hash suspend state macros
#define PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) \

((alg)==PSA_ALG_MD2 ? 64 : \
(alg)==PSA_ALG_MD4 || (alg)==PSA_ALG_MD5 ? 16 : \
(alg)==PSA_ALG_RIPEMD160 || (alg)==PSA_ALG_SHA_1 ? 20 : \
(alg)==PSA_ALG_SHA_224 || (alg)==PSA_ALG_SHA_256 ? 32 : \
(alg)==PSA_ALG_SHA_512 || (alg)==PSA_ALG_SHA_384 || \

(alg)==PSA_ALG_SHA_512_224 || (alg)==PSA_ALG_SHA_512_256 ? 64 : \
0)

#define PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) \
((alg)==PSA_ALG_MD2 ? 1 : \
(alg)==PSA_ALG_MD4 || (alg)==PSA_ALG_MD5 || (alg)==PSA_ALG_RIPEMD160 || \

(alg)==PSA_ALG_SHA_1 || (alg)==PSA_ALG_SHA_224 || (alg)==PSA_ALG_SHA_256 ? 8 : \
(alg)==PSA_ALG_SHA_512 || (alg)==PSA_ALG_SHA_384 || \

(alg)==PSA_ALG_SHA_512_224 || (alg)==PSA_ALG_SHA_512_256 ? 16 : \
0)

#define PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) \
(PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH + \

(continues on next page)

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 435

(continued from previous page)
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) + \
PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) + \
PSA_HASH_BLOCK_LENGTH(alg) - 1)

Appendix D: Security Risk Assessment
This Security Risk Assessment (SRA) analyses the security of the Crypto API itself, not of any specificimplementation of the API, or any specific use of the API. However, the security of an implementation ofthe Crypto API depends on the implementation design, the capabilities of the system in which it isdeployed, and the need to address some of the threats identified in this assessment.
To enable the Crypto API to be suitable for a wider range of security use cases, this SRA considers a broadrange of adversarial models and threats to the application and the implementation, as well as to the API.
This approach allows the assessment to identify API design requirements that affect the ability for animplementation to mitigate threats that do not directly attack the API.
The scope is described in Adversarial models on page 439.

D.1 Architecture
D.1.1 System definition
Figure 33 shows the Crypto API as the defined interface that an Application uses to interact with theCryptoprocessor.

Crypto API

Application Cryptoprocessor
call

Figure 33 Crypto API

Assumptions, constraints, and interacting entities
This SRA makes the following assumptions about the Crypto API design:

∙ The API does not provide arguments that identify the caller, because they can be spoofed easily, andcannot be relied upon. It is assumed that the implementation of the API can determine the calleridentity, where this is required. See Optional isolation on page 21.
∙ The API does not prevent the use of mitigations that are required by an implementation of the API.See Implementation remediations on page 447.
∙ The API follows best-practices for C interface design, reducing the risk of exploitable errors in theapplication and implementation code. See Ease of use on page 22.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 436

Trust boundaries and information flow
The Crypto API is the interface available to the programmer, and is the main attack surface that is analyzedhere. However, to ensure that the API enables the mitigation of other threats to an implementation, we alsoconsider the system context in which the Crypto API is used.
Figure 34 shows the data flow for a typical application usage of the Crypto API, for example, to exchangeciphertext with an external system, or for at rest protection in system non-volatile storage. The Applicationuses the Crypto API to interact with the Cryptoprocessor. The Cryptoprocessor stores persistent keys in aKey Store.

«System boundary»

Application Cryptoprocessor
Key Store

NVM

External system
ciphertext Crypto API call

response

store key

load key

ciphertext

Figure 34 Crypto API dataflow diagram for an implementation with no isolation
For some adversarial models, Cryptoprocessor isolation or Caller isolation is required in the implementation toachieve the security goals. See Security goals on page 439, and remediations R.1 and R.2 in Implementationremediations on page 447.
The Cryptoprocessor can optionally include a trust boundary within its implementation of the API. The trustboundary shown in Figure 35 on page 438 corresponds to Cryptoprocessor isolation. The Cryptoprocessorboundary protects the confidentiality and integrity of the Cryptoprocessor and Key Store state from systemcomponents that are outside of the boundary.
If the implementation supports multiple, independent client Applications within the system, eachApplication has its own view of the Cryptoprocessor and key store. The additional trust boundaries requiredfor a caller isolated implementation are shown in Figure 36 on page 438. The Application boundary restrictsthe capabilities of the Application, and protects the confidentiality and integrity of system state from theApplication.

D.1.2 Assets and stakeholders
1. Cryptographic keys and key-related assets. This includes the key properties, such as the key type,identity and policies.

Stakeholders can include the SiP, the OEM, the system or application owner. Owners of a key need tobe able to use the key for cryptographic operations, such as encryption or signature, and wherepermitted, delete, copy or extract the key.
Disclosure of the cryptographic key material to an attacker defeats the protection that the use ofcryptography provides. Modification of cryptographic key material or key properties by an attacker hasthe same end result. These allow an attacker access to the assets that are protected by the key.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 437

«System boundary»

«Cryptoprocessor boundary»

Application

NVM
Cryptoprocessor

Key Store

External system
ciphertext

ciphertext Crypto API
call

response

store key

load key

Figure 35 Crypto API dataflow diagram for an implementation with cryptoprocessor isolation
«System boundary»

«Application boundary»

«Application boundary»

«Cryptoprocessor boundary»

NVM

Application

Other application

Cryptoprocessor
Key Store

External system

External system

ciphertext

ciphertext

ciphertext

ciphertext

Crypto API
call

response

store key

load key

Crypto API
call

response

Figure 36 Crypto API dataflow diagram for an implementation with caller isolation

2. Other cryptographic assets, for example, intermediate calculation values and RNG state.
Disclosure or modification of these assets can enable recovery of cryptographic keys, and loss of

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 438

cryptographic protection.
3. Application input/output data and cryptographic operation state.

Application data is only provided to the Cryptoprocessor for cryptographic operations, and itsstakeholder is the application owner.
Disclosure of this data — whether it is plaintext, or other data or state — to an attacker defeats theprotection that the use of cryptography provides. Modification of this data can have the same effect.

D.1.3 Security goals
Cryptography is used as a mitigation to the risk of disclosure or tampering with data assets that requireprotection, where isolation of the attacker from the data asset is unavailable or inadequate. Usingcryptography introduces new threats related to the incorrect use of cryptography and mismanagement ofcryptographic keys. Table 44 lists the security goals for the Crypto API to address these threats.

Table 44 Security goals
Id Description

G.1 An attacker shall not be able to disclose the plaintext corresponding to a ciphertext for whichthey do not own the correct key.
G.2 An attacker shall not be able to generate authenticated material for which they do not ownthe correct key.
G.3 An attacker shall not be able to exfiltrate keys or other private information stored by theCrypto API.
G.4 An attacker shall not be able to alter any state held by the implementation of the Crypto API,such as internal keys or other private information (for example, certificates, signatures, etc.).

D.2 Threat Model
D.2.1 Adversarial models
The API itself has limited ability to mitigate threats. However, mitigation of some of the threats within thecryptoprocessor can place requirements on the API design. This analysis considers a broad attack surface, toalso identify requirements that enable the mitigation of specific threats within a cryptoprocessorimplementation.
Table 45 on page 440 describes the adversarial models that are considered in this assessment.
A specific implementation of the Crypto API might not include all of these adversarial models within its ownthreat model. In this case, the related threats, risks, and mitigations might not be required for thatimplementation.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 439

Table 45 Adversarial models
Id Description

M.0 The Adversary is capable of accessing data that is outside the Security Perimeter of thesystem and on commonly accessible channels, such as messages in transit or data in storage.
This includes, but is not limited to:

∙ Read any input and output.
∙ Provide, forge, replay or modify input.
∙ Attempt to gain read/write access to external storage devices.
∙ Perform timings on the operations being done by the target machine, either in normaloperation or as a response to crafted inputs. For example, timing attacks on web servers.

Once access to data is obtained, we do not make a further case distinction of the AdversarialModel depending on other capabilities. For example, the ability to perform cryptanalysis onintercepted ciphertext.
M.1 The Adversary is capable of mounting attacks from software.

This includes, but is not limited to:
∙ Software exploitation.
∙ Side channel analysis that that relies on software-exposed, built-in hardware features toperform physical unit and time measurements.
∙ Attacks that exploit access to any memory mapped configuration, monitoring, debugregister.
∙ Software-induced glitching of resources, for example Row hammer, or crashing the CPUby running intensive tasks.

M.2 The Adversary is capable of mounting simple, passive hardware attacks. This Adversary hasphysical access to the hardware.
This includes, but is not limited to:

∙ Side channel analyses that require external measurement devices. For example, this canutilize leakage sources such as EM emissions, power consumption, photonic emission, oracoustic channels.
∙ Plugging malicious hardware into an unmodified system.
∙ Passive SoC or memory interposition.

Adversarial models that are outside the scope of this assessment are shown in Table 46 on page 441.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 440

Table 46 Adversarial models that are outside the scope of this SRA
Id Description

M.3 The Adversary is capable of mounting sophisticated and active physical attacks.
This includes, but is not limited to:

∙ Interposing memory and blocking, replaying, and injecting transactions, this requires amuch more precise timing than passive eavesdropping.
∙ Replacing or adding chips on the motherboard.

M.4 The Adversary is capable of performing invasive silicon microsurgery.

D.2.2 Threats and attacks
Table 47 describes threats to the Security Goals, and provides examples of corresponding attacks. This tableidentifies which Security goals are affected by the attacks, and which Adversarial model or models arerequired to execute the attack.
See Risk assessment on page 443 for an evaluation of the risks posed by these threats, Mitigations onpage 444 for mitigation requirements in the API design, and Implementation remediations on page 447 formitigation recommendations in the cryptoprocessor implementation.

Table 47 Threats and attacks
Threat Attack (Examples)

Id Description Goals Mod-
els

Id: Description

T.1 Use of insecure orincorrectlyimplementedcryptography

G.1G.2 M.0 A.C1: Using a cryptographic algorithm that is notadequately secure for the application use case can permitan attacker to recover the application plaintext fromattacker-accessible data.
A.C2: Using a cryptographic algorithm that is notadequately secure for the application use case can permitan attacker to inject forged authenticated material intoapplication data in transit or in storage.
A.C3: Using an insecure cryptographic algorithm, or onethat is incorrectly implemented can permit an attacker torecover the cryptographic key. Key recovery enables theattacker to reveal encrypted plaintexts, and inject forgedauthenticated data.

T.2 Misuse ofcryptographicalgorithms
G.1G.2 M.0 A.C4: Reusing a cryptographic key with differentalgorithms can result in cryptanalysis attacks on theciphertexts or signatures which enable an attacker torecover the plaintext, or the key itself.

continues on next page

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 441

Table 47 – continued from previous page

Threat Attack (Examples)

Id Description Goals Mod-
els

Id: Description

T.3 Recovernon-extractablekey through theAPI

G.3 M.1 A.C5: The attacker uses an indirect mechanism providedby the API to extract a key that is not intended to beextractable.
A.C6: The attacker uses a mechanism provided by the APIto enable brute-force recovery of a non-extractable key.For example, On the Security of PKCS #11 [CLULOW]describes various flaws in the design of the PKCS #11interface standard that enable an attacker to recoversecret and non-extractable keys.

T.4 Illegal inputs tothe API G.3G.4 M.1 A.60: Using a pointer to memory that does not belong tothe application, in an attempt to make thecryptoprocessor read or write memory that is inaccessibleto the application.
A.70: Passing out-of-range values, or incorrectlyformatted data, to provoke incorrect behavior in thecryptoprocessor.
A.61: Providing invalid buffer lengths to causeout-of-bounds read or write access within thecryptoprocessor.
A.62: Call API functions in an invalid sequence to provokeincorrect operation of the cryptoprocessor.

T.5 Direct access tocryptoprocessorstate
G.3G.4 M.1 A.C7: Without a cryptoprocessor boundary, an attackercan directly access the cryptoprocessor state from anapplication. See Figure 34 on page 437.

A.C8: A misconfigured cryptoprocessor boundary canallow an attacker to directly access the cryptoprocessorstate from an Application.
T.6 Access and useanotherapplication’s assets

G.1G.2 M.1 A.C9: Without application boundaries, thecryptoprocessor provides a unified view of theapplication assets. All keys are accessible to all callers ofthe Crypto API. See Figure 36 on page 438.
A.C10: The attacker can spoof the application identitywithin a caller-isolated implementation to gain access toanother application’s assets.

T.7 Data-dependenttiming G.1G.3 M.1 A.C11 Measuring the time for operations in thecryptoprocessor or the application, and using thedifferential in results to assist in recovery of the key orplaintext.
continues on next page

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 442

Table 47 – continued from previous page

Threat Attack (Examples)

Id Description Goals Mod-
els

Id: Description

T.8 Memorymanipulation G.4 M.2 A.19: Corrupt application or cryptoprocessor state via afault, causing incorrect operation of the cryptoprocessor.
M.1 A.59: Modifying function parameters in memory, whilethe cryptoprocessor is accessing the parameter memory,to cause incorrect operation of the cryptoprocessor.

T.9 Side channels G.1G.3 M.2 A.C12 Taking measurements from physical side-channelsduring cryptoprocessor operation, and using this data torecover keys or plaintext. For example, using power orEM measurements.
M.1 A.C13 Taking measurements from shared-resourceside-channels during cryptoprocessor operation, andusing this data to recover keys or plaintext. For example,attacks using a shared cache.

D.2.3 Risk assessment
The risk ratings in Table 48 follow a version of the risk assessment scheme in NIST Special Publication800-30 Revision 1: Guide for Conducting Risk Assessments [SP800-30]. Likelihood of an attack and its impactare evaluated independently, and then they are combined to obtain the overall risk of the attack.
The risk assessment is used to prioritize the threats that require mitigation. This helps to identify themitigations that have the highest priority for implementation. Mitigations are described in Mitigations onpage 444 and Implementation remediations on page 447.
It is recommended that this assessment is repeated for a specific implementation or product, taking intoconsideration the Adversarial models that are within scope, and re-evaluating the impact based on theassets at risk. Table 48 repeats the association in Table 47 on page 441 between an Adversarial model andthe Threats that it enables. This aids filtering of the assessment based on the models that are in scope for aspecific implementation.

Table 48 Risk assessment
Adversarial Model Threat/Attack Likelihood Impact a Risk

M.0 T.1 High Medium Medium
M.0 T.2 High Medium Medium
M.1 T.3 Medium High Medium
M.1 T.4 High Medium Medium
M.1 T.5 High Very high Very high

continues on next page

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 443

Table 48 – continued from previous page

Adversarial Model Threat/Attack Likelihood Impact a Risk

M.1 T.6 High High High
M.1 T.7 Medium Medium Medium
M.1 T.8/A.59 Medium Medium Medium
M.2 T.8/A.19 Low Medium Low
M.2 T.9/A.C12 Low High Medium
M.1 T.9/A.C13 Medium High Medium
a. The impact of an attack is dependent on the impact of the disclosure or modification of theapplication data that is cryptographically protected. This is ultimately determined by the requirementsand risk assessment for the product which is using the Crypto API. Table 48 on page 443 allocates theimpact as follows:

∙ ‘Medium’ if unspecified cryptoprocessor state or application data assets are affected.
∙ ‘High’ if an application’s cryptographic assets are affected.
∙ ‘Very High’ if all cryptoprocessor assets are affected.

D.3 Mitigations
D.3.1 Objectives
The objectives in Table 49 are a high-level description of what the design must achieve in order to mitigatethe threats. Detailed requirements that describe how the API or cryptoprocessor implementation can deliverthe objectives are provided in Requirements on page 445 and Implementation remediations on page 447.

Table 49Mitigation objectives
Id Description Threats addressed

O.1 Hide keys from the application
Keys are never directly manipulated by applicationsoftware. Instead keys are referred to by handle,removing the need to deal with sensitive key materialinside applications. This form of API is also suitable forsecure elements, based on tamper-resistant hardware,that never reveal cryptographic keys.

T.1 T.2 T.3 — see A keystore interfaceon page 21.
T.5 T.6 — to mitigate T.5 and T.6, theimplementation must provide someform of isolation. See Optional isolationon page 21.

O.2 Limit key usage
Associate each key with a policy that limits the use ofthe key. The policy is defined by the application whenthe key is created, after which it is immutable.

T.2 T.3 — see Key policies on page 100.

O.3 Best-practice cryptography
continues on next page

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 444

Table 49 – continued from previous page

Id Description Threats addressed

An application developer-oriented API to achievepractical cryptography: the Crypto API offers servicesthat are oriented towards the application ofcryptographic methods like encrypt, sign, verify. Thisenables the implementation to focus on best-practiceimplementation of the cryptographic primitive, and theapplication developer on correct selection and use ofthose primitives.

T.1 T.2 T.7 T.8 — see Ease of use onpage 22.

O.4 Algorithm agility
Cryptographic functions are not tied to a specificcryptographic algorithm. Primitives are designated atrun-time. This simplifies updating an application to usea more secure algorithm, and makes it easier toimplement dynamic selection of cryptographicalgorithms within an application.

T.1 — see Choice of algorithms onpage 22.

D.3.2 Requirements
The design of the API can mitigate, or enable a cryptoprocessor to mitigate, some of the identified attacks.Table 50 describes these mitigations. Mitigations that are delegated to the cryptoprocessor or applicationare described in Implementation remediations on page 447.

Table 50 Security requirements
Id Description API impact Threats/attacks addressed

SR.1(O.1) Key values are not exposed bythe API, except whenimporting or exporting a key.
The full key policy must beprovided at the time a key iscreated. See Key managementon page 24.

T.3/A.C5 — key values arehidden by the API.

SR.2(O.2) The policy for a key must beset when the key is created,and be immutable afterward.
The full key policy must beprovided at the time a key iscreated. See
psa_key_attributes_t.

T.3/A.C5 — once created, thekey usage permissions cannotbe changed to permit export.
T.2/A.C4— once created, a keycannot be repurposed bychanging its policy.

SR.3(O.2) The key policy must controlthe algorithms that the keycan be used with, and thefunctions of the API that thekey can be used with.

The key policy must includeusage permissions, andpermitted-algorithmattributes. See Key policies onpage 100.

T.2/A.C4 — a key cannot bereused with differentalgorithms.

continues on next page

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 445

Table 50 – continued from previous page

Id Description API impact Threats/attacks addressed

SR.4(O.1) Key export must be controlledby the key policy. See PSA_KEY_USAGE_EXPORT. T.3/A.C5 — a key can only beextracted from thecryptoprocessor if explicitlypermitted by the key creator.
SR.5(O.1) The policy of a copied keymust not provide rights thatare not permitted by theoriginal key policy.

See psa_copy_key(). T.3/A.C5 — a copy of a keycannot be exported if theoriginal could not be exported.
T.3/A.C4 — a copy of a keycannot be used in differentalgorithm to the original.

SR.6(O.3) Unless explicitly required bythe use case, the API must notdefine cryptographicalgorithms with knownsecurity weaknesses. Ifpossible, deprecatedalgorithms should not beincluded.

Algorithm inclusion is basedon use cases. Warnings areprovided for algorithms andoperations with knownsecurity weaknesses, andrecommendations made touse alternative algorithms.

T.1/A.C1 A.C2 A.C3

SR.7(O.4) The API design must make iteasy to change to a differentalgorithm of the same type.
Cryptographic operationfunctions select the specificalgorithm based onparameters passed at runtime.See Key types on page 53 andAlgorithms on page 130.

T.1/A.C1 A.C2 A.C3

SR.8(O.1) Key-derivation functions thatexpose part of the key value,or make part of the key valueeasily recoverable, must notbe provided in the API.

T.3/A.C6

SR.9(O.3) Constant values defined bythe API must be designed toresist bit faults.
Key type values explicitlyconsider single-bit faults, seeKey type encoding onpage 421. a
Success and error statuscodes differ by multiple bits,see Status codes on page 45. b

T.8/A.19 — enablement only,mitigation is delegated to theimplementation.

SR.10(O.3) The API design must permitthe implementation ofoperations withdata-independent timing.

Provision of comparisonfunctions for MAC, hash andkey-derivation operations.
T.7/A.C11 — enablement only,mitigation is delegated to theimplementation.

continues on next page

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 446

Table 50 – continued from previous page

Id Description API impact Threats/attacks addressed

SR.11(O.3) Specify behavior for memoryshared between theapplication andcryptoprocessor, includingwhere multiple parametersoverlap.

Standardize the result whenparameters overlap, seeOverlap between parameters onpage 37.

T.8/A.59 — enablement only,mitigation is delegated to theimplementation.

SR.12(O.1)(O.2)
The API must permit theimplementation to isolate thecryptoprocessor, to preventaccess to keys without usingthe API.

No use of shared memorybetween application andcryptoprocessor, except asfunction parameters.

T.5/A.C7 — enablement only,mitigation is delegated to theimplementation.

SR.13(O.3) The API design must permitthe implementation ofoperations using mitigationtechniques that resistside-channel attacks.

Operations that use randomblinding to resist side-channelattacks, can returnRNG-specific error codes.
See also SR.12, which enablesthe cryptoprocessor to befully isolated, andimplemented within aseparate security processor.

T.9 — enablement only,mitigation is delegated to theimplementation.

a. Limited resistance to bit faults is still valuable in systems where memory may be susceptible tosingle-bit flip attacks, for example, Rowhammer on some types of DRAM.
b. Unlike key type values, algorithm identifiers used in cryptographic operations are verified against a thepermitted-algorithm in the key policy. This provides a mitigation for a bit fault in an algorithm identifiervalue, without requiring error detection within the algorithm identifier itself.

D.4 Remediation & residual risk
D.4.1 Implementation remediations
Table 51 on page 448 includes all recommended remediations for an implementation, assuming the fulladversarial model described in Adversarial models on page 439. When an implementation has a subset ofthe adversarial models, then individual remediations can be excluded from an implementation, if theassociated threat is not relevant for that implementation.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 447

Table 51 Implementation remediations
Id Identified gap Suggested remediation

R.1(O.1)(O.3)
T.5 — direct access tocryptoprocessor state. The cryptoprocessor implementation provides cryptoprocessorisolation or caller isolation, to isolate the application from thecryptoprocessor state, and from volatile and persistent keymaterial.

R.2(O.1)(O.3)
T.6 — access and use anotherapplication’s assets. The cryptoprocessor implementation provides caller isolation,and maintains separate cryptoprocessor state for eachapplication. Each application must only be able to access itsown keys and ongoing operations.

Caller isolation requires that the implementation can securelyidentify the caller of the Crypto API.
R.3(O.3) T.4/A.60 A.61 — using illegalmemory inputs. The cryptoprocessor implementation validates that memorybuffers provided by the application are accessible by theapplication.
R.4(O.3) T.4/A.70 — providing invalidformatted data. The cryptoprocessor implementation checks that imported keydata is valid before use.
R.5(O.3) T.4/A.62 — call the API in aninvalid operation sequence. The cryptoprocessor implementation enforces the correctsequencing of calls in multi-part operations. See Multi-partoperations on page 27.
R.6(O.1)(O.3)

T.3/A.C5 A.C6 — indirect keydisclosure via the API. Cryptoprocessor implementation-specific extensions to the APImust avoid providing mechanisms that can extract or recoverkey values, such as trivial key-derivation algorithms.
R.8(O.3) T.8/A.59 — concurrentmodification of parametermemory.

The cryptoprocessor implementation treats application memoryas untrusted and volatile, typically by not reading the samememory location twice. See Stability of parameters on page 37.
R.9(O.3) T.2/A.C4 — incorrectcryptographic parameters. The cryptoprocessor implementation validates the keyattributes and other parameters used for a cryptographicoperation, to ensure these conform to the API specification andto the specification of the algorithm itself.
R.10(O.3) T.1/A.C1 A.C2 A.C3 —insecure cryptographicalgorithms.

The cryptoprocessor does not support deprecatedcryptographic algorithms, unless justified by specific use caserequirements.
R.11(O.3) T.7/A.C11 —data-independent timing. The cryptoprocessor implements cryptographic operations withdata-independent timing.
R.12(O.3) T.9 — side-channels. The cryptoprocessor implements resistance to side-channels.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 448

D.4.2 Residual risk
Threats T.2-T.4, and T.7-T.9 are fully mitigated in the API design, as described in Mitigations on page 444, orthe cryptoprocessor implementation, as described in Implementation remediations on page 447.
Table 52 describes the remaining risks related to T.1, T.5, and T.6 that cannot be mitigated fully by the APIor cryptoprocessor implementation. Responsibility for managing these risks lies with the applicationdevelopers and system integrators.

Table 52 Residual risk
Id Threat/attack Suggested remediations

RR.1 T.1 Selection of appropriately secure protocols, algorithms and keysizes is the responsibility of the application developer.
RR.2 T.5 Correct isolation of the cryptoprocessor is the responsibility ofthe cryptoprocessor and system implementation.
RR.3 T.6 Correct identification of the application client is theresponsibility of the cryptoprocessor and systemimplementation.

Appendix E: Changes to the API
E.1 Document change history
This section provides the detailed changes made between published version of the document.

E.1.1 Changes between 1.3.2 and 1.4.0
Changes to the API

∙ Added psa_attach_key() to register existing key material as a volatile key within the implementation.
∙ Added psa_check_key_usage() to query a key’s capabilities.
∙ Add support for extendable-output functions (XOF). See Extendable-output functions (XOF) onpage 157.
∙ Added support for key wrapping using key-wrapping algorithms. See Key wrapping on page 237.
∙ Added support for context parameters in signature algorithms:

— psa_sign_message_with_context()

— psa_verify_message_with_context()

— psa_sign_hash_with_context()

— psa_verify_hash_with_context()

See Asymmetric signature on page 278.
∙ Added PureEdDSA algorithms with non-zero context. See EdDSA signature algorithms on page 289 and

PSA_ALG_EDDSA_CTX.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 449

∙ Added support for the WPA3-SAE PAKE:
— Add PSA_KEY_TYPE_WPA3_SAE_ECC and PSA_KEY_TYPE_WPA3_SAE_DH key types for WPA3-SAEpassword tokens.
— Added the PSA_ALG_WPA3_SAE_H2E() KDF for generating a WPA3-SAE password token from apassword.
— Added WPA3-SAE PAKE algorithms, PSA_ALG_WPA3_SAE_FIXED() and PSA_ALG_WPA3_SAE_GDH().
— Added finite field Diffie-Hellman family PSA_DH_FAMILY_RFC3526, which provides cyclic groupsused for WPA3-SAE.
— Added wildcard key policy PSA_ALG_WPA3_SAE_ANY to permit password and password token keys tobe used in any WPA3-SAE cipher suite.

See The WPA3-SAE protocol on page 381.
∙ Add support for the Ascon family of light-weight algorithms:

— PSA_ALG_ASCON_AEAD128

— PSA_ALG_ASCON_HASH256

— PSA_ALG_ASCON_XOF128

— PSA_ALG_ASCON_CXOF128

Relaxations
∙ Relaxed the permitted-key policy requirements for ECDSA verification, to be consistent with those forML-DSA and SLH-DSA. When verifying a signature, the PSA_ALG_ECDSA and

PSA_ALG_DETERMINISTIC_ECDSA are considered equivalent when checking the key’s permitted-algorithmpolicy.
Clarifications and fixes

∙ Corrected the example implementation of PSA_ALG_IS_SIGN_HASH() in Example macro implementationson page 427, to exclude PureEdDSA.
∙ Clarified the use of hash algorithms with PSA_ALG_HMAC.

Other changes
∙ Reorganised the chapter on key types. See Key types on page 53.

E.1.2 Changes between 1.3.1 and 1.3.2
Other changes

∙ Updated introduction to reflect GlobalPlatform assuming the governance of the PSA Certifiedevaluation scheme.

E.1.3 Changes between 1.3.0 and 1.3.1
Clarifications and fixes

∙ Clarify the way a ‘volatile key’ is designated, based on a persistence level of
PSA_KEY_PERSISTENCE_VOLATILE, to ensure that this is consistent throughout the specification. See Keylifetimes on page 90.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 450

∙ Corrected the type of the key id parameter to psa_generate_key_custom() and
psa_key_derivation_output_key_custom().

∙ Added missing ‘Added in version’ information to key derivation macros.

E.1.4 Changes between 1.2.1 and 1.3.0
Changes to the API

∙ Added PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE to evaluate the export buffer size for any asymmetric keypair or public key.
∙ Add extended key-generation and key-derivation functions, psa_generate_key_custom() and

psa_key_derivation_output_key_custom(), that accept additional parameters to control the key creationprocess.
∙ Define a key production parameter to select a non-default exponent for RSA key generation.
∙ Reworked the allocation of bits in the encoding of asymmetric keys, to increase the scope foradditional asymmetric key types:

— Bit 7 was previously an unused indicator for IMPLEMENTATION DEFINED family values, and is nowallocated to the ASYM-TYPE.
— ASYM-TYPE 0 is now a category for non-parameterized asymmetric keys, of which RSA is onespecific type.

This has no effect on any currently allocated key type values, but affects the correct implementationof macros used to manipulate asymmetric key types.
See Asymmetric key encoding on page 424 and Key type macros on page 433.

∙ Added key-encapsulation functions, psa_encapsulate() and psa_decapsulate().
— Added PSA_ALG_ECIES_SEC1 as a key-encapsulation algorithm that implements the key agreementsteps of ECIES.

Clarifications and fixes
∙ Clarified the documentation of key attributes in key creation functions.
∙ Clarified the constraint on psa_key_derivation_output_key() for algorithms that have a

PSA_KEY_DERIVATION_INPUT_PASSWORD input step.
∙ Removed the redundant key input constraints on psa_key_derivation_verify_bytes() and

psa_key_derivation_verify_key(). These match the policy already checked in
psa_key_derivation_input_key().

∙ Documented the use of context parameters in J-PAKE and SPAKE2+ PAKE operations. See J-PAKEoperation on page 366 and SPAKE2+ operation on page 374.
∙ Clarified asymmetric signature support by categorizing the different types of signature algorithm.

Other changes
∙ Integrated the PAKE Extension with the main specification for the Crypto API.
∙ Moved the documentation of key formats and key-derivation procedures to sub-sections within eachkey type.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 451

∙ Clarified the flexibility for an implementation to return either PSA_ERROR_NOT_SUPPORTED or
PSA_ERROR_INVALID_ARGUMENT when provided with unsupported algorithm identifier or key parameters.

∙ Added API version information to APIs that have been added or changed since version 1.0 of theCrypto API.

E.1.5 Changes between 1.2.0 and 1.2.1
Clarifications and fixes

∙ Fix the example implementation of PSA_ALG_KEY_AGREEMENT_GET_BASE() and
PSA_ALG_KEY_AGREEMENT_GET_KDF() in Example macro implementations on page 427, to give correctresults for key agreements combined with PBKDF2.

∙ Remove the dependency on the underlying hash algorithm in definition of HMAC keys, and theirbehavior on import and export. Transferred the responsibility for truncating over-sized HMAC keys tothe application. See PSA_KEY_TYPE_HMAC.
∙ Rewrite the description of PSA_ALG_CTR, to clarify how to use the API to set the appropriate IV fordifferent application use cases.

E.1.6 Changes between 1.1.2 and 1.2.0
Changes to the API

∙ Added psa_key_agreement() for standalone key agreement that outputs to a new key object. Alsoadded PSA_ALG_IS_STANDALONE_KEY_AGREEMENT() as a synonym for PSA_ALG_IS_RAW_KEY_AGREEMENT().
∙ Added support for the XChaCha20 cipher and XChaCha20-Poly1305 AEAD algorithms. See

PSA_KEY_TYPE_XCHACHA20 and PSA_ALG_XCHACHA20_POLY1305.
∙ Added support for zigbee Specification [ZIGBEE] cryptographic algorithms. See PSA_ALG_AES_MMO_ZIGBEEand PSA_ALG_CCM_STAR_NO_TAG.
∙ Defined key-derivation algorithms based on the Counter mode recommendations in NIST SpecialPublication 800-108r1: Recommendation for Key Derivation Using Pseudorandom Functions [SP800-108].See PSA_ALG_SP800_108_COUNTER_HMAC() and PSA_ALG_SP800_108_COUNTER_CMAC.
∙ Added support for TLS 1.2 ECJPAKE-to-PMS key-derivation. See PSA_ALG_TLS12_ECJPAKE_TO_PMS.
∙ Changed the policy for psa_key_derivation_verify_bytes() and psa_key_derivation_verify_key(), sothat these functions are also permitted when an input key has the PSA_KEY_USAGE_DERIVE usage flag.
∙ Removed the special treatment of PSA_ERROR_INVALID_SIGNATURE for key-derivation operations. Averification failure in psa_key_derivation_verify_bytes() and psa_key_derivation_verify_key() nowputs the operation into an error state.

Clarifications and fixes
∙ Clarified the behavior of a key-derivation operation when there is insufficient capacity for a call to

psa_key_derivation_output_bytes(), psa_key_derivation_output_key(),
psa_key_derivation_verify_bytes(), or psa_key_derivation_verify_key().

∙ Reserved the value 0 for most enum-like integral types.
∙ Changed terminology for clarification: a ‘raw key agreement’ algorithm is now a ‘standalone keyagreement’, and a ‘full key agreement’ is a ‘combined key agreement’.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 452

E.1.7 Changes between 1.1.1 and 1.1.2
Clarifications and fixes

∙ Clarified the requirements on the hash parameter in the psa_sign_hash() and psa_verify_hash()functions.
∙ Explicitly described the handling of input and output in psa_cipher_update(), consistent with thedocumentation of psa_aead_update().
∙ Clarified the behavior of operation objects following a call to a setup function. Provided a diagram toillustrate multi-part operation states.
∙ Clarified the key policy requirement for PSA_ALG_ECDSA_ANY.
∙ Clarified PSA_KEY_USAGE_EXPORT: “it permits moving a key outside of its current security boundary”. Thisimproves understanding of why it is not only required for psa_export_key(), but can also be requiredfor psa_copy_key() in some situations.

Other changes
∙ Moved the documentation of supported key import/export formats to a separate section of thespecification.

E.1.8 Changes between 1.1.0 and 1.1.1
Changes to the API

∙ Extended PSA_ALG_TLS12_PSK_TO_MS to support TLS cipher suites that mix a key exchange with apre-shared key.
∙ Added a new key-derivation input step PSA_KEY_DERIVATION_INPUT_OTHER_SECRET.
∙ Added new algorithm families PSA_ALG_HKDF_EXTRACT and PSA_ALG_HKDF_EXPAND for protocols thatrequire the two parts of HKDF separately.

Other changes
∙ Relicensed the document under Attribution-ShareAlike 4.0 International with a patent license derivedfrom Apache License 2.0. See License on page x.
∙ Adopted a standard set of Adversarial models for the Security Risk Assessment. See Adversarial modelson page 439.

E.1.9 Changes between 1.0.1 and 1.1.0
Changes to the API

∙ Relaxation when a raw key agreement is used as a key’s permitted-algorithm policy. This now alsopermits the key agreement to be combined with any key-derivation algorithm. See PSA_ALG_FFDH and
PSA_ALG_ECDH.

∙ Provide wildcard permitted-algorithm polices for MAC and AEAD that can specify a minimum MAC ortag length. The following elements are added to the API:
— PSA_ALG_AT_LEAST_THIS_LENGTH_MAC()

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 453

— PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG()

∙ Added support for password-hashing and key-stretching algorithms, as key-derivation operations.
— Added key types PSA_KEY_TYPE_PASSWORD, PSA_KEY_TYPE_PASSWORD_HASH and PSA_KEY_TYPE_PEPPER, tosupport use of these new types of algorithm.
— Add key-derivation input steps PSA_KEY_DERIVATION_INPUT_PASSWORD and

PSA_KEY_DERIVATION_INPUT_COST.
— Added psa_key_derivation_input_integer() to support numerical inputs to a key-derivationoperation.
— Added functions psa_key_derivation_verify_bytes() and psa_key_derivation_verify_key() tocompare derivation output data within the cryptoprocessor.
— Added usage flag PSA_KEY_USAGE_VERIFY_DERIVATION for using keys with the new verificationfunctions.
— Modified the description of existing key-derivation APIs to enable the use of key-derivationfunctionality.

∙ Added algorithms PSA_ALG_PBKDF2_HMAC() and PSA_ALG_PBKDF2_AES_CMAC_PRF_128 to implement thePBKDF2 password-hashing algorithm.
∙ Add support for twisted Edwards Elliptic curve keys, and the associated EdDSA signature algorithms.The following elements are added to the API:

— PSA_ECC_FAMILY_TWISTED_EDWARDS

— PSA_ALG_PURE_EDDSA

— PSA_ALG_ED25519PH

— PSA_ALG_ED448PH

— PSA_ALG_SHAKE256_512

— PSA_ALG_IS_HASH_EDDSA()

∙ Added an identifier for PSA_KEY_TYPE_ARIA.
∙ Added PSA_ALG_RSA_PSS_ANY_SALT(), which creates the same signatures as PSA_ALG_RSA_PSS(), butpermits any salt length when verifying a signature. Also added the helper macros

PSA_ALG_IS_RSA_PSS_ANY_SALT() and PSA_ALG_IS_RSA_PSS_STANDARD_SALT(), and extended
PSA_ALG_IS_RSA_PSS() to detect both variants of the RSA-PSS algorithm.

Clarifications and fixes
∙ Described the use of header files and the general API conventions. See Library conventions on page 32.
∙ Added details for SHA-512/224 to the hash suspend state. See Hash suspend state on page 155.
∙ Removed ambiguities from support macros that provide buffer sizes, and improved consistency ofparameter domain definition.
∙ Clarified the length of salt used for creating PSA_ALG_RSA_PSS() signatures, and that verificationrequires the same length of salt in the signature.
∙ Documented the use of PSA_ERROR_INVALID_ARGUMENT when the input data to an operation exceeds thelimit specified by the algorithm.
∙ Clarified how the PSA_ALG_RSA_OAEP() algorithm uses the hash algorithm parameter.
∙ Fixed error in psa_key_derivation_setup() documentation: combined key-agreement andkey-derivation algorithms are valid for the Crypto API.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 454

∙ Added and clarified documentation for error conditions across the API.
∙ Clarified the distinction between PSA_ALG_IS_HASH_AND_SIGN() and PSA_ALG_IS_SIGN_HASH().
∙ Clarified the behavior of PSA_ALG_IS_HASH_AND_SIGN() with a wildcard algorithm policy parameter.
∙ Documented the use of PSA_ALG_RSA_PKCS1V15_SIGN_RAW with the

PSA_ALG_RSA_PKCS1V15_SIGN(PSA_ALG_ANY_HASH) wildcard policy.
∙ Clarified the way that PSA_ALG_CCM determines the value of the CCM configuration parameter L.Clarified that nonces generated by psa_aead_generate_nonce() can be shorter than the default noncelength provided by PSA_AEAD_NONCE_LENGTH().

Other changes
∙ Add new appendix describing the encoding of algorithm identifiers and key types. See Algorithm andkey type encoding on page 410.
∙ Migrated cryptographic operation summaries to the start of the appropriate operation section, andout of the Functionality overview on page 24.
∙ Included a Security Risk Assessment for the Crypto API.

E.1.10 Changes between 1.0.0 and 1.0.1
Changes to the API

∙ Added subtypes psa_key_persistence_t and psa_key_location_t for key lifetimes, and defined standardvalues for these attributes.
∙ Added identifiers for PSA_ALG_SM3 and PSA_KEY_TYPE_SM4.

Clarifications and fixes
∙ Provided citation references for all cryptographic algorithms in the specification.
∙ Provided precise key size information for all key types.
∙ Permitted implementations to store and export long HMAC keys in hashed form.
∙ Provided details for initialization vectors in all unauthenticated cipher algorithms.
∙ Provided details for nonces in all AEAD algorithms.
∙ Clarified the input steps for HKDF.
∙ Provided details of signature algorithms, include requirements when using with psa_sign_hash() and

psa_verify_hash().
∙ Provided details of key-agreement algorithms, and how to use them.
∙ Aligned terminology relating to key policies, to clarify the combination of the usage flags andpermitted algorithm in the policy.
∙ Clarified the use of the individual key attributes for all of the key creation functions.
∙ Restructured the description for psa_key_derivation_output_key(), to clarify the handling of theexcess bits in ECC key generation when needing a string of bits whose length is not a multiple of 8.
∙ Referenced the correct buffer size macros for psa_export_key().

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 455

∙ Removed the use of the PSA_ERROR_DOES_NOT_EXIST error.
∙ Clarified concurrency rules.
∙ Document that psa_key_derivation_output_key() does not return PSA_ERROR_NOT_PERMITTED if thesecret input is the result of a key agreement. This matches what was already documented for

PSA_KEY_DERIVATION_INPUT_SECRET.
∙ Relax the requirement to use the defined key-derivation methods in psa_key_derivation_output_key():implementation-specific KDF algorithms can use implementation-defined methods to derive the keymaterial.
∙ Clarify the requirements for implementations that support concurrent execution of API calls.

Other changes
∙ Provided a glossary of terms.
∙ Provided a table of references.
∙ Restructured the Key management reference on page 49 chapter.

— Moved individual attribute types, values and accessor functions into their own sections.
— Placed permitted algorithms and usage flags into Key policies on page 100.
— Moved most introductory material from the Functionality overview on page 24 into the relevantAPI sections.

E.1.11 Changes between 1.0 beta 3 and 1.0.0
Changes to the API

∙ Added PSA_CRYPTO_API_VERSION_MAJOR and PSA_CRYPTO_API_VERSION_MINOR to report the Crypto APIversion.
∙ Removed PSA_ALG_GMAC algorithm identifier.
∙ Removed internal implementation macros from the API specification:

— PSA_AEAD_TAG_LENGTH_OFFSET

— PSA_ALG_AEAD_FROM_BLOCK_FLAG

— PSA_ALG_AEAD_TAG_LENGTH_MASK

— PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE

— PSA_ALG_CATEGORY_AEAD

— PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION

— PSA_ALG_CATEGORY_CIPHER

— PSA_ALG_CATEGORY_HASH

— PSA_ALG_CATEGORY_KEY_AGREEMENT

— PSA_ALG_CATEGORY_KEY_DERIVATION

— PSA_ALG_CATEGORY_MAC

— PSA_ALG_CATEGORY_MASK

— PSA_ALG_CATEGORY_SIGN

— PSA_ALG_CIPHER_FROM_BLOCK_FLAG

— PSA_ALG_CIPHER_MAC_BASE

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 456

— PSA_ALG_CIPHER_STREAM_FLAG

— PSA_ALG_DETERMINISTIC_ECDSA_BASE

— PSA_ALG_ECDSA_BASE

— PSA_ALG_ECDSA_IS_DETERMINISTIC

— PSA_ALG_HASH_MASK

— PSA_ALG_HKDF_BASE

— PSA_ALG_HMAC_BASE

— PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT

— PSA_ALG_IS_VENDOR_DEFINED

— PSA_ALG_KEY_AGREEMENT_MASK

— PSA_ALG_KEY_DERIVATION_MASK

— PSA_ALG_MAC_SUBCATEGORY_MASK

— PSA_ALG_MAC_TRUNCATION_MASK

— PSA_ALG_RSA_OAEP_BASE

— PSA_ALG_RSA_PKCS1V15_SIGN_BASE

— PSA_ALG_RSA_PSS_BASE

— PSA_ALG_TLS12_PRF_BASE

— PSA_ALG_TLS12_PSK_TO_MS_BASE

— PSA_ALG_VENDOR_FLAG

— PSA_BITS_TO_BYTES

— PSA_BYTES_TO_BITS

— PSA_ECDSA_SIGNATURE_SIZE

— PSA_HMAC_MAX_HASH_BLOCK_SIZE

— PSA_KEY_EXPORT_ASN1_INTEGER_MAX_SIZE

— PSA_KEY_EXPORT_DSA_KEY_PAIR_MAX_SIZE

— PSA_KEY_EXPORT_DSA_PUBLIC_KEY_MAX_SIZE

— PSA_KEY_EXPORT_ECC_KEY_PAIR_MAX_SIZE

— PSA_KEY_EXPORT_ECC_PUBLIC_KEY_MAX_SIZE

— PSA_KEY_EXPORT_RSA_KEY_PAIR_MAX_SIZE

— PSA_KEY_EXPORT_RSA_PUBLIC_KEY_MAX_SIZE

— PSA_KEY_TYPE_CATEGORY_FLAG_PAIR

— PSA_KEY_TYPE_CATEGORY_KEY_PAIR

— PSA_KEY_TYPE_CATEGORY_MASK

— PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY

— PSA_KEY_TYPE_CATEGORY_RAW

— PSA_KEY_TYPE_CATEGORY_SYMMETRIC

— PSA_KEY_TYPE_DH_GROUP_MASK

— PSA_KEY_TYPE_DH_KEY_PAIR_BASE

— PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE

— PSA_KEY_TYPE_ECC_CURVE_MASK

— PSA_KEY_TYPE_ECC_KEY_PAIR_BASE

— PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE

— PSA_KEY_TYPE_IS_VENDOR_DEFINED

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 457

— PSA_KEY_TYPE_VENDOR_FLAG

— PSA_MAC_TRUNCATED_LENGTH

— PSA_MAC_TRUNCATION_OFFSET

— PSA_ROUND_UP_TO_MULTIPLE

— PSA_RSA_MINIMUM_PADDING_SIZE

— PSA_VENDOR_ECC_MAX_CURVE_BITS

— PSA_VENDOR_RSA_MAX_KEY_BITS

∙ Remove the definition of implementation-defined macros from the specification, and clarified theimplementation requirements for these macros in Implementation-specific macros on page 40.
— Macros with implementation-defined values are indicated by /* implementation-defined value

*/ in the API prototype. The implementation must provide the implementation.
— Macros for algorithm and key type construction and inspection have specification-definedvalues. This is indicated by /* specification-defined value */ in the API prototype. Exampledefinitions of these macros is provided in Example macro implementations on page 427.

∙ Changed the semantics of multi-part operations.
— Formalize the standard pattern for multi-part operations.
— Require all errors to result in an error state, requiring a call to psa_xxx_abort() to reset the object.
— Define behavior in illegal and impossible operation states, and for copying and reusing operationobjects.

Although the API signatures have not changed, this change requires modifications to application flowsthat handle error conditions in multi-part operations.
∙ Merge the key identifier and key handle concepts in the API.

— Replaced all references to key handles with key identifiers, or something similar.
— Replaced all uses of psa_key_handle_t with psa_key_id_t in the API, and removes the

psa_key_handle_t type.
— Removed psa_open_key and psa_close_key.
— Added PSA_KEY_ID_NULL for the never valid zero key identifier.
— Document rules related to destroying keys whilst in use.
— Added the PSA_KEY_USAGE_CACHE usage flag and the related psa_purge_key() API.
— Added clarification about caching keys to non-volatile memory.

∙ Renamed PSA_ALG_TLS12_PSK_TO_MS_MAX_PSK_LEN to PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE.
∙ Relax definition of implementation-defined types.

— This is indicated in the specification by /* implementation-defined type */ in the type definition.
— The specification only defines the name of implementation-defined types, and does not requirethat the implementation is a C struct.

∙ Zero-length keys are not permitted. Attempting to create one will now result in an error.
∙ Relax the constraints on inputs to key derivation:

— psa_key_derivation_input_bytes() can be used for secret input steps. This is necessary if azero-length input is required by the application.
— psa_key_derivation_input_key() can be used for non-secret input steps.

∙ Multi-part cipher operations now require that the IV is passed using psa_cipher_set_iv(), the optionto provide this as part of the input to psa_cipher_update() has been removed.
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 458

The format of the output from psa_cipher_encrypt(), and input to psa_cipher_decrypt(), isdocumented.
∙ Support macros to calculate the size of output buffers, IVs and nonces.

— Macros to calculate a key and/or algorithm specific result are provided for all output buffers. Thenew macros are:
∘ PSA_AEAD_NONCE_LENGTH()

∘ PSA_CIPHER_ENCRYPT_OUTPUT_SIZE()

∘ PSA_CIPHER_DECRYPT_OUTPUT_SIZE()

∘ PSA_CIPHER_UPDATE_OUTPUT_SIZE()

∘ PSA_CIPHER_FINISH_OUTPUT_SIZE()

∘ PSA_CIPHER_IV_LENGTH()

∘ PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE()

∘ PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE()

— Macros that evaluate to a maximum type-independent buffer size are provided. The new macrosare:
∘ PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE()

∘ PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE()

∘ PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE()

∘ PSA_AEAD_FINISH_OUTPUT_MAX_SIZE

∘ PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE

∘ PSA_AEAD_NONCE_MAX_SIZE

∘ PSA_AEAD_TAG_MAX_SIZE

∘ PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE

∘ PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE

∘ PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE()

∘ PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE()

∘ PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE()

∘ PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE

∘ PSA_CIPHER_IV_MAX_SIZE

∘ PSA_EXPORT_KEY_PAIR_MAX_SIZE

∘ PSA_EXPORT_PUBLIC_KEY_MAX_SIZE

∘ PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE

— AEAD output buffer size macros are now parameterized on the key type as well as the algorithm:
∘ PSA_AEAD_ENCRYPT_OUTPUT_SIZE()

∘ PSA_AEAD_DECRYPT_OUTPUT_SIZE()

∘ PSA_AEAD_UPDATE_OUTPUT_SIZE()

∘ PSA_AEAD_FINISH_OUTPUT_SIZE()

∘ PSA_AEAD_TAG_LENGTH()

∘ PSA_AEAD_VERIFY_OUTPUT_SIZE()

— Some existing macros have been renamed to ensure that the name of the support macros areconsistent. The following macros have been renamed:
∘ PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH() → PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG()

∘ PSA_ALG_AEAD_WITH_TAG_LENGTH() → PSA_ALG_AEAD_WITH_SHORTENED_TAG()

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 459

∘ PSA_KEY_EXPORT_MAX_SIZE() → PSA_EXPORT_KEY_OUTPUT_SIZE()

∘ PSA_HASH_SIZE() → PSA_HASH_LENGTH()

∘ PSA_MAC_FINAL_SIZE() → PSA_MAC_LENGTH()

∘ PSA_BLOCK_CIPHER_BLOCK_SIZE() → PSA_BLOCK_CIPHER_BLOCK_LENGTH()

∘ PSA_MAX_BLOCK_CIPHER_BLOCK_SIZE → PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE

— Documentation of the macros and of related APIs has been updated to reference the related APIelements.
∙ Provide hash-and-sign operations as well as sign-the-hash operations. The API for asymmetricsignature has been changed to clarify the use of the new functions.

— The existing asymmetric signature API has been renamed to clarify that this is for signing a hashthat is already computed:
∘ PSA_KEY_USAGE_SIGN → PSA_KEY_USAGE_SIGN_HASH

∘ PSA_KEY_USAGE_VERIFY → PSA_KEY_USAGE_VERIFY_HASH

∘ psa_asymmetric_sign() → psa_sign_hash()

∘ psa_asymmetric_verify() → psa_verify_hash()

— New APIs added to provide the complete message signing operation:
∘ PSA_KEY_USAGE_SIGN_MESSAGE

∘ PSA_KEY_USAGE_VERIFY_MESSAGE

∘ psa_sign_message()

∘ psa_verify_message()

— New Support macros to identify which algorithms can be used in which signing API:
∘ PSA_ALG_IS_SIGN_HASH()

∘ PSA_ALG_IS_SIGN_MESSAGE()

— Renamed support macros that apply to both signing APIs:
∘ PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE() → PSA_SIGN_OUTPUT_SIZE()

∘ PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE → PSA_SIGNATURE_MAX_SIZE

— The usage flag values have been changed, including for PSA_KEY_USAGE_DERIVE.
∙ Restructure psa_key_type_t and reassign all key type values.

— psa_key_type_t changes from 32-bit to 16-bit integer.
— Reassigned the key type categories.
— Add a parity bit to the key type to ensure that valid key type values differ by at least 2 bits.
— 16-bit elliptic curve ids (psa_ecc_curve_t) replaced by 8-bit ECC curve family ids(psa_ecc_family_t). 16-bit Diffie-Hellman group ids (psa_dh_group_t) replaced by 8-bit DH groupfamily ids (psa_dh_family_t).

∘ These ids are no longer related to the IANA Group Registry specification.
∘ The new key type values do not encode the key size for ECC curves or DH groups. The keybit size from the key attributes identify a specific ECC curve or DH group within the family.

— The following macros have been removed:
∘ PSA_DH_GROUP_FFDHE2048

∘ PSA_DH_GROUP_FFDHE3072

∘ PSA_DH_GROUP_FFDHE4096

∘ PSA_DH_GROUP_FFDHE6144

∘ PSA_DH_GROUP_FFDHE8192

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 460

∘ PSA_ECC_CURVE_BITS

∘ PSA_ECC_CURVE_BRAINPOOL_P256R1

∘ PSA_ECC_CURVE_BRAINPOOL_P384R1

∘ PSA_ECC_CURVE_BRAINPOOL_P512R1

∘ PSA_ECC_CURVE_CURVE25519

∘ PSA_ECC_CURVE_CURVE448

∘ PSA_ECC_CURVE_SECP160K1

∘ PSA_ECC_CURVE_SECP160R1

∘ PSA_ECC_CURVE_SECP160R2

∘ PSA_ECC_CURVE_SECP192K1

∘ PSA_ECC_CURVE_SECP192R1

∘ PSA_ECC_CURVE_SECP224K1

∘ PSA_ECC_CURVE_SECP224R1

∘ PSA_ECC_CURVE_SECP256K1

∘ PSA_ECC_CURVE_SECP256R1

∘ PSA_ECC_CURVE_SECP384R1

∘ PSA_ECC_CURVE_SECP521R1

∘ PSA_ECC_CURVE_SECT163K1

∘ PSA_ECC_CURVE_SECT163R1

∘ PSA_ECC_CURVE_SECT163R2

∘ PSA_ECC_CURVE_SECT193R1

∘ PSA_ECC_CURVE_SECT193R2

∘ PSA_ECC_CURVE_SECT233K1

∘ PSA_ECC_CURVE_SECT233R1

∘ PSA_ECC_CURVE_SECT239K1

∘ PSA_ECC_CURVE_SECT283K1

∘ PSA_ECC_CURVE_SECT283R1

∘ PSA_ECC_CURVE_SECT409K1

∘ PSA_ECC_CURVE_SECT409R1

∘ PSA_ECC_CURVE_SECT571K1

∘ PSA_ECC_CURVE_SECT571R1

∘ PSA_KEY_TYPE_GET_CURVE

∘ PSA_KEY_TYPE_GET_GROUP

— The following macros have been added:
∘ PSA_DH_FAMILY_RFC7919

∘ PSA_ECC_FAMILY_BRAINPOOL_P_R1

∘ PSA_ECC_FAMILY_SECP_K1

∘ PSA_ECC_FAMILY_SECP_R1

∘ PSA_ECC_FAMILY_SECP_R2

∘ PSA_ECC_FAMILY_SECT_K1

∘ PSA_ECC_FAMILY_SECT_R1

∘ PSA_ECC_FAMILY_SECT_R2

∘ PSA_ECC_FAMILY_MONTGOMERY

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 461

∘ PSA_KEY_TYPE_DH_GET_FAMILY

∘ PSA_KEY_TYPE_ECC_GET_FAMILY

— The following macros have new values:
∘ PSA_KEY_TYPE_AES

∘ PSA_KEY_TYPE_ARC4

∘ PSA_KEY_TYPE_CAMELLIA

∘ PSA_KEY_TYPE_CHACHA20

∘ PSA_KEY_TYPE_DERIVE

∘ PSA_KEY_TYPE_DES

∘ PSA_KEY_TYPE_HMAC

∘ PSA_KEY_TYPE_NONE

∘ PSA_KEY_TYPE_RAW_DATA

∘ PSA_KEY_TYPE_RSA_KEY_PAIR

∘ PSA_KEY_TYPE_RSA_PUBLIC_KEY

— The following macros with specification-defined values have new example implementations:
∘ PSA_BLOCK_CIPHER_BLOCK_LENGTH

∘ PSA_KEY_TYPE_DH_KEY_PAIR

∘ PSA_KEY_TYPE_DH_PUBLIC_KEY

∘ PSA_KEY_TYPE_ECC_KEY_PAIR

∘ PSA_KEY_TYPE_ECC_PUBLIC_KEY

∘ PSA_KEY_TYPE_IS_ASYMMETRIC

∘ PSA_KEY_TYPE_IS_DH

∘ PSA_KEY_TYPE_IS_DH_KEY_PAIR

∘ PSA_KEY_TYPE_IS_DH_PUBLIC_KEY

∘ PSA_KEY_TYPE_IS_ECC

∘ PSA_KEY_TYPE_IS_ECC_KEY_PAIR

∘ PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY

∘ PSA_KEY_TYPE_IS_KEY_PAIR

∘ PSA_KEY_TYPE_IS_PUBLIC_KEY

∘ PSA_KEY_TYPE_IS_RSA

∘ PSA_KEY_TYPE_IS_UNSTRUCTURED

∘ PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY

∘ PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR

∙ Add ECC family PSA_ECC_FAMILY_FRP for the FRP256v1 curve.
∙ Restructure psa_algorithm_t encoding, to increase consistency across algorithm categories.

— Algorithms that include a hash operation all use the same structure to encode the hashalgorithm. The following PSA_ALG_XXXX_GET_HASH() macros have all been replaced by a singlemacro PSA_ALG_GET_HASH():
∘ PSA_ALG_HKDF_GET_HASH()

∘ PSA_ALG_HMAC_GET_HASH()

∘ PSA_ALG_RSA_OAEP_GET_HASH()

∘ PSA_ALG_SIGN_GET_HASH()

∘ PSA_ALG_TLS12_PRF_GET_HASH()

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 462

∘ PSA_ALG_TLS12_PSK_TO_MS_GET_HASH()

— Stream cipher algorithm macros have been removed; the key type indicates which cipher to use.Instead of PSA_ALG_ARC4 and PSA_ALG_CHACHA20, use PSA_ALG_STREAM_CIPHER.
All of the other PSA_ALG_XXX macros have updated values or updated example implementations.
— The following macros have new values:

∘ PSA_ALG_ANY_HASH

∘ PSA_ALG_CBC_MAC

∘ PSA_ALG_CBC_NO_PADDING

∘ PSA_ALG_CBC_PKCS7

∘ PSA_ALG_CCM

∘ PSA_ALG_CFB

∘ PSA_ALG_CHACHA20_POLY1305

∘ PSA_ALG_CMAC

∘ PSA_ALG_CTR

∘ PSA_ALG_ECDH

∘ PSA_ALG_ECDSA_ANY

∘ PSA_ALG_FFDH

∘ PSA_ALG_GCM

∘ PSA_ALG_MD2

∘ PSA_ALG_MD4

∘ PSA_ALG_MD5

∘ PSA_ALG_OFB

∘ PSA_ALG_RIPEMD160

∘ PSA_ALG_RSA_PKCS1V15_CRYPT

∘ PSA_ALG_RSA_PKCS1V15_SIGN_RAW

∘ PSA_ALG_SHA_1

∘ PSA_ALG_SHA_224

∘ PSA_ALG_SHA_256

∘ PSA_ALG_SHA_384

∘ PSA_ALG_SHA_512

∘ PSA_ALG_SHA_512_224

∘ PSA_ALG_SHA_512_256

∘ PSA_ALG_SHA3_224

∘ PSA_ALG_SHA3_256

∘ PSA_ALG_SHA3_384

∘ PSA_ALG_SHA3_512

∘ PSA_ALG_XTS

— The following macros with specification-defined values have new example implementations:
∘ PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG()

∘ PSA_ALG_AEAD_WITH_SHORTENED_TAG()

∘ PSA_ALG_DETERMINISTIC_ECDSA()

∘ PSA_ALG_ECDSA()

∘ PSA_ALG_FULL_LENGTH_MAC()

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 463

∘ PSA_ALG_HKDF()

∘ PSA_ALG_HMAC()

∘ PSA_ALG_IS_AEAD()

∘ PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER()

∘ PSA_ALG_IS_ASYMMETRIC_ENCRYPTION()

∘ PSA_ALG_IS_BLOCK_CIPHER_MAC()

∘ PSA_ALG_IS_CIPHER()

∘ PSA_ALG_IS_DETERMINISTIC_ECDSA()

∘ PSA_ALG_IS_ECDH()

∘ PSA_ALG_IS_ECDSA()

∘ PSA_ALG_IS_FFDH()

∘ PSA_ALG_IS_HASH()

∘ PSA_ALG_IS_HASH_AND_SIGN()

∘ PSA_ALG_IS_HKDF()

∘ PSA_ALG_IS_HMAC()

∘ PSA_ALG_IS_KEY_AGREEMENT()

∘ PSA_ALG_IS_KEY_DERIVATION()

∘ PSA_ALG_IS_MAC()

∘ PSA_ALG_IS_RANDOMIZED_ECDSA()

∘ PSA_ALG_IS_RAW_KEY_AGREEMENT()

∘ PSA_ALG_IS_RSA_OAEP()

∘ PSA_ALG_IS_RSA_PKCS1V15_SIGN()

∘ PSA_ALG_IS_RSA_PSS()

∘ PSA_ALG_IS_SIGN()

∘ PSA_ALG_IS_SIGN_MESSAGE()

∘ PSA_ALG_IS_STREAM_CIPHER()

∘ PSA_ALG_IS_TLS12_PRF()

∘ PSA_ALG_IS_TLS12_PSK_TO_MS()

∘ PSA_ALG_IS_WILDCARD()

∘ PSA_ALG_KEY_AGREEMENT()

∘ PSA_ALG_KEY_AGREEMENT_GET_BASE()

∘ PSA_ALG_KEY_AGREEMENT_GET_KDF()

∘ PSA_ALG_RSA_OAEP()

∘ PSA_ALG_RSA_PKCS1V15_SIGN()

∘ PSA_ALG_RSA_PSS()

∘ PSA_ALG_TLS12_PRF()

∘ PSA_ALG_TLS12_PSK_TO_MS()

∘ PSA_ALG_TRUNCATED_MAC()

∙ Added ECB block cipher mode, with no padding, as PSA_ALG_ECB_NO_PADDING.
∙ Add functions to suspend and resume hash operations:

— psa_hash_suspend() halts the current operation and outputs a hash suspend state.
— psa_hash_resume() continues a previously suspended hash operation.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 464

The format of the hash suspend state is documented in Hash suspend state on page 155, andsupporting macros are provided for using the Crypto API:
— PSA_HASH_SUSPEND_OUTPUT_SIZE()

— PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE

— PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH

— PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH()

— PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH()

— PSA_HASH_BLOCK_LENGTH()

∙ Complement PSA_ERROR_STORAGE_FAILURE with new error codes PSA_ERROR_DATA_CORRUPT and
PSA_ERROR_DATA_INVALID. These permit an implementation to distinguish different causes of failurewhen reading from key storage.

∙ Added input step PSA_KEY_DERIVATION_INPUT_CONTEXT for key derivation, supporting obvious mappingfrom the step identifiers to common KDF constructions.
Clarifications

∙ Clarified rules regarding modification of parameters in concurrent environments.
∙ Guarantee that psa_destroy_key(PSA_KEY_ID_NULL) always returns PSA_SUCCESS.
∙ Clarified the TLS PSK to MS key-agreement algorithm.
∙ Document the key policy requirements for all APIs that accept a key parameter.
∙ Document more of the error codes for each function.

Other changes
∙ Require C99 for this specification instead of C89.
∙ Removed references to non-standard mbed-crypto header files. The only header file that applicationsneed to include is psa/crypto.h.
∙ Reorganized the API reference, grouping the elements in a more natural way.
∙ Improved the cross referencing between all of the document sections, and from code snippets to APIelement descriptions.

E.1.12 Changes between 1.0 beta 2 and 1.0 beta 3
Changes to the API

∙ Change the value of error codes, and some names, to align with other PSA Certified APIs. The namechanges are:
— PSA_ERROR_UNKNOWN_ERROR → PSA_ERROR_GENERIC_ERROR

— PSA_ERROR_OCCUPIED_SLOT → PSA_ERROR_ALREADY_EXISTS

— PSA_ERROR_EMPTY_SLOT → PSA_ERROR_DOES_NOT_EXIST

— PSA_ERROR_INSUFFICIENT_CAPACITY → PSA_ERROR_INSUFFICIENT_DATA

— PSA_ERROR_TAMPERING_DETECTED → PSA_ERROR_CORRUPTION_DETECTED

∙ Change the way keys are created to avoid “half-filled” handles that contained key metadata, but nokey material. Now, to create a key, first fill in a data structure containing its attributes, then pass this
IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 465

structure to a function that both allocates resources for the key and fills in the key material. Thisaffects the following functions:
— psa_import_key(), psa_generate_key(), psa_generator_import_key() and psa_copy_key() now takean attribute structure, as a pointer to psa_key_attributes_t, to specify key metadata. Thisreplaces the previous method of passing arguments to psa_create_key() or to the key materialcreation function or calling psa_set_key_policy().
— psa_key_policy_t and functions operating on that type no longer exist. A key’s policy is nowaccessible as part of its attributes.
— psa_get_key_information() is also replaced by accessing the key’s attributes, retrieved with

psa_get_key_attributes().
— psa_create_key() no longer exists. Instead, set the key id attribute and the lifetime attributebefore creating the key material.

∙ Allow psa_aead_update() to buffer data.
∙ New buffer size calculation macros.
∙ Key identifiers are no longer specific to a given lifetime value. psa_open_key() no longer takes a

lifetime parameter.
∙ Define a range of key identifiers for use by applications and a separate range for use byimplementations.
∙ Avoid the unusual terminology “generator”: call them “key-derivation operations” instead. Rename anumber of functions and other identifiers related to for clarity and consistency:

— psa_crypto_generator_t → psa_key_derivation_operation_t

— PSA_CRYPTO_GENERATOR_INIT → PSA_KEY_DERIVATION_OPERATION_INIT

— psa_crypto_generator_init() → psa_key_derivation_operation_init()

— PSA_GENERATOR_UNBRIDLED_CAPACITY → PSA_KEY_DERIVATION_UNLIMITED_CAPACITY

— psa_set_generator_capacity() → psa_key_derivation_set_capacity()

— psa_get_generator_capacity() → psa_key_derivation_get_capacity()

— psa_key_agreement() → psa_key_derivation_key_agreement()

— psa_generator_read() → psa_key_derivation_output_bytes()

— psa_generate_derived_key() → psa_key_derivation_output_key()

— psa_generator_abort() → psa_key_derivation_abort()

— psa_key_agreement_raw_shared_secret() → psa_raw_key_agreement()

— PSA_KDF_STEP_xxx → PSA_KEY_DERIVATION_INPUT_xxx

— PSA_xxx_KEYPAIR → PSA_xxx_KEY_PAIR

∙ Convert TLS1.2 KDF descriptions to multi-part key derivation.
Clarifications

∙ Specify psa_generator_import_key() for most key types.
∙ Clarify the behavior in various corner cases.
∙ Document more error conditions.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 466

E.1.13 Changes between 1.0 beta 1 and 1.0 beta 2
Changes to the API

∙ Remove obsolete definition PSA_ALG_IS_KEY_SELECTION.
∙ PSA_AEAD_FINISH_OUTPUT_SIZE: remove spurious parameter plaintext_length.

Clarifications
∙ psa_key_agreement(): document alg parameter.

Other changes
∙ Document formatting improvements.

E.2 Planned changes for version 1.4.x
Future versions of this specification that use a 1.4.x version will describe the same API as this specification.Any changes will not affect application compatibility and will not introduce major features. These updatesare intended to add minor requirements on implementations, introduce optional definitions, makecorrections, clarify potential or actual ambiguities, or improve the documentation.
These are the changes that might be included in a version 1.2.x:

∙ Declare identifiers for additional cryptographic algorithms.
∙ Mandate certain checks when importing some types of asymmetric keys.
∙ Specify the computation of algorithm and key type values.
∙ Further clarifications on API usage and implementation.

E.3 Future additions
Major additions to the API will be defined in future drafts and editions of a 1.x or 2.x version of thisspecification. Features that are being considered include:

∙ Integration of the PQC extension.
∙ Further PQC algorithms as they are standardized.
∙ Interruptible (incremental) operations for long-running computation in a constrained executioncontext.
∙ Import and export of additional key formats and wrapped key structures.
∙ Key discovery mechanisms. This would enable an application to locate a key by its name or attributes.
∙ Implementation capability description. This would enable an application to determine the algorithms,key types and storage lifetimes that the implementation provides.
∙ An ownership and access control mechanism allowing a multi-client implementation to have privilegedclients that are able to manage keys of other clients.

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 467

Index of API elements

PSA_A
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE, 233
PSA_AEAD_DECRYPT_OUTPUT_SIZE, 232
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE, 232
PSA_AEAD_ENCRYPT_OUTPUT_SIZE, 231
PSA_AEAD_FINISH_OUTPUT_MAX_SIZE, 235
PSA_AEAD_FINISH_OUTPUT_SIZE, 235
PSA_AEAD_NONCE_LENGTH, 233
PSA_AEAD_NONCE_MAX_SIZE, 234
PSA_AEAD_OPERATION_INIT, 217
PSA_AEAD_TAG_LENGTH, 235
PSA_AEAD_TAG_MAX_SIZE, 236
PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE, 234
PSA_AEAD_UPDATE_OUTPUT_SIZE, 234
PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE, 237
PSA_AEAD_VERIFY_OUTPUT_SIZE, 236
PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG, 212
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG, 212
PSA_ALG_AEAD_WITH_SHORTENED_TAG, 211
PSA_ALG_AES_MMO_ZIGBEE, 139
PSA_ALG_ANY_HASH, 309
PSA_ALG_ASCON_AEAD128, 210
PSA_ALG_ASCON_CXOF128, 159
PSA_ALG_ASCON_HASH256, 142
PSA_ALG_ASCON_XOF128, 159
PSA_ALG_AT_LEAST_THIS_LENGTH_MAC, 169
PSA_ALG_CBC_MAC, 167
PSA_ALG_CBC_NO_PADDING, 188
PSA_ALG_CBC_PKCS7, 189
PSA_ALG_CCM, 208
PSA_ALG_CCM_STAR_ANY_TAG, 202
PSA_ALG_CCM_STAR_NO_TAG, 185
PSA_ALG_CFB, 186
PSA_ALG_CHACHA20_POLY1305, 210
PSA_ALG_CMAC, 167
PSA_ALG_CTR, 183
PSA_ALG_DETERMINISTIC_ECDSA, 287
PSA_ALG_ECB_NO_PADDING, 187
PSA_ALG_ECDH, 318
PSA_ALG_ECDSA, 285
PSA_ALG_ECDSA_ANY, 286

PSA_ALG_ECIES_SEC1, 330
PSA_ALG_ED25519PH, 292
PSA_ALG_ED448PH, 293
PSA_ALG_EDDSA_CTX, 291
PSA_ALG_FFDH, 317
PSA_ALG_FULL_LENGTH_MAC, 168
PSA_ALG_GCM, 209
PSA_ALG_GET_HASH, 136
PSA_ALG_HKDF, 245
PSA_ALG_HKDF_EXPAND, 247
PSA_ALG_HKDF_EXTRACT, 246
PSA_ALG_HMAC, 165
PSA_ALG_IS_AEAD, 133
PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER, 231
PSA_ALG_IS_ASYMMETRIC_ENCRYPTION, 134
PSA_ALG_IS_BLOCK_CIPHER_MAC, 180
PSA_ALG_IS_CIPHER, 133
PSA_ALG_IS_DETERMINISTIC_ECDSA, 289
PSA_ALG_IS_ECDH, 327
PSA_ALG_IS_ECDSA, 288
PSA_ALG_IS_FFDH, 327
PSA_ALG_IS_HASH, 132
PSA_ALG_IS_HASH_AND_SIGN, 308
PSA_ALG_IS_HASH_EDDSA, 294
PSA_ALG_IS_HKDF, 275
PSA_ALG_IS_HKDF_EXPAND, 275
PSA_ALG_IS_HKDF_EXTRACT, 275
PSA_ALG_IS_HMAC, 180
PSA_ALG_IS_JPAKE, 371
PSA_ALG_IS_KEY_AGREEMENT, 135
PSA_ALG_IS_KEY_DERIVATION, 134
PSA_ALG_IS_KEY_DERIVATION_STRETCHING, 274
PSA_ALG_IS_KEY_ENCAPSULATION, 135
PSA_ALG_IS_KEY_WRAP, 133
PSA_ALG_IS_MAC, 132
PSA_ALG_IS_PAKE, 135
PSA_ALG_IS_PBKDF2_HMAC, 277
PSA_ALG_IS_RANDOMIZED_ECDSA, 289
PSA_ALG_IS_RAW_KEY_AGREEMENT, 327
PSA_ALG_IS_RSA_OAEP, 315
PSA_ALG_IS_RSA_PKCS1V15_SIGN, 283
PSA_ALG_IS_RSA_PSS, 284

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 468

PSA_ALG_IS_RSA_PSS_ANY_SALT, 284
PSA_ALG_IS_RSA_PSS_STANDARD_SALT, 285
PSA_ALG_IS_SIGN, 134
PSA_ALG_IS_SIGN_HASH, 308
PSA_ALG_IS_SIGN_MESSAGE, 307
PSA_ALG_IS_SP800_108_COUNTER_HMAC, 276
PSA_ALG_IS_SPAKE2P, 380
PSA_ALG_IS_SPAKE2P_CMAC, 381
PSA_ALG_IS_SPAKE2P_HMAC, 380
PSA_ALG_IS_STANDALONE_KEY_AGREEMENT, 326
PSA_ALG_IS_STREAM_CIPHER, 202
PSA_ALG_IS_TLS12_PRF, 276
PSA_ALG_IS_TLS12_PSK_TO_MS, 276
PSA_ALG_IS_WILDCARD, 136
PSA_ALG_IS_WPA3_SAE, 389
PSA_ALG_IS_WPA3_SAE_FIXED, 390
PSA_ALG_IS_WPA3_SAE_GDH, 390
PSA_ALG_IS_WPA3_SAE_H2E, 277
PSA_ALG_IS_XOF, 132
PSA_ALG_JPAKE, 370
PSA_ALG_KEY_AGREEMENT, 319
PSA_ALG_KEY_AGREEMENT_GET_BASE, 326
PSA_ALG_KEY_AGREEMENT_GET_KDF, 326
PSA_ALG_KW, 237
PSA_ALG_KWP, 238
PSA_ALG_MD2, 138
PSA_ALG_MD4, 138
PSA_ALG_MD5, 138
PSA_ALG_NONE, 131
PSA_ALG_OFB, 186
PSA_ALG_PBKDF2_AES_CMAC_PRF_128, 255
PSA_ALG_PBKDF2_HMAC, 254
PSA_ALG_PURE_EDDSA, 290
PSA_ALG_RIPEMD160, 139
PSA_ALG_RSA_OAEP, 311
PSA_ALG_RSA_PKCS1V15_CRYPT, 311
PSA_ALG_RSA_PKCS1V15_SIGN, 280
PSA_ALG_RSA_PKCS1V15_SIGN_RAW, 281
PSA_ALG_RSA_PSS, 281
PSA_ALG_RSA_PSS_ANY_SALT, 282
PSA_ALG_SHA3_224, 140
PSA_ALG_SHA3_256, 141
PSA_ALG_SHA3_384, 141
PSA_ALG_SHA3_512, 141
PSA_ALG_SHAKE128, 158
PSA_ALG_SHAKE256, 158
PSA_ALG_SHAKE256_512, 141
PSA_ALG_SHA_1, 139
PSA_ALG_SHA_224, 139
PSA_ALG_SHA_256, 140

PSA_ALG_SHA_384, 140
PSA_ALG_SHA_512, 140
PSA_ALG_SHA_512_224, 140
PSA_ALG_SHA_512_256, 140
PSA_ALG_SIGN_SUPPORTS_CONTEXT, 309
PSA_ALG_SM3, 141
PSA_ALG_SP800_108_COUNTER_CMAC, 249
PSA_ALG_SP800_108_COUNTER_HMAC, 248
PSA_ALG_SPAKE2P_CMAC, 378
PSA_ALG_SPAKE2P_HMAC, 378
PSA_ALG_SPAKE2P_MATTER, 379
PSA_ALG_STREAM_CIPHER, 182
PSA_ALG_TLS12_ECJPAKE_TO_PMS, 252
PSA_ALG_TLS12_PRF, 250
PSA_ALG_TLS12_PSK_TO_MS, 251
PSA_ALG_TRUNCATED_MAC, 167
PSA_ALG_WPA3_SAE_ANY, 390
PSA_ALG_WPA3_SAE_FIXED, 388
PSA_ALG_WPA3_SAE_GDH, 388
PSA_ALG_WPA3_SAE_H2E, 253
PSA_ALG_XCHACHA20_POLY1305, 210
PSA_ALG_XOF_HAS_CONTEXT, 164
PSA_ALG_XTS, 187
PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE, 317
PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE, 316
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE, 316
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE, 315
psa_aead_abort, 231
psa_aead_decrypt, 215
psa_aead_decrypt_setup, 219
psa_aead_encrypt, 213
psa_aead_encrypt_setup, 218
psa_aead_finish, 227
psa_aead_generate_nonce, 222
psa_aead_operation_init, 218
psa_aead_operation_t, 217
psa_aead_set_lengths, 221
psa_aead_set_nonce, 223
psa_aead_update, 225
psa_aead_update_ad, 224
psa_aead_verify, 229
psa_algorithm_t, 131
psa_asymmetric_decrypt, 313
psa_asymmetric_encrypt, 312
psa_attach_key, 120
PSA_B
PSA_BLOCK_CIPHER_BLOCK_LENGTH, 206
PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE, 207

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 469

PSA_C
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE, 204
PSA_CIPHER_DECRYPT_OUTPUT_SIZE, 203
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE, 203
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE, 202
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE, 206
PSA_CIPHER_FINISH_OUTPUT_SIZE, 206
PSA_CIPHER_IV_LENGTH, 204
PSA_CIPHER_IV_MAX_SIZE, 205
PSA_CIPHER_OPERATION_INIT, 193
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE, 205
PSA_CIPHER_UPDATE_OUTPUT_SIZE, 205
PSA_CRYPTO_API_VERSION_MAJOR, 47
PSA_CRYPTO_API_VERSION_MINOR, 48
PSA_CUSTOM_KEY_PARAMETERS_INIT, 114
psa_check_key_usage, 109
psa_cipher_abort, 201
psa_cipher_decrypt, 191
psa_cipher_decrypt_setup, 195
psa_cipher_encrypt, 189
psa_cipher_encrypt_setup, 193
psa_cipher_finish, 200
psa_cipher_generate_iv, 196
psa_cipher_operation_init, 193
psa_cipher_operation_t, 192
psa_cipher_set_iv, 197
psa_cipher_update, 198
psa_copy_key, 118
psa_crypto_init, 48
psa_custom_key_parameters_t, 113
PSA_D
PSA_DH_FAMILY_RFC3526, 60
PSA_DH_FAMILY_RFC7919, 60
psa_decapsulate, 333
psa_destroy_key, 123
psa_dh_family_t, 59
PSA_E
PSA_ECC_FAMILY_BRAINPOOL_P_R1, 58
PSA_ECC_FAMILY_FRP, 58
PSA_ECC_FAMILY_MONTGOMERY, 59
PSA_ECC_FAMILY_SECP_K1, 56
PSA_ECC_FAMILY_SECP_R1, 56
PSA_ECC_FAMILY_SECP_R2, 56
PSA_ECC_FAMILY_SECT_K1, 57
PSA_ECC_FAMILY_SECT_R1, 57
PSA_ECC_FAMILY_SECT_R2, 58
PSA_ECC_FAMILY_TWISTED_EDWARDS, 59

PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE, 337
PSA_ENCAPSULATE_CIPHERTEXT_SIZE, 337
PSA_ERROR_INSUFFICIENT_ENTROPY, 47
PSA_ERROR_INVALID_PADDING, 47
PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE, 130
PSA_EXPORT_KEY_OUTPUT_SIZE, 128
PSA_EXPORT_KEY_PAIR_MAX_SIZE, 129
PSA_EXPORT_PUBLIC_KEY_MAX_SIZE, 130
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE, 128
psa_ecc_family_t, 55
psa_encapsulate, 331
psa_export_key, 125
psa_export_public_key, 126
PSA_G
psa_generate_key, 114
psa_generate_key_custom, 116
psa_generate_random, 391
psa_get_key_algorithm, 102
psa_get_key_attributes, 52
psa_get_key_bits, 61
psa_get_key_id, 100
psa_get_key_lifetime, 96
psa_get_key_type, 61
psa_get_key_usage_flags, 108
PSA_H
PSA_HASH_BLOCK_LENGTH, 155
PSA_HASH_LENGTH, 152
PSA_HASH_MAX_SIZE, 153
PSA_HASH_OPERATION_INIT, 144
PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH, 154
PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH, 154
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH, 154
PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE, 154
PSA_HASH_SUSPEND_OUTPUT_SIZE, 153
psa_hash_abort, 148
psa_hash_clone, 152
psa_hash_compare, 143
psa_hash_compute, 142
psa_hash_finish, 147
psa_hash_operation_init, 145
psa_hash_operation_t, 144
psa_hash_resume, 151
psa_hash_setup, 145
psa_hash_suspend, 149
psa_hash_update, 146
psa_hash_verify, 148

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 470

PSA_I
psa_import_key, 111
PSA_K
PSA_KEY_ATTRIBUTES_INIT, 51
PSA_KEY_DERIVATION_INPUT_CONTEXT, 256
PSA_KEY_DERIVATION_INPUT_COST, 257
PSA_KEY_DERIVATION_INPUT_INFO, 257
PSA_KEY_DERIVATION_INPUT_LABEL, 256
PSA_KEY_DERIVATION_INPUT_OTHER_SECRET, 256
PSA_KEY_DERIVATION_INPUT_PASSWORD, 256
PSA_KEY_DERIVATION_INPUT_SALT, 256
PSA_KEY_DERIVATION_INPUT_SECRET, 255
PSA_KEY_DERIVATION_INPUT_SEED, 257
PSA_KEY_DERIVATION_OPERATION_INIT, 258
PSA_KEY_DERIVATION_UNLIMITED_CAPACITY, 277
PSA_KEY_ID_NULL, 99
PSA_KEY_ID_USER_MAX, 99
PSA_KEY_ID_USER_MIN, 99
PSA_KEY_ID_VENDOR_MAX, 99
PSA_KEY_ID_VENDOR_MIN, 99
PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION, 98
PSA_KEY_LIFETIME_GET_LOCATION, 97
PSA_KEY_LIFETIME_GET_PERSISTENCE, 97
PSA_KEY_LIFETIME_IS_VOLATILE, 97
PSA_KEY_LIFETIME_PERSISTENT, 94
PSA_KEY_LIFETIME_VOLATILE, 94
PSA_KEY_LOCATION_LOCAL_STORAGE, 95
PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT, 95
PSA_KEY_PERSISTENCE_DEFAULT, 95
PSA_KEY_PERSISTENCE_READ_ONLY, 95
PSA_KEY_PERSISTENCE_VOLATILE, 95
PSA_KEY_TYPE_AES, 66
PSA_KEY_TYPE_ARC4, 70
PSA_KEY_TYPE_ARIA, 67
PSA_KEY_TYPE_ASCON, 72
PSA_KEY_TYPE_CAMELLIA, 69
PSA_KEY_TYPE_CHACHA20, 71
PSA_KEY_TYPE_DERIVE, 63
PSA_KEY_TYPE_DES, 68
PSA_KEY_TYPE_DH_GET_FAMILY, 86
PSA_KEY_TYPE_DH_KEY_PAIR, 84
PSA_KEY_TYPE_DH_PUBLIC_KEY, 85
PSA_KEY_TYPE_ECC_GET_FAMILY, 84
PSA_KEY_TYPE_ECC_KEY_PAIR, 79
PSA_KEY_TYPE_ECC_PUBLIC_KEY, 81
PSA_KEY_TYPE_HMAC, 65
PSA_KEY_TYPE_IS_ASYMMETRIC, 54
PSA_KEY_TYPE_IS_DH, 85

PSA_KEY_TYPE_IS_DH_KEY_PAIR, 85
PSA_KEY_TYPE_IS_DH_PUBLIC_KEY, 85
PSA_KEY_TYPE_IS_ECC, 83
PSA_KEY_TYPE_IS_ECC_KEY_PAIR, 83
PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY, 83
PSA_KEY_TYPE_IS_KEY_PAIR, 55
PSA_KEY_TYPE_IS_PUBLIC_KEY, 55
PSA_KEY_TYPE_IS_RSA, 78
PSA_KEY_TYPE_IS_SPAKE2P, 88
PSA_KEY_TYPE_IS_SPAKE2P_KEY_PAIR, 88
PSA_KEY_TYPE_IS_SPAKE2P_PUBLIC_KEY, 89
PSA_KEY_TYPE_IS_UNSTRUCTURED, 54
PSA_KEY_TYPE_IS_WPA3_SAE_DH, 75
PSA_KEY_TYPE_IS_WPA3_SAE_ECC, 75
PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY, 89
PSA_KEY_TYPE_NONE, 54
PSA_KEY_TYPE_PASSWORD, 64
PSA_KEY_TYPE_PASSWORD_HASH, 64
PSA_KEY_TYPE_PEPPER, 65
PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR, 90
PSA_KEY_TYPE_RAW_DATA, 62
PSA_KEY_TYPE_RSA_KEY_PAIR, 76
PSA_KEY_TYPE_RSA_PUBLIC_KEY, 78
PSA_KEY_TYPE_SM4, 70
PSA_KEY_TYPE_SPAKE2P_GET_FAMILY, 89
PSA_KEY_TYPE_SPAKE2P_KEY_PAIR, 86
PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY, 87
PSA_KEY_TYPE_WPA3_SAE_DH, 74
PSA_KEY_TYPE_WPA3_SAE_DH_GET_FAMILY, 75
PSA_KEY_TYPE_WPA3_SAE_ECC, 73
PSA_KEY_TYPE_WPA3_SAE_ECC_GET_FAMILY, 75
PSA_KEY_TYPE_XCHACHA20, 71
PSA_KEY_USAGE_CACHE, 104
PSA_KEY_USAGE_COPY, 104
PSA_KEY_USAGE_DECRYPT, 105
PSA_KEY_USAGE_DERIVE, 106
PSA_KEY_USAGE_DERIVE_PUBLIC, 107
PSA_KEY_USAGE_ENCRYPT, 104
PSA_KEY_USAGE_EXPORT, 103
PSA_KEY_USAGE_SIGN_HASH, 106
PSA_KEY_USAGE_SIGN_MESSAGE, 105
PSA_KEY_USAGE_UNWRAP, 108
PSA_KEY_USAGE_VERIFY_DERIVATION, 107
PSA_KEY_USAGE_VERIFY_HASH, 106
PSA_KEY_USAGE_VERIFY_MESSAGE, 105
PSA_KEY_USAGE_WRAP, 107
psa_key_agreement, 320
psa_key_attributes_init, 52
psa_key_attributes_t, 49
psa_key_derivation_abort, 274

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 471

psa_key_derivation_get_capacity, 259
psa_key_derivation_input_bytes, 261
psa_key_derivation_input_integer, 262
psa_key_derivation_input_key, 263
psa_key_derivation_key_agreement, 324
psa_key_derivation_operation_init, 258
psa_key_derivation_operation_t, 257
psa_key_derivation_output_bytes, 265
psa_key_derivation_output_key, 266
psa_key_derivation_output_key_custom, 268
psa_key_derivation_set_capacity, 260
psa_key_derivation_setup, 258
psa_key_derivation_step_t, 255
psa_key_derivation_verify_bytes, 271
psa_key_derivation_verify_key, 272
psa_key_id_t, 98
psa_key_lifetime_t, 91
psa_key_location_t, 93
psa_key_persistence_t, 92
psa_key_type_t, 53
psa_key_usage_t, 103
PSA_M
PSA_MAC_LENGTH, 180
PSA_MAC_MAX_SIZE, 181
PSA_MAC_OPERATION_INIT, 173
psa_mac_abort, 179
psa_mac_compute, 170
psa_mac_operation_init, 173
psa_mac_operation_t, 172
psa_mac_sign_finish, 177
psa_mac_sign_setup, 173
psa_mac_update, 176
psa_mac_verify, 171
psa_mac_verify_finish, 178
psa_mac_verify_setup, 175
PSA_P
PSA_PAKE_CIPHER_SUITE_INIT, 343
PSA_PAKE_CONFIRMED_KEY, 346
PSA_PAKE_INPUT_MAX_SIZE, 365
PSA_PAKE_INPUT_SIZE, 365
PSA_PAKE_OPERATION_INIT, 352
PSA_PAKE_OUTPUT_MAX_SIZE, 365
PSA_PAKE_OUTPUT_SIZE, 364
PSA_PAKE_PRIMITIVE, 340
PSA_PAKE_PRIMITIVE_GET_BITS, 341
PSA_PAKE_PRIMITIVE_GET_FAMILY, 341
PSA_PAKE_PRIMITIVE_GET_TYPE, 341
PSA_PAKE_PRIMITIVE_TYPE_DH, 340

PSA_PAKE_PRIMITIVE_TYPE_ECC, 339
PSA_PAKE_ROLE_CLIENT, 348
PSA_PAKE_ROLE_FIRST, 348
PSA_PAKE_ROLE_NONE, 348
PSA_PAKE_ROLE_SECOND, 348
PSA_PAKE_ROLE_SERVER, 349
PSA_PAKE_STEP_COMMIT, 351
PSA_PAKE_STEP_CONFIRM, 350
PSA_PAKE_STEP_CONFIRM_COUNT, 351
PSA_PAKE_STEP_KEY_ID, 351
PSA_PAKE_STEP_KEY_SHARE, 349
PSA_PAKE_STEP_SALT, 350
PSA_PAKE_STEP_ZK_PROOF, 350
PSA_PAKE_STEP_ZK_PUBLIC, 349
PSA_PAKE_UNCONFIRMED_KEY, 346
psa_pake_abort, 363
psa_pake_cipher_suite_init, 344
psa_pake_cipher_suite_t, 342
psa_pake_cs_get_algorithm, 344
psa_pake_cs_get_key_confirmation, 346
psa_pake_cs_get_primitive, 345
psa_pake_cs_set_algorithm, 344
psa_pake_cs_set_key_confirmation, 347
psa_pake_cs_set_primitive, 345
psa_pake_family_t, 340
psa_pake_get_shared_key, 361
psa_pake_input, 359
psa_pake_operation_init, 352
psa_pake_operation_t, 352
psa_pake_output, 358
psa_pake_primitive_t, 338
psa_pake_primitive_type_t, 339
psa_pake_role_t, 348
psa_pake_set_context, 357
psa_pake_set_peer, 356
psa_pake_set_role, 355
psa_pake_set_user, 355
psa_pake_setup, 353
psa_pake_step_t, 349
psa_purge_key, 124
PSA_R
PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE, 328
PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE, 328
psa_raw_key_agreement, 322
psa_reset_key_attributes, 53
PSA_S
PSA_SIGNATURE_MAX_SIZE, 310
PSA_SIGN_OUTPUT_SIZE, 310

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 472

psa_set_key_algorithm, 102
psa_set_key_bits, 62
psa_set_key_id, 99
psa_set_key_lifetime, 96
psa_set_key_type, 61
psa_set_key_usage_flags, 108
psa_sign_hash, 301
psa_sign_hash_with_context, 302
psa_sign_message, 294
psa_sign_message_with_context, 296
PSA_T
PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE, 278
PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE, 277
PSA_U
psa_unwrap_key, 238
PSA_V
psa_verify_hash, 304
psa_verify_hash_with_context, 306
psa_verify_message, 298
psa_verify_message_with_context, 299
PSA_W
PSA_WRAP_KEY_OUTPUT_SIZE, 243
PSA_WRAP_KEY_PAIR_MAX_SIZE, 244
psa_wrap_key, 241
PSA_X
PSA_XOF_OPERATION_INIT, 160
psa_xof_abort, 164
psa_xof_operation_init, 160
psa_xof_operation_t, 159
psa_xof_output, 163
psa_xof_set_context, 161
psa_xof_setup, 160
psa_xof_update, 162

IHI 00861.4.0 Copyright © 2018-2025 Arm Limited and/or its affiliatesNon-confidential Page 473

	About this document
	Release information
	License
	References
	Terms and abbreviations
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Feedback

	1 Introduction
	1.1 About Platform Security Architecture
	1.2 About the Crypto API

	2 Design goals
	2.1 Suitable for constrained devices
	2.2 A keystore interface
	2.3 Optional isolation
	2.4 Choice of algorithms
	2.5 Ease of use
	2.6 Example use cases
	2.6.1 Network Security (TLS)
	2.6.2 Secure Storage
	2.6.3 Network Credentials
	2.6.4 Device Pairing
	2.6.5 Secure Boot
	2.6.6 Attestation
	2.6.7 Factory Provisioning

	3 Functionality overview
	3.1 Library management
	3.2 Key management
	3.2.1 Key types
	3.2.2 Key identifiers
	3.2.3 Key lifetimes
	3.2.4 Key policies
	3.2.5 Recommendations of minimum standards for key management

	3.3 Cryptographic operations
	3.3.1 Single-part Functions
	3.3.2 Multi-part operations
	3.3.3 Symmetric cryptography
	Example of the symmetric cryptography API

	3.3.4 Asymmetric cryptography

	3.4 Randomness and key generation

	4 Sample architectures
	4.1 Single-partition architecture
	4.2 Cryptographic token and single-application processor
	4.3 Cryptoprocessor with no key storage
	4.4 Multi-client cryptoprocessor
	4.5 Multi-cryptoprocessor architecture

	5 Library conventions
	5.1 Header files
	5.2 API conventions
	5.2.1 Identifier names
	5.2.2 Basic types
	5.2.3 Data types
	5.2.4 Constants
	5.2.5 Function-like macros
	5.2.6 Functions

	5.3 Error handling
	5.3.1 Return status
	5.3.2 Behavior on error

	5.4 Parameter conventions
	5.4.1 Pointer conventions
	5.4.2 Input buffer sizes
	5.4.3 Output buffer sizes
	5.4.4 Overlap between parameters
	5.4.5 Stability of parameters

	5.5 Key types and algorithms
	5.5.1 Structure of key types and algorithms

	5.6 Concurrent calls

	6 Implementation considerations
	6.1 Implementation-specific aspects of the interface
	6.1.1 Implementation profile
	6.1.2 Implementation-specific types
	6.1.3 Implementation-specific macros

	6.2 Porting to a platform
	6.2.1 Platform assumptions
	6.2.2 Platform-specific types
	6.2.3 Cryptographic hardware support

	6.3 Security requirements and recommendations
	6.3.1 Error detection
	6.3.2 Indirect object references
	6.3.3 Memory cleanup
	6.3.4 Managing key material
	6.3.5 Safe outputs on error
	6.3.6 Attack resistance

	6.4 Other implementation considerations
	6.4.1 Philosophy of resource management

	7 Usage considerations
	7.1 Security recommendations
	7.1.1 Always check for errors
	7.1.2 Shared memory and concurrency
	7.1.3 Cleaning up after use

	8 Library management reference
	8.1 Status codes
	8.1.1 Common error codes
	8.1.2 Error codes specific to the Crypto API
	PSA_ERROR_INSUFFICIENT_ENTROPY (macro)
	PSA_ERROR_INVALID_PADDING (macro)

	8.2 Crypto API library
	8.2.1 API version
	PSA_CRYPTO_API_VERSION_MAJOR (macro)
	PSA_CRYPTO_API_VERSION_MINOR (macro)

	8.2.2 Library initialization
	psa_crypto_init (function)

	9 Key management reference
	9.1 Key attributes
	9.1.1 Managing key attributes
	psa_key_attributes_t (typedef)
	PSA_KEY_ATTRIBUTES_INIT (macro)
	psa_key_attributes_init (function)
	psa_get_key_attributes (function)
	psa_reset_key_attributes (function)

	9.2 Key types
	9.2.1 Key type encoding
	psa_key_type_t (typedef)
	PSA_KEY_TYPE_NONE (macro)

	9.2.2 Key categories
	PSA_KEY_TYPE_IS_UNSTRUCTURED (macro)
	PSA_KEY_TYPE_IS_ASYMMETRIC (macro)
	PSA_KEY_TYPE_IS_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_KEY_PAIR (macro)

	9.2.3 Elliptic curve families
	psa_ecc_family_t (typedef)
	PSA_ECC_FAMILY_SECP_K1 (macro)
	PSA_ECC_FAMILY_SECP_R1 (macro)
	PSA_ECC_FAMILY_SECP_R2 (macro)
	PSA_ECC_FAMILY_SECT_K1 (macro)
	PSA_ECC_FAMILY_SECT_R1 (macro)
	PSA_ECC_FAMILY_SECT_R2 (macro)
	PSA_ECC_FAMILY_BRAINPOOL_P_R1 (macro)
	PSA_ECC_FAMILY_FRP (macro)
	PSA_ECC_FAMILY_MONTGOMERY (macro)
	PSA_ECC_FAMILY_TWISTED_EDWARDS (macro)

	9.2.4 Finite field Diffie-Hellman families
	psa_dh_family_t (typedef)
	PSA_DH_FAMILY_RFC7919 (macro)
	PSA_DH_FAMILY_RFC3526 (macro)

	9.2.5 Attribute accessors
	psa_set_key_type (function)
	psa_get_key_type (function)
	psa_get_key_bits (function)
	psa_set_key_bits (function)

	9.3 Unstructured key types
	9.3.1 Non-key data
	PSA_KEY_TYPE_RAW_DATA (macro)
	PSA_KEY_TYPE_DERIVE (macro)
	PSA_KEY_TYPE_PASSWORD (macro)
	PSA_KEY_TYPE_PASSWORD_HASH (macro)
	PSA_KEY_TYPE_PEPPER (macro)

	9.3.2 Symmetric cryptographic keys
	PSA_KEY_TYPE_HMAC (macro)
	PSA_KEY_TYPE_AES (macro)
	PSA_KEY_TYPE_ARIA (macro)
	PSA_KEY_TYPE_DES (macro)
	PSA_KEY_TYPE_CAMELLIA (macro)
	PSA_KEY_TYPE_SM4 (macro)
	PSA_KEY_TYPE_ARC4 (macro)
	PSA_KEY_TYPE_CHACHA20 (macro)
	PSA_KEY_TYPE_XCHACHA20 (macro)
	PSA_KEY_TYPE_ASCON (macro)

	9.4 Structured key types
	9.4.1 WPA3-SAE password tokens
	PSA_KEY_TYPE_WPA3_SAE_ECC (macro)
	PSA_KEY_TYPE_WPA3_SAE_DH (macro)
	PSA_KEY_TYPE_IS_WPA3_SAE_ECC (macro)
	PSA_KEY_TYPE_WPA3_SAE_ECC_GET_FAMILY (macro)
	PSA_KEY_TYPE_IS_WPA3_SAE_DH (macro)
	PSA_KEY_TYPE_WPA3_SAE_DH_GET_FAMILY (macro)

	9.5 Asymmetric key types
	9.5.1 RSA keys
	PSA_KEY_TYPE_RSA_KEY_PAIR (macro)
	PSA_KEY_TYPE_RSA_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_RSA (macro)

	9.5.2 Elliptic Curve keys
	PSA_KEY_TYPE_ECC_KEY_PAIR (macro)
	PSA_KEY_TYPE_ECC_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_ECC (macro)
	PSA_KEY_TYPE_IS_ECC_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_ECC_GET_FAMILY (macro)

	9.5.3 Diffie Hellman keys
	PSA_KEY_TYPE_DH_KEY_PAIR (macro)
	PSA_KEY_TYPE_DH_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_DH (macro)
	PSA_KEY_TYPE_IS_DH_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_DH_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_DH_GET_FAMILY (macro)

	9.5.4 SPAKE2+ keys
	PSA_KEY_TYPE_SPAKE2P_KEY_PAIR (macro)
	PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_SPAKE2P (macro)
	PSA_KEY_TYPE_IS_SPAKE2P_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_SPAKE2P_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_SPAKE2P_GET_FAMILY (macro)

	9.5.5 Support macros
	PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR (macro)

	9.6 Key lifetimes
	9.6.1 Volatile keys
	9.6.2 Persistent keys
	9.6.3 Key lifetime encoding
	psa_key_lifetime_t (typedef)
	psa_key_persistence_t (typedef)
	psa_key_location_t (typedef)

	9.6.4 Lifetime values
	PSA_KEY_LIFETIME_VOLATILE (macro)
	PSA_KEY_LIFETIME_PERSISTENT (macro)
	PSA_KEY_PERSISTENCE_VOLATILE (macro)
	PSA_KEY_PERSISTENCE_DEFAULT (macro)
	PSA_KEY_PERSISTENCE_READ_ONLY (macro)
	PSA_KEY_LOCATION_LOCAL_STORAGE (macro)
	PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT (macro)

	9.6.5 Attribute accessors
	psa_set_key_lifetime (function)
	psa_get_key_lifetime (function)

	9.6.6 Support macros
	PSA_KEY_LIFETIME_GET_PERSISTENCE (macro)
	PSA_KEY_LIFETIME_GET_LOCATION (macro)
	PSA_KEY_LIFETIME_IS_VOLATILE (macro)
	PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION (macro)

	9.7 Key identifiers
	9.7.1 Key identifier type
	psa_key_id_t (typedef)
	PSA_KEY_ID_NULL (macro)
	PSA_KEY_ID_USER_MIN (macro)
	PSA_KEY_ID_USER_MAX (macro)
	PSA_KEY_ID_VENDOR_MIN (macro)
	PSA_KEY_ID_VENDOR_MAX (macro)

	9.7.2 Attribute accessors
	psa_set_key_id (function)
	psa_get_key_id (function)

	9.8 Key policies
	9.8.1 Permitted algorithms
	psa_set_key_algorithm (function)
	psa_get_key_algorithm (function)

	9.8.2 Key usage flags
	psa_key_usage_t (typedef)
	PSA_KEY_USAGE_EXPORT (macro)
	PSA_KEY_USAGE_COPY (macro)
	PSA_KEY_USAGE_CACHE (macro)
	PSA_KEY_USAGE_ENCRYPT (macro)
	PSA_KEY_USAGE_DECRYPT (macro)
	PSA_KEY_USAGE_SIGN_MESSAGE (macro)
	PSA_KEY_USAGE_VERIFY_MESSAGE (macro)
	PSA_KEY_USAGE_SIGN_HASH (macro)
	PSA_KEY_USAGE_VERIFY_HASH (macro)
	PSA_KEY_USAGE_DERIVE (macro)
	PSA_KEY_USAGE_VERIFY_DERIVATION (macro)
	PSA_KEY_USAGE_DERIVE_PUBLIC (macro)
	PSA_KEY_USAGE_WRAP (macro)
	PSA_KEY_USAGE_UNWRAP (macro)
	psa_set_key_usage_flags (function)
	psa_get_key_usage_flags (function)
	psa_check_key_usage (function)

	9.9 Key management functions
	9.9.1 Key creation
	psa_import_key (function)
	psa_custom_key_parameters_t (struct)
	PSA_CUSTOM_KEY_PARAMETERS_INIT (macro)
	psa_generate_key (function)
	psa_generate_key_custom (function)
	psa_copy_key (function)
	psa_attach_key (function)

	9.9.2 Key destruction
	psa_destroy_key (function)
	psa_purge_key (function)

	9.9.3 Key export
	psa_export_key (function)
	psa_export_public_key (function)
	PSA_EXPORT_KEY_OUTPUT_SIZE (macro)
	PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE (macro)
	PSA_EXPORT_KEY_PAIR_MAX_SIZE (macro)
	PSA_EXPORT_PUBLIC_KEY_MAX_SIZE (macro)
	PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE (macro)

	10 Cryptographic operation reference
	10.1 Algorithms
	10.1.1 Algorithm encoding
	psa_algorithm_t (typedef)
	PSA_ALG_NONE (macro)

	10.1.2 Algorithm categories
	PSA_ALG_IS_HASH (macro)
	PSA_ALG_IS_XOF (macro)
	PSA_ALG_IS_MAC (macro)
	PSA_ALG_IS_CIPHER (macro)
	PSA_ALG_IS_AEAD (macro)
	PSA_ALG_IS_KEY_WRAP (macro)
	PSA_ALG_IS_KEY_DERIVATION (macro)
	PSA_ALG_IS_SIGN (macro)
	PSA_ALG_IS_ASYMMETRIC_ENCRYPTION (macro)
	PSA_ALG_IS_KEY_AGREEMENT (macro)
	PSA_ALG_IS_PAKE (macro)
	PSA_ALG_IS_KEY_ENCAPSULATION (macro)

	10.1.3 Support macros
	PSA_ALG_IS_WILDCARD (macro)
	PSA_ALG_GET_HASH (macro)

	10.2 Message digests (Hashes)
	10.2.1 Hash algorithms
	PSA_ALG_MD2 (macro)
	PSA_ALG_MD4 (macro)
	PSA_ALG_MD5 (macro)
	PSA_ALG_RIPEMD160 (macro)
	PSA_ALG_AES_MMO_ZIGBEE (macro)
	PSA_ALG_SHA_1 (macro)
	PSA_ALG_SHA_224 (macro)
	PSA_ALG_SHA_256 (macro)
	PSA_ALG_SHA_384 (macro)
	PSA_ALG_SHA_512 (macro)
	PSA_ALG_SHA_512_224 (macro)
	PSA_ALG_SHA_512_256 (macro)
	PSA_ALG_SHA3_224 (macro)
	PSA_ALG_SHA3_256 (macro)
	PSA_ALG_SHA3_384 (macro)
	PSA_ALG_SHA3_512 (macro)
	PSA_ALG_SHAKE256_512 (macro)
	PSA_ALG_SM3 (macro)
	PSA_ALG_ASCON_HASH256 (macro)

	10.2.2 Single-part hashing functions
	psa_hash_compute (function)
	psa_hash_compare (function)

	10.2.3 Multi-part hashing operations
	psa_hash_operation_t (typedef)
	PSA_HASH_OPERATION_INIT (macro)
	psa_hash_operation_init (function)
	psa_hash_setup (function)
	psa_hash_update (function)
	psa_hash_finish (function)
	psa_hash_verify (function)
	psa_hash_abort (function)
	psa_hash_suspend (function)
	psa_hash_resume (function)
	psa_hash_clone (function)

	10.2.4 Support macros
	PSA_HASH_LENGTH (macro)
	PSA_HASH_MAX_SIZE (macro)
	PSA_HASH_SUSPEND_OUTPUT_SIZE (macro)
	PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE (macro)
	PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH (macro)
	PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH (macro)
	PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH (macro)
	PSA_HASH_BLOCK_LENGTH (macro)

	10.2.5 Hash suspend state
	Hash suspend state format
	Hash suspend state field sizes

	10.3 Extendable-output functions (XOF)
	10.3.1 XOF algorithms
	PSA_ALG_SHAKE128 (macro)
	PSA_ALG_SHAKE256 (macro)
	PSA_ALG_ASCON_XOF128 (macro)
	PSA_ALG_ASCON_CXOF128 (macro)

	10.3.2 Multi-part XOF operations
	psa_xof_operation_t (typedef)
	PSA_XOF_OPERATION_INIT (macro)
	psa_xof_operation_init (function)
	psa_xof_setup (function)
	psa_xof_set_context (function)
	psa_xof_update (function)
	psa_xof_output (function)
	psa_xof_abort (function)

	10.3.3 Support macros
	PSA_ALG_XOF_HAS_CONTEXT (macro)

	10.4 Message authentication codes (MAC)
	10.4.1 MAC algorithms
	PSA_ALG_HMAC (macro)
	PSA_ALG_CBC_MAC (macro)
	PSA_ALG_CMAC (macro)
	PSA_ALG_TRUNCATED_MAC (macro)
	PSA_ALG_FULL_LENGTH_MAC (macro)
	PSA_ALG_AT_LEAST_THIS_LENGTH_MAC (macro)

	10.4.2 Single-part MAC functions
	psa_mac_compute (function)
	psa_mac_verify (function)

	10.4.3 Multi-part MAC operations
	psa_mac_operation_t (typedef)
	PSA_MAC_OPERATION_INIT (macro)
	psa_mac_operation_init (function)
	psa_mac_sign_setup (function)
	psa_mac_verify_setup (function)
	psa_mac_update (function)
	psa_mac_sign_finish (function)
	psa_mac_verify_finish (function)
	psa_mac_abort (function)

	10.4.4 Support macros
	PSA_ALG_IS_HMAC (macro)
	PSA_ALG_IS_BLOCK_CIPHER_MAC (macro)
	PSA_MAC_LENGTH (macro)
	PSA_MAC_MAX_SIZE (macro)

	10.5 Unauthenticated ciphers
	10.5.1 Cipher algorithms
	PSA_ALG_STREAM_CIPHER (macro)
	PSA_ALG_CTR (macro)
	PSA_ALG_CCM_STAR_NO_TAG (macro)
	PSA_ALG_CFB (macro)
	PSA_ALG_OFB (macro)
	PSA_ALG_XTS (macro)
	PSA_ALG_ECB_NO_PADDING (macro)
	PSA_ALG_CBC_NO_PADDING (macro)
	PSA_ALG_CBC_PKCS7 (macro)

	10.5.2 Single-part cipher functions
	psa_cipher_encrypt (function)
	psa_cipher_decrypt (function)

	10.5.3 Multi-part cipher operations
	psa_cipher_operation_t (typedef)
	PSA_CIPHER_OPERATION_INIT (macro)
	psa_cipher_operation_init (function)
	psa_cipher_encrypt_setup (function)
	psa_cipher_decrypt_setup (function)
	psa_cipher_generate_iv (function)
	psa_cipher_set_iv (function)
	psa_cipher_update (function)
	psa_cipher_finish (function)
	psa_cipher_abort (function)

	10.5.4 Support macros
	PSA_ALG_IS_STREAM_CIPHER (macro)
	PSA_ALG_CCM_STAR_ANY_TAG (macro)
	PSA_CIPHER_ENCRYPT_OUTPUT_SIZE (macro)
	PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_CIPHER_DECRYPT_OUTPUT_SIZE (macro)
	PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_CIPHER_IV_LENGTH (macro)
	PSA_CIPHER_IV_MAX_SIZE (macro)
	PSA_CIPHER_UPDATE_OUTPUT_SIZE (macro)
	PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE (macro)
	PSA_CIPHER_FINISH_OUTPUT_SIZE (macro)
	PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE (macro)
	PSA_BLOCK_CIPHER_BLOCK_LENGTH (macro)
	PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE (macro)

	10.6 Authenticated encryption with associated data (AEAD)
	10.6.1 AEAD algorithms
	PSA_ALG_CCM (macro)
	PSA_ALG_GCM (macro)
	PSA_ALG_CHACHA20_POLY1305 (macro)
	PSA_ALG_XCHACHA20_POLY1305 (macro)
	PSA_ALG_ASCON_AEAD128 (macro)
	PSA_ALG_AEAD_WITH_SHORTENED_TAG (macro)
	PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG (macro)
	PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG (macro)

	10.6.2 Single-part AEAD functions
	psa_aead_encrypt (function)
	psa_aead_decrypt (function)

	10.6.3 Multi-part AEAD operations
	psa_aead_operation_t (typedef)
	PSA_AEAD_OPERATION_INIT (macro)
	psa_aead_operation_init (function)
	psa_aead_encrypt_setup (function)
	psa_aead_decrypt_setup (function)
	psa_aead_set_lengths (function)
	psa_aead_generate_nonce (function)
	psa_aead_set_nonce (function)
	psa_aead_update_ad (function)
	psa_aead_update (function)
	psa_aead_finish (function)
	psa_aead_verify (function)
	psa_aead_abort (function)

	10.6.4 Support macros
	PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER (macro)
	PSA_AEAD_ENCRYPT_OUTPUT_SIZE (macro)
	PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_DECRYPT_OUTPUT_SIZE (macro)
	PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_NONCE_LENGTH (macro)
	PSA_AEAD_NONCE_MAX_SIZE (macro)
	PSA_AEAD_UPDATE_OUTPUT_SIZE (macro)
	PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_FINISH_OUTPUT_SIZE (macro)
	PSA_AEAD_FINISH_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_TAG_LENGTH (macro)
	PSA_AEAD_TAG_MAX_SIZE (macro)
	PSA_AEAD_VERIFY_OUTPUT_SIZE (macro)
	PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE (macro)

	10.7 Key wrapping
	10.7.1 Key-wrapping algorithms
	PSA_ALG_KW (macro)
	PSA_ALG_KWP (macro)

	10.7.2 Key wrapping functions
	psa_unwrap_key (function)
	psa_wrap_key (function)

	10.7.3 Support macros
	PSA_WRAP_KEY_OUTPUT_SIZE (macro)
	PSA_WRAP_KEY_PAIR_MAX_SIZE (macro)

	10.8 Key derivation
	10.8.1 Key-derivation algorithms
	PSA_ALG_HKDF (macro)
	PSA_ALG_HKDF_EXTRACT (macro)
	PSA_ALG_HKDF_EXPAND (macro)
	PSA_ALG_SP800_108_COUNTER_HMAC (macro)
	PSA_ALG_SP800_108_COUNTER_CMAC (macro)
	PSA_ALG_TLS12_PRF (macro)
	PSA_ALG_TLS12_PSK_TO_MS (macro)
	PSA_ALG_TLS12_ECJPAKE_TO_PMS (macro)
	PSA_ALG_WPA3_SAE_H2E (macro)
	PSA_ALG_PBKDF2_HMAC (macro)
	PSA_ALG_PBKDF2_AES_CMAC_PRF_128 (macro)

	10.8.2 Input step types
	psa_key_derivation_step_t (typedef)
	PSA_KEY_DERIVATION_INPUT_SECRET (macro)
	PSA_KEY_DERIVATION_INPUT_OTHER_SECRET (macro)
	PSA_KEY_DERIVATION_INPUT_PASSWORD (macro)
	PSA_KEY_DERIVATION_INPUT_LABEL (macro)
	PSA_KEY_DERIVATION_INPUT_CONTEXT (macro)
	PSA_KEY_DERIVATION_INPUT_SALT (macro)
	PSA_KEY_DERIVATION_INPUT_INFO (macro)
	PSA_KEY_DERIVATION_INPUT_SEED (macro)
	PSA_KEY_DERIVATION_INPUT_COST (macro)

	10.8.3 Key-derivation functions
	psa_key_derivation_operation_t (typedef)
	PSA_KEY_DERIVATION_OPERATION_INIT (macro)
	psa_key_derivation_operation_init (function)
	psa_key_derivation_setup (function)
	psa_key_derivation_get_capacity (function)
	psa_key_derivation_set_capacity (function)
	psa_key_derivation_input_bytes (function)
	psa_key_derivation_input_integer (function)
	psa_key_derivation_input_key (function)
	psa_key_derivation_output_bytes (function)
	psa_key_derivation_output_key (function)
	psa_key_derivation_output_key_custom (function)
	psa_key_derivation_verify_bytes (function)
	psa_key_derivation_verify_key (function)
	psa_key_derivation_abort (function)

	10.8.4 Support macros
	PSA_ALG_IS_KEY_DERIVATION_STRETCHING (macro)
	PSA_ALG_IS_HKDF (macro)
	PSA_ALG_IS_HKDF_EXTRACT (macro)
	PSA_ALG_IS_HKDF_EXPAND (macro)
	PSA_ALG_IS_SP800_108_COUNTER_HMAC (macro)
	PSA_ALG_IS_TLS12_PRF (macro)
	PSA_ALG_IS_TLS12_PSK_TO_MS (macro)
	PSA_ALG_IS_PBKDF2_HMAC (macro)
	PSA_ALG_IS_WPA3_SAE_H2E (macro)
	PSA_KEY_DERIVATION_UNLIMITED_CAPACITY (macro)
	PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE (macro)
	PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE (macro)

	10.9 Asymmetric signature
	10.9.1 RSA signature algorithms
	PSA_ALG_RSA_PKCS1V15_SIGN (macro)
	PSA_ALG_RSA_PKCS1V15_SIGN_RAW (macro)
	PSA_ALG_RSA_PSS (macro)
	PSA_ALG_RSA_PSS_ANY_SALT (macro)
	PSA_ALG_IS_RSA_PKCS1V15_SIGN (macro)
	PSA_ALG_IS_RSA_PSS (macro)
	PSA_ALG_IS_RSA_PSS_ANY_SALT (macro)
	PSA_ALG_IS_RSA_PSS_STANDARD_SALT (macro)

	10.9.2 ECDSA signature algorithms
	PSA_ALG_ECDSA (macro)
	PSA_ALG_ECDSA_ANY (macro)
	PSA_ALG_DETERMINISTIC_ECDSA (macro)
	PSA_ALG_IS_ECDSA (macro)
	PSA_ALG_IS_DETERMINISTIC_ECDSA (macro)
	PSA_ALG_IS_RANDOMIZED_ECDSA (macro)

	10.9.3 EdDSA signature algorithms
	PSA_ALG_PURE_EDDSA (macro)
	PSA_ALG_EDDSA_CTX (macro)
	PSA_ALG_ED25519PH (macro)
	PSA_ALG_ED448PH (macro)
	PSA_ALG_IS_HASH_EDDSA (macro)

	10.9.4 Asymmetric signature functions
	psa_sign_message (function)
	psa_sign_message_with_context (function)
	psa_verify_message (function)
	psa_verify_message_with_context (function)
	psa_sign_hash (function)
	psa_sign_hash_with_context (function)
	psa_verify_hash (function)
	psa_verify_hash_with_context (function)

	10.9.5 Support macros
	PSA_ALG_IS_SIGN_MESSAGE (macro)
	PSA_ALG_IS_SIGN_HASH (macro)
	PSA_ALG_IS_HASH_AND_SIGN (macro)
	PSA_ALG_SIGN_SUPPORTS_CONTEXT (macro)
	PSA_ALG_ANY_HASH (macro)
	PSA_SIGN_OUTPUT_SIZE (macro)
	PSA_SIGNATURE_MAX_SIZE (macro)

	10.10 Asymmetric encryption
	10.10.1 Asymmetric encryption algorithms
	PSA_ALG_RSA_PKCS1V15_CRYPT (macro)
	PSA_ALG_RSA_OAEP (macro)

	10.10.2 Asymmetric encryption functions
	psa_asymmetric_encrypt (function)
	psa_asymmetric_decrypt (function)

	10.10.3 Support macros
	PSA_ALG_IS_RSA_OAEP (macro)
	PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE (macro)
	PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE (macro)
	PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE (macro)

	10.11 Key agreement
	10.11.1 Key-agreement algorithms
	PSA_ALG_FFDH (macro)
	PSA_ALG_ECDH (macro)
	PSA_ALG_KEY_AGREEMENT (macro)

	10.11.2 Standalone key agreement
	psa_key_agreement (function)
	psa_raw_key_agreement (function)

	10.11.3 Combining key agreement and key derivation
	psa_key_derivation_key_agreement (function)

	10.11.4 Support macros
	PSA_ALG_KEY_AGREEMENT_GET_BASE (macro)
	PSA_ALG_KEY_AGREEMENT_GET_KDF (macro)
	PSA_ALG_IS_STANDALONE_KEY_AGREEMENT (macro)
	PSA_ALG_IS_RAW_KEY_AGREEMENT (macro)
	PSA_ALG_IS_FFDH (macro)
	PSA_ALG_IS_ECDH (macro)
	PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE (macro)
	PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE (macro)

	10.12 Key encapsulation
	10.12.1 Elliptic Curve Integrated Encryption Scheme
	PSA_ALG_ECIES_SEC1 (macro)

	10.12.2 Key-encapsulation functions
	psa_encapsulate (function)
	psa_decapsulate (function)

	10.12.3 Support macros
	PSA_ENCAPSULATE_CIPHERTEXT_SIZE (macro)
	PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE (macro)

	10.13 Password-authenticated key exchange (PAKE)
	10.13.1 Common API for PAKE
	10.13.2 PAKE primitives
	psa_pake_primitive_t (typedef)
	psa_pake_primitive_type_t (typedef)
	PSA_PAKE_PRIMITIVE_TYPE_ECC (macro)
	PSA_PAKE_PRIMITIVE_TYPE_DH (macro)
	psa_pake_family_t (typedef)
	PSA_PAKE_PRIMITIVE (macro)
	PSA_PAKE_PRIMITIVE_GET_TYPE (macro)
	PSA_PAKE_PRIMITIVE_GET_FAMILY (macro)
	PSA_PAKE_PRIMITIVE_GET_BITS (macro)

	10.13.3 PAKE cipher suites
	psa_pake_cipher_suite_t (typedef)
	PSA_PAKE_CIPHER_SUITE_INIT (macro)
	psa_pake_cipher_suite_init (function)
	psa_pake_cs_get_algorithm (function)
	psa_pake_cs_set_algorithm (function)
	psa_pake_cs_get_primitive (function)
	psa_pake_cs_set_primitive (function)
	PSA_PAKE_CONFIRMED_KEY (macro)
	PSA_PAKE_UNCONFIRMED_KEY (macro)
	psa_pake_cs_get_key_confirmation (function)
	psa_pake_cs_set_key_confirmation (function)

	10.13.4 PAKE roles
	psa_pake_role_t (typedef)
	PSA_PAKE_ROLE_NONE (macro)
	PSA_PAKE_ROLE_FIRST (macro)
	PSA_PAKE_ROLE_SECOND (macro)
	PSA_PAKE_ROLE_CLIENT (macro)
	PSA_PAKE_ROLE_SERVER (macro)

	10.13.5 PAKE step types
	psa_pake_step_t (typedef)
	PSA_PAKE_STEP_KEY_SHARE (macro)
	PSA_PAKE_STEP_ZK_PUBLIC (macro)
	PSA_PAKE_STEP_ZK_PROOF (macro)
	PSA_PAKE_STEP_CONFIRM (macro)
	PSA_PAKE_STEP_SALT (macro)
	PSA_PAKE_STEP_COMMIT (macro)
	PSA_PAKE_STEP_CONFIRM_COUNT (macro)
	PSA_PAKE_STEP_KEY_ID (macro)

	10.13.6 Multi-part PAKE operations
	psa_pake_operation_t (typedef)
	PSA_PAKE_OPERATION_INIT (macro)
	psa_pake_operation_init (function)
	psa_pake_setup (function)
	psa_pake_set_role (function)
	psa_pake_set_user (function)
	psa_pake_set_peer (function)
	psa_pake_set_context (function)
	psa_pake_output (function)
	psa_pake_input (function)
	psa_pake_get_shared_key (function)
	psa_pake_abort (function)

	10.13.7 PAKE support macros
	PSA_PAKE_OUTPUT_SIZE (macro)
	PSA_PAKE_OUTPUT_MAX_SIZE (macro)
	PSA_PAKE_INPUT_SIZE (macro)
	PSA_PAKE_INPUT_MAX_SIZE (macro)

	10.13.8 The J-PAKE protocol
	J-PAKE cipher suites
	J-PAKE password processing
	J-PAKE operation

	10.13.9 J-PAKE algorithms
	PSA_ALG_JPAKE (macro)
	PSA_ALG_IS_JPAKE (macro)

	10.13.10 The SPAKE2+ protocol
	SPAKE2+ cipher suites
	SPAKE2+ registration
	SPAKE2+ operation

	10.13.11 SPAKE2+ algorithms
	PSA_ALG_SPAKE2P_HMAC (macro)
	PSA_ALG_SPAKE2P_CMAC (macro)
	PSA_ALG_SPAKE2P_MATTER (macro)
	PSA_ALG_IS_SPAKE2P (macro)
	PSA_ALG_IS_SPAKE2P_HMAC (macro)
	PSA_ALG_IS_SPAKE2P_CMAC (macro)

	10.13.12 The WPA3-SAE protocol
	WPA3-SAE cipher suites
	WPA3-SAE password processing
	WPA3-SAE operation

	10.13.13 WPA3-SAE algorithms
	PSA_ALG_WPA3_SAE_FIXED (macro)
	PSA_ALG_WPA3_SAE_GDH (macro)
	PSA_ALG_IS_WPA3_SAE (macro)
	PSA_ALG_IS_WPA3_SAE_FIXED (macro)
	PSA_ALG_IS_WPA3_SAE_GDH (macro)
	PSA_ALG_WPA3_SAE_ANY (macro)

	10.14 Other cryptographic services
	10.14.1 Random number generation
	psa_generate_random (function)

	A Example header file
	A.1 psa/crypto.h

	B Algorithm and key type encoding
	B.1 Algorithm identifier encoding
	B.1.1 Algorithm categories
	B.1.2 Hash algorithm encoding
	B.1.3 XOF algorithm encoding
	B.1.4 MAC algorithm encoding
	B.1.5 Cipher algorithm encoding
	B.1.6 AEAD algorithm encoding
	B.1.7 Key-wrapping algorithm encoding
	B.1.8 Key-derivation algorithm encoding
	B.1.9 Asymmetric signature algorithm encoding
	B.1.10 Asymmetric encryption algorithm encoding
	B.1.11 Key-agreement algorithm encoding
	B.1.12 Key-encapsulation algorithm encoding
	B.1.13 PAKE algorithm encoding

	B.2 Key type encoding
	B.2.1 Key type categories
	B.2.2 Raw key encoding
	B.2.3 Symmetric key encoding
	B.2.4 Structured key encoding
	WPA3-SAE password token encoding

	B.2.5 Asymmetric key encoding
	Non-parameterized asymmetric key encoding
	Elliptic curve key encoding
	Finite field Diffie Hellman key encoding
	SPAKE2+ key encoding

	C Example macro implementations
	C.1 Algorithm macros
	C.2 Key type macros
	C.3 Hash suspend state macros

	D Security Risk Assessment
	D.1 Architecture
	D.1.1 System definition
	Assumptions, constraints, and interacting entities
	Trust boundaries and information flow

	D.1.2 Assets and stakeholders
	D.1.3 Security goals

	D.2 Threat Model
	D.2.1 Adversarial models
	D.2.2 Threats and attacks
	D.2.3 Risk assessment

	D.3 Mitigations
	D.3.1 Objectives
	D.3.2 Requirements

	D.4 Remediation & residual risk
	D.4.1 Implementation remediations
	D.4.2 Residual risk

	E Changes to the API
	E.1 Document change history
	E.1.1 Changes between 1.3.2 and 1.4.0
	Changes to the API
	Relaxations
	Clarifications and fixes
	Other changes

	E.1.2 Changes between 1.3.1 and 1.3.2
	Other changes

	E.1.3 Changes between 1.3.0 and 1.3.1
	Clarifications and fixes

	E.1.4 Changes between 1.2.1 and 1.3.0
	Changes to the API
	Clarifications and fixes
	Other changes

	E.1.5 Changes between 1.2.0 and 1.2.1
	Clarifications and fixes

	E.1.6 Changes between 1.1.2 and 1.2.0
	Changes to the API
	Clarifications and fixes

	E.1.7 Changes between 1.1.1 and 1.1.2
	Clarifications and fixes
	Other changes

	E.1.8 Changes between 1.1.0 and 1.1.1
	Changes to the API
	Other changes

	E.1.9 Changes between 1.0.1 and 1.1.0
	Changes to the API
	Clarifications and fixes
	Other changes

	E.1.10 Changes between 1.0.0 and 1.0.1
	Changes to the API
	Clarifications and fixes
	Other changes

	E.1.11 Changes between 1.0 beta 3 and 1.0.0
	Changes to the API
	Clarifications
	Other changes

	E.1.12 Changes between 1.0 beta 2 and 1.0 beta 3
	Changes to the API
	Clarifications

	E.1.13 Changes between 1.0 beta 1 and 1.0 beta 2
	Changes to the API
	Clarifications
	Other changes

	E.2 Planned changes for version 1.4.x
	E.3 Future additions

	Index of API elements

