PSA Certified
Crypto APl 1.4

Document number: IHI 0086

Release Quality: Final
Issue Number: 0
Confidentiality: Non-confidential
Date of Issue: 17/11/2025
Copyright © 2018-2025 Arm Limited and/or its affiliates
Abstract

This document is part of the PSA Certified API specifications. It defines interfaces to provide cryptographic
operations and key storage services.

Contents

About this document

Release information
License

References

Terms and abbreviations

Potential for change

Conventions

Typographical conventions

Numbers

Feedback

1 Introduction

11
1.2

About Platform Security Architecture

About the Crypto API

2 Design goals

2.1
2.2
2.3
24
2.5

2.6
2.6.1
2.6.2
2.6.3
264
2.6.5
2.6.6
2.6.7

Suitable for constrained devices

A keystore interface
Optional isolation
Choice of algorithms
Ease of use

Example use cases
Network Security (TLS)
Secure Storage
Network Credentials
Device Pairing

Secure Boot
Attestation

Factory Provisioning

3 Functionality overview

3.1

IHI 0086
1.4.0

Library management

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidentia

Xi
XV
XViil
XViil
XVili
XVili

XViil

20

20
20

21
21
21
21
22
22

23
23
23
23
23
23
23
24

24

24

Page i

3.2 Key management 24

3.2.1 Key types 25
3.2.2 Key identifiers 25
3.2.3 Key lifetimes 25
3.2.4 Key policies 26
3.2.5 Recommendations of minimum standards for key management 26
3.3 Cryptographic operations 26
3.3.1 Single-part Functions 26
3.3.2 Multi-part operations 27
3.3.3 Symmetric cryptography 29
3.3.4 Asymmetric cryptography 30
34 Randomness and key generation 30
4 Sample architectures 30
4.1 Single-partition architecture 30
4.2 Cryptographic token and single-application processor 31
4.3 Cryptoprocessor with no key storage 31
4.4 Multi-client cryptoprocessor 32
4.5 Multi-cryptoprocessor architecture 32
5 Library conventions 32
51 Header files 32
5.2 API conventions 33
52.1 Identifier names 33
522 Basic types 33
52.3 Data types 33
5.2.4 Constants 33
525 Function-like macros 34
52.6 Functions 34
5.3 Error handling 34
531 Return status 34
5.3.2 Behavior on error 35
54 Parameter conventions 36
541 Pointer conventions 36
54.2 Input buffer sizes 36
54.3 Output buffer sizes 36
54.4 Overlap between parameters 37
545 Stability of parameters 37
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page ii

1.4.0 Non-confidential

5.5
551

5.6

Key types and algorithms
Structure of key types and algorithms

Concurrent calls

6 Implementation considerations

6.1
6.1.1
6.1.2
6.1.3

6.2
6.2.1
6.2.2
6.2.3

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6

6.4
6.4.1

Implementation-specific aspects of the interface
Implementation profile

Implementation-specific types
Implementation-specific macros

Porting to a platform

Platform assumptions
Platform-specific types
Cryptographic hardware support

Security requirements and recommendations
Error detection

Indirect object references

Memory cleanup

Managing key material

Safe outputs on error

Attack resistance

Other implementation considerations
Philosophy of resource management

7 Usage considerations

7.1
7.1.1
7.1.2
7.1.3

Security recommendations
Always check for errors

Shared memory and concurrency
Cleaning up after use

8 Library management reference

8.1
8.1.1
8.1.2

8.2
8.2.1
8.2.2

Status codes
Common error codes
Error codes specific to the Crypto API

Crypto API library
APl version
Library initialization

9 Key management reference

9.1
92.1.1

IHI 0086
1.4.0

Key attributes
Managing key attributes

Copyright © 2018-2025 Arm Limited and/or its affiliates

Non-confidential

38
38

38

39

39
39
39
40

41

41
41
41

41
41
41
42
42
42
43

43
43

43

43
43
44
44

45

45
45
47

47

47
48

49

49
49

Page iii

9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5

9.3
9.3.1
9.3.2

9.4
9.4.1

9.5
9.5.1
9.5.2
9.5.3
9.54
9.5.5

9.6
9.6.1
9.6.2
9.6.3
9.6.4
9.6.5
9.6.6

9.7
9.7.1
9.7.2

9.8
9.8.1
9.8.2

9.9
9.9.1
9.9.2
9.9.3

10 Cryptographic operation reference

10.1

Key types

Key type encoding

Key categories

Elliptic curve families

Finite field Diffie-Hellman families
Attribute accessors

Unstructured key types
Non-key data
Symmetric cryptographic keys

Structured key types
WPA3-SAE password tokens

Asymmetric key types
RSA keys

Elliptic Curve keys

Diffie Hellman keys
SPAKE2+ keys

Support macros

Key lifetimes
Volatile keys
Persistent keys

Key lifetime encoding
Lifetime values
Attribute accessors
Support macros

Key identifiers

Key identifier type
Attribute accessors

Key policies
Permitted algorithms
Key usage flags

Key management functions
Key creation

Key destruction

Key export

Algorithms

10.1.1 Algorithm encoding
10.1.2 Algorithm categories
10.1.3 Support macros

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidentia

53
53
54
55
59
61

62
62
65

72
72

76
76
/8
34
86
89

20
90
91
921
94
926
97

98
98
99

100
101
102

110
110
123
125

130

130
131
132
136

Page iv

10.2 Message digests (Hashes) 137

10.2.1 Hash algorithms 138
10.2.2 Single-part hashing functions 142
10.2.3 Multi-part hashing operations 144
10.2.4 Support macros 152
10.2.5 Hash suspend state 155
10.3 Extendable-output functions (XOF) 157
10.3.1 XOF algorithms 158
10.3.2 Multi-part XOF operations 159
10.3.3 Support macros 164
10.4 Message authentication codes (MAC) 165
10.4.1 MAC algorithms 165
10.4.2 Single-part MAC functions 170
10.4.3 Multi-part MAC operations 172
10.4.4 Support macros 180
10.5 Unauthenticated ciphers 181
10.5.1 Cipher algorithms 182
10.5.2 Single-part cipher functions 189
10.5.3 Multi-part cipher operations 192
10.5.4 Support macros 202
10.6 Authenticated encryption with associated data (AEAD) 207
10.6.1 AEAD algorithms 208
10.6.2 Single-part AEAD functions 213
10.6.3 Multi-part AEAD operations 216
10.6.4 Support macros 231
10.7 Key wrapping 237
10.7.1 Key-wrapping algorithms 237
10.7.2 Key wrapping functions 238
10.7.3 Support macros 243
10.8 Key derivation 244
10.8.1 Key-derivation algorithms 245
10.8.2 Input step types 255
10.8.3 Key-derivation functions 257
10.8.4 Support macros 274
10.9 Asymmetric signature 278
10.9.1 RSA signature algorithms 280
10.9.2 ECDSA signature algorithms 285
10.9.3 EdDSA signature algorithms 289
10.9.4 Asymmetric signature functions 294
10.9.5 Support macros 307
10.10 Asymmetric encryption 311
10.10.1 Asymmetric encryption algorithms 311
10.10.2 Asymmetric encryption functions 312
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page v

1.4.0 Non-confidential

10.10.3

10.11
10.11.1
10.11.2
10.11.3
10.11.4

10.12
10.12.1
10.12.2
10.12.3

10.13
10.13.1
10.13.2
10.13.3
10.13.4
10.13.5
10.13.6
10.13.7
10.13.8
10.13.9

Support macros

Key agreement

Key-agreement algorithms

Standalone key agreement

Combining key agreement and key derivation
Support macros

Key encapsulation

Elliptic Curve Integrated Encryption Scheme
Key-encapsulation functions

Support macros

Password-authenticated key exchange (PAKE)
Common API for PAKE

PAKE primitives

PAKE cipher suites

PAKE roles

PAKE step types

Multi-part PAKE operations

PAKE support macros

The J-PAKE protocol

J-PAKE algorithms

10.13.10The SPAKE2+ protocol
10.13.11SPAKE2+ algorithms
10.13.12The WPA3-SAE protocol
10.13.13WPA3-SAE algorithms

10.14
10.14.1

Other cryptographic services
Random number generation

A Example header file

Al

psa/crypto.h

B Algorithm and key type encoding

B.1
B.1.1
B.1.2
B.1.3
B.1.4
B.1.5
B.1.6
B.1.7
B.1.8
B.1.9
B.1.10
B.1.11
B.1.12

IHI 0086
1.4.0

Algorithm identifier encoding
Algorithm categories

Hash algorithm encoding

XOF algorithm encoding

MAC algorithm encoding

Cipher algorithm encoding

AEAD algorithm encoding

Key-wrapping algorithm encoding
Key-derivation algorithm encoding
Asymmetric signature algorithm encoding
Asymmetric encryption algorithm encoding
Key-agreement algorithm encoding
Key-encapsulation algorithm encoding

Copyright © 2018-2025 Arm Limited and/or its affiliates

Non-confidential

315

317
317
320
324
326

329
329
331
337

338
338
338
342
347
349
352
364
366
370
371
378
381
388

391
391

392

392

410

410
411
412
413
414
415
415
416
417
417
418
419
419

Page vi

B.1.13

B.2
B.2.1
B.2.2
B.2.3
B.2.4
B.2.5

PAKE algorithm encoding

Key type encoding

Key type categories

Raw key encoding
Symmetric key encoding
Structured key encoding
Asymmetric key encoding

C Example macro implementations

C1
C2
C3

Algorithm macros
Key type macros

Hash suspend state macros

D Security Risk Assessment

D.1
D.1.1
D.1.2
D.1.3

D.2
D.2.1
D.2.2
D.2.3

D.3
D.3.1
D.3.2

D.4
D4.1
D.4.2

Architecture

System definition
Assets and stakeholders
Security goals

Threat Model
Adversarial models
Threats and attacks
Risk assessment

Mitigations
Objectives
Requirements

Remediation & residual risk

Implementation remediations
Residual risk

E Changes to the API

E.1
E1.1
E.1.2
E.1.3
E1.4
E.1.5
E.1.6
E.1.7
E.1.8
E.1.9
E.1.10

IHI 0086
1.4.0

Document change history

Changes between 1.3.2 and 1.4.0
Changes between 1.3.1 and 1.3.2
Changes between 1.3.0 and 1.3.1
Changes between 1.2.1 and 1.3.0
Changes between 1.2.0 and 1.2.1
Changes between 1.1.2 and 1.2.0
Changes between 1.1.1 and 1.1.2
Changes between 1.1.0 and 1.1.1
Changes between 1.0.1 and 1.1.0
Changes between 1.0.0 and 1.0.1

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidential

420

421
421
421
422
423
424

427
428
433
435

436

436
436
437
439

439
439
441
443

444

444
445

447

447
449

449

449
449
450
450
451
452
452
453
453
453
455

Page vii

E.1.11 Changes between 1.0 beta 3 and 1.0.0 456

E.1.12 Changes between 1.0 beta 2 and 1.0 beta 3 465
E.1.13 Changes between 1.0 beta 1 and 1.0 beta 2 467
E.2 Planned changes for version 1.4.x 467
E.3 Future additions 467
Index of API elements 468

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page viii

1.4.0 Non-confidential

About this document

Release information

The change history table lists the changes that have been made to this document.

Date

January 2019
February 2019

May 2019

February 2020
August 2020
February 2022

October 2022

March 2023
February 2024

March 2024
March 2025

June 2025
September 2025

November 2025

Version

1.0 Beta 1
1.0 Beta 2

1.0 Beta 3

1.0 Final
1.0.1 Final
1.1.0 Final

1.1.1 Final

1.1.2 Final
1.2.0 Final

1.2.1 Final
1.3.0 Final

1.3.1 Final
1.3.2 Final

1.4.0 Final

Confidentiality

Non-confidential

Non-confidential

Non-confidential

Non-confidential
Non-confidential

Non-confidential

Non-confidential

Non-confidential

Non-confidential

Non-confidential

Non-confidential

Non-confidential

Non-confidential

Non-confidential

Table 1 Document revision history
Change

First public beta release.

Update for release with other PSA Certified
API specifications.

Update for release with other PSA Certified
API specifications.

1.0 API finalized.
Update to fix errors and provide clarifications.

New API for EADSA, password hashing and
key stretching.

Many significant clarifications and
improvements across the documentation.

Relicensed as open source under CC BY-SA
4.0.

Improve support for TLS.
Clarifications and fixes

Better support for key agreement.

New algorithms for Zigbee, XChaCha, TLS
1.2, and key derivation.

Clarifications and fixes

Integrated the PAKE extension.
New API for key encapsulation.

Support for additional key generation
parameters.

Clarifications and fixes

GlobalPlatform governance of PSA Certified
evaluation scheme.

New algorithms for signatures with context,
exXtended Output Functions, key wrapping,
WPA3-SAE, and Ascon.

Added key query and key registration
functions.

The detailed changes in each release are described in Document change history on page 449.

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates

Page ix

Non-confidential

PSA Certified Crypto API

Copyright © 2018-2025 Arm Limited and/or its affiliates. The copyright statement reflects the fact that
some draft issues of this document have been released, to a limited circulation.

License

Text and illustrations

Text and illustrations in this work are licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy of the
license, visit creativecommons.org/licenses/by-sa/4.0.

Grant of patent license. Subject to the terms and conditions of this license (both the CC BY-SA 4.0 Public License and this Patent
License), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as
stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Licensed Material,
where such license applies only to those patent claims licensable by such Licensor that are necessarily infringed by their
contribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such contribution(s) was
submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the
Licensed Material or a contribution incorporated within the Licensed Material constitutes direct or contributory patent infringement,
then any licenses granted to You under this license for that Licensed Material shall terminate as of the date such litigation is filed.

The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or
elsewhere. All rights reserved. Please visit arm.com/company/policies/trademarks for more information about Arm’s trademarks.

About the license

The language in the additional patent license is largely identical to that in section 3 of the Apache License, Version 2.0 (Apache 2.0),
with two exceptions:

1. Changes are made related to the defined terms, to align those defined terms with the terminology in CC BY-SA 4.0 rather
than Apache 2.0 (for example, changing “Work” to “Licensed Material”).

2. The scope of the defensive termination clause is changed from “any patent licenses granted to You” to “any licenses granted
to You”. This change is intended to help maintain a healthy ecosystem by providing additional protection to the community
against patent litigation claims.

To view the full text of the Apache 2.0 license, visit apache.org/licenses/LICENSE-2.0.
Source code

Source code samples in this work are licensed under the Apache License, Version 2.0 (the “License”); you may not use such samples
except in compliance with the License. You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS I1S” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under the License.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page x
1.4.0 Non-confidential

https://creativecommons.org/licenses/by-sa/4.0
https://arm.com/company/policies/trademarks
https://apache.org/licenses/LICENSE-2.0
https://apache.org/licenses/LICENSE-2.0

References

This document refers to the following documents.

Ref

[PSM]

[PSA-FFM]

[PSA-STAT]

[PSA-PQC]

Ref

[C99]

[CHACHAZ20]

[CLULOW]

[CSTCO002]

[CSTCO004]

[Curve25519]

[Curve448]

[Ed25519]

[Ed448]

[FIPS180-4]

IHI 0086
1.4.0

Table 2 Arm documents referenced by this document

Document Number Title

ARM DEN 0128 Platform Security Model.

developer.arm.com/documentation/den0128

ARM DEN 0063 Arm® Platform Security Architecture Firmware Framework.

developer.arm.com/documentation/den0063

PSA Certified Status code API.
arm-software.github.io/psa-api/status-code

PSA Certified Crypto API 1.4 PQC Extension.
arm-software.github.io/psa-api/crypto

ARM [HI 0097

ARM AES 0119

Table 3 Other documents referenced by this document

Title
ISO/IEC, ISO/IEC 9899:1999 — Programming Languages — C, December 1999.
www.iso.org/standard/29237.html

Bernstein, D., ChaCha, a variant of Salsa20, January 2008.
http:/cr.yp.to/chacha/chacha-20080128.pdf

Clulow, Jolyon, On the Security of PKCS #11, 2003.
link.springer.com/chapter/10.1007/978-3-540-45238-6_32

Cryptography Standardization Technical Committee, GM/T 0002-2012: SM4 block
cipher algorithm, March 2012.

Cryptography Standardization Technical Committee, GM/T 0004-2012: SM3
cryptographic hash algorithm, March 2012.

Bernstein et al., Curve25519: new Diffie-Hellman speed records, LNCS 3958, 2006.
www.iacr.org/archive/pkc2006/39580209/39580209.pdf

Hamburg, Ed448-Goldilocks, a new elliptic curve, NIST ECC Workshop, 2015.
eprint.iacr.org/2015/625.pdf

Bernstein et al., Twisted Edwards curves, Africacrypt, 2008.
eprint.iacr.org/2008/013.pdf

Hamburg, Ed448-Goldilocks, a new elliptic curve, NIST ECC Workshop, 2015.
eprint.iacr.org/2015/625 pdf

NIST, FIPS Publication 180-4: Secure Hash Standard (SHS), August 2015.
doi.org/10.6028/NIST.FIPS.180-4

continues on next page

Copyright © 2018-2025 Arm Limited and/or its affiliates Page xi
Non-confidential

https://developer.arm.com/documentation/den0128
https://developer.arm.com/documentation/den0063
https://arm-software.github.io/psa-api/status-code
https://arm-software.github.io/psa-api/crypto
https://www.iso.org/standard/29237.html
http://cr.yp.to/chacha/chacha-20080128.pdf
https://link.springer.com/chapter/10.1007/978-3-540-45238-6_32
https://www.iacr.org/archive/pkc2006/39580209/39580209.pdf
https://eprint.iacr.org/2015/625.pdf
https://eprint.iacr.org/2008/013.pdf
https://eprint.iacr.org/2015/625.pdf
https://doi.org/10.6028/NIST.FIPS.180-4

Ref

[FIPS186-4]

[FIPS197]

[FIPS202]

[FRP]

[I[EEE-802.11]

[[EEE-CCM]

[IEEE-XTS]

[1S010118]

[1ISO9797]

[MATTER]
[NTT-CAM]

[RFC2315]

[RFC3279]

IHI 0086
1.4.0

Table 3 - continued from previous page

Title

NIST, FIPS Publication 186-4: Digital Signature Standard (DSS), July 2013.
doi.org/10.6028/NIST.FIPS.186-4

NIST, FIPS Publication 197: Advanced Encryption Standard (AES), November 2001.
doi.org/10.6028/NIST.FIPS.197

NIST, FIPS Publication 202: SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions, August 2015. doi.org/10.6028/NIST.FIPS.202

Agence nationale de la sécurité des systemes d'information, Publication d’un
paramétrage de courbe elliptique visant des applications de passeport électronique et de
I'administration électronique francaise, 21 November 2011.
www.ssi.gouv.fr/agence/rayonnement-scientifigue/publications-
scientifiques/articles-ouvrages-actes

I[EEE, IEEE 802.11-2024: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, 2024. standards.ieee.org/ieee/802.11/10548/

IEEE, IEEE Standard for Low-Rate Wireless Networks, 2020.
standards.ieee.org/ieee/802.15.4/7029/

IEEE, 1619-2018 — IEEE Standard for Cryptographic Protection of Data on
Block-Oriented Storage Devices, January 2019.
ieeexplore.ieee.org/serviet/opac?punumber=8637986

ISO/IEC, ISO/IEC 10118-3:2018 IT Security techniques — Hash-functions — Part 3:
Dedicated hash-functions, October 2018. www.iso.org/standard/67116.html

ISO/IEC, ISO/IEC 9797-1:2011 Information technology — Security techniques —
Message Authentication Codes (MACs) — Part 1: Mechanisms using a block cipher, March
2011. www.iso.org/standard/50375.html

CSA, Matter Specification, Version 1.2, October 2023. csa-iot.org/all-solutions/matter/

NTT Corporation and Mitsubishi Electric Corporation, Specification of Camellia — a
128-bit Block Cipher, September 2001.
info.isl.ntt.co.jp/crypt/eng/camellia/specifications

IETF, The MD2 Message-Digest Algorithm, April 1992. tools.ietf.org/html/rfc1319.html
IETF, The MD4 Message-Digest Algorithm, April 1992. tools.ietf.org/html/rfc1320.html
IETF, The MD5 Message-Digest Algorithm, April 1992. tools.ietf.org/html/rfc1321.htm!

IETF, HMAC: Keyed-Hashing for Message Authentication, February 1997.
tools.ietf.org/html/rfc2104.html

IETF, PKCS #7: Cryptographic Message Syntax Version 1.5, March 1998.
tools.ietf.org/html/rfc2315.html

IETF, Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile, April 2002.
tools.ietf.org/html/rfc3279.html

continues on next page

Copyright © 2018-2025 Arm Limited and/or its affiliates Page xii
Non-confidential

https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.202
https://www.ssi.gouv.fr/agence/rayonnement-scientifique/publications-scientifiques/articles-ouvrages-actes
https://www.ssi.gouv.fr/agence/rayonnement-scientifique/publications-scientifiques/articles-ouvrages-actes
https://standards.ieee.org/ieee/802.11/10548/
https://standards.ieee.org/ieee/802.15.4/7029/
https://ieeexplore.ieee.org/servlet/opac?punumber=8637986
https://www.iso.org/standard/67116.html
https://www.iso.org/standard/50375.html
https://csa-iot.org/all-solutions/matter/
https://info.isl.ntt.co.jp/crypt/eng/camellia/specifications
https://tools.ietf.org/html/rfc1319.html
https://tools.ietf.org/html/rfc1320.html
https://tools.ietf.org/html/rfc1321.html
https://tools.ietf.org/html/rfc2104.html
https://tools.ietf.org/html/rfc2315.html
https://tools.ietf.org/html/rfc3279.html

Ref

[RFC3394]

[RFC3526]

[RFC3610]
[RFC3713]

[RFC4279]

[REC4615]

[REC5116]

[RFC5246]

[RFC5489]

[RFC5639]

[RFC5649]

[RFC5794]

[RFC5869]

[RFC5915]
[RFC5958]
[REC6979]

[RFC7748]
[RFC7919]

[RFC8017]

[RFC8018]

IHI 0086
1.4.0

Table 3 - continued from previous page

Title
IETF, Advanced Encryption Standard (AES) Key Wrap Algorithm, September 2002.
tools.ietf.org/html/rfc3394.html

IETF, More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key
Exchange (IKE), May 2003. tools.ietf.org/html/rfc3526.html

IETF, Counter with CBC-MAC (CCM), September 2003. tools.ietf.org/html/rfc3610

IETF, A Description of the Camellia Encryption Algorithm, April 2004,
tools.ietf.org/html/rfc3713

IETF, Pre-Shared Key Ciphersuites for Transport Layer Security (TLS), December 2005.
tools.ietf.org/html/rfc4279.html

IETF, The Advanced Encryption Standard-Cipher-based Message Authentication
Code-Pseudo-Random Function-128 (AES-CMAC-PRF-128) Algorithm for the Internet
Key Exchange Protocol (IKE), August 2006. tools.ietf.org/html/rfc4615.html

IETF, An Interface and Algorithms for Authenticated Encryption, January 2008.
tools.ietf.org/html/rfc5116.html

IETF, The Transport Layer Security (TLS) Protocol Version 1.2, August 2008.
tools.ietf.org/html/rfc5246.html

IETF, ECDHE_PSK Cipher Suites for Transport Layer Security (TLS), March 2009.
tools.ietf.org/html/rfc5489 .html

IETF, Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation,
March 2010. tools.ietf.org/html/rfc5639.html

IETF, Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm, August
2009. tools.ietf.org/html/rfc5649.html

IETF, A Description of the ARIA Encryption Algorithm, March 2010.
datatracker.ietf.org/doc/html/rfc5794

IETF, HMAC-based Extract-and-Expand Key Derivation Function (HKDF), May 2010.
tools.ietf.org/html/rfc5869.html

I[ETF, Elliptic Curve Private Key Structure, June 2010. tools.ietf.org/html/rfc5915.html
IETF, Asymmetric Key Packages, August 2010. tools.ietf.org/html/rfc5958.htm|

IETF, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve
Digital Signature Algorithm (ECDSA), August 2013. tools.ietf.org/html/rfc6979 .html

I[ETF, Elliptic Curves for Security, January 2016. tools.ietf.org/html/rfc7748.html

IETF, Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer
Security (TLS), August 2016. tools.ietf.org/html/rfc7919.html

IETF, PKCS #1: RSA Cryptography Specifications Version 2.2, November 2016.
tools.ietf.org/html/rfc8017.html

IETF, PKCS #5: Password-Based Cryptography Specification Version 2.1, January 2017.
tools.ietf.org/html/rfc8018.html

continues on next page

Copyright © 2018-2025 Arm Limited and/or its affiliates Page xiii
Non-confidential

https://tools.ietf.org/html/rfc3394.html
https://tools.ietf.org/html/rfc3526.html
https://tools.ietf.org/html/rfc3610
https://tools.ietf.org/html/rfc3713
https://tools.ietf.org/html/rfc4279.html
https://tools.ietf.org/html/rfc4615.html
https://tools.ietf.org/html/rfc5116.html
https://tools.ietf.org/html/rfc5246.html
https://tools.ietf.org/html/rfc5489.html
https://tools.ietf.org/html/rfc5639.html
https://tools.ietf.org/html/rfc5649.html
https://datatracker.ietf.org/doc/html/rfc5794
https://tools.ietf.org/html/rfc5869.html
https://tools.ietf.org/html/rfc5915.html
https://tools.ietf.org/html/rfc5958.html
https://tools.ietf.org/html/rfc6979.html
https://tools.ietf.org/html/rfc7748.html
https://tools.ietf.org/html/rfc7919.html
https://tools.ietf.org/html/rfc8017.html
https://tools.ietf.org/html/rfc8018.html

Ref

[RFC8032]

[RFC8235]

[RFC8236]

[RFC8439]

[RFC9383]

[RIPEMD]

[SEC1]

[SEC2]

[SEC2v1]

[SP800-108]

[SP800-232]

[SP800-30]

[SPB0O0-38A]

[SP800O-38B]

[SP800-38D]

[SP8O0O-38F]

IHI 0086
1.4.0

Table 3 - continued from previous page

Title

IRTF, Edwards-Curve Digital Signature Algorithm (EdDSA), January 2017.
tools.ietf.org/html/rfc8032.html

IETF, Schnorr Non-interactive Zero-Knowledge Proof, September 2017.
tools.ietf.org/html/rfc8235.html

IETF, J-PAKE: Password-Authenticated Key Exchange by Juggling, September 2017.
tools.ietf.org/html/rfc8236.htmll

IRTF, ChaCha20 and Poly1305 for IETF Protocols, June 2018.
tools.ietf.org/html/rfc8439.html

IETF, SPAKE2+, an Augmented Password-Authenticated Key Exchange (PAKE) Protocol,
September 2023. tools.ietf.org/html/rfc?383.html

Dobbertin, Bosselaers and Preneel, RIPEMD-160: A Strengthened Version of RIPEMD,
April 1996. homes.esat.kuleuven.be/~bosselae/ripemd160.html

Standards for Efficient Cryptography, SEC 1: Elliptic Curve Cryptography, May 2009.
www.secg.org/secl-v2.pdf

Standards for Efficient Cryptography, SEC 2: Recommended Elliptic Curve Domain
Parameters, January 2010. www.secg.org/sec2-v2.pdf

Standards for Efficient Cryptography, SEC 2: Recommended Elliptic Curve Domain
Parameters, Version 1.0, September 2000. www.secg.org/SEC2-Ver-1.0.pdf

NIST, NIST Special Publication 800-108r1: Recommendation for Key Derivation Using
Pseudorandom Functions, August 2022. doi.org/10.6028/NIST.SP.800-108r1

NIST, NIST Special Publication 800-232: Ascon-Based Lightweight Cryptography
Standards for Constrained Devices, August 2025. doi.org/10.6028/NIST.SP.800-232

NIST, NIST Special Publication 800-30 Revision 1: Guide for Conducting Risk
Assessments, September 2012. doi.org/10.6028/NIST.SP.800-30r1

NIST, NIST Special Publication 800-38A: Recommendation for Block Cipher Modes of
Operation: Methods and Techniques, December 2001.
doi.org/10.6028/NIST.SP.800-38A

NIST, NIST Special Publication 800-38B: Recommendation for Block Cipher Modes of
Operation: the CMAC Mode for Authentication, May 2005.
doi.org/10.6028/NIST.SP.800-38B

NIST, NIST Special Publication 800-38D: Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC, November 2007.
doi.org/10.6028/NIST.SP.800-38D

NIST, NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of
Operation: Methods for Key Wrapping, December 2012.
doi.org/10.6028/NIST.SP.800-38F

continues on next page

Copyright © 2018-2025 Arm Limited and/or its affiliates Page xiv
Non-confidential

https://tools.ietf.org/html/rfc8032.html
https://tools.ietf.org/html/rfc8235.html
https://tools.ietf.org/html/rfc8236.html
https://tools.ietf.org/html/rfc8439.html
https://tools.ietf.org/html/rfc9383.html
https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec2-v2.pdf
https://www.secg.org/SEC2-Ver-1.0.pdf
https://doi.org/10.6028/NIST.SP.800-108r1
https://doi.org/10.6028/NIST.SP.800-232
https://doi.org/10.6028/NIST.SP.800-30r1
https://doi.org/10.6028/NIST.SP.800-38A
https://doi.org/10.6028/NIST.SP.800-38B
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-38F

Ref

[SPBO0-56A]

[SP8O0-67]

[SPAKE2P-2]

[THREAD]

[TLS-ECJPAKE]

[X9-62]

[XCHACHA]

[ZIGBEE]

Table 3 - continued from previous page

Title

NIST, NIST Special Publication 800-56A: Recommendation for Pair-Wise
Key-Establishment Schemes Using Discrete Logarithm Cryptography, April 2018.
doi.org/10.6028/NIST.SP.800-56Ar3

NIST, NIST Special Publication 800-67: Recommendation for the Triple Data Encryption
Algorithm (TDEA) Block Cipher, November 2017. doi.org/10.6028/NIST.SP.800-67r2

IETF, SPAKE2+, an Augmented PAKE (Draft 02), December 2020.
datatracker.ietf.org/doc/draft-bar-cfrg-spake2plus-02

Thread Group, Thread Specification 1.3.0, July 2022.
www.threadgroup.org/ThreadSpec

Cragie, Hao, Elliptic Curve J-PAKE Cipher Suites for Transport Layer Security (TLS), June
2016. datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01

ANSI, Public Key Cryptography For The Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA).
standards.globalspec.com/std/1955141/ANSI%20X9.62

Arciszewski, XChaCha: eXtended-nonce ChaCha and AEAD_XChaCha20_Poly1305,
January 2020. datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha-03

zigbee alliance, zigbee Specification, April 2017. csa-iot.org/wp-
content/uploads/2022/01/docs-05-3474-22-0csg-zighee-specification-1.pdf

Terms and abbreviations

This document uses the following terms and abbreviations.

Term

AEAD
Algorithm

API
Asymmetric
Authenticated

Encryption with

Table 4 Terms and abbreviations

Meaning

See Authenticated Encryption with Associated Data.

A finite sequence of steps to perform a particular operation.

In this specification, an algorithm is a cipher or a related function. Other texts
call this a cryptographic mechanism.

Application Programming Interface.
See Public-key cryptography.

A type of encryption that provides confidentiality and authenticity of data
using symmetric keys.

Associated Data (AEAD)

Byte

IHI 0086
1.4.0

In this specification, a unit of storage comprising eight bits, also called an octet.

continues on next page

Copyright © 2018-2025 Arm Limited and/or its affiliates Page xv
Non-confidential

https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-67r2
https://datatracker.ietf.org/doc/draft-bar-cfrg-spake2plus-02
https://www.threadgroup.org/ThreadSpec
https://datatracker.ietf.org/doc/html/draft-cragie-tls-ecjpake-01
https://standards.globalspec.com/std/1955141/ANSI%20X9.62
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha-03
https://csa-iot.org/wp-content/uploads/2022/01/docs-05-3474-22-0csg-zigbee-specification-1.pdf
https://csa-iot.org/wp-content/uploads/2022/01/docs-05-3474-22-0csg-zigbee-specification-1.pdf

Term

Caller isolation

Cipher

Cryptoprocessor

Cryptoprocessor
isolation

Hash
HMAC
IMPLEMENTATION DEFINED

Initialization vector (IV)

Isolation

Y
KDF
Key agreement

Key Derivation Function
(KDF)

Key identifier

Key policy

Key size

Key type

IHI 0086
1.4.0

Table 4 - continued from previous page

Meaning

Property of an implementation in which there are multiple application
instances, with a security boundary between the application instances, as well
as between the cryptoprocessor and the application instances.

See Optional isolation on page 21.
An algorithm used for encryption or decryption with a symmetric key.

The component that performs cryptographic operations. A cryptoprocessor
might contain a keystore and countermeasures against a range of physical and
timing attacks.

Property of an implementation in which there is a security boundary between
the application and the cryptoprocessor, but the cryptoprocessor does not
communicate with other applications.

See Optional isolation on page 21.
A cryptographic hash function, or the value returned by such a function.
A type of MAC that uses a cryptographic key with a hash function.

Behavior that is not defined by the architecture, but is defined and
documented by individual implementations.

An additional input that is not part of the message. It is used to prevent an
attacker from making any correlation between cipher text and plain text.

This specification uses the term for such initial inputs in all contexts. For
example, the initial counter in CTR mode is called the IV.

Property of an implementation in which there is a security boundary between
the application and the cryptoprocessor.

See Optional isolation on page 21.

See Initialization vector.

See Key Derivation Function.

An algorithm for two or more parties to establish a common secret key.

Key Derivation Function. An algorithm for deriving keys from secret material.

A reference to a cryptographic key. Key identifiers in the Crypto API are 32-bit
integers.

Key metadata that describes and restricts what a key can be used for.

The size of a key as defined by common conventions for each key type. For
keys that are built from several numbers of strings, this is the size of a
particular one of these numbers or strings.

This specification expresses key sizes in bits.

Key metadata that describes the structure and content of a key.

continues on next page

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidential

Page xvi

Term

Keystore

Lifetime
MAC

Message Authentication
Code (MAC)

Message digest

Multi-part operation

No isolation

Non-extractable key

Nonce

Persistent key

Post-Quantum
Cryptography (PQC)

PQC
PSA
Public-key cryptography

Salt

Signature

Single-part function
SPECIFICATION DEFINED

Symmetric

Volatile key

IHI 0086
1.4.0

Table 4 - continued from previous page

Meaning

A hardware or software component that protects, stores, and manages
cryptographic keys.

Key metadata that describes when a key is destroyed.

See Message Authentication Code.

A short piece of information used to authenticate a message. It is created and
verified using a symmetric key.

A hash of a message. Used to determine if a message has been tampered.

An APl which splits a single cryptographic operation into a sequence of
separate steps.

Property of an implementation in which there is no security boundary
between the application and the cryptoprocessor.

See Optional isolation on page 21.
A key with a key policy that prevents it from being read by ordinary means.

Used as an input for certain AEAD algorithms. Nonces must not be reused
with the same key because this can break a cryptographic protocol.

A key that is stored in protected non-volatile memory.
See Key lifetimes on page 90.

A cryptographic scheme that relies on mathematical problems that do not
have efficient algorithms for either classical or quantum computing.

See Post-Quantum Cryptography.
Platform Security Architecture

A type of cryptographic system that uses key pairs. A keypair consists of a
(secret) private key and a public key (not secret). A public-key cryptographic
algorithm can be used for key distribution and for digital signatures.

Used as an input for certain algorithms, such as key derivations.

The output of a digital signature scheme that uses an asymmetric keypair.
Used to establish who produced a message.

An APl that implements the cryptographic operation in a single function call.
Behavior that is defined by this specification.

A type of cryptographic algorithm that uses a single key. A symmetric key can
be used with a block cipher or a stream cipher.

A key that has a short lifespan and is guaranteed not to exist after a restart of
an application instance.

See Key lifetimes on page 90.

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidential

Page xvii

Potential for change
The contents of this specification are stable for version 1.4.

The following may change in updates to the version 1.4 specification:

e Small optional feature additions.
e Clarifications.

Significant additions, or any changes that affect the compatibility of the interfaces defined in this
specification will only be included in a new major or minor version of the specification.

Conventions

Typographical conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS
Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Terms
and abbreviations.

Red text Indicates an open issue.
Blue text Indicates a link. This can be

e A cross-reference to another location within the document
e A URL, for example example.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by Ob, and hexadecimal numbers by
0x.

In both cases, the prefix and the associated value are written in a monospace font, for example oxFFFFo000.
To improve readability, long numbers can be written with an underscore separator between every four
characters, for example oxFFFF_o000_o000_0000. Ignore any underscores when interpreting the value of a
number.

Feedback
We welcome feedback on the PSA Certified APl documentation.

If you have comments on the content of this book, visit github.com/arm-software/psa-api/issues to create a
new issue at the PSA Certified API GitHub project. Give:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page xviii
1.4.0 Non-confidential

https://example.com
https://github.com/arm-software/psa-api/issues

The title (Crypto API).
The number and issue (IHI 0086 1.4.0).

The location in the document to which your comments apply.

e A concise explanation of your comments.

We also welcome general suggestions for additions and improvements.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page xix
1.4.0 Non-confidential

1 Introduction
1.1 About Platform Security Architecture

This document is one of a set of resources provided by Arm that can help organizations develop products
that meet the security requirements of GlobalPlatform'’s PSA Certified evaluation scheme on Arm-based
platforms. The PSA Certified scheme provides a framework and methodology that helps silicon
manufacturers, system software providers and OEMs to develop more secure products. Arm resources that
support PSA Certified range from threat models, standard architectures that simplify development and
increase portability, and open-source partnerships that provide ready-to-use software. You can read more
about PSA Certified here at www.psacertified.org and find more Arm resources here at
developer.arm.com/platform-security-resources and www.trustedfirmware.org.

1.2 About the Crypto API

The interface described in this document is a PSA Certified API, that provides a portable programming
interface to cryptographic operations, and key storage functionality, on a wide range of hardware.

The interface is user-friendly, while still providing access to the low-level primitives used in modern
cryptography. It does not require that the user has access to the key material. Instead, it uses opague key
identifiers.

You can find additional resources relating to the Crypto API here at arm-software.github.io/psa-api/crypto,
and find other PSA Certified APIs here at arm-software.github.io/psa-api.

This document includes:

A rationale for the design. See Design goals on page 21.

A high-level overview of the functionality provided by the interface. See Functionality overview on
page 24.

e A description of typical architectures of implementations for this specification. See Sample
architectures on page 30.

e General considerations for implementers of this specification, and for applications that use the
interface defined in this specification. See Implementation considerations on page 39 and Usage
considerations on page 43.

e A detailed definition of the API. See Library management reference on page 45, Key management
reference on page 49, and Cryptographic operation reference on page 130.

PSA Certified Crypto APl 1.4 PQC Extension [PSA-PQC] is a companion document for version 1.4 of this
specification. [PSA-PQC] defines an API for Post-Quantum Cryptography (PQC) algorithms. The PQC APl is
now at FINAL status, and will be included in a future version of the Crypto API specification.

In future, companion documents will define profiles for this specification. A profile is a minimum mandatory
subset of the interface that a compliant implementation must provide.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 20
1.4.0 Non-confidential

https://www.psacertified.org
https://developer.arm.com/platform-security-resources
https://www.trustedfirmware.org
https://arm-software.github.io/psa-api/crypto
https://arm-software.github.io/psa-api

2 Design goals

2.1 Suitable for constrained devices

The interface is suitable for a vast range of devices: from special-purpose cryptographic processors that
process data with a built-in key, to constrained devices running custom application code, such as
microcontrollers, and multi-application devices, such as servers. Consequentially, the interface is scalable
and modular.

e Scalable: devices only need to implement the functionality that they will use.

e Modular: larger devices implement larger subsets of the same interface, rather than different
interfaces.

In this interface, all operations on unbounded amounts of data allow multi-part processing, as long as the
calculations on the data are performed in a streaming manner. This means that the application does not
need to store the whole message in memory at one time. As a result, this specification is suitable for very
constrained devices, including those where memory is very limited.

Memory outside the keystore boundary is managed by the application. An implementation of the interface
is not required to retain any state between function calls, apart from the content of the keystore and other
data that must be kept inside the keystore security boundary.

The interface does not expose the representation of keys and intermediate data, except when required for
interchange. This allows each implementation to choose optimal data representations. Implementations with
multiple components are also free to choose which memory area to use for internal data.

2.2 A keystore interface

The specification allows cryptographic operations to be performed on a key to which the application does
not have direct access. Except where required for interchange, applications access all keys indirectly, by an
identifier. The key material corresponding to that identifier can reside inside a security boundary that
prevents it from being extracted, except as permitted by a policy that is defined when the key is created.

2.3 Optional isolation

Implementations can isolate the cryptoprocessor from the calling application, and can further isolate
multiple calling applications. The interface allows the implementation to be separated between a frontend
and a backend. In an isolated implementation, the frontend is the part of the implementation that is located
in the same isolation boundary as the application, which the application accesses by function calls. The
backend is the part of the implementation that is located in a different environment, which is protected
from the frontend. Various technologies can provide protection, for example:

e Process isolation in an operating system.
e Partition isolation, either with a virtual machine or a partition manager.

e Physical separation between devices.

Communication between the frontend and backend is beyond the scope of this specification.

In an isolated implementation, the backend can serve more than one implementation instance. In this case, a
single backend communicates with multiple instances of the frontend. The backend must enforce caller

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 21
1.4.0 Non-confidential

isolation: it must ensure that assets of one frontend are not visible to any other frontend. The mechanism
for identifying callers is beyond the scope of this specification. An implementation that provides caller
isolation must document the identification mechanism. An implementation that provides caller isolation
must document any implementation-specific extension of the API that enables frontend instances to share
data in any form.

An isolated implementation that only has a single frontend provides cryptoprocessor isolation.

In summary, there are three types of implementation:

e No isolation: there is no security boundary between the application and the cryptoprocessor. For
example, a statically or dynamically linked library is an implementation with no isolation.

e Cryptoprocessor isolation: there is a security boundary between the application and the
cryptoprocessor, but the cryptoprocessor does not communicate with other applications. For
example, a cryptoprocessor chip that is a companion to an application processor is an implementation
with cryptoprocessor isolation.

e Caller isolation: there are multiple application instances, with a security boundary between the
application instances among themselves, as well as between the cryptoprocessor and the application
instances. For example, a cryptography service in a multiprocess environment is an implementation
with caller and cryptoprocessor isolation.

2.4 Choice of algorithms

The specification defines a low-level cryptographic interface, where the caller explicitly chooses which
algorithm and which security parameters they use. This is necessary to implement protocols that are
inescapable in various use cases. The design of the interface enables applications to implement widely-used
protocols and data exchange formats, as well as custom ones.

As a consequence, all cryptographic functionality operates according to the precise algorithm specified by
the caller. However, this does not apply to device-internal functionality, which does not involve any form of
interoperability, such as random number generation. The specification does not include generic higher-level
interfaces, where the implementation chooses the best algorithm for a purpose. However, higher-level
libraries can be built on top of the Crypto API.

Another consequence is that the specification permits the use of algorithms, key sizes and other parameters
that, while known to be insecure, might be necessary to support legacy protocols or legacy data. Where
major weaknesses are known, the algorithm descriptions give applicable warnings. However, the lack of a
warning both does not and cannot indicate that an algorithm is secure in all circumstances. Application
developers need to research the security of the protocols and algorithms that they plan to use to determine
if these meet their requirements.

The interface facilitates algorithm agility. As a consequence, cryptographic primitives are presented through
generic functions with a parameter indicating the specific choice of algorithm. For example, there is a single
function to calculate a message digest, which takes a parameter that identifies the specific hash algorithm.

2.5 Ease of use

The interface is designed to be as user-friendly as possible, given the aforementioned constraints on
suitability for various types of devices and on the freedom to choose algorithms.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 22
1.4.0 Non-confidential

In particular, the code flows are designed to reduce the risk of dangerous misuse. The interface is designed
in part to make it harder to misuse. Where possible, it is designed so that typical mistakes result in test
failures, rather than subtle security issues. Implementations avoid leaking data when a function is called
with invalid parameters, to the extent allowed by the C language and by implementation size constraints.

2.6 Example use cases

This section lists some of the use cases that were considered during the design of the Crypto API. This list is
not exhaustive, nor are all implementations required to support all use cases.

2.6.1 Network Security (TLS)

The API provides all of the cryptographic primitives needed to establish TLS connections.

2.6.2 Secure Storage

The API provides all primitives related to storage encryption, block or file-based, with master encryption
keys stored inside a key store.

2.6.3 Network Credentials

The API provides network credential management inside a key store, for example, for X.509-based
authentication or pre-shared keys on enterprise networks.

2.6.4 Device Pairing

The API provides support for key-agreement protocols that are often used for secure pairing of devices over
wireless channels. For example, the pairing of an NFC token or a Bluetooth device might use key-agreement
protocols upon first use.

2.6.5 Secure Boot

The API provides primitives for use during firmware integrity and authenticity validation, during a secure or
trusted boot process.

2.6.6 Attestation

The API provides primitives used in attestation activities. Attestation is the ability for a device to sign an
array of bytes with a device private key and return the result to the caller. There are several use cases;
ranging from attestation of the device state, to the ability to generate a key pair and prove that it has been
generated inside a secure key store. The API provides access to the algorithms commonly used for
attestation.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 23
1.4.0 Non-confidential

2.6.7 Factory Provisioning

Most lol devices receive a unique identity during the factory provisioning process, or once they have been
deployed to the field. This API provides the APIs necessary for populating a device with keys that represent
that identity.

3 Functionality overview

This section provides a high-level overview of the functionality provided by the interface defined in this
specification. Refer to the API definition for a detailed description, which begins with Library management
reference on page 45.

Future additions on page 467 describes features that might be included in future versions of this
specification.

Due to the modularity of the interface, almost every part of the library is optional. The only mandatory
function is psa_crypto_init().

3.1 Library management

Applications must call psa_crypto_init() to initialize the library before using any other function.

3.2 Key management

Applications always access keys indirectly via an identifier, and can perform operations using a key without
accessing the key material. This allows keys to be non-extractable, where an application can use a key but is
not permitted to obtain the key material. Non-extractable keys are bound to the device, can be rate-limited
and can have their usage restricted by policies.

Each key has a set of attributes that describe the key and the policy for using the key. A
psa_key_attributes_t object contains all of the attributes, which is used when creating a key and when
querying key attributes.

The key attributes include:

e A type and size that describe the key material. See Key types on page 25.
e The key identifier that the application uses to refer to the key. See Key identifiers on page 25.

e A lifetime that determines when the key material is destroyed, and where it is stored. See Key lifetimes
on page 25.

e A policy that determines how the key can be used. See Key policies on page 26.
Keys are created using one of the key creation functions:

® psa_import_key()
® psa_generate_key()

® psa_generate_key_custom()

psa_key_derivation_output_key()

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 24
1.4.0 Non-confidentia

® psa_key_derivation_output_key_custom()
® psa_key_agreement()

® psa_encapsulate()

® psa_decapsulate()

® psa_pake_get_shared_key ()

® psa_copy_key()

® psa_attach_key()

These output the key identifier, that is used to access the key in all other parts of the API.

All of the key attributes are set when the key is created and cannot be changed without destroying the key
first. If the original key permits copying, then the application can specify a different lifetime or restricted
policy for the copy of the key.

A call to psa_destroy_key() destroys the key material, and will cause any active operations that are using the
key to fail. Therefore an application must not destroy a key while an operation using that key is in progress,
unless the application is prepared to handle a failure of the operation.

3.2.1 Key types

Each cryptographic algorithm requires a key that has the right form, in terms of the size of the key material
and its numerical properties. The key type and key size encode that information about a key, and determine
whether the key is compatible with a cryptographic algorithm.

Additional non-cryptographic key types enable applications to store other secret values in the keystore.

See Key types on page 53.

3.2.2 Key identifiers

Key identifiers are integral values that act as permanent names for persistent keys, or as transient
references to volatile keys. Key identifiers are defined by the application for persistent keys, and by the
implementation for volatile keys and for built-in keys.

Key identifiers are output from a successful call to one of the key creation functions.

Valid key identifiers must have distinct values within the same application. If the implementation provides
caller isolation, then key identifiers are local to each application.

See Key identifiers on page 98.

3.2.3 Key lifetimes

The lifetime of a key indicates where it is stored and which application and system actions will create and
destroy it.

There are two main types of lifetimes: volatile and persistent.

Volatile keys are automatically destroyed when the application instance terminates or on a power reset of
the device. Volatile key identifiers are allocated by the implementation when the key is created. Volatile keys
can be explicitly destroyed with a call to psa_destroy_key().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 25
1.4.0 Non-confidentia

Persistent keys are preserved until the application explicitly destroys them or until an
implementation-specific device management event occurs, for example, a factory reset. The key identifier
for a persistent key is set by the application when creating the key, and remains valid throughout the
lifetime of the key, even if the application instance that created the key terminates.

See Key lifetimes on page 90.

3.2.4 Key policies

All keys have an associated policy that regulates which operations are permitted on the key. Each key policy
is a set of usage flags and a specific algorithm that is permitted with the key. See Key policies on page 100.

3.2.5 Recommendations of minimum standards for key management

Most implementations provide the following functions:

e psa_import_key(). The exceptions are implementations that only give access to a key or keys that are
provisioned by proprietary means, and do not allow the main application to use its own cryptographic
material.

e psa_get_key attributes() and the psa_get_key xxx() accessor functions. They are easy to implement,
and it is difficult to write applications and to diagnose issues without being able to check the metadata.

e psa_export_public_key (). This function is usually provided if the implementation supports any
asymmetric algorithm, since public-key cryptography often requires the delivery of a public key that is
associated with a protected private key.

e psa_export_key(). However, highly constrained implementations that are designed to work only with
short-term keys, or only with long-term non-extractable keys, do not need to provide this function.

3.3 Cryptographic operations
The API supports cryptographic operations through two kinds of interfaces:

e A ssingle-part function performs a whole operation in a single function call. For example, compute,
verify, encrypt or decrypt. See Single-part Functions.

e A multi-part operation is a set of functions that work with a stored operation state. This provides more
control over operation configuration, piecewise processing of large input data, or handling for
multi-step processes. See Multi-part operations on page 27/.

Depending on the mechanism, one or both kind of interfaces may be provided.

3.3.1 Single-part Functions

Single-part functions are APIs that implement the cryptographic operation in a single function call. This is
the easiest API to use when all of the inputs and outputs fit into the application memory.

Single-part functions do not meet the needs of all use cases:

e Some use cases involve messages that are too large to be assembled in memory, or require
non-default configuration of the algorithm. These use cases require the use of a multi-part operation.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 26
1.4.0 Non-confidential

3.3.2 Multi-part operations

Multi-part operations are APIs which split a single cryptographic operation into a sequence of separate
steps. This enables fine control over the configuration of the cryptographic operation, and allows the
message data to be processed in fragments instead of all at once. For example, the following situations
require the use of a multi-part operation:

Processing messages that cannot be assembled in memory.

Using a deterministic IV for unauthenticated encryption.

Providing the IV separately for unauthenticated encryption or decryption.

Separating the AEAD authentication tag from the cipher text.

Password-authenticated key exchange (PAKE) is a multi-step process.

Each multi-part operation defines a specific object type to maintain the state of the operation. These types
are implementation-defined.

All multi-part operations follow the same pattern of use, which is shown in Figure 1.

Operation object starts as
uninitialised memory

: \
Finish -Abort \
\

) \
) Update 'Abort
I
]
\

/

active

|

\

|

\ Update M Finish
. \ .

\ fails \ fails

—— Solid lines show successful operation
--- Dashed lines show error flows
......... Dotted lines show operation cancellation

Figure 1 General state model for a multi-part operation

The typical sequence of actions with a multi-part operation is as follows:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 27
1.4.0 Non-confidential

1. Allocate: Allocate memory for an operation object of the appropriate type. The application can use
any allocation strategy: stack, heap, static, etc.

2. Initialize: Initialize or assign the operation object by one of the following methods:
e Set it to logical zero. This is automatic for static and global variables. Explicit initialization must
use the associated PSA_xxx_OPERATION_INIT macro as the type is implementation-defined.
e Set it to all-bits zero. This is automatic if the object was allocated with calloc().
e Assign the value of the associated macro PSA_xxx_OPERATION_INIT.
e Assign the result of calling the associated function psa_xxx_operation_init().

The resulting object is now inactive.

It is an error to initialize an operation object that is in active or error states. This can leak memory or
other resources.

3. Setup: Start a new multi-part operation on an inactive operation object. Each operation object will
define one or more setup functions to start a specific operation.

On success, a setup function will put an operation object into an active state. On failure, the operation
object will remain inactive.

4. Update: Update an active operation object. Each operation object defines one or more update
functions, which are used to provide additional parameters, supply data for processing or generate
outputs.

On success, the operation object remains active. On failure, the operation object will enter an error
state.

5. Finish: To end the operation, call the applicable finishing function. This will take any final inputs,
produce any final outputs, and then release any resources associated with the operation.

On success, the operation object returns to the inactive state. On failure, the operation object will
enter an error state.

6. Abort: An operation can be aborted at any stage during its use by calling the associated
psa_xxx_abort() function. This will release any resources associated with the operation and return the
operation object to the inactive state.

Any error that occurs to an operation while it is in an active state will result in the operation entering
an error state. The application must call the associated psa_xxx_abort() function to release the
operation resources and return the object to the inactive state.

psa_xxx_abort() can be called on an inactive operation, and this has no effect.

Once an operation object is returned to the inactive state, it can be reused by calling one of the applicable
setup functions again.

If a multi-part operation object is not initialized before use, the behavior is undefined.

If a multi-part operation function determines that the operation object is not in any valid state, it can return
PSA_ERROR_CORRUPTION_DETECTED.

If a multi-part operation function is called with an operation object in the wrong state, the function will
return PSA_ERROR_BAD_STATE and the operation object will enter the error state.

It is safe to move a multi-part operation object to a different memory location, for example, using a bitwise
copy, and then to use the object in the new location. For example, an application can allocate an operation
object on the stack and return it, or the operation object can be allocated within memory managed by a
garbage collector. However, this does not permit the following behaviors:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 28
1.4.0 Non-confidential

e Moving the object while a function is being called on the object. This is not safe. See also Concurrent
calls on page 38.

e Working with both the original and the copied operation objects. This requires cloning the operation,
which is only available for hash operations using psa_hash_clone().

Each type of multi-part operation can have multiple active states. Documentation for the specific operation
describes the configuration and update functions, and any requirements about their usage and ordering.

3.3.3 Symmetric cryptography

This specification defines interfaces for the following types of symmetric cryptographic operation:

Message digests, commonly known as hash functions. See Message digests (Hashes) on page 137.

Message authentication codes (MAC). See Message authentication codes (MAC) on page 165.

Symmetric ciphers. See Unauthenticated ciphers on page 181.

Authenticated encryption with associated data (AEAD). See Authenticated encryption with associated
data (AEAD) on page 207.

e Key derivation. See Key derivation on page 244.

Key derivation only provides multi-part operation, to support the flexibility required by these type of
algorithms.

Example of the symmetric cryptography API

Here is an example of a use case where a master key is used to generate both a message encryption key
and an IV for the encryption, and the derived key and IV are then used to encrypt a message.

1. Derive the message encryption material from the master key.
a. Initialize a psa_key_derivation_operation_t object to zero or to
PSA_KEY_DERIVATION_OPERATION_INIT.
b. Call psa_key_derivation_setup() with PSA_ALG_HKDF as the algorithm.

c. Call psa_key_derivation_input_key() with the step PSA_KEY_DERIVATION_INPUT_SECRET and the
master key.

d. Call psa_key_derivation_input_bytes() with the step PSA_KEY_DERIVATION_INPUT_INFO and a public
value that uniquely identifies the message.

Populate a psa_key_attributes_t object with the derived message encryption key's attributes.
Call psa_key_derivation_output_key() to create the derived message key.

Call psa_key_derivation_output_bytes() to generate the derived IV.

Call psa_key_derivation_abort() to release the key-derivation operation memory.

5@ =~ 0

2. Encrypt the message with the derived material.

a. Initialize a psa_cipher_operation_t object to zero or to PSA_CIPHER_OPERATION_INIT.
b. Call psa_cipher_encrypt_setup() with the derived message encryption key.

c. Call psa_cipher_set_iv() using the derived IV retrieved above.

d. Call psa_cipher_update() one or more times to encrypt the message.

e. Call psa_cipher_finish() at the end of the message.

3. Call psa_destroy_key() to clear the generated key.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 29
1.4.0 Non-confidential

3.3.4 Asymmetric cryptography

This specification defines interfaces for the following types of asymmetric cryptographic operation:

Asymmetric encryption (also known as public-key encryption). See Asymmetric encryption on page 311.

Asymmetric signature. See Asymmetric signature on page 27/8.

Two-way key agreement (also known as key establishment). See Key agreement on page 317.

Key encapsulation. See Key encapsulation on page 329.

Password-authenticated key exchange (PAKE). See Password-authenticated key exchange (PAKE) on
page 338.

For asymmetric encryption, the APl provides single-part functions.
For asymmetric signature, the API provides single-part functions.

For key agreement, the API provides single-part functions and an additional input method for a
key-derivation operation.

For key encapsulation, the API provides single-part functions.

For PAKE, the API provides a multi-part operation.

3.4 Randomness and key generation

We strongly recommended that implementations include a random generator, consisting of a
cryptographically secure pseudorandom generator (CSPRNG), which is adequately seeded with a
cryptographic-quality hardware entropy source, commonly referred to as a true random number generator
(TRNG). Constrained implementations can omit the random generation functionality if they do not
implement any algorithm that requires randomness internally, and they do not provide a key-generation
functionality. For example, a special-purpose component for signature verification can omit this.

It is recommended that applications use psa_generate_key(), psa_cipher_generate_iv() Or
psa_aead_generate_nonce() to generate suitably-formatted random data, as applicable. In addition, the API
includes a function psa_generate_random() to generate and extract arbitrary random data.

4 Sample architectures

This section describes some example architectures that can be used for implementations of the interface
described in this specification. This list is not exhaustive and the section is entirely non-normative.

4.1 Single-partition architecture

In the single-partition architecture, there is no security boundary inside the system. The application code
can access all the system memory, including the memory used by the cryptographic services described in
this specification. Thus, the architecture provides no isolation.

This architecture does not conform to the Arm Platform Security Architecture Security Model. However, it is
useful for providing cryptographic services that use the same interface, even on devices that cannot

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 30
1.4.0 Non-confidential

support any security boundary. So, while this architecture is not the primary design goal of the API defined
in the present specification, it is supported.

The functions in this specification simply execute the underlying algorithmic code. Security checks can be
kept to a minimum, since the cryptoprocessor cannot defend against a malicious application. Key import and
export copy data inside the same memory space.

This architecture also describes a subset of some larger systems, where the cryptographic services are
implemented inside a high-security partition, separate from the code of the main application, though it
shares this high-security partition with other platform security services.

4.2 Cryptographic token and single-application processor

This system is composed of two partitions: one is a cryptoprocessor and the other partition runs an
application. There is a security boundary between the two partitions, so that the application cannot access
the cryptoprocessor, except through its public interface. Thus, the architecture provides cryptoprocessor
isolation. The cryptoprocessor has some non-volatile storage, a TRNG, and possibly, some cryptographic
accelerators.

There are a number of potential physical realizations: the cryptoprocessor might be a separate chip, a
separate processor on the same chip, or a logical partition using a combination of hardware and software to
provide the isolation. These realizations are functionally equivalent in terms of the offered software
interface, but they would typically offer different levels of security guarantees.

The Crypto APl in the application processor consists of a thin layer of code that translates function calls to
remote procedure calls in the cryptoprocessor. All cryptographic computations are, therefore, performed
inside the cryptoprocessor. Non-volatile keys are stored inside the cryptoprocessor.

4.3 Cryptoprocessor with no key storage

As in the Cryptographic token and single-application processor architecture, this system is also composed of
two partitions separated by a security boundary and also provides cryptoprocessor isolation. However, unlike
the previous architecture, in this system, the cryptoprocessor does not have any secure, persistent storage
that could be used to store application keys.

If the cryptoprocessor is not capable of storing cryptographic material, then there is little use for a separate
cryptoprocessor, since all data would have to be imported by the application.

The cryptoprocessor can provide useful services if it is able to store at least one key. This might be a
hardware unique key that is burnt to one-time programmable memory during the manufacturing of the
device. This key can be used for one or more purposes:

e Encrypt and authenticate data stored in the application processor.
e Communicate with a paired device.

e Allow the application to perform operations with keys that are derived from the hardware unique key.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 31
1.4.0 Non-confidential

4.4 Multi-client cryptoprocessor

This is an expanded variant of Cryptographic token and single-application processor on page 31. In this variant,
the cryptoprocessor serves multiple applications that are mutually untrustworthy. This architecture provides
caller isolation.

In this architecture, API calls are translated to remote procedure calls, which encode the identity of the
client application. The cryptoprocessor carefully segments its internal storage to ensure that a client’s data
is never leaked to another client.

4.5 Multi-cryptoprocessor architecture

This system includes multiple cryptoprocessors. There are several reasons to have multiple
cryptoprocessors:

e Different compromises between security and performance for different keys. Typically, this means a
cryptoprocessor that runs on the same hardware as the main application and processes short-term
secrets, a secure element or a similar separate chip that retains long-term secrets.

e Independent provisioning of certain secrets.

e A combination of a non-removable cryptoprocessor and removable ones, for example, a smartcard or
HSM.

e Cryptoprocessors managed by different stakeholders who do not trust each other.
The keystore implementation needs to dispatch each request to the correct processor. For example:

e All requests involving a non-extractable key must be processed in the cryptoprocessor that holds that
key.

e Requests involving a persistent key must be processed in the cryptoprocessor that corresponds to the
key’s lifetime value.

e Requests involving a volatile key might target a cryptoprocessor based on parameters supplied by the
application, or based on considerations such as performance inside the implementation.

5 Library conventions
5.1 Header files

The header file for the Crypto API has the name psa/crypto.h. All of the APl elements that are provided by
an implementation must be visible to an application program that includes this header file.

#include "psa/crypto.h"

Implementations must provide their own version of the psa/crypto.h header file. Implementations can
provide a subset of the API defined in this specification and a subset of the available algorithms. Example
header file on page 392 provides an incomplete, example header file which includes all of the API elements.
See also Implementation considerations on page 39.

The Crypto API uses the status code definitions that are shared with the other PSA Certified APIs. PSA
Certified Status code APl [PSA-STAT] defines these status codes in the psa/error.h header file. Applications

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 32
1.4.0 Non-confidentia

are not required to explicitly include the psa/error.h header file when using these status codes with the
Crypto API. See Status codes on page 45.

5.2 API conventions

The interface in this specification is defined in terms of C macros, data types, and functions.

5.2.1 Identifier names

All of the identifiers defined in the Crypto API begin with the prefix psa_, for types and functions, or PSA_ for
macros.

Future versions of this specification will use the same prefix for additional APl elements. It is recommended
that applications and implementations do not use this prefix for their own identifiers, to avoid a potential
conflict with a future version of the Crypto API.

5.2.2 Basic types

This specification makes use of standard C data types, including the fixed-width integer types from the ISO
C99 specification update [C99]. The following standard C types are used:

int32_t a 32-bit signed integer

uint8_t an 8-bit unsigned integer
uintl6_t a 16-bit unsigned integer
uint32_t a 32-bit unsigned integer
uinte4_t a 64-bit unsigned integer

size_t an unsigned integer large enough to hold the size of an object in memory

5.2.3 Data types

Integral types are defined for specific APl elements to provide clarity in the interface definition, and to
improve code readability. For example, psa_algorithm_t and psa_status_t.

For enum-like integral types, the value @ is usually reserved by the API to indicate an unspecified or invalid
value.

Structure types are declared using typedef instead of a struct tag, also to improve code readability.

Fully-defined types must be declared exactly as defined in this specification. Types that are not fully defined
in this specification must be defined by an implementation. See Implementation-specific types on page 39.

5.2.4 Constants

Constant values are defined using C macros. Constants defined in this specification have names that are all
upper-case.

A constant macro evaluates to a compile-time constant expression.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 33
1.4.0 Non-confidential

5.2.5 Function-like macros

Function-like macros are C macros that take parameters, providing supporting functionality in the AP
Function-like macros defined in this specification have names that are all upper-case.

Function-like macros are permitted to evaluate each argument multiple times or zero times. Providing
arguments that have side effects will result in IMPLEMENTATION DEFINED behavior, and is non-portable.

If all of the arguments to a function-like macro are compile-time constant expressions, the then result
evaluates to a compile-time constant expression.

If an argument to a function-like macro has an invalid value (for example, a value outside the domain of the
function-like macro), then the result is IMPLEMENTATION DEFINED.

5.2.6 Functions

Functions defined in this specification have names that are all lower-case.

An implementation is permitted to declare any API function with static inline linkage, instead of the
default extern linkage.

An implementation is permitted to also define a function-like macro with the same name as a function in this
specification. If an implementation defines a function-like macro for a function from this specification, then:

e The implementation must also provide a definition of the function. This enables an application to take
the address of a function defined in this specification.

e The function-like macro must expand to code that evaluates each of its arguments exactly once, as if
the call was made to a C function. This enables an application to safely use arbitrary expressions as
arguments to a function defined in this specification.

If a non-pointer argument to a function has an invalid value (for example, a value outside the domain of the
function), then the function will normally return an error, as specified in the function definition. See also
Error handling.

If a pointer argument to a function has an invalid value (for example, a pointer outside the address space of
the program, or a null pointer), the result is IMPLEMENTATION DEFINED. See also Pointer conventions on page 36.

5.3 Error handling
5.3.1 Return status

Almost all functions return a status indication of type psa_status_t. This is an enumeration of integer values,
with @ (PsA_succEss) indicating successful operation and other values indicating errors. The exceptions are
functions which only access objects that are intended to be implemented as simple data structures. Such
functions cannot fail and either return void or a data value.

Unless specified otherwise, if multiple error conditions apply, an implementation is free to return any of the
applicable error codes. The choice of error code is considered an implementation quality issue. Different
implementations can make different choices, for example to favor code size over ease of debugging or vice
versa.

In particular, in the Crypto API, there are many conditions where the specification permits a function to
return either PSA_ERROR_INVALID_ARGUMENT Or PSA_ERROR_NOT_SUPPORTED. For example, psa_hash_compute() is
passed a hash algorithm that the implementation does not support, it is IMPLEMENTATION DEFINED whether
PSA_ERROR_INVALID_ARGUMENT Or PSA_ERROR_NOT_SUPPORTED is returned.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 34
1.4.0 Non-confidential

Note:

This flexibility supports the scalability design goal. It permits implementations to not check whether
unsupported algorithm identifier and key type values are valid or invalid.

If the behavior is undefined, for example, if a function receives an invalid pointer as a parameter, this
specification makes no guarantee that the function will return an error. Implementations are encouraged to
return an error or halt the application in a manner that is appropriate for the platform if the undefined
behavior condition can be detected. However, application developers need to be aware that undefined
behavior conditions cannot be detected in general.

5.3.2 Behavior on error

In general, function calls must be implemented atomically:

e When a function returns a type other than psa_status_t, the requested action has been carried out.
e \When a function returns the status PsA_SUCCESS, the requested action has been carried out.

e \When a function returns another status of type psa_status_t, no action has been carried out. Unless
otherwise documented by the API or the implementation, the content of output parameters is not
defined. The state of the system has not changed, except as described below.

In general, functions that modify the system state, for example, creating or destroying a key, must leave the
system state unchanged if they return an error code. There are specific conditions that can result in
different behavior:

e The status PSA_ERROR_BAD_STATE indicates that a parameter was not in a valid state for the requested
action. This parameter might have been modified by the call and is now in an error state. The only
valid action on an object in an error state is to abort it with the appropriate psa_xxx_abort () function.
See Multi-part operations on page 27.

e The status PSA_ERROR_INSUFFICIENT_DATA indicates that a key derivation object has reached its
maximum capacity. The key derivation operation might have been modified by the call. Any further
attempt to obtain output from the key-derivation operation will return PSA_ERROR_INSUFFICIENT_DATA.

e The status PSA_ERROR_COMMUNICATION_FAILURE indicates that the communication between the
application and the cryptoprocessor has broken down. In this case, the cryptoprocessor must either
finish the requested action successfully, or interrupt the action and roll back the system to its original
state. Because it is often impossible to report the outcome to the application after a communication
failure, this specification does not provide a way for the application to determine whether the action
was successful.

e The statuses PSA_ERROR_STORAGE_FAILURE, PSA_ERROR_DATA_CORRUPT, PSA_ERROR_HARDWARE_FAILURE and
PSA_ERROR_CORRUPTION_DETECTED might indicate data corruption in the system state. When a function
returns one of these statuses, the system state might have changed from its previous state before the
function call, even though the function call failed.

e Some system states cannot be rolled back, for example, the internal state of the random number
generator or the content of access logs.

Implementation note

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 35
1.4.0 Non-confidential

When a function returns an error status, it is recommended that implementations set output
parameters to safe defaults to avoid leaking confidential data and limit risk, in case an application does
not properly handle all errors.

5.4 Parameter conventions

5.4.1 Pointer conventions

Unless explicitly stated in the documentation of a function, all pointers must be valid pointers to an object
of the specified type.

A parameter is considered a buffer if it points to an array of bytes. A buffer parameter always has the type
uint8_t * or const uint8_t *, and always has an associated parameter indicating the size of the array. Note
that a parameter of type void *is never considered a buffer.

All parameters of pointer type must be valid non-null pointers, unless the pointer is to a buffer of length o
or the function’s documentation explicitly describes the behavior when the pointer is null. Passing a null
pointer as a function parameter in other cases is expected to abort the caller on implementations where this
is the normal behavior for a null pointer dereference.

Pointers to input parameters can be in read-only memory. Output parameters must be in writable memory.
Output parameters that are not buffers must also be readable, and the implementation must be able to
write to a non-buffer output parameter and read back the same value, as explained in Stability of parameters
on page 37.

5.4.2 Input buffer sizes

For input buffers, the parameter convention is:

const uint8_t *foo
Pointer to the first byte of the data. The pointer can be invalid if the buffer size is .

size_t foo_length
Size of the buffer in bytes.

The interface never uses input-output buffers.

5.4.3 Output buffer sizes

For output buffers, the parameter convention is:

uint8_t *foo
Pointer to the first byte of the data. The pointer can be invalid if the buffer size is .

size_t foo_size

The size of the buffer in bytes.

size_t *foo_length
On successful return, contains the length of the output in bytes.

The content of the data buffer and of *foo_length on errors is unspecified, unless explicitly mentioned in
the function description. They might be unmodified or set to a safe default. On successful completion, the
content of the buffer between the offsets *foo_length and foo_size is also unspecified.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 36
1.4.0 Non-confidentia

Functions return PSA_ERROR_BUFFER_TOO_SMALL if the buffer size is insufficient to carry out the requested
operation. The interface defines macros to calculate a sufficient buffer size for each operation that has an
output buffer. These macros return compile-time constants if their arguments are compile-time constants,
so they are suitable for static or stack allocation. Refer to an individual function’s documentation for the
associated output size macro.

Some functions always return exactly as much data as the size of the output buffer. In this case, the
parameter convention changes to:

uint8_t *foo

Pointer to the first byte of the output. The pointer can be invalid if the buffer size is o.

size_t foo_length
The number of bytes to return in foo if successful.

5.4.4 Overlap between parameters

Output parameters that are not buffers must not overlap with any input buffer or with any other output
parameter. Otherwise, the behavior is undefined.

Output buffers can overlap with input buffers. In this event, the implementation must return the same result
as if the buffers did not overlap. The implementation must behave as if it had copied all the inputs into
temporary memory, as far as the result is concerned. However, it is possible that overlap between
parameters will affect the performance of a function call. Overlap might also affect memory management
security if the buffer is located in memory that the caller shares with another security context, as described
in Stability of parameters.

5.4.5 Stability of parameters

In some environments, it is possible for the content of a parameter to change while a function is executing.
It might also be possible for the content of an output parameter to be read before the function terminates.
This can happen if the application is multithreaded. In some implementations, memory can be shared
between security contexts, for example, between tasks in a multitasking operating system, between a user
land task and the kernel, or between the Non-secure world and the Secure world of a trusted execution
environment.

This section describes the assumptions that an implementation can make about function parameters, and
the guarantees that the implementation must provide about how it accesses parameters.

Parameters that are not buffers are assumed to be under the caller’s full control. In a shared memory
environment, this means that the parameter must be in memory that is exclusively accessible by the
application. In a multithreaded environment, this means that the parameter must not be modified during the
execution, and the value of an output parameter is undetermined until the function returns. The
implementation can read an input parameter that is not a buffer multiple times and expect to read the same
data. The implementation can write to an output parameter that is not a buffer and expect to read back the
value that it last wrote. The implementation has the same permissions on buffers that overlap with a buffer
in the opposite direction.

In an environment with multiple threads or with shared memory, the implementation carefully accesses
non-overlapping buffer parameters in order to prevent any security risk resulting from the content of the
buffer being modified or observed during the execution of the function. In an input buffer that does not
overlap with an output buffer, the implementation reads each byte of the input once, at most. The
implementation does not read from an output buffer that does not overlap with an input buffer.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 37
1.4.0 Non-confidentia

Additionally, the implementation does not write data to a non-overlapping output buffer if this data is
potentially confidential and the implementation has not yet verified that outputting this data is authorized.

Unless otherwise specified, the implementation must not keep a reference to any parameter once a
function call has returned.

5.5 Key types and algorithms

Types of cryptographic keys and cryptographic algorithms are encoded separately. Each is encoded by using
an integral type: psa_key_type_t and psa_algorithm_t, respectively.

There is some overlap in the information conveyed by key types and algorithms. Both types contain enough
information, so that the meaning of an algorithm type value does not depend on what type of key it is used
with, and vice versa. However, the particular instance of an algorithm might depend on the key type. For
example, the algorithm PSA_ALG_GCM can be instantiated as any AEAD algorithm using the GCM mode over a
block cipher. The underlying block cipher is determined by the key type.

Key types do not encode the key size. For example, AES-128, AES-192 and AES-256 share a key type
PSA_KEY_TYPE_AES.

5.5.1 Structure of key types and algorithms

Both types use a partial bitmask structure, which allows the analysis and building of values from parts.
However, the interface defines constants, so that applications do not need to depend on the encoding, and
an implementation might only care about the encoding for code size optimization.

The encodings follows a few conventions:

e The highest bit is a vendor flag. Current and future versions of this specification will only define values
where this bit is clear. Implementations that wish to define additional implementation-specific values
must use values where this bit is set, to avoid conflicts with future versions of this specification.

e The next few highest bits indicate the algorithm or key category: hash, MAC, symmetric cipher,
asymmetric encryption, and so on.

e The following bits identify a family of algorithms or keys in a category-dependent manner.

e In some categories and algorithm families, the lowest-order bits indicate a variant in a systematic way.
For example, algorithm families that are parametrized around a hash function encode the hash in the
8 lowest bits.

The Algorithm and key type encoding on page 410 appendix provides a full definition of the encoding of key
types and algorithm identifiers.

5.6 Concurrent calls

In some environments, an application can make calls to the Crypto APl in separate threads. In such an
environment, concurrent calls are two or more calls to the APl whose execution can overlap in time.

Sequential consistency
The result of two or more concurrent calls must be consistent with the same set of calls
being executed sequentially in some order, provided that the calls obey the following
constraints:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 38
1.4.0 Non-confidential

e There is no overlap between an output parameter of one call and an input or output
parameter of another call. Overlap between input parameters is permitted.

e A call to psa_destroy_key() must not overlap with a concurrent call to any of the
following functions:
— Any call where the same key identifier is a parameter to the call.
— Any call in a multi-part operation, where the same key identifier was used as a
parameter to a previous step in the multi-part operation.

e Concurrent calls must not use the same operation object.

If any of these constraints are violated, the behavior is undefined.

The consistency requirement does not apply to errors that arise from resource failures or
limitations. For example, errors resulting from resource exhaustion can arise in concurrent
execution that do not arise in sequential execution.

As an example of this rule: suppose two calls are executed concurrently which both attempt
to create a new key with the same key identifier that is not already in the key store. Then:

e |f one call returns PSA_ERROR_ALREADY_EXISTS, then the other call must succeed.

e |f one of the calls succeeds, then the other must fail: either with
PSA_ERROR_ALREADY_EXISTS or some other error status.

e Both calls can fail with error codes that are not PSA_ERROR_ALREADY_EXISTS.

Parameter stability
If the application concurrently modifies an input parameter while a function call is in
progress, the behavior is undefined.

Individual implementations can provide additional guarantees.

6 Implementation considerations

6.1 Implementation-specific aspects of the interface

6.1.1 Implementation profile

Implementations can implement a subset of the APl and a subset of the available algorithms. The
implemented subset is known as the implementation’s profile. The documentation for each implementation
must describe the profile that it implements. This specification’s companion documents also define a
number of standard profiles.

6.1.2 Implementation-specific types

This specification defines a number of implementation-specific types, which represent objects whose
content depends on the implementation. These are defined as C typedef types in this specification, with a
comment /" implementation-defined type */ in place of the underlying type definition. For some types the
specification constrains the type, for example, by requiring that the type is a struct, or that it is convertible
to and from an unsigned integer. In the implementation’s version of psa/crypto.h, these types need to be
defined as complete C types so that objects of these types can be instantiated by application code.

Applications that rely on the implementation specific definition of any of these types might not be portable
to other implementations of this specification.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 39
1.4.0 Non-confidential

6.1.3 Implementation-specific macros

Some macro constants and function-like macros are precisely defined by this specification. The use of an
exact definition is essential if the definition can appear in more than one header file within a compilation.

Other macros that are defined by this specification have a macro body that is implementation-specific. The
description of an implementation-specific macro can optionally specify each of the following requirements:

e Input domains: the macro must be valid for arguments within the input domain.
e A return type: the macro result must be compatible with this type.
e Output range: the macro result must lie in the output range.

e Computed value: A precise mapping of valid input to output values.
Each implementation-specific macro is in one of following categories:

Specification-defined value
The result type and computed value of the macro expression is defined by this specification,
but the definition of the macro body is provided by the implementation.

These macros are indicated in this specification using the comment:
/* specification-defined value */

For function-like macros with specification-defined values:

e Example implementations are provided in an appendix to this specification. See Example
macro implementations on page 427.

e The expected computation for valid and supported input arguments will be defined as
pseudo-code in a future version of this specification.

Implementation-defined value
The value of the macro expression is implementation-defined.
For some macros, the computed value is derived from the specification of one or more
cryptographic algorithms. In these cases, the result must exactly match the value in those
external specifications.

These macros are indicated in this specification using the comment:

/* implementation-defined value */

Some of these macros compute a result based on an algorithm or key type. If an implementation defines
vendor-specific algorithms or key types, then it must provide an implementation for such macros that takes
all relevant algorithms and types into account. Conversely, an implementation that does not support a
certain algorithm or key type can define such macros in a simpler way that does not take unsupported
argument values into account.

Some macros define the minimum sufficient output buffer size for certain functions. In some cases, an
implementation is permitted to require a buffer size that is larger than the theoretical minimum. An
implementation must define minimum-size macros in such a way that it guarantees that the buffer of the
resulting size is sufficient for the output of the corresponding function. Refer to each macro’s
documentation for the applicable requirements.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 40
1.4.0 Non-confidentia

6.2 Porting to a platform

6.2.1 Platform assumptions

This specification is designed for a C99 platform. The interface is defined in terms of C macros, functions
and objects.

The specification assumes 8-bit bytes, and “byte” and “octet” are used synonymously.

6.2.2 Platform-specific types

The specification makes use of some types defined in C99. These types must be defined in the
implementation version of psa/crypto.h or by a header included in this file. The following C99 types are
used:

uint8_t, uintl6_t, uint32_t
Unsigned integer types with 8, 16 and 32 value bits respectively. These types are defined by
the C99 header stdint.h.

6.2.3 Cryptographic hardware support

Implementations are encouraged to make use of hardware accelerators where available. A future version of
this specification will define a function interface that calls drivers for hardware accelerators and external
cryptographic hardware.

6.3 Security requirements and recommendations
6.3.1 Error detection

Implementations that provide isolation between the caller and the cryptography processing environment
must validate parameters to ensure that the cryptography processing environment is protected from attacks
caused by passing invalid parameters.

Even implementations that do not provide isolation are recommended to detect bad parameters and
fail-safe where possible.

6.3.2 Indirect object references

Implementations can use different strategies for allocating key identifiers, and other types of indirect object
reference.

Implementations that provide isolation between the caller and the cryptography processing environment
must consider the threats relating to abuse and misuse of key identifiers and other indirect resource
references. For example, multi-part operations can be implemented as backend state to which the client
only maintains an indirect reference in the application’s multi-part operation object.

An implementation that supports multiple callers must implement strict isolation of API resources between
different callers. For example, a client must not be able to obtain a reference to another client’s key by
guessing the key identifier value. Isolation of key identifiers can be achieved in several ways. For example:

e There is a single identifier namespace for all clients, and the implementation verifies that the client is
the owner of the identifier when looking up the key.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 41
1.4.0 Non-confidential

e Each client has an independent identifier namespace, and the implementation uses a client specific
identifier-to-key mapping when looking up the key.

After a volatile key identifier is destroyed, it is recommended that the implementation does not immediately
reuse the same identifier value for a different key. This reduces the risk of an attack that is able to exploit a
key identifier reuse vulnerability within an application.

6.3.3 Memory cleanup

Implementations must wipe all sensitive data from memory when it is no longer used. It is recommended
that they wipe this sensitive data as soon as possible. All temporary data used during the execution of a
function, such as stack buffers, must be wiped before the function returns. All data associated with an
object, such as a multi-part operation, must be wiped, at the latest, when the object becomes inactive, for
example, when a multi-part operation is aborted.

The rationale for this non-functional requirement is to minimize impact if the system is compromised. If
sensitive data is wiped immediately after use, only data that is currently in use can be leaked. It does not
compromise past data.

6.3.4 Managing key material

In implementations that have limited volatile memory for keys, the implementation is permitted to store a
volatile key to a temporary location in non-volatile memory. The implementation must delete any
non-volatile copies when the key is destroyed, and it is recommended that these copies are deleted as soon
as the key is reloaded into volatile memory. An implementation that uses this method must clear any stored
volatile key material on startup.

Implementing the memory cleanup rule (see Memory cleanup) for a persistent key can result in inefficiencies
when the same persistent key is used sequentially in multiple cryptographic operations. The inefficiency
stems from loading the key from non-volatile storage on each use of the key. The PSA_KEY_USAGE_CACHE
usage flag in a key policy allows an application to request that the implementation does not cleanup
non-essential copies of persistent key material, effectively suspending the cleanup rules for that key. The
effects of this policy depend on the implementation and the key, for example:

e For volatile keys or keys in a secure element with no open/close mechanism, this is likely to have no
effect.

e For persistent keys that are not in a secure element, this allows the implementation to keep the key in
a memory cache outside of the memory used by ongoing operations.

e For keys in a secure element with an open/close mechanism, this is a hint to keep the key open in the
secure element.

The application can indicate when it has finished using the key by calling psa_purge_key (), to request that
the key material is cleaned from memory.

6.3.5 Safe outputs on error

Implementations must ensure that confidential data is not written to output parameters before validating
that the disclosure of this confidential data is authorized. This requirement is particularly important for
implementations where the caller can share memory with another security context, as described in Stability
of parameters on page 37.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 42
1.4.0 Non-confidential

In most cases, the specification does not define the content of output parameters when an error occurs. It
is recommended that implementations try to ensure that the content of output parameters is as safe as
possible, in case an application flaw or a data leak causes it to be used. In particular, Arm recommends that
implementations avoid placing partial output in output buffers when an action is interrupted. The meaning
of “safe as possible” depends on the implementation, as different environments require different
compromises between implementation complexity, overall robustness and performance. Some common
strategies are to leave output parameters unchanged, in case of errors, or zeroing them out.

6.3.6 Attack resistance

Cryptographic code tends to manipulate high-value secrets, from which other secrets can be unlocked. As
such, it is a high-value target for attacks. There is a vast body of literature on attack types, such as side
channel attacks and glitch attacks. Typical side channels include timing, cache access patterns,
branch-prediction access patterns, power consumption, radio emissions and more.

This specification does not specify particular requirements for attack resistance. Implementers are
encouraged to consider the attack resistance desired in each use case and design their implementation
accordingly. Security standards for attack resistance for particular targets might be applicable in certain use
cases.

6.4 Other implementation considerations

6.4.1 Philosophy of resource management

The specification allows most functions to return PSA_ERROR_INSUFFICIENT_MEMORY. This gives
implementations the freedom to manage memory as they please.

Alternatively, the interface is also designed for conservative strategies of memory management. An
implementation can avoid dynamic memory allocation altogether by obeying certain restrictions:
e Pre-allocate memory for a predefined number of keys, each with sufficient memory for all key types
that can be stored.

e For multi-part operations, in an implementation with no isolation, place all the data that needs to be
carried over from one step to the next in the operation object. The application is then fully in control
of how memory is allocated for the operation.

e |n an implementation with isolation, pre-allocate memory for a predefined number of operations inside
the cryptoprocessor.

/ Usage considerations

7.1 Security recommendations

7.1.1 Always check for errors

Most functions in the Crypto API can return errors. All functions that can fail have the return type
psa_status_t. A few functions cannot fail, and thus, return void or some other type.

If an error occurs, unless otherwise specified, the content of the output parameters is undefined and must
not be used.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 43
1.4.0 Non-confidential

Some common causes of errors include:

e In implementations where the keys are stored and processed in a separate environment from the
application, all functions that need to access the cryptography processing environment might fail due
to an error in the communication between the two environments.

e |f an algorithm is implemented with a hardware accelerator, which is logically separate from the
application processor, the accelerator might fail, even when the application processor keeps running
normally.

e Most functions might fail due to a lack of resources. However, some implementations guarantee that
certain functions always have sufficient memory.

e All functions that access persistent keys might fail due to a storage failure.

e All functions that require randomness might fail due to a lack of entropy. Implementations are
encouraged to seed the random generator with sufficient entropy during the execution of
psa_crypto_init(). However, some security standards require periodic reseeding from a hardware
random generator, which can fail.

7.1.2 Shared memory and concurrency

Some environments allow applications to be multithreaded, while others do not. In some environments,
applications can share memory with a different security context. In environments with multithreaded
applications or shared memory, applications must be written carefully to avoid data corruption or leakage.
This specification requires the application to obey certain constraints.

In general, the Crypto API allows either one writer or any number of simultaneous readers, on any given
object. In other words, if two or more calls access the same object concurrently, then the behavior is only
well-defined if all the calls are only reading from the object and do not modify it. Read accesses include
reading memory by input parameters and reading keystore content by using a key. For more details, refer to
Concurrent calls on page 38.

If an application shares memory with another security context, it can pass shared memory blocks as input
buffers or output buffers, but not as non-buffer parameters. For more details, refer to Stability of parameters
on page 37.

7.1.3 Cleaning up after use

To minimize impact if the system is compromised, it is recommended that applications wipe all sensitive data
from memory when it is no longer used. That way, only data that is currently in use can be leaked, and past
data is not compromised.

Wiping sensitive data includes:

e Clearing temporary buffers in the stack or on the heap.
e Aborting operations if they will not be finished.

e Destroying keys that are no longer used.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 44
1.4.0 Non-confidential

8 Library management reference

8.1 Status codes

The Crypto API uses the status code definitions that are shared with the other PSA Certified APIs. The
Crypto API also provides some Crypto API-specific status codes, see Error codes specific to the Crypto APl on
page 47/.

The following elements are defined in psa/error.h from PSA Certified Status code APl [PSA-STAT] (previously
defined in [PSA-FFM]):

typedef int32_t psa_status_t;
#define PSA_SUCCESS ((psa_status_t)0)

#define PSA_ERROR_GENERIC_ERROR
#define PSA_ERROR_NOT_PERMITTED
#define PSA_ERROR_NOT_SUPPORTED
#define PSA_ERROR_INVALID_ARGUMENT
#define PSA_ERROR_INVALID_HANDLE
#define PSA_ERROR_BAD_STATE
#define PSA_ERROR_BUFFER_TOO_SMALL
#define PSA_ERROR_ALREADY_EXISTS psa_status_t)-13
#define PSA_ERROR_DOES_NOT_EXIST psa_status_t)-14

(()-132)
(()-133)
(()-134)
(()-135)
(()-136)
(()-137)
(()-138)
(()-139)
(()-140)
#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)
(()-142)
(()-143)
(()-145)
(()-146)
(()-147)
(()-149)
(()-151)
(()-152)
(()-153)

13
13
13
13
13
13

psa_status_t
psa_status_t
psa_status_t
psa_status_t
psa_status_t
psa_status_t
psa_status_t

#define PSA_ERROR_INSUFFICIENT_STORAGE psa_status_t)-14
#define PSA_ERROR_INSUFFICIENT_DATA psa_status_t)-14
#define PSA_ERROR_COMMUNICATION_FAILURE psa_status_t)-14
#define PSA_ERROR_STORAGE_FAILURE psa_status_t)-14
#define PSA_ERROR_HARDWARE_FAILURE psa_status_t)-14
#define PSA_ERROR_INVALID_SIGNATURE psa_status_t)-14
#define PSA_ERROR_CORRUPTION_DETECTED psa_status_t)-15
#define PSA_ERROR_DATA_CORRUPT psa_status_t)-15
#define PSA_ERROR_DATA_INVALID psa_status_t)-15

These definitions must be available to an application that includes the psa/crypto.h header file.

Implementation note

An implementation is permitted to define the status code interface elements within the psa/crypto.h
header file, or to define them via inclusion of a psa/error.h header file that is shared with the
implementation of other PSA Certified APIs.

8.1.1 Common error codes

Some of the common status codes have a more precise meaning when returned by a function in the Crypto
API, compared to the definitions in [PSA-STAT]. See also Error handling on page 34.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 45
1.4.0 Non-confidential

Error code

PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_INVALID_HANDLE

PSA_ERROR_BAD_STATE

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_DATA_CORRUPT

Meaning in the Crypto API

[PSA-STAT] recommends the use of PSA_ERROR_INVALID_ARGUMENT for
invalid parameter values.

In the Crypto API, this is relaxed for algorithm identifier and key type
parameters. It is recommended to return PSA_ERROR_INVALID_ARGUMENT
for invalid values, but PSA_ERROR_NOT_SUPPORTED is also allowed, to
permit implementations to avoid having to recognize all the
cryptographic mechanisms that are defined in the PSA specification
but not provided by that particular implementation.

[PSA-STAT] recommends the use of PSA_ERROR_NOT_SUPPORTED for
unsupported parameter values.

In the Crypto API, either PSA_ERROR_INVALID_ARGUMENT Or
PSA_ERROR_NOT_SUPPORTED can be returned when unsupported
algorithm identifier or key type parameters are used. This allows
implementations to avoid having to recognize all the cryptographic
mechanisms that are defined in the PSA specification but not
provided by that particular implementation.

A key identifier does not refer to an existing key. See also Key
identifiers on page 25.

Multi-part operations return this error when one of the functions is
called out of sequence. Refer to the function descriptions for
permitted sequencing of functions.

Implementations can return this error if the caller has not initialized
the library by a call to psa_crypto_init().

Applications can call the PsA_xxx_SIZE macro listed in the function
description to determine a sufficient buffer size.

When a storage failure occurs, it is no longer possible to ensure the
global integrity of the keystore. Depending on the global integrity
guarantees offered by the implementation, access to other data
might fail even if the data is still readable but its integrity cannot be
guaranteed.

This error code is intended as a last resort when a security breach is
detected and it is unsure whether the keystore data is still protected.
Implementations must only return this error code to report an alarm
from a tampering detector, to indicate that the confidentiality of
stored data can no longer be guaranteed, or to indicate that the
integrity of previously returned data is now considered compromised.

When a storage failure occurs, it is no longer possible to ensure the
global integrity of the keystore. Depending on the global integrity
guarantees offered by the implementation, access to other data
might fail even if the data is still readable but its integrity cannot be
guaranteed.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 46

1.4.0

Non-confidential

8.1.2 Error codes specific to the Crypto API

The following elements are defined in the psa/crypto.h header file.

PSA_ERROR_INSUFFICIENT_ENTROPY (macro)

A status code that indicates that there is not enough entropy to generate random data needed for the
requested action.

#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)

This error indicates a failure of a hardware random generator. Application writers must note that this error
can be returned not only by functions whose purpose is to generate random data, such as key, IV or nonce
generation, but also by functions that execute an algorithm with a randomized result, as well as functions
that use randomization of intermediate computations as a countermeasure to certain attacks.

It is recommended that implementations do not return this error after psa_crypto_init() has succeeded.
This can be achieved if the implementation generates sufficient entropy during initialization and
subsequently a cryptographically secure pseudorandom generator (PRNG) is used. However,
implementations might return this error at any time, for example, if a policy requires the PRNG to be
reseeded during normal operation.

PSA_ERROR_INVALID_PADDING (macro)
A status code that indicates that the decrypted padding is incorrect.

#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)

A\ Warning

In some protocols, when decrypting data, it is essential that the behavior of the application does not
depend on whether the padding is correct, down to precise timing. Protocols that use authenticated
encryption are recommended for use by applications, rather than plain encryption. If the application
must perform a decryption of unauthenticated data, the application writer must take care not to reveal
whether the padding is invalid.

Implementations must handle padding carefully, aiming to make it impossible for an external observer to
distinguish between valid and invalid padding. In particular, it is recommended that the timing of a
decryption operation does not depend on the validity of the padding.

8.2 Crypto API library
8.2.1 API version

PSA_CRYPTO_API_VERSION_MAJOR (macro)

The major version of this implementation of the Crypto API.

#define PSA_CRYPTO_API_VERSION_MAJOR 1

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 47
1.4.0 Non-confidential

PSA_CRYPTO_API_VERSION_MINOR (macro)

The minor version of this implementation of the Crypto API.

#define PSA_CRYPTO_API_VERSION_MINOR 4

8.2.2 Library initialization

psa_crypto_init (function)

Library initialization.

psa_status_t psa_crypto_init(void);

Returns: psa_status_t

PSA_SUCCESS Success.

PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

It is recommended that applications call this function before calling any other function in this module.

Applications are permitted to call this function more than once. Once a call succeeds, subsequent calls are

guaranteed to succeed.

If the application calls any function that returns a psa_status_t result code before calling psa_crypto_init(),

the following will occur:

e If initialization of the library is essential for secure operation of the function, the implementation must
return PSA_ERROR_BAD_STATE or other appropriate error.

e If failure to initialize the library does not compromise the security of the function, the implementation
must either provide the expected result for the function, or return PSA_ERROR_BAD_STATE or other

appropriate error.

Note:

The following scenarios are examples where an implementation can require that the library has been

initialized by calling psa_crypto_init():

e A client-server implementation, in which psa_crypto_init() establishes the communication with
the server. No key management or cryptographic operation can be performed until this is done.

e An implementation in which psa_crypto_init() initializes the random bit generator, and no
operations that require the RNG can be performed until this is done. For example, random data,
key, IV, or nonce generation; randomized signature or encryption; and algorithms that are

implemented with blinding.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 48

1.4.0

Non-confidential

A Warning

The set of functions that depend on successful initialization of the library is IMPLEMENTATION DEFINED.
Applications that rely on calling functions before initializing the library might not be portable to other
implementations.

9 Key management reference
9.1 Key attributes

Key attributes are managed in a psa_key_attributes_t object. These are used when a key is created, after
which the key attributes are fixed. Attributes of an existing key can be queried using
psa_get_key_attributes().

Description of the individual attributes is found in the following sections:

Key types on page 53
Key identifiers on page 98

Key lifetimes on page 90

Key policies on page 100

9.1.1 Managing key attributes

psa_key_attributes_t (typedef)
The type of an object containing key attributes.

typedef /* implementation-defined type */ psa_key_attributes_t;

This is the object that represents the metadata of a key object. Metadata that can be stored in attributes
includes:

e The location of the key in storage, indicated by its key identifier and its lifetime.
e The key's policy, comprising usage flags and a specification of the permitted algorithm(s).
e Information about the key itself: the key type and its size.

e Implementations can define additional attributes.

The actual key material is not considered an attribute of a key. Key attributes do not contain information
that is generally considered highly confidential.

Note:

Implementations are recommended to define the attribute object as a simple data structure, with
fields corresponding to the individual key attributes. In such an implementation, each function
psa_set_key_xxx() sets a field and the corresponding function psa_get_key_xxx() retrieves the value
of the field.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 49
1.4.0 Non-confidential

An implementations can report attribute values that are equivalent to the original one, but have a
different encoding. For example, an implementation can use a more compact representation for types
where many bit-patterns are invalid or not supported, and store all values that it does not support as
a special marker value. In such an implementation, after setting an invalid value, the corresponding get
function returns an invalid value which might not be the one that was originally stored.

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in implementation-specific behavior, and are non-portable.

An attribute object can contain references to auxiliary resources, for example pointers to allocated memory
or indirect references to pre-calculated values. In order to free such resources, the application must call
psa_reset_key_attributes(). As an exception, calling psa_reset_key_attributes() on an attribute object is
optional if the object has only been modified by the following functions since it was initialized or last reset
with psa_reset_key_attributes():

psa_set_key_id()
psa_set_key_ lifetime()
psa_set_key_type()
psa_set_key_bits()
psa_set_key_usage_flags()

psa_set_key_algorithm()

Before calling any function on a key attribute object, the application must initialize it by any of the following
means:

Set the object to all-bits-zero, for example:

psa_key_attributes_t attributes;
memset (&attributes, @, sizeof(attributes));

Initialize the object to logical zero values by declaring the object as static or global without an explicit
initializer, for example:

static psa_key_attributes_t attributes;

Initialize the object to the initializer PSA_KEY_ATTRIBUTES_INIT, for example:

psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;

e Assign the result of the function psa_key_attributes_init() to the object, for example:

psa_key_attributes_t attributes;
attributes = psa_key_attributes_init();

A freshly initialized attribute object contains the following values:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 50

1.4.0

Non-confidentia

Attribute Value

lifetime PSA_KEY_LIFETIME_VOLATILE.

key identifier PSA_KEY_ID_NULL — which is not a valid key identifier.

type

PSA_KEY_TYPE_NONE — meaning that the type is unspecified.

key size © — meaning that the size is unspecified.

usage flags o — which permits no usage except exporting a public key.

algorithm PSA_ALG_NONE — which does not permit cryptographic usage, but permits exporting.

Usage

A typical sequence to create a key is as follows:

1.
2.

o kW

Create and initialize an attribute object.

If the key is persistent, call psa_set_key_id(). Also call psa_set_key_lifetime() to place the key in a
non-default location.

If the key is volatile in a non-default location, call psa_set_key lifetime() to specify the location.
Set the key policy with psa_set_key_usage_flags() and psa_set_key_algorithm().
Set the key type with psa_set_key_type(). Skip this step if copying an existing key with psa_copy_key ().

When generating a random key with psa_generate_key() Or psa_generate_key_custom(), or deriving a
key with psa_key_derivation_output_key() Or psa_key_derivation_output_key_custom(), set the desired
key size with psa_set_key_bits().

. Call a key creation function: psa_import_key(), psa_generate_key (), psa_generate_key_custom(),

psa_key_derivation_output_key (), psa_key_derivation_output_key_custom(), psa_key_agreement(),
psa_encapsulate(), psa_decapsulate(), psa_pake_get_shared_key (), psa_copy_key(), Or
psa_attach_key (). This function reads the attribute object, creates a key with these attributes, and
outputs an identifier for the newly created key.

. Optionally call psa_reset_key_attributes(), now that the attribute object is no longer needed.

Currently this call is not required as the attributes defined in this specification do not require
additional resources beyond the object itself.

A typical sequence to query a key’s attributes is as follows:

1.
2.
3.

Call psa_get_key_attributes().
Call psa_get_key_xxx() functions to retrieve the required attribute(s).

Call psa_reset_key_attributes() to free any resources that can be used by the attribute object.

Once a key has been created, it is impossible to change its attributes.

PSA_KEY_ATTRIBUTES_INIT (macro)

This macro returns a suitable initializer for a key attribute object of type psa_key_attributes_t.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 51

1.4.0

Non-confidential

#define PSA_KEY_ATTRIBUTES_INIT /* implementation-defined value */

psa_key_attributes_init (function)

Return an initial value for a key attribute object.

psa_key_attributes_t psa_key_attributes_init(void);

Returns: psa_key_attributes_t
psa_get_key_attributes (function)
Retrieve the attributes of a key.

psa_status_t psa_get_key_attributes(psa_key_id_t key,
psa_key_attributes_t * attributes);

Parameters
key |dentifier of the key to query.
attributes On entry, *attributes must be in a valid state. On successful return, it

contains the attributes of the key. On failure, it is equivalent to a
freshly-initialized attribute object.

Returns: psa_status_t

PSA_SUCCESS Success. attributes contains the attributes of the key.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function first resets the attribute object as with psa_reset_key_attributes(). It then copies the
attributes of the given key into the given attribute object.

Note:

This function clears any previous content from the attribute object and therefore expects it to be in a
valid state. In particular, if this function is called on a newly allocated attribute object, the attribute
object must be initialized before calling this function.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 52
1.4.0 Non-confidentia

Note:

This function might allocate memory or other resources. Once this function has been called on an
attribute object, psa_reset_key_attributes() must be called to free these resources.

psa_reset_key_attributes (function)

Reset a key attribute object to a freshly initialized state.

void psa_reset_key_ attributes(psa_key_attributes_t * attributes);

Parameters
attributes The attribute object to reset.

Returns: void
Description

The attribute object must be initialized as described in the documentation of the type psa_key_attributes_t
before calling this function. Once the object has been initialized, this function can be called at any time.

This function frees any auxiliary resources that the object might contain.

9.2 Key types

9.2.1 Key type encoding

psa_key_type_t (typedef)
Encoding of a key type.

typedef uintlé_t psa_key_type_t;

This is a structured bit field that identifies the category and type of key. The range of key type values is
divided as follows:

PSA_KEY_TYPE_NONE ==
Reserved as an invalid key type.

0x0001 - Ox7fff
Specification-defined key types. Key types defined by this standard always have bit 15 clear.
Unallocated key type values in this range are reserved for future use.

0x8000 - oOxffff
Implementation-defined key types. Implementations that define additional key types must
use an encoding with bit 15 set. The related support macros will be easier to write if these
key encodings also respect the bitwise structure used by standard encodings.

The Algorithm and key type encoding on page 410 appendix provides a full definition of the key type
encoding.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 53
1.4.0 Non-confidentia

PSA_KEY_TYPE_NONE (macro)

An invalid key type value.

#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)

Zero is not the encoding of any key type.

9.2.2 Key categories

In the Crypto API, keys are typically used to store secrets that are specific to a set of related cryptographic
algorithms. Keys can also be used to store non-cryptographic secrets or other data. The key type is used to
identify what the key value is, and what can be used for.

e Unstructured key types on page 62 — defines types for non-key data and unstructured symmetric keys.
For example, passwords, key-derivation secrets, or AES keys.

e Structured key types on page /2 — defines types for structured symmetric keys. For example,
WPA3-SAE password tokens.

e Asymmetric key types on page /6 — defines types for asymmetric keys. For example, elliptic curve or
SPAKE2+ keys.

PSA_KEY_TYPE_IS_UNSTRUCTURED (macro)
Whether a key type is an unstructured array of bytes.

#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

Description
This encompasses both symmetric keys and non-key data.

See Unstructured key types on page 62 for a list of unstructured key types.

PSA_KEY_TYPE_IS_ASYMMETRIC (macro)

Whether a key type is asymmetric: either a key pair or a public key.
#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) /* specification-defined value */
Parameters

type A key type: a value of type psa_key_type_t.

Description

See Asymmetric key types on page 76 for a list of asymmetric key types.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 54
1.4.0 Non-confidential

PSA_KEY_TYPE_IS_PUBLIC_KEY (macro)
Whether a key type is the public part of a key pair.

#define PSA_KEY_TYPE_IS PUBLIC _KEY(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_KEY_PAIR (macro)
Whether a key type is a key pair containing a private part and a public part.

#define PSA_KEY_TYPE_IS_KEY_PAIR(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

9.2.3 Elliptic curve families

psa_ecc_family_t (typedef)

The type of identifiers of an elliptic curve family.

typedef uint8_t psa_ecc_family_t;

The curve family identifier is required to create a number of key types:

e ECC keys using PSA_KEY_TYPE_ECC_KEY_PAIR() OF PSA_KEY_TYPE_ECC_PUBLIC_KEY (). These keys are used
in various asymmetric signature, key-encapsulation, and key-agreement algorithms.

e SPAKE2+ keys using the PSA_KEY_TYPE_SPAKE2P_KEY_PAIR() Or PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY().
These keys are used in the SPAKE2+ PAKE algorithms.

o WPAGB-SAE password tokens using PSA_KEY_TYPE_WPA3_SAE_ECC(). These keys are used in the
WPA3-SAE PAKE algorithms.
Elliptic curve family identifiers are also used to construct PAKE primitives for cipher suites based on elliptic
curve groups. See PAKE primitives on page 338.
The specific ECC curve within a family is identified by the key_bits attribute of the key.

The range of elliptic curve family identifier values is divided as follows:

0x00 Reserved. Not allocated to an elliptic curve family.

0x01 - ox7f
Elliptic curve family identifiers defined by this standard. Unallocated values in this range are

reserved for future use.

0x80 - oxff
Invalid. Values in this range must not be used.

The least significant bit of a elliptic curve family identifier is a parity bit for the whole key type. See
Asymmetric key encoding on page 424 for details of the encoding of asymmetric key types.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 55
1.4.0 Non-confidential

Implementation note

To provide other elliptic curve families, it is recommended that an implementation defines a key type
with bit 15 set, which indicates an IMPLEMENTATION DEFINED key type.

PSA_ECC_FAMILY_SECP_K1 (macro)

SEC Koblitz curves over prime fields.

#define PSA_ECC_FAMILY_SECP_K1 ((psa_ecc_family_t) @x17)

This family comprises the following curves:

e secpl92kl : key_bits = 192

e secp224kl : key_bits = 225

e secp256kl : key_bits = 256

They are defined in SEC 2: Recommended Elliptic Curve Domain Parameters [SEC2].

PSA_ECC_FAMILY_SECP_R1 (macro)

SEC random curves over prime fields.

#define PSA_ECC_FAMILY_SECP_R1 ((psa_ecc_family_t) 0x12)

This family comprises the following curves:

e secpl92rl : key_bits = 192

e secp224rl : key_bits = 224
e secp256rl : key_bits = 256
e s5ecp384rl : key_bits = 384
e secp521rl : key_bits = 521

They are defined in [SEC2].

PSA_ECC_FAMILY_SECP_R2 (macro)

A Warning

This family of curves is weak and deprecated.

#define PSA_ECC_FAMILY_SECP_R2 ((psa_ecc_family_t) 0x1b)

This family comprises the following curves:
e 5ecplé0r2 : key_bits = 160 (Deprecated)

It is defined in the superseded SEC 2: Recommended Elliptic Curve Domain Parameters, Version 1.0 [SEC2v1].

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 56
1.4.0 Non-confidential

PSA_ECC_FAMILY_SECT_K1 (macro)

SEC Koblitz curves over binary fields.

#define PSA_ECC_FAMILY_SECT_K1 ((psa_ecc_family t) @x27)

This family comprises the following curves:

e sect163kl : key_bits = 163 (Deprecated)
e sect233k1 : key_bits = 233
e sect239k1 : key_bits = 239
e sect283k1 : key_bits = 283
e sect409kl : key_bits = 409
e sect571kl : key_bits = 571

They are defined in [SEC2].

A\ Warning

The 163-bit curve sect163k1 is weak and deprecated and is only recommended for use in legacy
applications.

PSA_ECC_FAMILY_SECT_R1 (macro)

SEC random curves over binary fields.

#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22)

This family comprises the following curves:

e sect163rl : key_bits = 163 (Deprecated)
e sect?33r1 : key_bits = 233
e sect283rl : key_bits = 283
e sect409rl : key_bits = 409

e sect571rl : key_bits = 571

They are defined in [SEC2].

A Warning

The 163-bit curve sect163rl is weak and deprecated and is only recommended for use in legacy
applications.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates
1.4.0 Non-confidential

Page 57

PSA_ECC_FAMILY_SECT_R2 (macro)

SEC additional random curves over binary fields.

#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) 0x2b)

This family comprises the following curves:

e sect163r2 : key_bits = 163 (Deprecated)

It is defined in [SEC2].

A Warning

The 163-bit curve sect163r2 is weak and deprecated and is only recommended for use in legacy
applications.

PSA_ECC_FAMILY_BRAINPOOL_P_R1 (macro)

Brainpool P random curves.

#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) 0x30)

This family comprises the following curves:

They are defined in Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation

brainpoolP160r1 :
brainpoolP192r1 :
brainpoolP224r1 :
brainpoolP256r1 :
brainpoolP320r1 :
brainpoolP384r1 :
brainpoolP512r1 :

[RFC5639].

key_bits
key_bits
key_bits
key_bits
key_bits
key_bits

key_bits

160 (Deprecated)
192
224
256
320
384

512

A Warning

The 160-bit curve brainpoolP160r1 is weak and deprecated and is only recommended for use in legacy
applications.

PSA_ECC_FAMILY_FRP (macro)

Curve used primarily in France and elsewhere in Europe.

#define PSA_ECC_FAMILY_FRP ((psa_ecc_family_ t) ©0x33)

This family comprises one 256-bit curve:

IHI 0086

1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidentia

Page 58

e FRP256v1 : key_bits = 256
This is defined by Publication d'un paramétrage de courbe elliptique visant des applications de passeport

électronique et de I'administration électronique francaise [FRP].

PSA_ECC_FAMILY_MONTGOMERY (macro)

Montgomery curves.

#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) @0x41)

This family comprises the following Montgomery curves:

e Curve25519 : key_bits = 255

e Curved48 : key_bits = 448
Curve25519 is defined in Curve25519: new Diffie-Hellman speed records [Curve25519]. Curve448 is defined
in Ed448-Goldilocks, a new elliptic curve [Curve448].

PSA_ECC_FAMILY_TWISTED_EDWARDS (macro)
Twisted Edwards curves.

Added in version 1.1.

#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) @0x42)

This family comprises the following twisted Edwards curves:

e Edwards25519 : key_bits = 255. This curve is birationally equivalent to Curve25519.

e Edwards448 : key_bits = 448. This curve is birationally equivalent to Curve448.

Edwards25519 is defined in Twisted Edwards curves [Ed25519]. Edwards448 is defined in Ed448-Goldilocks,
a new elliptic curve [Curve448].

9.2.4 Finite field Diffie-Hellman families

psa_dh_family_t (typedef)
The type of identifiers of a finite field Diffie-Hellman group family.

typedef uint8_t psa_dh_family_t;

The group family identifier is required to create a number of key types:

e Diffie-Hellman keys using PSA_KEY_TYPE_DH_KEY_PAIR() Or PSA_KEY_TYPE_DH_PUBLIC_KEY (). These keys
are used in the FFDH key-agreement algorithm.

e \WPA3-SAE password tokens using PSA_KEY_TYPE_WPA3_SAE_DH(). These keys are used in the
WPAS3-SAE PAKE algorithms.

Finite field Diffie-Hellman group identifiers are also used to construct PAKE primitives for cipher suites
based on finite field groups. See PAKE primitives on page 338.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 59
1.4.0 Non-confidential

The specific finite field Diffie-Hellman group within a family is identified by the key_bits attribute of the key.

The range of finite field Diffie-Hellman group family identifier values is divided as follows:

0x00 Reserved. Not allocated to a Diffie-Hellman group family.

0x01 - Ox7f
Diffie-Hellman group family identifiers defined by this standard. Unallocated values in this
range are reserved for future use.

0x80 - oxff
Invalid. Values in this range must not be used.

The least significant bit of a finite field Diffie-Hellman group family identifier is a parity bit for the whole key
type. See Asymmetric key encoding on page 424 for details of the encoding of asymmetric key types.

Implementation note

To provide other finite field Diffie-Hellman group families, it is recommended that an implementation
defines a key type with bit 15 set, which indicates an IMPLEMENTATION DEFINED key type.

PSA_DH_FAMILY_RFC7919 (macro)
Finite field Diffie-Hellman groups defined for TLS in RFC 7919.

#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) @x@3)

This family includes groups with the following key sizes (in bits): 2048, 3072, 4096, 6144, 8192. An
implementation can support all of these sizes or only a subset.

Groups in this family can be used with the PSA_ALG_FFDH key-agreement algorithm.

These groups are defined by Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer
Security (TLS) [RFEC7919] Appendix A.

PSA_DH_FAMILY_RFC3526 (macro)
Finite field Diffie-Hellman groups defined for IKE2 in RFC 3526.
Added in version 1.4.

#define PSA_DH_FAMILY_RFC3526 ((psa_dh_family_t) @x@5)

This family includes groups with the following key sizes (in bits): 2048, 3072, 4096, 6144, 8192. An
implementation can support all of these sizes or only a subset.

Groups in this family can be used with the PSA_ALG_FFDH key-agreement algorithm, or with the
PSA_ALG_WPA3_SAE_FIXED and PSA_ALG_WPA3_SAE_GDH PAKE algorithms.

These groups are defined by More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key
Exchange (IKE) [RFC3526].

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 60
1.4.0 Non-confidentia

https://datatracker.ietf.org/doc/html/rfc7919.html#appendix-A

9.2.5 Attribute accessors

psa_set_key_type (function)
Declare the type of a key.

void psa_set_key_type(psa_key_attributes_t * attributes,
psa_key_type_t type);

Parameters
attributes The attribute object to write to.
type The key type to write. If this is PSA_KEY_TYPE_NONE, the key type in

attributes becomes unspecified.

Returns: void
Description

This function overwrites any key type previously set in attributes.

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like-macro.

psa_get_key_type (function)
Retrieve the key type from key attributes.

psa_key_type_t psa_get_key_type(const psa_key_attributes_t * attributes);
Parameters
attributes The key attribute object to query.

Returns: psa_key_type_t

The key type stored in the attribute object.

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like-macro.

psa_get_key_bits (function)

Retrieve the key size from key attributes.

size_t psa_get_key_bits(const psa_key_attributes_t * attributes);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 61
1.4.0 Non-confidential

Parameters

attributes The key attribute object to query.

Returns: size_t

The key size stored in the attribute object, in bits.

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like-macro.

psa_set_key_bits (function)

Declare the size of a key.

vold psa_set_key_bits(psa_key_attributes_t * attributes,
size_t bits);

Parameters
attributes The attribute object to write to.
bits The key size in bits. If this is o, the key size in attributes becomes

unspecified. Keys of size @ are not supported.

Returns: void
Description

This function overwrites any key size previously set in attributes.

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like-macro.

9.3 Unstructured key types
9.3.1 Non-key data

PSA_KEY_TYPE_RAW_DATA (macro)

Raw data.

#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)@x1001)

A “key” of this type cannot be used for any cryptographic operation. Applications can use this type to store
arbitrary data in the keystore.

The bit size of a raw key must be a non-zero multiple of 8. The maximum size of a raw key is IMPLEMENTATION
DEFINED.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 62
1.4.0 Non-confidential

Compatible algorithms
A key of this type can also be used as a non-secret input to the following key-derivation algorithms:

PSA_ALG_HKDF
PSA_ALG_HKDF_EXPAND
PSA_ALG_HKDF_EXTRACT
PSA_ALG_SP800_108_COUNTER_HMAC
PSA_ALG_SP800_108_COUNTER_CMAC
PSA_ALG_TLS12_PRF
PSA_ALG_TLS12_PSK_TO_MS

Key format

The data format for import and export of the key is the raw bytes of the key.

Key derivation

A call to psa_key_derivation_output_key () will draw m /8 bytes of output and use these as the key data,
where m is the bit-size of the key.

PSA_KEY_TYPE_DERIVE (macro)

A secret for key derivation.

#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)

This key type is for high-entropy secrets only. For low-entropy secrets, PSA_KEY_TYPE_PASSWORD should be
used instead.

These keys can be used in the PSA_KEY_DERIVATION_INPUT_SECRET Or PSA_KEY_DERIVATION_INPUT_PASSWORD input
step of key-derivation algorithms.

The key policy determines which key-derivation algorithm the key can be used for.

The bit size of a secret for key derivation must be a non-zero multiple of 8. The maximum size of a secret
for key derivation is IMPLEMENTATION DEFINED.

Compatible algorithms

A key of this type can be used as the secret input to the following key-derivation algorithms:

PSA_ALG_HKDF
PSA_ALG_HKDF_EXPAND
PSA_ALG_HKDF_EXTRACT
PSA_ALG_TLS12_PRF
PSA_ALG_TLS12_PSK_TO_MS

Key format

The data format for import and export of the key is the raw bytes of the key.

Key derivation

A call to psa_key_derivation_output_key () will draw m/8 bytes of output and use these as the key data,
where m is the bit-size of the key.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 63
1.4.0 Non-confidential

PSA_KEY_TYPE_PASSWORD (macro)
A low-entropy secret for password hashing or key derivation.

Added in version 1.1.

#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_t)@x1203)

This key type is suitable for passwords and passphrases which are typically intended to be memorizable by
humans, and have a low entropy relative to their size. It can be used for randomly generated or derived keys
with maximum or near-maximum entropy, but PSA_KEY_TYPE_DERIVE is more suitable for such keys. It is not
suitable for passwords with extremely low entropy, such as numerical PINs.

These keys can be used in the PSA_KEY_DERIVATION_INPUT_PASSWORD input step of key-derivation algorithms.
Algorithms that accept such an input were designed to accept low-entropy secret and are known as
password hashing or key stretching algorithms.

These keys cannot be used in the PSA_KEY_DERIVATION_INPUT_SECRET input step of key-derivation algorithms,
as the algorithms expect such an input to have high entropy.

The key policy determines which key-derivation algorithm the key can be used for, among the permissible
subset defined above.

Compatible algorithms
A key of this type can be used as the password input to the following key-stretching algorithms:

® PSA_ALG_PBKDF2_HMAC
® PSA_ALG_PBKDF2_AES_CMAC_PRF_128

Key format

The data format for import and export of the key is the raw bytes of the key.

Key derivation

A call to psa_key_derivation_output_key () will draw m /8 bytes of output and use these as the key data,
where m is the bit-size of the key.

PSA_KEY_TYPE_PASSWORD_HASH (macro)
A secret value that can be used to verify a password hash.

Added in version 1.1.

#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)0x1205)

The key policy determines which key-derivation algorithm the key can be used for, among the same
permissible subset as for PSA_KEY_TYPE_PASSWORD.

Compatible algorithms

A key of this type can be used to output or verify the result of the following key-stretching algorithms:

® PSA_ALG_PBKDF2_HMAC
® PSA_ALG_PBKDF2_AES_CMAC_PRF_128

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 64
1.4.0 Non-confidential

Key format
The data format for import and export of the key is the raw bytes of the key.

Key derivation

A call to psa_key_derivation_output_key () will draw m/8 bytes of output and use these as the key data,
where m is the bit-size of the key.

PSA_KEY_TYPE_PEPPER (macro)
A secret value that can be used when computing a password hash.
Added in version 1.1.

#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)@x1206)

The key policy determines which key-derivation algorithm the key can be used for, among the subset of
algorithms that can use pepper.

Compatible algorithms
A key of this type can be used as the salt input to the following key-stretching algorithms:

® PSA_ALG_PBKDF2_HMAC
® PSA_ALG_PBKDF2_AES_CMAC_PRF_128

Key format

The data format for import and export of the key is the raw bytes of the key.

Key derivation

A call to psa_key_derivation_output_key () will draw m/8 bytes of output and use these as the key data,
where m is the bit-size of the key.

9.3.2 Symmetric cryptographic keys

PSA_KEY_TYPE_HMAC (macro)
HMAC key.

#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)

HMAC keys can be used in HMAC, or HMAC-based, algorithms. Although HMAC is parameterized by a
specific hash algorithm, for example SHA-256, the hash algorithm is not specified in the key type. The
permitted-algorithm policy for the key must specify a particular hash algorithm.

The bit size of an HMAC key must be a non-zero multiple of 8. An HMAC key is typically the same size as
the output of the underlying hash algorithm. An HMAC key that is longer than the block size of the
underlying hash algorithm will be hashed before use, see HMAC: Keyed-Hashing for Message Authentication
[RFC2104] §2.

It is recommended that an application does not construct HMAC keys that are longer than the block size of
the hash algorithm that will be used. It is IMPLEMENTATION DEFINED whether an HMAC key that is longer than
the hash block size is supported.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 65
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc2104.html#section-2

If the application does not control the length of the data used to construct the HMAC key, it is
recommended that the application hashes the key data, when it exceeds the hash block length, before
constructing the HMAC key.

Note:
PSA_HASH_LENGTH(alg) provides the output size of hash algorithm alg, in bytes.

PSA_HASH_BLOCK_LENGTH(alg) provides the block size of hash algorithm alg, in bytes.

Compatible algorithms

® PSA_ALG_HMAC
e PSA_ALG_SP800_108_COUNTER_HMAC (secret input)

Key format
The data format for import and export of the key is the raw bytes of the key.

Key derivation

A call to psa_key_derivation_output_key () will draw m /8 bytes of output and use these as the key data,
where m is the bit-size of the key.

PSA_KEY_TYPE_AES (macro)
Key for a cipher, AEAD or MAC algorithm based on the AES block cipher.

#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)

The size of the key is related to the AES algorithm variant. For algorithms except the XTS block cipher
mode, the following key sizes are used:

e AES-128 uses a 16-byte key : key_bits = 128
e AES-192 uses a 24-byte key : key_bits
e AES-256 uses a 32-byte key : key_bits = 256

192

For the XTS block cipher mode (PsA_ALG_xTs), the following key sizes are used:
e AES-128-XTS uses two 16-byte keys : key_bits

e AES-192-XTS uses two 24-byte keys : key_bits = 384
o AES-256-XTS uses two 32-byte keys : key_bits

256

512
The AES block cipher is defined in FIPS Publication 197: Advanced Encryption Standard (AES) [FIPS197].

Compatible algorithms

PSA_ALG_CBC_MAC
PSA_ALG_CMAC
PSA_ALG_CTR
PSA_ALG_CFB
PSA_ALG_OFB
PSA_ALG_XTS

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 66
1.4.0 Non-confidential

PSA_ALG_CBC_NO_PADDING
PSA_ALG_CBC_PKCS7

PSA_ALG_ECB_NO_PADDING

PSA_ALG_CCM

PSA_ALG_GCM

PSA_ALG_KW

PSA_ALG_KWP
PSA_ALG_SP800@_108_COUNTER_CMAC (secret input)

Key format

The data format for import and export of the key is the raw bytes of the key.

Key derivation

A call to psa_key_derivation_output_key () will draw m/8 bytes of output and use these as the key data,
where m is the bit-size of the key.

PSA_KEY_TYPE_ARIA (macro)
Key for a cipher, AEAD or MAC algorithm based on the ARIA block cipher.
Added in version 1.1.

#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)

The size of the key is related to the ARIA algorithm variant. For algorithms except the XTS block cipher
mode, the following key sizes are used:

e ARIA-128 uses a 16-byte key : key_bits = 128
e ARIA-192 uses a 24-byte key : key_bits = 192

e ARIA-256 uses a 32-byte key : key_bits = 256
For the XTS block cipher mode (PsA_ALG_xTs), the following key sizes are used:

e ARIA-128-XTS uses two 16-byte keys : key_bits = 256
e ARIA-192-XTS uses two 24-byte keys : key_bits
e ARIA-256-XTS uses two 32-byte keys : key_bits = 512

384

The ARIA block cipher is defined in A Description of the ARIA Encryption Algorithm [RFC5794].

Compatible algorithms

PSA_ALG_CBC_MAC
PSA_ALG_CMAC
PSA_ALG_CTR
PSA_ALG_CFB
PSA_ALG_OFB
PSA_ALG_XTS
PSA_ALG_CBC_NO_PADDING
PSA_ALG_CBC_PKCS7
PSA_ALG_ECB_NO_PADDING
PSA_ALG_CCM

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 67
1.4.0 Non-confidential

PSA_ALG_GCM
PSA_ALG_KW
PSA_ALG_KWP
PSA_ALG_SP800@_108_COUNTER_CMAC (secret input)

Key format

The data format for import and export of the key is the raw bytes of the key.

Key derivation

A call to psa_key_derivation_output_key () will draw m /8 bytes of output and use these as the key data,
where m is the bit-size of the key.

PSA_KEY_TYPE_DES (macro)
Key for a cipher or MAC algorithm based on DES or 3DES (Triple-DES).

#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)

The size of the key determines which DES algorithm is used:

e Single DES uses an 8-byte key : key_bits = 64
e 2-key 3DES uses a 16-byte key : key_bits = 128
e 3-key 3DES uses a 24-byte key : key_bits = 192

A\ Warning

Single DES and 2-key 3DES are weak and strongly deprecated and are only recommended for
decrypting legacy data.

3-key 3DES is weak and deprecated and is only recommended for use in legacy applications.

The DES and 3DES block ciphers are defined in NIST Special Publication 800-67: Recommendation for the
Triple Data Encryption Algorithm (TDEA) Block Cipher [SP800-67].

Compatible algorithms

PSA_ALG_CBC_MAC
PSA_ALG_CMAC
PSA_ALG_CTR
PSA_ALG_CFB
PSA_ALG_OFB
PSA_ALG_XTS
PSA_ALG_CBC_NO_PADDING
PSA_ALG_CBC_PKCS7
PSA_ALG_ECB_NO_PADDING

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 68
1.4.0 Non-confidential

Key format

The data format for import and export of the key is the raw bytes of the key. The parity bits in each 64-bit
DES key element must be correct.

Key derivation

A call to psa_key_derivation_output_key () will construct a single 64-bit DES key using the following process:

1. Draw an 8-byte string.

2. Set/clear the parity bits in each byte.

3. If the result is a forbidden weak key, discard the result and return to step 1.
4. Output the string.

For 2-key 3DES and 3-key 3DES, this process is repeated to derive the 2nd and 3rd keys, as required.

PSA_KEY_TYPE_CAMELLIA (macro)
Key for a cipher, AEAD or MAC algorithm based on the Camellia block cipher.

#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)0x2403)

The size of the key is related to the Camellia algorithm variant. For algorithms except the XTS block cipher
mode, the following key sizes are used:

e Camellia-128 uses a 16-byte key : key_bits = 128
e Camellia-192 uses a 24-byte key : key_bits = 192

e Camellia-256 uses a 32-byte key : key_bits = 256

For the XTS block cipher mode (PSA_ALG_xTS), the following key sizes are used:

e Camellia-128-XTS uses two 16-byte keys : key_bits = 256

e Camellia-192-XTS uses two 24-byte keys : key_bits = 384

e Camellia-256-XTS uses two 32-byte keys : key_bits = 512

The Camellia block cipher is defined in Specification of Camellia — a 128-bit Block Cipher [INTT-CAM] and
also described in A Description of the Camellia Encryption Algorithm [RFC3713].

Compatible algorithms

PSA_ALG_CBC_MAC
PSA_ALG_CMAC
PSA_ALG_CTR
PSA_ALG_CFB
PSA_ALG_OFB
PSA_ALG_XTS
PSA_ALG_CBC_NO_PADDING
PSA_ALG_CBC_PKCS7
PSA_ALG_ECB_NO_PADDING
PSA_ALG_CCM
PSA_ALG_GCM

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 69
1.4.0 Non-confidential

® PSA_ALG_KW
® PSA_ALG_KWP
® PSA_ALG_SP800@_108_COUNTER_CMAC (secret input)

Key format

The data format for import and export of the key is the raw bytes of the key.

Key derivation

A call to psa_key_derivation_output_key () will draw m/8 bytes of output and use these as the key data,
where m is the bit-size of the key.

PSA_KEY_TYPE_SM4 (macro)
Key for a cipher, AEAD or MAC algorithm based on the SM4 block cipher.

#define PSA_KEY_TYPE_SM4 ((psa_key_type_t)@x2405)

For algorithms except the XTS block cipher mode, the SM4 key size is 128 bits (16 bytes).
For the XTS block cipher mode (PSA_ALG_XTS), the SM4 key size is 256 bits (two 16-byte keys).
The SM4 block cipher is defined in GM/T 0002-2012: SM4 block cipher algorithm [CSTCO002].

Compatible algorithms

PSA_ALG_CBC_MAC
PSA_ALG_CMAC

PSA_ALG_CTR

PSA_ALG_CFB

PSA_ALG_OFB

PSA_ALG_XTS

PSA_ALG_CBC_NO_PADDING

PSA_ALG_CBC_PKCS7

PSA_ALG_ECB_NO_PADDING

PSA_ALG_CCM

PSA_ALG_GCM

PSA_ALG_KW

PSA_ALG_KWP
PSA_ALG_SP800@_108_COUNTER_CMAC (secret input)

Key format

The data format for import and export of the key is the raw bytes of the key.

Key derivation

A call to psa_key_derivation_output_key () will draw m/8 bytes of output and use these as the key data,
where m is the bit-size of the key.

PSA_KEY_TYPE_ARC4 (macro)
Key for the ARC4 stream cipher.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 70
1.4.0 Non-confidential

#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)

A Warning

The ARC4 cipher is weak and deprecated and is only recommended for use in legacy applications.

The ARC4 cipher supports key sizes between 40 and 2048 bits, that are multiples of 8. (5 to 256 bytes)

Use algorithm PSA_ALG_STREAM_CIPHER to use this key with the ARC4 cipher.

Compatible algorithms
® PSA_ALG_STREAM_CIPHER

Key format

The data format for import and export of the key is the raw bytes of the key.

Key derivation

A call to psa_key_derivation_output_key () will draw m/8 bytes of output and use these as the key data,
where m is the bit-size of the key.

PSA_KEY_TYPE_CHACHA20 (macro)
Key for the ChaCha20 stream cipher or the ChaCha20-Poly1305 AEAD algorithm.

#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_t)@x2004)

The ChaCha20 key size is 256 bits (32 bytes).

e Use algorithm PSA_ALG_STREAM_CIPHER to use this key with the ChaCha20 cipher for unauthenticated
encryption. See PSA_ALG_STREAM_CIPHER for details of this algorithm.

e Use algorithm PSA_ALG_CHACHA20_POLY1305 to use this key with the ChaCha20 cipher and Poly1305
authenticator for AEAD. See PSA_ALG_CHACHA20_POLY1305 for details of this algorithm.

Compatible algorithms

® PSA_ALG_STREAM_CIPHER
® PSA_ALG_CHACHA20_POLY1305

Key format
The data format for import and export of the key is the raw bytes of the key.

Key derivation

A call to psa_key_derivation_output_key () will draw 32 bytes of output and use these as the key data.

PSA_KEY_TYPE_XCHACHA20 (macro)
Key for the XChaChaZ20 stream cipher or the XChaCha20-Poly1305 AEAD algorithm.
Added in version 1.2.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 71
1.4.0 Non-confidentia

#define PSA_KEY_TYPE_XCHACHA20 ((psa_key_type_t)0x2007)

The XChaCha20 key size is 256 bits (32 bytes).

e Use algorithm PSA_ALG_STREAM_CIPHER to use this key with the XChaChaZ20 cipher for unauthenticated
encryption. See PSA_ALG_STREAM_CIPHER for details of this algorithm.

e Use algorithm PSA_ALG_XCHACHA20_POLY1305 to use this key with the XChaChaZ20 cipher and Poly1305
authenticator for AEAD. See PSA_ALG_XCHACHA20_POLY1305 for details of this algorithm.

Compatible algorithms

® PSA_ALG_STREAM_CIPHER
® PSA_ALG_XCHACHA20_POLY1305

Key format

The data format for import and export of the key is the raw bytes of the key.

Key derivation

A call to psa_key_derivation_output_key () will draw 32 bytes of output and use these as the key data.

PSA_KEY_TYPE_ASCON (macro)
Key for the Ascon-AEAD128 AEAD algorithm.
Added in version 1.4.

#define PSA_KEY_TYPE_ASCON ((psa_key_type_t)0x2008)

The standard Ascon-AEAD128 key size is 128 bits (16 bytes).
For the nonce-masking variant of Ascon-AEAD128, use a key size of 256 bits (32-bytes).
See PSA_ALG_ASCON_AEAD128 for details of this algorithm.

Compatible algorithms
® PSA_ALG_ASCON_AEAD128

Key format

The data format for import and export of the key is the raw bytes of the key.

Key derivation

A call to psa_key_derivation_output_key () will draw m/8 bytes of output and use these as the key data,
where m is the bit-size of the key.

9.4 Structured key types

9.4.1 WPAS3-SAE password tokens

The WPA3-SAE PAKE defines two techniques for generating the password element used during the PAKE
protocol. The recommended hash-2-curve method is used to generate an intermediate password token,
which is an element of the cyclic group used in the PAKE cipher suite. The password token can be stored as
a key object, and later used in the PAKE operation when performing the WPA3-SAE protocol.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 72
1.4.0 Non-confidential

WPA3-SAE password tokens are defined for both elliptic curve and finite field groups.
See WPA3-SAE password processing on page 382.

PSA_KEY_TYPE_WPA3_SAE_ECC (macro)
WPA3-SAE password token using elliptic curves.
Added in version 1.4.

#define PSA_KEY_TYPE_WPA3_SAE_ECC(curve) /* specification-defined value */

Parameters
curve A value of type psa_ecc_family_t that identifies the elliptic curve
family to be used.
Description

The bit-size of a WPA3-SAE password token is the bit size associated with the specific curve within the
elliptic curve family. See the documentation of the elliptic curve family for details.

To construct a WPA3-SAE password token, it must be output from key derivation operation using the
PSA_ALG_WPA3_SAE_H2E algorithm.

Note:

To use a password token key with both PSA_ALG_WPA3_SAE_FIXED and PSA_ALG_WPA3_SAE_GDH algorithms,
create the key with the wildcard PSA_ALG_WPA3_SAE_ANY permitted algorithm.

Compatible algorithms

® PSA_ALG_WPA3_SAE_FIXED
® PSA_ALG_WPA3_SAE_GDH

Key format

The password token is an element of the elliptic curve group, with value (x,y).

The data format for import and export of the password token is the concatenation of:

e 1 encoded as a big-endian m-byte string;

e y encoded as a big-endian m-byte string.

For an elliptic curve over F,,, m is the integer for which 28(m=1) < p < 287

Note:

This is the same format as the one used for group elements in the commit phase of the WPA3-SAE
protocol, defined in [IEEE-802.11] §12.4.7.2.4.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 73
1.4.0 Non-confidential

Key derivation

A elliptic curve-based WPA3-SAE password token can only be derived using the PSA_ALG_WPA3_SAE_H2E
algorithm. The call to psa_key_derivation_output_key() uses the method defined in [IEEE-802.11]
§12.4.4.2.3 to generate the key value.

PSA_KEY_TYPE_WPA3_SAE_DH (macro)
WPA3-SAE password token using finite fields.
Added in version 1.4.

#define PSA_KEY_TYPE_WPA3_SAE_DH(group) /* specification-defined value */

Parameters
group A value of type psa_dh_family_t that identifies the finite field
Diffie-Hellman family to be used.
Description

The bit-size of the WPA3-SAE password token is the bit size associated with the specific group within the
finite field Diffie-Hellman family. See the documentation of the selected Diffie-Hellman family for details.

To construct a WPA3-SAE password token, it must be output from key derivation operation using the
PSA_ALG_WPA3_SAE_H2E algorithm.

Note:

To use a password token key with both PSA_ALG_WPA3_SAE_FIXED and PSA_ALG_WPA3_SAE_GDH algorithms,
create the key with the wildcard PSA_ALG_WPA3_SAE_ANY permitted algorithm.

Compatible algorithms

® PSA_ALG_WPA3_SAE_FIXED
® PSA_ALG_WPA3_SAE_GDH

Key format
The password token is a finite-field group element y € [1,p — 1], where p is the group’s prime modulus.

The data format for import and export of the password token is y encoded as a big-endian m-byte string,
where m is the integer for which 28(m=1 < p < 28m

Note:

This is the same format as the one used for group elements in the commit phase of the WPA3-SAE
protocol, defined in [IEEE-802.11] §12.4.7.2.4.

Key derivation

A finite field-based WPAS3-SAE password token can only be derived using the PSA_ALG_WPA3_SAE_H2E
algorithm. The call to psa_key_derivation_output_key() uses the method defined in [I[EEE-802.11]
§12.4.4.3.3 to generate the key value.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 74
1.4.0 Non-confidential

PSA_KEY_TYPE_IS_WPA3_SAE_ECC (macro)
Whether a key type is a WPA3-SAE password token using elliptic curves.
Added in version 1.4.

#define PSA_KEY_TYPE_IS_WPA3_SAE_ECC(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_WPA3_SAE_ECC_GET_FAMILY (macro)
Extract the curve family from a WPA3-SAE password token using elliptic curves.

Added in version 1.4.

#define PSA_KEY_TYPE_WPA3_SAE_ECC_GET_FAMILY(type) \
/* specification-defined value */

Parameters
type A WPAS3-SAE password token using elliptic curve key type: a value of
type psa_key_type_t such that PSA_KEY_TYPE_IS_WPA3_SAE_ECC(type) IS
true.

Returns: psa_ecc_family_t

The elliptic curve family id, if type is a supported WPA3-SAE password token using elliptic curve key.
Unspecified if type is not a supported WPA3-SAE password token using elliptic curve key.

PSA_KEY_TYPE_IS_WPA3_SAE_DH (macro)
Whether a key type is a WPA3-SAE password token using elliptic curves.
Added in version 1.4.

#define PSA_KEY_TYPE_IS_WPA3_SAE_DH(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_WPA3_SAE_DH_GET_FAMILY (macro)
Extract the finite field group family from a WPA3-SAE password token using finite fields.
Added in version 1.4.

#define PSA_KEY_TYPE_WPA3_SAE_DH_GET_FAMILY(type) \
/* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 75
1.4.0 Non-confidentia

Parameters

type A WPAS3-SAE password token using finite fields key type: a value of
type psa_key_type_t such that PSA_KEY_TYPE_IS_WPA3_SAE_DH(type) is
true.

Returns: psa_ecc_family_t

The finite field group family id, if type is a supported WPA3-SAE password token using finite fields key.
Unspecified if type is not a supported WPA3-SAE password token using finite fields key.

9.5 Asymmetric key types

Asymmetric keys come in pairs. One is a private or secret key, which must be kept confidential. The other is
a public key, which is meant to be shared with other participants in the protocol.

Note:

Depending on the type of cryptographic scheme, the private key can be referred to as the prover key
or the decapsulation key, and the public key can be referred to as the verifier key or the encapsulation
key.

The Crypto API defines the following types of asymmetric key:

e RSA keys
Elliptic Curve keys on page /8

e Diffie Hellman keys on page 84
e SPAKEZ2+ keys on page 86

In the Crypto API, key objects can either be a key pair, providing both the private and public key, or just a
public key. The difference in the key type values for a key pair and a public key for the same scheme is
common across all asymmetric keys.

The PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY() and PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR() macros convert
from one type to the other.

9.5.1 RSA keys

PSA_KEY_TYPE_RSA_KEY_PAIR (macro)

RSA key pair: both the private and public key.

#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)@x7001)

The size of an RSA key is the bit size of the modulus.

Compatible algorithms

® PSA_ALG_RSA_OAEP
® PSA_ALG_RSA_PKCS1V15_CRYPT
® PSA_ALG_RSA_PKCS1V15_SIGN

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 76
1.4.0 Non-confidential

® PSA_ALG_RSA_PKCS1V15_SIGN_RAW
® PSA_ALG_RSA_PSS
® PSA_ALG_RSA_PSS_ANY_SALT

Key format

The data format for import and export of a key-pair is the non-encrypted DER encoding of the
representation defined by in PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC8017] as
RSAPrivateKey, version .

RSAPrivateKey ::= SEQUENCE {
version INTEGER, -- must be 0@
modulus INTEGER, --n
publicExponent INTEGER, -- e
privateExponent INTEGER, --d
primel INTEGER, --p
prime2 INTEGER, -- q
exponentl INTEGER, -- d mod (p-1)
exponent2 INTEGER, -- d mod (g-1)
coefficient INTEGER, -- (inverse of q) mod p
}
Note:

Although it is possible to define an RSA key pair or private key using a subset of these elements, the
output from psa_export_key() for an RSA key pair must include all of these elements.

See PSA_KEY_TYPE_RSA_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().

Key generation

A call to psa_generate_key() will generate an RSA key-pair with the default public exponent of 65537. The
modulus n = pq is a product of two probabilistic primes p and ¢, where 2"~! < n < 27 and r is the bit size
specified in the attributes.

The exponent can be explicitly specified in non-default production parameters in a call to
psa_generate_key_custom(). Use the following custom production parameters:

e The production parameters structure, custom, must have flags set to zero.

e If custom_data_length == 0, the default exponent value 65537 is used.

e The additional production parameter buffer custom_data is the public exponent, in little-endian byte
order.

The exponent must be an odd integer greater than 1. An implementation must support an exponent of
65537, and is recommended to support an exponent of 3, and can support other values.

The maximum supported exponent value is IMPLEMENTATION DEFINED.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 77
1.4.0 Non-confidentia

Key derivation

The method used by psa_key_derivation_output_key() to derive an RSA key-pair is implementation defined.

PSA_KEY_TYPE_RSA_PUBLIC_KEY (macro)
RSA public key.

#define PSA_KEY_TYPE_RSA PUBLIC_KEY ((psa_key_type_t)0x4001)

The size of an RSA key is the bit size of the modulus.

Compatible algorithms

PSA_ALG_RSA_OAEP (encryption only)
PSA_ALG_RSA_PKCS1V15_CRYPT (encryption only)
PSA_ALG_RSA_PKCS1V15_SIGN (signature verification only)
PSA_ALG_RSA_PKCS1V15_SIGN_RAW (signature verification only)
PSA_ALG_RSA_PSS (signature verification only)
PSA_ALG_RSA_PSS_ANY_SALT (signature verification only)

Key format

The data format for import and export of a public key is the DER encoding of the representation defined by
Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile [RFC3279] §2.3.1 as RSAPublicKey.

RSAPublicKey ::= SEQUENCE {
modulus INTEGER, --n
publicExponent INTEGER } -- e

PSA_KEY_TYPE_IS_RSA (macro)
Whether a key type is an RSA key. This includes both key pairs and public keys.

#define PSA_KEY_TYPE_IS_RSA(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

9.5.2 Elliptic Curve keys

Elliptic curve keys are grouped into families of related curves. A keys for a specific curve is specified by a
combination of the elliptic curve family and the bit-size of the key.

There are three categories of elliptic curve key, shown in Table 6 on page 79. The curve type affects the key
format, the key-derivation procedure, and the algorithms which the key can be used with.

Table 6 Types of elliptic curve key

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 78
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc3279.html#section-2.3.1

Curve type Curve families

Weierstrass PSA_ECC_FAMILY_SECP_K1
PSA_ECC_FAMILY_SECP_R1
PSA_ECC_FAMILY_SECP_R2
PSA_ECC_FAMILY_SECT_K1
PSA_ECC_FAMILY_SECT_R1
PSA_ECC_FAMILY_SECT_R2
PSA_ECC_FAMILY_BRAINPOOL_P_R1
PSA_ECC_FAMILY_FRP

Montgomery PSA_ECC_FAMILY_MONTGOMERY

Twisted Edwards PSA_ECC_FAMILY_TWISTED_EDWARDS

PSA_KEY_TYPE_ECC_KEY_PAIR (macro)
Elliptic curve key pair: both the private and public key.

#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) /* specification-defined value */

Parameters
curve A value of type psa_ecc_family_t that identifies the ECC curve family
to be used.
Description

The size of an elliptic curve key is the bit size associated with the curve, that is, the bit size of ¢ for a curve
over a field IF,. See the documentation of each elliptic curve family for details.

Compatible algorithms

Table 7 shows the compatible algorithms for each type of elliptic curve key-pair.

Table 7 Compatible algorithms for elliptic curve key-pairs
Curve type Compatible algorithms

Weierstrass Weierstrass curve key-pairs can be used in asymmetric signature, key-agreement,
and key-encapsulation algorithms.

PSA_ALG_DETERMINISTIC_ECDSA
PSA_ALG_ECDSA
PSA_ALG_ECDSA_ANY
PSA_ALG_ECDH
PSA_ALG_ECIES_SEC1

continues on next page

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 79
1.4.0 Non-confidential

Table 7 - continued from previous page

Curve type Compatible algorithms
Montgomery Montgomery curve key-pairs can be used in key-agreement and key-encapsulation
algorithms.

PSA_ALG_ECDH
PSA_ALG_ECIES_SEC1
Twisted Edwards Twisted Edwards curve key-pairs can only be used in asymmetric signature
algorithms.
PSA_ALG_PURE_EDDSA
PSA_ALG_ED25519PH (Edwards25519 only)
PSA_ALG_ED448PH (Edwards448 only)

Key format
The data format for import and export of the key-pair depends on the type of elliptic curve. Table 8 shows
the format for each type of elliptic curve key-pair.

See PSA_KEY_TYPE_ECC_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().

Table 8 Key-pair formats for elliptic curve keys
Curve type Key-pair format

Weierstrass The key data is the content of the privateKey field of the ECPrivatekey format
defined by Elliptic Curve Private Key Structure [RFC5915].

This is a [m/8]-byte string in big-endian order, where m is the key size in bits.
Montgomery The key data is the scalar value of the ‘private key’ in little-endian order as defined
by Elliptic Curves for Security [RFC7748] §6. The value must have the forced bits set

to zero or one as specified by decodeScalar25519() and decodeScalar448() in
[RFC7748] §5.

This is a [m/8]-byte string where m is the key size in bits. This is 32 bytes for
Curve25519, and 56 bytes for Curve448.

Twisted Edwards The key data is the private key, as defined by Edwards-Curve Digital Signature
Algorithm (EdDSA) [RFC8032].
This is a 32-byte string for Edwards25519, and a 57-byte string for Edwards448.

Key derivation

The key-derivation method used when calling psa_key_derivation_output_key() depends on the type of
elliptic curve. Table 9 on page 81 shows the derivation method for each type of elliptic curve key.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 80
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc7748.html#section-6
https://datatracker.ietf.org/doc/html/rfc7748.html#section-5

Table 9 Key derivation for elliptic curve keys
Curve type Key derivation

Weierstrass A Weierstrass elliptic curve private key is d € [1, N — 1], where N is the order of the
curve'’s base point for ECC.

Let m be the bit size of N, such that 27—t < N < 2™ This function generates the
private key using the following process:
1. Draw a byte string of length [m/8] bytes.

2. If mis not a multiple of 8, set the most significant 8 x [m/8] — m bits of the
first byte in the string to zero.

3. Convert the string to integer k by decoding it as a big-endian byte-string.
4. If k > N — 2, discard the result and return to step 1.
5. Output d = k + 1 as the private key.

This method allows compliance to NIST standards, specifically the methods titled
Key-Pair Generation by Testing Candidates in [SP800-56A] §5.6.1.2.2 or FIPS
Publication 186-4: Digital Signature Standard (DSS) [FIPS186-4] §B.4.2.

Montgomery Draw a byte string whose length is determined by the curve, and set the mandatory
bits accordingly. That is:

e Curve25519 (PSA_ECC_FAMILY_MONTGOMERY, 255 bits): draw a 32-byte string and
process it as specified in Elliptic Curves for Security [RFC7748] §5.

o Curve448 (Psa_ECC_FAMILY_MONTGOMERY, 448 bits): draw a 56-byte string and
process it as specified in [RFC7748] §5.

Twisted Edwards Draw a byte string whose length is determined by the curve, and use this as the
private key. That is:

e Ed25519 (PSA_ECC_FAMILY_MONTGOMERY, 255 bits): draw a 32-byte string.
e Ed448 (PsA_ECC_FAMILY_MONTGOMERY, 448 bits): draw a 57-byte string.

PSA_KEY_TYPE_ECC_PUBLIC_KEY (macro)

Elliptic curve public key.

#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) /* specification-defined value */

Parameters
curve A value of type psa_ecc_family_t that identifies the ECC curve family
to be used.
Description

The size of an elliptic curve public key is the same as the corresponding private key. See
PSA_KEY_TYPE_ECC_KEY_PAIR() and the documentation of each elliptic curve family for details.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 81
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc7748.html#section-5
https://datatracker.ietf.org/doc/html/rfc7748.html#section-5

Compatible algorithms

Table 10 shows the compatible algorithms for each type of elliptic curve public key.

Note:

For key agreement, the public key of the peer is provided to the Crypto API as a buffer. This avoids
the need to import the public-key data that is received from the peer, just to carry out the
key-agreement algorithm.

Curve type

Weierstrass

Montgomery

Twisted Edwards

Key format

Table 10 Compatible algorithms for elliptic curve public keys

Compatible algorithms

Weierstrass curve public keys can be used in asymmetric signature and
key-encapsulation algorithms.

PSA_ALG_DETERMINISTIC_ECDSA
PSA_ALG_ECDSA
PSA_ALG_ECDSA_ANY
PSA_ALG_ECIES_SEC1

Montgomery curve public keys can only be used in key-encapsulation algorithms.
PSA_ALG_ECIES_SEC1

Twisted Edwards curve public keys can only be used in asymmetric signature
algorithms.

PSA_ALG_PURE_EDDSA

PSA_ALG_ED25519PH (Edwards25519 only)

PSA_ALG_ED448PH (Edwards448 only)

The data format for import and export of the public key depends on the type of elliptic curve. Table 11 on
page 83 shows the format for each type of elliptic curve public key.

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 82
Non-confidential

Table 11 Public-key formats for elliptic curve keys
Curve type Public-key format

Weierstrass The key data is the uncompressed representation of an elliptic curve point as an
octet string defined in SEC 1: Elliptic Curve Cryptography [SEC1] §2.3.3. If m is the
bit size associated with the curve, i.e. the bit size of ¢ for a curve over F,, then the
representation of point P consists of:

e The byte oxo4;
e zp asa [m/8|-byte string, big-endian;
e yp as a [m/8]-byte string, big-endian.

Montgomery The key data is the scalar value of the ‘public key’ in little-endian order as defined
by Elliptic Curves for Security [REC7748] §6. This is a [m/8]-byte string where m is
the key size in bits.

e Thisis 32 bytes for Curve25519, computed as X25519(private_key, 9).
e Thisis 56 bytes for Curve448, computed as X448 (private_key, 5).

Twisted Edwards The key data is the public key, as defined by Edwards-Curve Digital Signature
Algorithm (EdDSA) [RFC8032].

This is a 32-byte string for Edwards25519, and a 57-byte string for Edwards448.

PSA_KEY_TYPE_IS_ECC (macro)
Whether a key type is an elliptic curve key, either a key pair or a public key.

#define PSA_KEY_TYPE_IS_ECC(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_ECC_KEY_PAIR (macro)
Whether a key type is an elliptic curve key pair.

#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY (macro)
Whether a key type is an elliptic curve public key.

#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) /* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 83
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc7748.html#section-6

Parameters

type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_ECC_GET_FAMILY (macro)

Extract the curve family from an elliptic curve key type.

#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) /* specification-defined value */

Parameters
type An elliptic curve key type: a value of type psa_key_type_t such that
PSA_KEY_TYPE_IS_ECC(type) is true.
Returns: psa_ecc_family_t

The elliptic curve family id, if type is a supported elliptic curve key. Unspecified if type is not a supported
elliptic curve key.

9.5.3 Diffie Hellman keys

PSA_KEY_TYPE_DH_KEY_PAIR (macro)
Finite field Diffie-Hellman key pair: both the private key and public key.

#define PSA_KEY_TYPE_DH_KEY_PAIR(group) /* specification-defined value */

Parameters

group A value of type psa_dh_family_t that identifies the finite field
Diffie-Hellman group family to be used.

Compatible algorithms
® PSA_ALG_FFDH

Key format

The data format for import and export of the key pair is the representation of the private key z as a
big-endian byte string. The length of the byte string is the private key’s size in bytes, and leading zeroes are
not stripped.

See PSA_KEY_TYPE_DH_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().

Key derivation

A call to psa_key_derivation_output_key () will use the following process, defined in Key-Pair Generation by
Testing Candidates in NIST Special Publication 800-56A: Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm Cryptography [SP800-56A] §5.6.1.1.4.

A finite field Diffie-Hellman private key is « € [1,p — 1], where p is the group’s prime modulus. Let m be the
bit size of p, such that 2~ ! < p < 2™,

This function generates the private key using the following process:

1. Draw a byte string of length [m/8] bytes.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 84
1.4.0 Non-confidential

2. If m is not a multiple of 8, set the most significant 8 x [m /8] — m bits of the first byte in the string to
zero.

3. Convert the string to integer k by decoding it as a big-endian byte-string.
4. If k > p — 2, discard the result and return to step 1.
5. Output x = k£ + 1 as the private key.

PSA_KEY_TYPE_DH_PUBLIC_KEY (macro)
Finite field Diffie-Hellman public key.

#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) /* specification-defined value */

Parameters

group A value of type psa_dh_family_t that identifies the finite field
Diffie-Hellman group family to be used.

Compatible algorithms

None: Finite field Diffie-Hellman public keys are exported to use in a key-agreement algorithm, and the peer
key is provided to the PSA_ALG_FFDH key-agreement algorithm as a buffer of key data.

Key format

The data format for export of the public key is the representation of the public key ¥ = g* mod p as a
big-endian byte string. The length of the byte string is the length of the base prime p in bytes.

PSA_KEY_TYPE_IS_DH (macro)
Whether a key type is a finite field Diffie-Hellman key, either a key pair or a public key.

#define PSA_KEY_TYPE_IS_DH(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_DH_KEY_PAIR (macro)

Whether a key type is a finite field Diffie-Hellman key pair.

#define PSA_KEY_TYPE_IS DH_KEY_PAIR(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_DH_PUBLIC_KEY (macro)

Whether a key type is a finite field Diffie-Hellman public key.

#define PSA_KEY_TYPE_IS DH_PUBLIC _KEY(type) /* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 85
1.4.0 Non-confidentia

Parameters

type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_DH_GET_FAMILY (macro)
Extract the group family from a finite field Diffie-Hellman key type.

#define PSA_KEY_TYPE_DH_GET_FAMILY(type) /* specification-defined value */

Parameters

type A finite field Diffie-Hellman key type: a value of type psa_key_type_t
such that PSA_KEY_TYPE_IS_DH(type) is true.

Returns: psa_dh_family_t

The finite field Diffie-Hellman group family id, if type is a supported finite field Diffie-Hellman key.
Unspecified if type is not a supported finite field Diffie-Hellman key.

9.5.4 SPAKE2+ keys

PSA_KEY_TYPE_SPAKE2P_KEY_PAIR (macro)
SPAKE2+ key pair: both the prover and verifier key.
Added in version 1.2.

#define PSA_KEY_TYPE_SPAKE2P_KEY_PAIR(curve) /* specification-defined value */

Parameters
curve A value of type psa_ecc_family_t that identifies the elliptic curve
family to be used.
Description

The bit-size of a SPAKE2+ key is the size associated with the elliptic curve group, that is, [loga2(gq)| for a
curve over a field IF,. See Elliptic Curve keys on page /8 for details of each elliptic curve family.

To create a new SPAKE2+ key pair, use psa_key_derivation_output_key() as described in SPAKE2+
registration on page 372. The SPAKE2+ protocol recommends that a key-stretching key-derivation function,
such as PBKDF2, is used to hash the SPAKE2+ password. This follows the recommended process described
in [RFC92383].

A SPAKE2+ key pair can also be imported from a previously exported SPAKE2+ key pair.
The corresponding public key can be exported using psa_export_public_key (). See also
PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY().

Compatible algorithms

® PSA_ALG_SPAKE2P_HMAC
® PSA_ALG_SPAKE2P_CMAC
® PSA_ALG_SPAKE2P_MATTER

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 86
1.4.0 Non-confidential

Key format

A SPAKE2+ key pair consists of the two values w0 and w1, which result from the SPAKE2+ registration
phase, see SPAKE2+ registration on page 372. w0 and w1 are scalars in the same range as an elliptic curve
private key from the group used as the SPAKE2+ primitive group.

The data format for import and export of the key pair is the concatenation of the formatted values for w0
and w1, using the standard formats for elliptic curve keys used by the Crypto API. For example, for
SPAKE2+ over P-256 (secp256r1), the output from psa_export_key () would be the concatenation of:

e The P-256 private key w0. This is a 32-byte big-endian encoding of the integer wO0.
e The P-256 private key wl. This is a 32-byte big-endian encoding of the integer w1.

See PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().

Key derivation

A call to psa_key_derivation_output_key () will use the following process, which follows the
recommendations for the registration process in SPAKE2+, an Augmented Password-Authenticated Key
Exchange (PAKE) Protocol [RFC9383], and matches the specification of this process in Matter Specification,
Version 1.2 [MATTER].

The derivation of SPAKE2+ keys extracts [loga(p)/8] + 8 bytes from the PBKDF for each of w0s and wls,
where p is the prime factor of the order of the elliptic curve group. The following sizes are used for
extracting w0s and wls, depending on the elliptic curve:

P-256: 40 bytes

P-384: 56 bytes

P-521: 74 bytes
edwards25519: 40 bytes
edwards448: 64 bytes

The calculation of w0, w1, and L then proceeds as described in [RFC2383].

Implementation note
The values of w0 and w1 are required as part of the SPAKE2+ key pair.

It is IMPLEMENTATION DEFINED whether L is computed during key derivation, and stored as part of the
key pair; or only computed when required from the key pair.

PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY(nnaCFO)
SPAKE2+ public key: the verifier key.
Added in version 1.2.

#define PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY(curve) \
/* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 87
1.4.0 Non-confidentia

Parameters
curve A value of type psa_ecc_family_t that identifies the elliptic curve

family to be used.

Description

The bit-size of an SPAKE2+ public key is the same as the corresponding private key. See
PSA_KEY_TYPE_SPAKE2P_KEY_PAIR() and the documentation of each elliptic curve family for details.

To construct a SPAKE2+ public key, it must be imported.

Compatible algorithms

e PSA_ALG_SPAKE2P_HMAC (verification only)
e PSA_ALG_SPAKE2P_CMAC (verification only)
® PSA_ALG_SPAKE2P_MATTER (verification only)

Key format

A SPAKE2+ public key consists of the two values w0 and L, which result from the SPAKE2+ registration
phase, see SPAKEZ2+ registration on page 372. w0 is a scalar in the same range as a elliptic curve private key
from the group used as the SPAKE2+ primitive group. L is a point on the curve, similar to a public key from
the same group, corresponding to the w1 value in the key pair.

The data format for import and export of the public key is the concatenation of the formatted values for w0
and L, using the standard formats for elliptic curve keys used by the Crypto API. For example, for SPAKE2+
over P-256 (secp256r1), the output from psa_export_public_key() would be the concatenation of:

e The P-256 private key w0. This is a 32-byte big-endian encoding of the integer w0.
e The P-256 public key L. This is a 65-byte concatenation of:

— The byte oxo4.
— The 32-byte big-endian encoding of the x-coordinate of L.
— The 32-byte big-endian encoding of the y-coordinate of L.

PSA_KEY_TYPE_IS_SPAKE2P (macro)
Whether a key type is a SPAKE2+ key, either a key pair or a public key.
Added in version 1.2.

#define PSA_KEY_TYPE_IS_SPAKE2P(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_SPAKEZP_KEY_PAIR(nﬂaCFO)
Whether a key type is a SPAKE2+ key pair.
Added in version 1.2.

#define PSA_KEY_TYPE_IS_SPAKE2P_KEY_PAIR(type) \
/* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 88
1.4.0 Non-confidentia

Parameters

type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_SPAKEZP_PUBLIC_KEY(nnacro)
Whether a key type is a SPAKE2+ public key.
Added in version 1.2.

#define PSA_KEY_TYPE_IS_SPAKE2P_PUBLIC_KEY(type) \
/* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_SPAKE2P_GET_FAMILY (macro)
Extract the curve family from a SPAKE2+ key type.
Added in version 1.2.

#define PSA_KEY_TYPE_SPAKE2P_GET_FAMILY(type) /* specification-defined value */

Parameters

type A SPAKE2+ key type: a value of type psa_key_type_t such that
PSA_KEY_TYPE_IS_SPAKE2P(type) is true.

Returns: psa_ecc_family_t

The elliptic curve family id, if type is a supported SPAKE2+ key. Unspecified if type is not a supported
SPAKE2+ key.

9.5.5 Support macros

PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(nnaCFO)
The key-pair type corresponding to a public-key type.
#tdefine PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \

/* specification-defined value */

Parameters

type A public-key type or key-pair type.

Returns
The corresponding key-pair type. If type is not a public key or a key pair, the return value is undefined.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 89
1.4.0 Non-confidentia

Description

If type is a key-pair type, it will be left unchanged.

PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR (macro)

The public-key type corresponding to a key-pair type.

#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
/* specification-defined value */

Parameters

type A public-key type or key-pair type.

Returns
The corresponding public-key type. If type is not a public key or a key pair, the return value is undefined.

Description

If type is a public-key type, it will be left unchanged.

9.6 Key lifetimes

The lifetime of a key indicates where it is stored and which application and system actions will create and
destroy it.

Lifetime values are composed from:

e A persistence level, which indicates what device management actions can cause it to be destroyed. In
particular, it indicates whether the key is volatile or persistent. See psa_key_persistence_t for more
information.

e A location indicator, which indicates where the key is stored and where operations on the key are
performed. See psa_key_location_t for more information.

There are two main types of lifetime, indicated by the persistence level: volatile and persistent.

9.6.1 Volatile keys

Volatile keys are automatically destroyed when the application instance terminates or on a power reset of
the device. Volatile keys can be explicitly destroyed by the application.

Volatile keys have the persistence level PSA_KEY_PERSISTENCE_VOLATILE in the key lifetime value, see Key
lifetime encoding on page 91. Unless the key lifetime is explicitly set in the key attributes before creating a
key, a volatile key will be created with the default PSA_KEY_LIFETIME_VOLATILE lifetime value.

To create a volatile key:

1. Populate a psa_key_attributes_t object with the required type, size, policy and other key attributes.
2. If a non-default storage location is being used, set the key lifetime in the attributes object.

3. Create the key with one of the key creation functions. If successful, these functions output a transient
key identifier.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 90
1.4.0 Non-confidentia

To destroy a volatile key: call psa_destroy_key() with the key identifier. There must be a matching call to
psa_destroy_key () for each successful call to a create a volatile key.

9.6.2 Persistent keys

Persistent keys are preserved until the application explicitly destroys them or until an
implementation-specific device management event occurs, for example, a factory reset.

Each persistent key has a permanent key identifier, which acts as a name for the key. Within an application,
the key identifier corresponds to a single key. The application specifies the key identifier when the key is
created and when using the key.

The lifetime attribute of a persistent key indicates how and where it is stored. The default lifetime value for
a persistent key is PSA_KEY_LIFETIME_PERSISTENT, which corresponds to a default storage area. This
specification defines how implementations can provide other lifetime values corresponding to different
storage areas with different retention policies, or to secure elements with different security characteristics.

To create a persistent key:

1. Populate a psa_key_attributes_t object with the key’s type, size, policy and other attributes.
2. In the attributes object, set the desired lifetime and persistent identifier for the key.
3. Create the key with one of the key creation functions. If successful, these functions output the key
identifier that was specified by the application in step 2.
To access an existing persistent key: use the key identifier in any API that requires a key.

To destroy a persistent key: call psa_destroy_key() with the key identifier. Destroying a persistent key
permanently removes it from memory and storage.

By default, persistent key material is removed from volatile memory when not in use. Frequently used
persistent keys can benefit from caching, depending on the implementation and the application. Caching
can be enabled by creating the key with the PSA_KEY_USAGE_CACHE policy. Cached keys can be removed from
volatile memory by calling psa_purge_key (). See also Memory cleanup on page 42 and Managing key material
on page 42.

9.6.3 Key lifetime encoding

psa_key_lifetime_t (typedef)

Encoding of key lifetimes.

typedef uint32_t psa_key_lifetime_t;

The lifetime of a key indicates where it is stored and which application and system actions will create and
destroy it.

Lifetime values have the following structure:

Bits[7:0]: Persistence level
This value indicates what device management actions can cause it to be destroyed. In
particular, it indicates whether the key is volatile or persistent. See psa_key_persistence_t for
more information.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 91
1.4.0 Non-confidential

PSA_KEY_LIFETIME_GET_PERSISTENCE (lifetime) returns the persistence level for a key 1ifetime
value.

Bits[31:8]: Location indicator
This value indicates where the key material is stored (or at least where it is accessible in
cleartext) and where operations on the key are performed. See psa_key_location_t for more
information.

PSA_KEY_LIFETIME_GET_LOCATION(lifetime) returns the location indicator for a key 1ifetime
value.

Volatile keys are automatically destroyed when the application instance terminates or on a power reset of
the device. Persistent keys are preserved until the application explicitly destroys them or until an
implementation-specific device management event occurs, for example, a factory reset.

Persistent keys have a key identifier of type psa_key_id_t. This identifier remains valid throughout the
lifetime of the key, even if the application instance that created the key terminates.

This specification defines two basic lifetime values:

e Keys with the lifetime PSA_KEY_LIFETIME_VOLATILE are volatile. All implementations should support this
lifetime.

e Keys with the lifetime PSA_KEY_LIFETIME_PERSISTENT are persistent. All implementations that have
access to persistent storage with appropriate security guarantees should support this lifetime.

psa_key_persistence_t (typedef)

Encoding of key persistence levels.

typedef uint8_t psa_key_persistence_t;

What distinguishes different persistence levels is which device management events can cause keys to be
destroyed. For example, power reset, transfer of device ownership, or a factory reset are device
management events that can affect keys at different persistence levels. The specific management events
which affect persistent keys at different levels is outside the scope of the Crypto APL.

Values for persistence levels defined by Crypto APl are shown in Table 12.

Table 12 Key persistence level values

Persistence level Definition

© = PSA_KEY_PERSISTENCE_VOLATILE Volatile key.

A volatile key is automatically destroyed by the
implementation when the application instance terminates. In
particular, a volatile key is automatically destroyed on a power
reset of the device.

continues on next page

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 92
1.4.0 Non-confidential

Table 12 - continued from previous page

Persistence level Definition

1 = PSA_KEY_PERSISTENCE_DEFAULT Persistent key with a default lifetime.

Implementations should support this value if they support
persistent keys at all. Applications should use this value if they
have no specific needs that are only met by
implementation-specific features.

2 - 127 Persistent key with a PSA Certified API-specified lifetime.

The Crypto API does not define the meaning of these values,
but another PSA Certified APl may do so.

128 - 254 Persistent key with a vendor-specified lifetime.

No PSA Certified APl will define the meaning of these values,
so implementations may choose the meaning freely. As a
guideline, higher persistence levels should cause a key to
survive more management events than lower levels.

255 = PSA_KEY_PERSISTENCE_READ_ONLY Read-only or write-once key.

A key with this persistence level cannot be destroyed.
Implementations that support such keys may either allow
their creation through the Crypto API, preferably only to
applications with the appropriate privilege, or only expose
keys created through implementation-specific means such as
a factory ROM engraving process.

Note that keys that are read-only due to policy restrictions
rather than due to physical limitations should not have this
persistence level.

Note:

Key persistence levels are 8-bit values. Key management interfaces operate on lifetimes (type
psa_key_lifetime_t), and encode the persistence value as the lower 8 bits of a 32-bit value.

psa_key_location_t (typedef)

Encoding of key location indicators.

typedef uint32_t psa_key_location_t;

If an implementation of the Crypto API can make calls to external cryptoprocessors such as secure
elements, the location of a key indicates which secure element performs the operations on the key. If the
key material is not stored persistently inside the secure element, it must be stored in a wrapped form such
that only the secure element can access the key material in cleartext.

Values for location indicators defined by this specification are shown in Table 13 on page %4.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 93
1.4.0 Non-confidential

Table 13 Key location indicator values
Location indicator Definition

0 Primary local storage.

All implementations should support this value. The primary local storage is
typically the same storage area that contains the key metadata.

1 Primary secure element.

Implementations should support this value if there is a secure element
attached to the operating environment. As a guideline, secure elements may
provide higher resistance against side channel and physical attacks than the
primary local storage, but may have restrictions on supported key types, sizes,
policies and operations and may have different performance characteristics.

2 - Ox7fffff Other locations defined by a PSA specification.

The Crypto API does not currently assign any meaning to these locations, but
future versions of this specification or other PSA Certified APIs may do so.

0x800000 - Oxffffff Vendor-defined locations.
No PSA Certified APl will assign a meaning to locations in this range.

Note:

Key location indicators are 24-bit values. Key management interfaces operate on lifetimes (type
psa_key_lifetime_t), and encode the location as the upper 24 bits of a 32-bit value.

9.6.4 Lifetime values

PSA_KEY_LIFETIME_VOLATILE (macro)

The default lifetime for volatile keys.

#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) 0x00000000)

A volatile key only exists as long as its identifier is not destroyed. The key material is guaranteed to be
erased on a power reset.

A key with this lifetime is typically stored in the RAM area of the Crypto APl implementation. However this
is an implementation choice. If an implementation stores data about the key in a non-volatile memory;, it
must release all the resources associated with the key and erase the key material if the calling application
terminates.

PSA_KEY_LIFETIME_PERSISTENT (macro)

The default lifetime for persistent keys.

#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)

A persistent key remains in storage until it is explicitly destroyed or until the corresponding storage area is
wiped. This specification does not define any mechanism to wipe a storage area. Implementations are

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 94
1.4.0 Non-confidential

permitted to provide their own mechanism, for example, to perform a factory reset, to prepare for device
refurbishment, or to uninstall an application.

This lifetime value is the default storage area for the calling application. Implementations can offer other
storage areas designated by other lifetime values as implementation-specific extensions.

PSA_KEY_PERSISTENCE_VOLATILE (macro)

The persistence level of volatile keys.

#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)

See psa_key_persistence_t for more information.

PSA_KEY_PERSISTENCE_DEFAULT (macro)

The default persistence level for persistent keys.

#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)

See psa_key_persistence_t for more information.

PSA_KEY_PERSISTENCE_READ_ONLY (macro)

A persistence level indicating that a key is never destroyed.

#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) Oxff)

See psa_key_persistence_t for more information.

PSA_KEY_LOCATION_LOCAL_STORAGE (macro)

The local storage area for persistent keys.

#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
This storage area is available on all systems that can store persistent keys without delegating the storage to
a third-party cryptoprocessor.

See psa_key_location_t for more information.

PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT (macro)

The default secure element storage area for persistent keys.

#define PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT ((psa_key_location_t) 0x000001)

This storage location is available on systems that have one or more secure elements that are able to store
keys.

Vendor-defined locations must be provided by the system for storing keys in additional secure elements.

See psa_key_location_t for more information.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 95
1.4.0 Non-confidential

9.6.5 Attribute accessors

psa_set_key_lifetime (function)

Set the lifetime of a key, for a persistent key or a non-default location.

void psa_set_key_ lifetime(psa_key_attributes_t * attributes,
psa_key_lifetime_t lifetime);

Parameters
attributes The attribute object to write to.
lifetime The lifetime for the key.

If this is a volatile lifetime (such that
PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) is true), the key identifier
attribute is reset to PSA_KEY_ID_NULL.

Returns: void
Description

To make a key persistent, give it a persistent key identifier by using psa_set_key_id(). By default, a key that
has a persistent identifier is stored in the default storage area identifier by PSA_KEY_LIFETIME_PERSISTENT. Call
this function to choose a specific storage area, or to explicitly declare the key as volatile.

This function does not access storage, it merely stores the given value in the attribute object. The persistent
key will be written to storage when the attribute object is passed to a key creation function such as
psa_import_key(), psa_generate_key(), psa_generate_key_custom(), psa_key_derivation_output_key(),
psa_key_derivation_output_key_custom(), psa_key_agreement(), psa_encapsulate(), psa_decapsulate(),
psa_pake_get_shared_key(), Or psa_copy_key().

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like-macro.

psa_get_key_lifetime (function)

Retrieve the lifetime from key attributes.
psa_key_lifetime_t psa_get_key lifetime(const psa_key_attributes_t * attributes);
Parameters

attributes The key attribute object to query.

Returns: psa_key_lifetime_t

The lifetime value stored in the attribute object.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 96
1.4.0 Non-confidential

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like-macro.

9.6.6 Support macros

PSA_KEY_LIFETIME_GET_PERSISTENCE (macro)

Extract the persistence level from a key lifetime.

#define PSA_KEY_LIFETIME_GET_PERSISTENCE (lifetime) \
((psa_key_persistence_t) ((lifetime) & 0x000000ff))

Parameters

lifetime The lifetime value to query: a value of type psa_key_lifetime_t.

PSA_KEY_LIFETIME_GET_LOCATION (macro)

Extract the location indicator from a key lifetime.

#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \
((psa_key_location_t) ((lifetime) >> 8))

Parameters
lifetime The lifetime value to query: a value of type psa_key_lifetime_t.

PSA_KEY_LIFETIME_IS_VOLATILE (macro)
Whether a key lifetime indicates that the key is volatile.

#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \
(PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == PSA_KEY_PERSISTENCE_VOLATILE)

Parameters
lifetime The lifetime value to query: a value of type psa_key_lifetime_t.

Returns

1 if the key is volatile, otherwise .

Description
A volatile key is automatically destroyed by the implementation when the application instance terminates. In
particular, a volatile key is automatically destroyed on a power reset of the device.

A key that is not volatile is persistent. Persistent keys are preserved until the application explicitly destroys
them or until an implementation-specific device management event occurs, for example, a factory reset.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 97
1.4.0 Non-confidential

PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION (macro)

Construct a lifetime from a persistence level and a location.

#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \

((location) << 8 | (persistence))
Parameters
persistence The persistence level: a value of type psa_key_persistence_t.
location The location indicator: a value of type psa_key_location_t.
Returns

The constructed lifetime value.

9.7 Key identifiers

Key identifiers are integral values that act as permanent names for persistent keys, or as transient
references to volatile keys. Key identifiers use the psa_key_id_t type, and the range of identifier values is
divided as follows:

PSA_KEY_ID_NULL = @
Reserved as an invalid key identifier.

PSA_KEY_ID_USER_MIN - PSA_KEY_ID_USER_MAX
Applications can freely choose persistent key identifiers in this range.

PSA_KEY_ID_VENDOR_MIN - PSA_KEY_ID_VENDOR_MAX
Implementations can define additional persistent key identifiers in this range, and must
allocate any volatile key identifiers from this range.

Key identifiers outside these ranges are reserved for future use.

Key identifiers are output from a successful call to one of the key creation functions. For persistent keys,
this is the same identifier as the one specified in the key attributes used to create the key. The key identifier
remains valid until it is invalidated by passing it to psa_destroy_key(). A volatile key identifier must not be
used after it has been invalidated.

If an invalid key identifier is provided as a parameter in any function, the function will return
PSA_ERROR_INVALID_HANDLE; except for the special case of calling psa_destroy_key(PSA_KEY_ID_NULL), which
has no effect and always returns PSA_SUCCESS.

Valid key identifiers must have distinct values within the same application. If the implementation provides
caller isolation, then key identifiers are local to each application. That is, the same key identifier in two
applications corresponds to two different keys.

9.7.1 Key identifier type

psa_key_id_t (typedef)
Key identifier.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 98
1.4.0 Non-confidentia

typedef uint32_t psa_key_id_t;

A key identifier can be a permanent name for a persistent key, or a transient reference to volatile key. See

Key identifiers on page 98.

PSA_KEY_ID_NULL (macro)

The null key identifier.

#define PSA_KEY_ID_NULL ((psa_key_id_t)0)

The null key identifier is always invalid, except when used without in a call to psa_destroy_key () which will

return PSA_SUCCESS.

PSA_KEY_ID_USER_MIN (macro)

The minimum value for a key identifier chosen by the application.

#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)

PSA_KEY_ID_USER_MAX (macro)

The maximum value for a key identifier chosen by the application.

#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)@x3fffffff)

PSA_KEY_ID_VENDOR_MIN (macro)

The minimum value for a key identifier chosen by the implementation.

#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)

PSA_KEY_ID_VENDOR_MAX (macro)

The maximum value for a key identifier chosen by the implementation.

#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)ox7fffffff)

9.7.2 Attribute accessors

psa_set_key_id (function)

Declare a key as persistent and set its key identifier.

void psa_set_key_id(psa_key_attributes_t * attributes,
psa_key_id_t id);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates
1.4.0 Non-confidential

Page 99

Parameters
attributes The attribute object to write to.
id The persistent identifier for the key.
Returns: void
Description
The application must choose a value for id between PSA_KEY_ID_USER_MIN and PSA_KEY_ID_USER_MAX.

If the attribute object currently declares the key as volatile, this function sets the persistence level in the
lifetime attribute to PSA_KEY_PERSISTENCE_DEFAULT without changing the key location. See Key lifetimes on
page 90.

This function does not access storage, it merely stores the given value in the attribute object. The persistent
key will be written to storage when the attribute object is passed to a key creation function such as
psa_import_key(), psa_generate_key(), psa_generate_key_custom(), psa_key_derivation_output_key(),
psa_key_derivation_output_key_custom(), psa_key_agreement(), psa_encapsulate(), psa_decapsulate(),
psa_pake_get_shared_key(), Or psa_copy_key ().

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like-macro.

psa_get_key_id (function)

Retrieve the key identifier from key attributes.
psa_key_id_t psa_get_key_id(const psa_key_attributes_t * attributes);
Parameters

attributes The key attribute object to query.

Returns: psa_key_id_t

The persistent identifier stored in the attribute object. This value is unspecified if the attribute object
declares the key as volatile.

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like-macro.

9.8 Key policies

All keys have an associated policy that regulates which operations are permitted on the key. A key policy is
composed of two elements:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 100
1.4.0 Non-confidential

e A set of usage flags. See Key usage flags on page 102.
e A specific algorithm that is permitted with the key. See Permitted algorithms.

The policy is part of the key attributes that are managed by a psa_key_attributes_t object.

A highly constrained implementation might not be able to support all the policies that can be expressed
through this interface. If an implementation cannot create a key with the required policy, it must return an
appropriate error code when the key is created.

9.8.1 Permitted algorithms
The permitted algorithm is encoded using a algorithm identifier, as described in Algorithms on page 130.

For most algorithms, this specification only defines policies that restrict keys to a single algorithm, which is
consistent with both common practice and security good practice.

If the permitted algorithm is PSA_ALG_NONE, no cryptographic operation is permitted with the key. The key
can still be used for non-cryptographic actions such as exporting, if permitted by the usage flags.

For a cryptographic operation, the permitted algorithm value must exactly match the requested algorithm,
except in the following cases:

e The following pairs of signature algorithms are considered equivalent for verification, but not for
computing the signature:

— PSA_ALG_ECDSA and PSA_ALG_DETERMINISTIC_ECDSA.

e A signature algorithm constructed with PSA_ALG_ANY_HASH permits the specified signature scheme with
any hash algorithm. In addition, PSA_ALG_RSA_PKCS1V15_SIGN(PSA_ALG_ANY_HASH) also permits the
PSA_ALG_RSA_PKCS1V15_SIGN_RAW signature algorithm.

e A standalone key-agreement algorithm also permits the specified key-agreement scheme to be
combined with any key-derivation algorithm.

e An algorithm built from PSA_ALG_AT_LEAST_THIS_LENGTH_MAC() permits any MAC algorithm from the
same base class (for example, CMAC) which computes or verifies a MAC length greater than or equal
to the length encoded in the wildcard algorithm.

e An algorithm built from PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG() permits any AEAD algorithm
from the same base class (for example, CCM) which computes or verifies a tag length greater than or
equal to the length encoded in the wildcard algorithm.

e [he PSA_ALG_CCM_STAR_ANY_TAG wildcard algorithm permits the PSA_ALG_CCM_STAR_NO_TAG cipher
algorithm, the Psa_ALG_ccm AEAD algorithm, and the PSA_ALG_AEAD_WITH_SHORTENED_TAG (PSA_ALG_CCM,
tag_length) truncated-tag AEAD algorithm for tag_length equal to 4, 8 or 16.

e The wildcard key policy PSA_ALG_WPA3_SAE_ANY permits a password key or WPA3-SAE password token
key to be used with any WPA3-SAE cipher suite.

When a key is used in a cryptographic operation, the application supplies the algorithm to use for the
operation. The algorithm and operation are checked against the key's permitted-algorithm policy.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 101
1.4.0 Non-confidential

psa_set_key_algorithm (function)

Declare the permitted-algorithm policy for a key.

void psa_set_key_algorithm(psa_key_attributes_t * attributes,
psa_algorithm_t alg);

Parameters
attributes The attribute object to write to.
alg The permitted algorithm to write.

Returns: void
Description

The permitted-algorithm policy of a key encodes which algorithm or algorithms are permitted to be used
with this key.

This function overwrites any permitted-algorithm policy previously set in attributes.

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like-macro.

psa_get_key_algorithm (function)

Retrieve the permitted-algorithm policy from key attributes.
psa_algorithm_t psa_get_key_algorithm(const psa_key_attributes_t * attributes);
Parameters

attributes The key attribute object to query.

Returns: psa_algorithm_t

The algorithm stored in the attribute object.

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like-macro.

9.8.2 Key usage flags

The usage flags are encoded in a bitmask, which has the type psa_key_usage_t. There are two kinds of usage
flag:

1. Key-management usage flags.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 102
1.4.0 Non-confidential

e The extractable flag PSA_KEY_USAGE_EXPORT determines whether the key material can be extracted
from the cryptoprocessor, or copied outside of its current security boundary.

e The copyable flag PSA_KEY_USAGE_COPY determines whether the key material can be copied into a
new key, which can have a different lifetime or a more restrictive policy.

e The cacheable flag PSA_KEY_USAGE_CACHE determines whether the implementation is permitted to
retain non-essential copies of the key material in RAM. This policy only applies to persistent keys.
See also Managing key material on page 42.

2. Cryptographic-operation usage flags.
The following usage flags determine whether the corresponding cryptographic operations are
permitted with the key:

® PSA_KEY_USAGE_ENCRYPT
® PSA_KEY_USAGE_DECRYPT
® PSA_KEY_USAGE_SIGN_MESSAGE

PSA_KEY_USAGE_VERIFY_MESSAGE

PSA_KEY_USAGE_SIGN_HASH

PSA_KEY_USAGE_VERIFY_HASH

PSA_KEY_USAGE_DERIVE

PSA_KEY_USAGE_VERIFY_DERIVATION

PSA_KEY_USAGE_WRAP

PSA_KEY_USAGE_UNWRAP

The flag PSA_KEY_USAGE_DERIVE_PUBLIC is used in the function psa_check_key_usage() to query if a key
can be used for the public role in the specified algorithm.

psa_key_usage_t (typedef)

Encoding of permitted usage on a key.

typedef uint32_t psa_key_usage_t;

PSA_KEY_USAGE_EXPORT (macro)

Permission to export the key.

#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)

This key-management usage flag permits a key to be moved outside of the security boundary of its current
storage location. In particular:

e This flag is required to export a key from the cryptoprocessor using psa_export_key (). A public key or
the public part of a key pair can always be exported regardless of the value of this permission flag.

e This flag can also be required to make a copy of a key outside of a secure element using
psa_copy_key (). See also PSA_KEY_USAGE_COPY.

If a key does not have export permission, implementations must not permit the key to be exported in plain
form from the cryptoprocessor, whether through psa_export_key () or through a proprietary interface. The
key might still be exportable in a wrapped form, i.e. in a form where it is encrypted by another key.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 103
1.4.0 Non-confidential

PSA_KEY_USAGE_COPY (macro)

Permission to copy the key.

#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)

This key-management usage flag is required to make a copy of a key using psa_copy_key ().

For a key lifetime that corresponds to a secure element location that enforces the non-exportability of keys,
copying a key outside the secure element also requires the usage flag PSA_KEY_USAGE_EXPORT. Copying the
key within the secure element is permitted with just PSA_KEY_USAGE_COPY, if the secure element supports it.
For keys with the lifetime PSA_KEY_LIFETIME_VOLATILE Or PSA_KEY_LIFETIME_PERSISTENT, the usage flag
PSA_KEY_USAGE_COPY is sufficient to permit the copy.

PSA_KEY_USAGE_CACHE (macro)

Permission for the implementation to cache the key.

#define PSA_KEY_USAGE_CACHE ((psa_key_usage_t)0x00000004)

This key-management usage flag permits the implementation to make additional copies of the key material
that are not in storage and not for the purpose of an ongoing operation. Applications can use it as a hint for
the cryptoprocessor, to keep a copy of the key around for repeated access.

An application can request that cached key material is removed from memory by calling psa_purge_key ().

The presence of this usage flag when creating a key is a hint:

e An implementation is not required to cache keys that have this usage flag.

e An implementation must not report an error if it does not cache keys.

If this usage flag is not present, the implementation must ensure key material is removed from memory as
soon as it is not required for an operation, or for maintenance of a volatile key.

This flag must be preserved when reading back the attributes for all keys, regardless of key type or
implementation behavior.

See also Managing key material on page 42.

PSA_KEY_USAGE_ENCRYPT (macro)

Permission to encrypt a message, or perform key encapsulation, with the key.

#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)

This cryptographic-operation usage flag is required to use the key in a symmetric encryption operation, in
an AEAD encryption-and-authentication operation, in an asymmetric encryption operation, or in a
key-encapsulation operation. The flag must be present on keys used with the following APIs:

® psa_cipher_encrypt()
® psa_cipher_encrypt_setup()
® psa_aead_encrypt()

® psa_aead_encrypt_setup()

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 104
1.4.0 Non-confidentia

® psa_asymmetric_encrypt()

® psa_encapsulate()

For a key pair, this concerns the public key.

PSA_KEY_USAGE_DECRYPT (macro)

Permission to decrypt a message, or perform key decapsulation, with the key.

#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)

This cryptographic-operation usage flag is required to use the key in a symmetric decryption operation, in
an AEAD decryption-and-verification operation, in an asymmetric decryption operation, or in a
key-decapsulation operation. The flag must be present on keys used with the following APIs:

® psa_cipher_decrypt()

® psa_cipher_decrypt_setup()
® psa_aead_decrypt()

® psa_aead_decrypt_setup()

® psa_asymmetric_decrypt()

® psa_decapsulate()

For a key pair, this concerns the private key.

PSA_KEY_USAGE_SIGN_MESSAGE (macro)

Permission to sign a message with the key.

#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)@x00000400)

This cryptographic-operation usage flag is required to use the key in a MAC calculation operation, or in an
asymmetric message signature operation. The flag must be present on keys used with the following APlIs:

® psa_mac_compute()
® psa_mac_sign_setup()

® psa_sign_message()

For a key pair, this concerns the private key.

PSA_KEY_USAGE_VERIFY_MESSAGE (macro)

Permission to verify a message signature with the key.

#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)

This cryptographic-operation usage flag is required to use the key in a MAC verification operation, or in an
asymmetric message signature verification operation. The flag must be present on keys used with the
following APIs:

® psa_mac_verify()

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 105
1.4.0 Non-confidentia

® psa_mac_verify_setup()

® psa_verify_message()

For a key pair, this concerns the public key.

PSA_KEY_USAGE_SIGN_HASH (macro)

Permission to sign a message hash with the key.

#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)

This cryptographic-operation usage flag is required to use the key to sign a pre-computed message hash in
an asymmetric signature operation. The flag must be present on keys used with the following APlIs:

® psa_sign_hash()

This flag automatically sets PSA_KEY_USAGE_SIGN_MESSAGE: if an application sets the flag
PSA_KEY_USAGE_SIGN_HASH when creating a key, then the key always has the permissions conveyed by
PSA_KEY_USAGE_SIGN_MESSAGE, and the flag PSA_KEY_USAGE_SIGN_MESSAGE will also be present when the
application queries the usage flags of the key.

For a key pair, this concerns the private key.

PSA_KEY_USAGE_VERIFY_HASH (macro)

Permission to verify a message hash with the key.

#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)

This cryptographic-operation usage flag is required to use the key to verify a pre-computed message hash in
an asymmetric signature verification operation. The flag must be present on keys used with the following
APls:

® psa_verify_hash()

This flag automatically sets PSA_KEY_USAGE_VERIFY_MESSAGE: if an application sets the flag
PSA_KEY_USAGE_VERIFY_HASH when creating a key, then the key always has the permissions conveyed by
PSA_KEY_USAGE_VERIFY_MESSAGE, and the flag PSA_KEY_USAGE_VERIFY_MESSAGE will also be present when the
application queries the usage flags of the key.

For a key pair, this concerns the public key.

PSA_KEY_USAGE_DERIVE (macro)

Permission to derive other keys or produce a password hash from this key.

#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)

This cryptographic-operation usage flag is required to use the key for derivation in a key-derivation
operation, or in a key-agreement operation.

This flag must be present on keys used with the following APIs:

® psa_key_agreement()

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 106
1.4.0 Non-confidentia

® psa_key_derivation_key_agreement()

® psa_raw_key_agreement()
If this flag is present on all keys used in calls to psa_key_derivation_input_key () for a key-derivation
operation, then it permits calling psa_key_derivation_output_bytes(), psa_key_derivation_output_key(),

psa_key_derivation_output_key_custom(), psa_key_derivation_verify_bytes(), Or
psa_key_derivation_verify_key() at the end of the operation.

PSA_KEY_USAGE_VERIFY_DERIVATION (macro)
Permission to verify the result of a key derivation, including password hashing.
Added in version 1.1.

#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)

This cryptographic-operation usage flag is required to use the key for verification in a key-derivation
operation.

This flag must be present on keys used with psa_key_derivation_verify_key().

If this flag is present on all keys used in calls to psa_key_derivation_input_key () for a key-derivation
operation, then it permits calling psa_key_derivation_verify_bytes() Or psa_key_derivation_verify_key() at
the end of the operation.

PSA_KEY_USAGE_DERIVE_PUBLIC (macro)

Used in the psa_check_key_usage() function to determine if the key can be used in the public key role in a
key-agreement or a PAKE operation.

Added in version 1.4.

#define PSA_KEY_USAGE_DERIVE_PUBLIC ((psa_key_usage_t)@x00000030)
This cryptographic-operation usage flag is only used with the psa_check_key_usage() function. This flag is

not currently checked when performing any cryptographic operation.

For example, calling psa_check_key_usage() with PSA_KEY_USAGE_DERIVE_PUBLIC and with:

e PSA_ALG_ECDH checks that the key can be used as the public share in the ECDH key agreement. There
are no checks on permissions as the key share is provided in a buffer.

e PSA_ALG_SPAKE2P_HMAC will check that the key can be used in the Verifier role in the SPAKE2+
algorithm. The key must have the PSA_KEY_USAGE_DERIVE permission.

e PSA_ALG_HKDF is invalid, as there is no such role in single-key derivation algorithms.

PSA_KEY_USAGE_WRAP (macro)

Permission to wrap another key with the key.

#define PSA_KEY_USAGE_WRAP ((psa_key_usage_t)0x00010000)

This flag is required to use the key in a key-wrapping operation. The flag must be present on keys used with
the following APIs:

® psa_wrap_key()

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 107
1.4.0 Non-confidential

PSA_KEY_USAGE_UNWRAP (macro)

Permission to unwrap another key with the key.

#define PSA_KEY_USAGE_UNWRAP ((psa_key_usage_t)0x00020000)

This flag is required to use the key in a key-unwrapping operation. The flag must be present on keys used
with the following APIs:

® psa_unwrap_key()

psa_set_key_usage_flags (function)

Declare usage flags for a key.

void psa_set_key_usage_flags(psa_key_attributes_t * attributes,
psa_key_usage_t usage_flags);

Parameters
attributes The attribute object to write to.
usage_flags The usage flags to write.

Returns: void
Description

Usage flags are part of a key’s policy. They encode what kind of operations are permitted on the key. For
more details, see Key policies on page 100.

This function overwrites any usage flags previously set in attributes.

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like-macro.

psa_get_key_usage_flags (function)

Retrieve the usage flags from key attributes.
psa_key_usage_t psa_get_key_usage_flags(const psa_key_attributes_t * attributes);
Parameters

attributes The key attribute object to query.

Returns: psa_key_usage_t

The usage flags stored in the attribute object.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 108
1.4.0 Non-confidentia

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like-macro.

psa_check_key_usage (function)

Query the capability of a key.

Added in version 1.4.

psa_status_t psa_check_key_usage(psa_key_id_t key,

psa_algorithm_t alg,
psa_key_usage_t usage);

Parameters
key |dentifier of the key to check.
alg An algorithm identifier: a value of type psa_algorithm_t.
usage A single PSA_KEY_USAGE_xxx flag.

Returns: psa_status_t

PSA_SUCCESS key can be used for the requested operation on this implementation.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e usage is a key-management usage flag and alg is Not PSA_ALG_NONE.

e usage iS a cryptographic-operation usage flag and alg is not a
valid, specific algorithm. A ‘specific algorithm’ is one that is
neither PSA_ALG_NONE nor a wildcard algorithm.

e usage is not a valid role for algorithm alg.
e key is not compatible with alg and usage.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e The implementation does not support algorithm alg.

e The implementation does not support using key with the
operation associated with alg and usage.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 109
1.4.0 Non-confidential

Description

This function reports whether the implementation supports the use of a key with the operation associated
with a provided algorithm and usage. This function does not attempt to perform the operation.

If usage is a key-management usage flag, then:

e alg must be PSA_ALG_NONE.

e key must exist, and permit the requested usage flag.
If usage is a cryptographic-operation usage flag, then:

e alg must be a valid, fully specified algorithm, and not a wildcard. For example:

— PSA_ALG_ECDSA(PSA_ALG_ANY_HASH) is invalid as it is a wildcard algorithm.

— PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_GCM, 9) is invalid as it has an invalid tag-length for
GCM.

— PSA_ALG_SPAKE2P_HMAC (PSA_ALG_SHA_1) is invalid as SPAKE2+ does have SHA-1 in any cipher-suite.

e usage must identify a valid role within the algorithm. For example, if alg == PSA_ALG_GCM, the usage
must be either PSA_KEY_USAGE_ENCRYPT Or PSA_KEY_USAGE_DECRYPT, as these are the key-usage policy
flags for AEAD functions.

e key must exist, have a type and size that are compatible with the operation associated with alg and
usage, and have the required permission for the algorithm and usage. For example:

— An Edwards25519 key pair is not compatible with PSA_ALG_ECDSA(PSA_ALG_SHA_256).

— A 512-bit RSA key pair is not compatible with PSA_ALG_RSA_OAEP (PSA_ALG_SHA_512) as the
algorithm requires a larger key size.

— A 512-bit AES key (double-length key for use in AES-256-XTS) is not compatible with PSA_ALG_CTR.

Note:

For the key pair or public key of a valid type in a key agreement function, this function returns
PSA_SUCCESS for the usage PSA_KEY_USAGE_DERIVE_PUBLIC, regardless of the key’s policy. This is because
the corresponding API functions take a key buffer as input, not a key object, and the key data can
extracted by calling psa_export_public_key (), which does not require any usage flag.

Implementation note

The intended behavior of this function is to include any check that can be made using the accessible
key attributes, but without requiring logic or arithmetic using the key material.

9.9 Key management functions
9.9.1 Key creation

New keys can be created in the following ways:

e psa_import_key() creates a key from a data buffer provided by the application.

e psa_generate_key() and psa_generate_key_custom() create a key from randomly generated data.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 110
1.4.0 Non-confidential

psa_key_derivation_output_key () and psa_key_derivation_output_key_custom() create a key from data
generated by a pseudorandom derivation process. See Key derivation on page 244.

psa_key_agreement () creates a key from the shared secret result of a key-agreement process. See Key
agreement on page 317.

psa_encapsulate() and psa_decapsulate() create a shared secret key using a key-encapsulation
mechanism.

psa_pake_get_shared_key () creates a key from the shared secret result of a password-authenticated
key exchange. See Password-authenticated key exchange (PAKE) on page 338.

psa_copy_key () duplicates an existing key with a different lifetime or with a more restrictive usage
policy.
psa_attach_key() registers implementation-provided key material for use as a volatile key.

When creating a key, the attributes for the new key are specified in a psa_key_attributes_t object. Each key
creation function defines how it uses the attributes.

Note:
The attributes for a key are immutable after the key has been created.

The application must set the key algorithm policy and the appropriate key usage flags in the attributes
in order for the key to be used in any cryptographic operations.

psa_import_key (function)

Import a key in binary format.

psa_status_t psa_import_key(const psa_key_attributes_t * attributes,

const uint8_t * data,
size_t data_length,
psa_key_id_t * key);

Parameters
attributes The attributes for the new key.
The following attributes are required for all keys:
e The key type determines how the data buffer is interpreted.
The following attributes must be set for keys used in cryptographic
operations:
e The key permitted-algorithm policy, see Permitted algorithms on
page 101.
e The key usage flags, see Key usage flags on page 102.
The following attributes must be set for keys that do not use the
default PSA_KEY_LIFETIME_VOLATILE lifetime:
e The key lifetime, see Key lifetimes on page 90.
e The key identifier is required for a key with a persistent lifetime,
see Key identifiers on page 98.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 111

1.4.0

Non-confidentia

The following attributes are optional:

e If the key size is nonzero, it must be equal to the key size
determined from data.

Note:

This is an input parameter: it is not updated with the final key
attributes. The final attributes of the new key can be queried by
calling psa_get_key_attributes() with the key’s identifier.

data Buffer containing the key data. The content of this buffer is
interpreted according to the type declared in attributes.

All implementations must support at least the format described in the
Key format section of the chosen key type. Implementations can
support other formats, but be conservative in interpreting the key
data: it is recommended that implementations reject content if it might
be erroneous, for example, if it is the wrong type or is truncated.

data_length Size of the data buffer in bytes.
key On success, an identifier for the newly created key. PSA_KEY_ID_NULL on
failure.

Returns: psa_status_t

PSA_SUCCESS Success. If the key is persistent, the key material and the key's
metadata have been saved to persistent storage.

PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_NOT_PERMITTED The implementation does not permit creating a key with the specified

attributes due to some implementation-specific policy.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already a
persistent key with the given identifier.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e The key type is invalid.

e The key size is nonzero, and is incompatible with the key data in
data.

The key lifetime is invalid.

The key identifier is not valid for the key lifetime.

The key usage flags include invalid values.

The key's permitted-usage algorithm is invalid.

The key attributes, as a whole, are invalid.

The key data is not correctly formatted for the key type.

PSA_ERROR_NOT_SUPPORTED The key attributes, as a whole, are not supported, either by the
implementation in general or in the specified storage location.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_INSUFFICIENT_STORAGE

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 112
1.4.0 Non-confidential

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The key is extracted from the provided data buffer. Its location, policy, and type are taken from attributes.
The provided key data determines the key size. The attributes can optionally specify a key size; in this case

it must match the size determined from the key data. A key size of @ in attributes — the default value —
indicates that the key size is solely determined by the key data.

Implementations must reject an attempt to import a key of size o.

This function supports any output from psa_export_key (). Each key type in Key types on page 53 describes
the expected format of keys.

This specification defines a single format for each key type. Implementations can optionally support other
formats in addition to the standard format. It is recommended that implementations that support other
formats ensure that the formats are clearly unambiguous, to minimize the risk that an invalid input is
accidentally interpreted according to a different format.

Note:

The Crypto API does not support asymmetric private-key objects outside of a key pair. To import a
private key, the attributes must specify the corresponding key-pair type. Depending on the key type,
either the import format contains the public-key data or the implementation will reconstruct the
public key from the private key as needed.

psa_custom_key_parameters_t (struct)

Custom production parameters for key generation or key derivation.
Added in version 1.3.

typedef struct psa_custom_key_parameters_t {

uint32_t flags;
} psa_custom_key_parameters_t;

Fields
flags Flags to control the key production process. o for the default
production parameters.
Description
Note:
Future versions of the specification, and implementations, may add other fields in this structure.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 113

1.4.0 Non-confidentia

The interpretation of this structure depends on the type of the key. Table 14 shows the custom production
parameters for each type of key. See the key type definitions for details of the valid parameter values.

Table 14 Custom key parameters

Key type Custom key parameters

RSA Use the production parameters to select an exponent value that is different from
the default value of 65537.

See PSA_KEY_TYPE_RSA_KEY_PAIR.

Other key types Reserved for future use.
flags must be o.

PSA_CUSTOM_KEY_PARAMETERS_INIT (macro)
The default production parameters for key generation or key derivation.

Added in version 1.3.

#define PSA_CUSTOM_KEY_PARAMETERS_INIT { @ }

Calling psa_generate_key_custom() Or psa_key_derivation_output_key_custom() with custom ==
PSA_CUSTOM_KEY_PARAMETERS_INIT and custom_data_length == 0 is equivalent to calling psa_generate_key() or
psa_key_derivation_output_key() respectively.

psa_generate_key (function)

Generate a key or key pair.

psa_status_t psa_generate_key(const psa_key_attributes_t * attributes,
psa_key_id_t * key);

Parameters
attributes The attributes for the new key.
The following attributes are required for all keys:
e The key type. It must not be an asymmetric public key.
e The key size. It must be a valid size for the key type.
The following attributes must be set for keys used in cryptographic
operations:
e The key permitted-algorithm policy, see Permitted algorithms on
page 101.
e The key usage flags, see Key usage flags on page 102.
The following attributes must be set for keys that do not use the
default PSA_KEY_LIFETIME_VOLATILE lifetime:
e The key lifetime, see Key lifetimes on page 90.
e The key identifier is required for a key with a persistent lifetime,
see Key identifiers on page 98.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 114

1.4.0 Non-confidential

Note:

This is an input parameter: it is not updated with the final key
attributes. The final attributes of the new key can be queried by
calling psa_get_key_attributes() with the key’s identifier.

key On success, an identifier for the newly created key. For persistent
keys, this is the key identifier defined in attributes. PSA_KEY_ID_NULL
on failure.

Returns: psa_status_t

PSA_SUCCESS Success. If the key is persistent, the key material and the key's
metadata have been saved to persistent storage.

PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_NOT_PERMITTED The implementation does not permit creating a key with the specified
attributes due to some implementation-specific policy.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already a
persistent key with the given identifier.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

The key type is invalid, or is an asymmetric public-key type.
The key size is not valid for the key type.

The key lifetime is invalid.

The key identifier is not valid for the key lifetime.

The key usage flags include invalid values.

The key's permitted-usage algorithm is invalid.

The key attributes, as a whole, are invalid.

PSA_ERROR_NOT_SUPPORTED The key attributes, as a whole, are not supported, either by the
implementation in general or in the specified storage location.

PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_INSUFFICIENT_STORAGE
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 115
1.4.0 Non-confidential

Description

The key is generated randomly. Its location, policy, type and size are taken from attributes.
Implementations must reject an attempt to generate a key of size o.

The key type definitions in Key types on page 53 provide specific details relating to generation of the key.

Note:

This function is equivalent to calling psa_generate_key_custom() with the production parameters
PSA_CUSTOM_KEY_PARAMETERS_INIT and custom_data_length == @ (custom_data is ignored).

psa_generate_key_custom (function)
Generate a key or key pair using custom production parameters.

Added in version 1.3.

psa_status_t psa_generate_key_custom(const psa_key_attributes_t * attributes,
const psa_custom_key_parameters_t * custom,
const uint8_t * custom_data,
size_t custom_data_length,
psa_key_id_t * key);

Parameters
attributes The attributes for the new key.
The following attributes are required for all keys:
e The key type. It must not be an asymmetric public key.
e The key size. It must be a valid size for the key type.

The following attributes must be set for keys used in cryptographic
operations:

e The key permitted-algorithm policy, see Permitted algorithms on
page 101.
e The key usage flags, see Key usage flags on page 102.
The following attributes must be set for keys that do not use the
default PSA_KEY_LIFETIME_VOLATILE lifetime:
e The key lifetime, see Key lifetimes on page 90.

e The key identifier is required for a key with a persistent lifetime,
see Key identifiers on page 98.

Note:

This is an input parameter: it is not updated with the final key
attributes. The final attributes of the new key can be queried by
calling psa_get_key_attributes() with the key’s identifier.

custom Customized production parameters for the key generation.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 116
1.4.0 Non-confidential

custom_data
custom_data_length

key

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_ALREADY_EXISTS

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_INSUFFICIENT_STORAGE
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

When this is PSA_CUSTOM_KEY_PARAMETERS_INIT With custom_data_length
== @, this function is equivalent to psa_generate_key ().

A buffer containing additional variable-sized production parameters.
Length of custom_data in bytes.

On success, an identifier for the newly created key. For persistent
keys, this is the key identifier defined in attributes. PSA_KEY_ID_NULL
on failure.

Success. If the key is persistent, the key material and the key's
metadata have been saved to persistent storage.

The library requires initializing by a call to psa_crypto_init().

The implementation does not permit creating a key with the specified
attributes due to some implementation-specific policy.

This is an attempt to create a persistent key, and there is already a
persistent key with the given identifier.

The following conditions can result in this error:

e The key type is invalid, or is an asymmetric public-key type.
e The key size is not valid for the key type.

e The key lifetime is invalid.

e The key identifier is not valid for the key lifetime.

e The key usage flags include invalid values.

e The key's permitted-usage algorithm is invalid.

e The key attributes, as a whole, are invalid.

e The production parameters are invalid.

The following conditions can result in this error:

e The key attributes, as a whole, are not supported, either by the
implementation in general or in the specified storage location.

e The production parameters are not supported by the
implementation.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 117

1.4.0

Non-confidentia

Description

Use this function to provide explicit production parameters when generating a key. See the description of
psa_generate_key () for the operation of this function with the default production parameters.

The key is generated randomly. Its location, policy, type and size are taken from attributes.
Implementations must reject an attempt to generate a key of size o.

See the documentation of psa_custom_key_parameters_t for a list of non-default production parameters. See
the key type definitions in Key types on page 53 for details of the custom production parameters used for
key generation.

psa_copy_key (function)
Make a copy of a key.
psa_status_t psa_copy_key(psa_key_id_t source_key,

const psa_key_attributes_t * attributes,
psa_key_id_t * target_key);

Parameters
source_key The key to copy. It must permit the usage PSA_KEY_USAGE_COPY. If a
private or secret key is being copied outside of a secure element it
must also permit PSA_KEY_USAGE_EXPORT.
attributes The attributes for the new key.
The following attributes must be set for keys used in cryptographic
operations:
e The key permitted-algorithm policy, see Permitted algorithms on
page 101.
e The key usage flags, see Key usage flags on page 102.
These flags are combined with the source key policy so that both sets
of restrictions apply, as described in the documentation of this
function.
The following attributes must be set for keys that do not use the
default PSA_KEY_LIFETIME_VOLATILE lifetime:
e The key lifetime, see Key lifetimes on page 90.
e The key identifier is required for a key with a persistent lifetime,
see Key identifiers on page 98.
The following attributes are optional:
e [f the key type has a non-default value, it must be equal to the
source key type.
e [f the key size is nonzero, it must be equal to the source key size.
Note:
This is an input parameter: it is not updated with the final key
attributes. The final attributes of the new key can be queried by
calling psa_get_key_attributes() with the key’s identifier.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 118

1.4.0 Non-confidential

target_key

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_ALREADY_EXISTS

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_INSUFFICIENT_STORAGE
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

On success, an identifier for the newly created key. PSA_KEY_ID_NULL on
failure.

Success. If the new key is persistent, the key material and the key's
metadata have been saved to persistent storage.

The library requires initializing by a call to psa_crypto_init().
source_key is not a valid key identifier.
The following conditions can result in this error:

e source_key does not have the PSA_KEY_USAGE_COPY usage flag.

e source_key does not have the PSA_KEY_USAGE_EXPORT usage flag,
and the location of target_key is outside the security boundary of
the source_key storage location.

e The implementation does not permit creating a key with the
specified attributes due to some implementation-specific policy.

This is an attempt to create a persistent key, and there is already a
persistent key with the given identifier.

The following conditions can result in this error:
e attributes specifies a key type or key size which does not match
the attributes of source key.
e The lifetime or identifier in attributes are invalid.
e The key policies from source_key and those specified in
attributes are incompatible.
The following conditions can result in this error:
e The source key storage location does not support copying to the
target key's storage location.

e The key attributes, as a whole, are not supported in the target
key’s storage location.

Copy key material from one location to another. Its location is taken from attributes, its policy is the
intersection of the policy in attributes and the source key policy, and its type and size are taken from the

source key.

This function is primarily useful to copy a key from one location to another, as it populates a key using the

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 119

1.4.0

Non-confidential

material from another key which can have a different lifetime.

This function can be used to share a key with a different party, subject to implementation-defined
restrictions on key sharing.

The policy on the source key must have the usage flag PSA_KEY_USAGE_COPY set. This flag is sufficient to
permit the copy if the key has the lifetime PSA_KEY_LIFETIME_VOLATILE Or PSA_KEY_LIFETIME_PERSISTENT. Some
secure elements do not provide a way to copy a key without making it extractable from the secure element.
If a key is located in such a secure element, then the key must have both usage flags PSA_KEY_USAGE_COPY
and PSA_KEY_USAGE_EXPORT in order to make a copy of the key outside the secure element.

The resulting key can only be used in a way that conforms to both the policy of the original key and the
policy specified in the attributes parameter:

e The usage flags on the resulting key are the bitwise-and of the usage flags on the source policy and
the usage flags in attributes.

e |f both permit the same algorithm or wildcard-based algorithm, the resulting key has the same
permitted algorithm.

e |f either of the policies permits an algorithm and the other policy permits a wildcard-based permitted
algorithm that includes this algorithm, the resulting key uses this permitted algorithm.

e |f the policies do not permit any algorithm in common, this function fails with the status
PSA_ERROR_INVALID_ARGUMENT.

As a result, the new key cannot be used for operations that were not permitted on the source key.

The effect of this function on implementation-defined attributes is implementation-defined.

psa_attach_key (function)
Register implementation-provided key material with a volatile key identifier and key policy.
Added in version 1.4.

psa_status_t psa_attach_key(const psa_key_attributes_t * attributes,
const uint8_t * label,
size_t label length,
psa_key_id_t * key);

Parameters
attributes The attributes for the key to be registered.

Some of the attributes can be provided by the implementation. It is
IMPLEMENTATION DEFINED, and possibly key-specific, which attributes are
provided by the implementation and which must be supplied by the
application.

The following attributes must always be provided by the application:
e The key lifetime must specify a volatile key, and the storage

location of the implementation-provided key. See Key lifetimes on
page 90.

The following attributes must be provided by either the application or
the implementation. If provided by both, they must be identical:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 120
1.4.0 Non-confidentia

label

label_length

key

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_BAD_STATE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

IHI 0086
1.4.0

e The key type.
e The key size.

The following attributes must be set for keys used in cryptographic
operations:

e The key permitted-algorithm policy, see Permitted algorithms on
page 101.
e The key usage flags, see Key usage flags on page 102.

These attributes are combined with any policy that is provided by the
implementation, so that both sets of restrictions apply.

Buffer containing a label that identifies the implementation-provided
key to be registered.

The contents of this label are interpreted by the implementation and
may correspond to a pre-provisioned, securely stored, or
deterministically derived key within the location specified in
attributes.

Size of the 1abel buffer in bytes.

On success, an identifier for the newly created key. PSA_KEY_ID_NULL on
failure.

Success.
The library requires initializing by a call to psa_crypto_init().

The implementation does not permit creating a key with the specified
attributes due to some implementation-specific policy.

The following conditions can result in this error:

e The key type is invalid.

e The key size is nonzero, and is incompatible with the
implementation-provided key.

The key lifetime specifies a non-volatile persistence level.
The key lifetime specifies an invalid storage location.

The key usage flags include invalid values.

The key's permitted-usage algorithm is invalid.

The key attributes, as a whole, are invalid.

e The implementation-provided key material is incompatible with
the provided key attributes.

The key attributes, as a whole, are not supported, either by the
implementation in general or in the specified storage location.

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 121

Non-confidentia

PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

PSA_ERROR_DOES_NOT_EXIST label does not refer to key material within the location specified in
attributes.

Description

This function allows applications to register implementation-provided key material. The key material can
come from different sources, for example:

e Keys that are provisioned outside the Crypto API, such as during manufacturing or by a secure
element.

e Keys that are deterministically derived from a secret within the implementation.

After registering the key, the application has a volatile key identifier that can be used in cryptographic
operations permitted by its usage flags and algorithm policy.

The key material is identified by its location, specified in the provided attributes 1ifetime value, and the
label parameter. The format of the label is specific to the implementation and storage location. Typically,
the label is used as a location-specific identifier for the key material, or can provide input for deriving the
key material from an internal secret.

This function can only be used to create a volatile key. That is, a key with a lifetime persistence level of
PSA_KEY_PERSISTENCE_VOLATILE.

Depending on the key being registered, the implementation can provide some or all of the key type, size,
and policy. For example:

e Provisioned key material has a fixed size. The implementation might permit the application to define
the key type and policy, as long as these are compatible with the key material.

e An implementation-specific derived key can require the application to provide a key type and size,
using these in the derivation process.

e An implementation-provided key can be fully defined by the implementation, with a fixed type, size,
and policy. The call to psa_attach_key() needs to specify the location and label of the key, and a
matching policy, in order to obtain a key id.

Calling psa_destroy_key() with a key identifier returned by psa_attach_key () will remove the key identifier
and policy from the key store, but any implementation-provided key material remains within the
implementation. A subsequent call to psa_attach_key () with the same parameters will return a new key
identifier for the same key.

It is IMPLEMENTATION DEFINED whether the same implementation-provided key can be attached to multiple key
identifiers concurrently.

Note:

This function is intended for scenarios where key material is provided outside the Crypto API, and the
application needs to use such keys within the Crypto API framework.

The function only allows registering key material that is provided by the implementation. To import
new key material, use psa_import_key().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 122
1.4.0 Non-confidential

Although the implementation verifies that the application-supplied attributes are compatible with the
implementation-provided key: it is the application’s responsibility to ensure correctness for attributes
that are provided by the implementation.

To create a persistent key from pre-existing key material, the implementation might permit a key
returned by psa_attach_key () to be copied to a persistent key using psa_copy_key ().

Implementation note

Implementations may impose restrictions on which keys can be registered, depending on their storage
architecture and security policies.

The behavior of a call psa_attach_key () with a persistent key-lifetime might be specified in a future
version of the Crypto API. At present, it is recommended that such a call returns
PSA_ERROR_INVALID_ARGUMENT, and does not provide implementation-specific behavior.

9.9.2 Key destruction

psa_destroy_key (function)

Destroy or unregister a key.

psa_status_t psa_destroy_key(psa_key_id_t key);

Parameters

key |dentifier of the key to erase. If this is PSA_KEY_ID_NULL, do nothing and
return PSA_SUCCESS.

Returns: psa_status_t

PSA_SUCCESS Success:

e If key was a valid key identifier that was not the result of a call to
psa_attach_key (), then material that it referred to has been
erased.

e If key was a valid key identifier that was returned by
psa_attach_key(), then the key identifier is detached from the
implementation-provided key.

e Alternatively, key was PSA_KEY_ID_NULL.

PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is neither a valid key identifier, nor PSA_KEY_ID_NULL.
PSA_ERROR_NOT_PERMITTED The key cannot be erased because it is read-only, either due to a

policy or due to physical restrictions.

PSA_ERROR_COMMUNICATION_FAILURE
There was an failure in communication with the cryptoprocessor. The
key material might still be present in the cryptoprocessor.

PSA_ERROR_CORRUPTION_DETECTED An unexpected condition which is not a storage corruption or a
communication failure occurred. The cryptoprocessor might have been

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 123
1.4.0 Non-confidential

compromised.

PSA_ERROR_STORAGE_FAILURE The storage operation failed. Implementations must make a best effort
to erase key material even in this situation, however, it might be
impossible to guarantee that the key material is not recoverable in
such cases.

PSA_ERROR_DATA_CORRUPT The storage is corrupted. Implementations must make a best effort to
erase key material even in this situation, however, it might be
impossible to guarantee that the key material is not recoverable in
such cases.

PSA_ERROR_DATA_INVALID

Description

For key identifiers that resulted from registering an implementation-provided key using psa_attach_key(),
this function detaches the key identifier from the implementation-provided key.

For other keys, this function destroys a key from both volatile memory and, if applicable, non-volatile
storage. Implementations must make a best effort to ensure that that the key material cannot be recovered.

This function also erases any metadata such as policies and frees resources associated with the key.

Destroying the key makes the key identifier invalid, and the key identifier must not be used again by the
application.

If a key is currently in use in a multi-part operation, then destroying the key will cause the multi-part
operation to fail.

psa_purge_key (function)
Remove non-essential copies of key material from memory.
psa_status_t psa_purge_key(psa_key_id_t key);
Parameters
key Identifier of the key to purge.

Returns: psa_status_t

PSA_SUCCESS Success. The key material has been removed from memory, if the key
material is not currently required.

PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 124
1.4.0 Non-confidential

Description

For keys that have been created with the PSA_KEY_USAGE_CACHE usage flag, an implementation is permitted to
make additional copies of the key material that are not in storage and not for the purpose of ongoing

operations.

This function will remove these extra copies of the key material from memory.

This function is not required to remove key material from memory in any of the following situations:

e The key is currently in use in a cryptographic operation.

e The key is volatile.

See also Managing key material on page 42.

9.9.3 Key export

psa_export_key (function)

Export a key in binary format.

psa_status_t psa_export_key(psa_key_id_t key,
uint8_t * data,

size_t data_size,
size_t * data_length);

Parameters

key

data

data_size

data_length

IHI 0086
1.4.0

Identifier of the key to export. It must permit the usage
PSA_KEY_USAGE_EXPORT, unless it is a public key.

Buffer where the key data is to be written.

Size of the data buffer in bytes. This must be appropriate for the key:

The required output size is PSA_EXPORT_KEY_OUTPUT_SIZE(type,
bits) where type is the key type and bits is the key size in bits.
PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE evaluates to the maximum
output size of any supported public key or key pair.
PSA_EXPORT_KEY_PAIR_MAX_SIZE evaluates to the maximum output
size of any supported key pair.

PSA_EXPORT_PUBLIC_KEY_MAX_SIZE evaluates to the maximum
output size of any supported public key.

This APl defines no maximum size for symmetric keys. Arbitrarily
large data items can be stored in the key store, for example
certificates that correspond to a stored private key or input
material for key derivation.

On success, the number of bytes that make up the key data.

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 125

Non-confidentia

Returns: psa_status_t

PSA_SUCCESS Success. The first (*data_length) bytes of data contain the exported
key.

PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_EXPORT flag.

PSA_ERROR_BUFFER_TOO_SMALL The size of the data buffer is too small. PSA_EXPORT_KEY_OUTPUT_SIZE(),

PSA_EXPORT_KEY_PAIR_MAX_SIZE, PSA_EXPORT PUBLIC_KEY MAX_SIZE, Or
PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE can be used to determine a
sufficient buffer size.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e The key's storage location does not support export of the key.
e The implementation does not support export of keys with this
key type.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The output of this function can be passed to psa_import_key() to create an equivalent object.
If the implementation of psa_import_key() supports other formats beyond the format specified here, the

output from psa_export_key () must use the representation specified in Key types on page 53, not the
originally imported representation.

For standard key types, the output format is defined in the relevant Key format section in Key types on
page 53. The policy on the key must have the usage flag PSA_KEY_USAGE_EXPORT set.

psa_export_public_key (function)
Export a public key or the public part of a key pair in binary format.

psa_status_t psa_export_public_key(psa_key_id_t key,
uint8_t * data,
size_t data_size,
size_t * data_length);

Parameters

key Identifier of the key to export.

data Buffer where the key data is to be written.

data_size Size of the data buffer in bytes. This must be appropriate for the key:
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 126

14.0 Non-confidential

e The required output size is
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(type, bits) where type is
the key type and bits is the key size in bits.

e PSA_EXPORT_PUBLIC_KEY_MAX_SIZE evaluates to the maximum
output size of any supported public key or public part of a key
pair.

e PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE evaluates to the maximum
output size of any supported public key or key pair.

data_length On success, the number of bytes that make up the key data.

Returns: psa_status_t

PSA_SUCCESS Success. The first (*data_length) bytes of data contain the exported
public key.

PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.

PSA_ERROR_BUFFER_TOO_SMALL The size of the data buffer is too small.

PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(),
PSA_EXPORT_PUBLIC_KEY_MAX_SIZE, Or
PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE can be used to determine a
sufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The key is neither a public key nor a key pair.
PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e The key's storage location does not support export of the key.

e The implementation does not support export of keys with this
key type.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The output of this function can be passed to psa_import_key() to create an object that is equivalent to the
public key.

If the implementation of psa_import_key() supports other formats beyond the format specified here, the
output from psa_export_public_key() must use the representation specified in Key types on page 53, not the
originally imported representation.

For standard key types, the output format is defined in the relevant Key format section in Key types on
page 53.

Exporting a public-key object or the public part of a key pair is always permitted, regardless of the key's
usage flags.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 127
1.4.0 Non-confidential

PSA_EXPORT_KEY_OUTPUT_SIZE (macro)

Sufficient output buffer size for psa_export_key().

#define PSA_EXPORT_KEY_OUTPUT_SIZE(key_type, key_bits) \
/* implementation-defined value */

Parameters
key_type A supported key type.
key_bits The size of the key in bits.
Returns

If the parameters are valid and supported, return a buffer size in bytes that guarantees that
psa_export_key() Or psa_export_public_key () will not fail with PSA_ERROR_BUFFER_TOO_SMALL. If the

parameters are a valid combination that is not supported by the implementation, this macro must return

either a sensible size or e. If the parameters are not valid, the return value is unspecified.

Description

The following code illustrates how to allocate enough memory to export a key by querying the key type and

size at runtime.

psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status;
status = psa_get_key_attributes(key, &attributes);
if (status != PSA_SUCCESS)
handle_error(...);
psa_key_type_t key_type = psa_get_key_type(&attributes);
size_t key_bits = psa_get_key_bits(&attributes);
size_t buffer_size = PSA_EXPORT_KEY_OUTPUT_SIZE(key_type, key_bits);
psa_reset_key_attributes(&attributes);
uint8_t *buffer = malloc(buffer_size);
if (buffer == NULL)
handle_error(...);
size_t buffer_length;
status = psa_export_key(key, buffer, buffer_size, &buffer_length);
if (status != PSA_SUCCESS)
handle_error(...);

See also PSA_EXPORT_KEY_PAIR_MAX_SIZE, PSA_EXPORT_PUBLIC_KEY_MAX_SIZE, and
PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE

PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE (macro)

Sufficient output buffer size for psa_export_public_key().

#define PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(key_type, key_bits) \
/* implementation-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates
1.4.0 Non-confidentia

Page 128

Parameters

key_type A public-key or key-pair key type.
key_bits The size of the key in bits.
Returns

If the parameters are valid and supported, return a buffer size in bytes that guarantees that
psa_export_public_key () will not fail with PSA_ERROR_BUFFER_TOO_SMALL. If the parameters are a valid
combination that is not supported by the implementation, this macro must return either a sensible size or .
If the parameters are not valid, the return value is unspecified.

If the parameters are valid and supported, it is recommended that this macro returns the same result as
PSA_EXPORT_KEY_OUTPUT_SIZE (PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(key_type), key_bits).

Description

The following code illustrates how to allocate enough memory to export a public key by querying the key
type and size at runtime.

psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
psa_status_t status;
status = psa_get_key_attributes(key, &attributes);
if (status != PSA_SUCCESS)
handle_error(...);
psa_key_type_t key_type = psa_get_key_type(&attributes);
size_t key_bits = psa_get_key_bits(&attributes);
size_t buffer_size = PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(key_type, key_bits);
psa_reset_key_attributes(&attributes);
uint8_t *buffer = malloc(buffer_size);
if (buffer == NULL)
handle_erroxr(...);
size_t buffer_length;
status = psa_export_public_key(key, buffer, buffer_size, &buffer_length);
if (status != PSA_SUCCESS)
handle_error(...);

See also PSA_EXPORT_PUBLIC_KEY_MAX_SIZE and PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE.

PSA_EXPORT_KEY_PAIR_MAX_SIZE (macro)

Sufficient buffer size for exporting any asymmetric key pair.

#define PSA_EXPORT_KEY_PAIR_MAX_SIZE /* implementation-defined value */
This value must be a sufficient buffer size when calling psa_export_key () to export any asymmetric key pair
that is supported by the implementation, regardless of the exact key type and key size.

See also PSA_EXPORT_KEY_OUTPUT_SIZE(), PSA_EXPORT_PUBLIC_KEY_MAX_SIZE, and
PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 129
1.4.0 Non-confidentia

PSA_EXPORT_PUBLIC_KEY_MAX_SIZE (macro)

Sufficient buffer size for exporting any asymmetric public key.

#define PSA_EXPORT_PUBLIC_KEY_MAX_SIZE /* implementation-defined value */

This value must be a sufficient buffer size when calling psa_export_key() oOr psa_export_public_key() to
export any asymmetric public key that is supported by the implementation, regardless of the exact key type
and key size.

See also PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE(), PSA_EXPORT_KEY_OUTPUT_SIZE(),
PSA_EXPORT_KEY_PAIR_MAX_SIZE, and PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE.

PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE (macro)
Sufficient buffer size for exporting any asymmetric key pair or public key.

Added in version 1.3.

#define PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE /* implementation-defined value */

This value must be a sufficient buffer size when calling psa_export_key() or psa_export_public_key() to
export any asymmetric key pair or public key that is supported by the implementation, regardless of the
exact key type and key size.

See also PSA_EXPORT_KEY_PAIR_MAX_SIZE, PSA_EXPORT_PUBLIC_KEY_MAX_SIZE, and PSA_EXPORT_KEY_OUTPUT_SIZE().

10 Cryptographic operation reference
10.1 Algorithms

This specification encodes algorithms into a structured 32-bit integer value.

Algorithm identifiers are used for two purposes in the Crypto API:

1. To specify a specific algorithm to use in a cryptographic operation. These are all defined in
Cryptographic operation reference.

2. To specify the policy for a key, identifying the permitted algorithm for use with the key. This use is
described in Key policies on page 100.

The specific algorithm identifiers are described alongside the cryptographic operation functions to which
they apply:

Hash algorithms on page 138

XOF algorithms on page 158

MAC algorithms on page 165

Cipher algorithms on page 182
AEAD algorithms on page 208

Key-wrapping algorithms on page 237

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 130
1.4.0 Non-confidential

Key-derivation algorithms on page 245

Asymmetric signature on page 278

Asymmetric encryption algorithms on page 311

Key-agreement algorithms on page 317

Key encapsulation on page 329

Password-authenticated key exchange (PAKE) on page 338

10.1.1 Algorithm encoding

psa_algorithm_t (typedef)
Encoding of a cryptographic algorithm.

typedef uint32_t psa_algorithm_t;

This is a structured bitfield that identifies the category and type of algorithm. The range of algorithm
identifier values is divided as follows:

0x00000000 Reserved as an invalid algorithm identifier.

0x00000001 - Ox7fffffff
Specification-defined algorithm identifiers. Algorithm identifiers defined by this standard
always have bit 31 clear. Unallocated algorithm identifier values in this range are reserved for
future use.

0x80000000 - Oxffffffff
Implementation-defined algorithm identifiers. Implementations that define additional
algorithms must use an encoding with bit 31 set. The related support macros will be easier
to write if these algorithm identifier encodings also respect the bitwise structure used by
standard encodings.

For algorithms that can be applied to multiple key types, this identifier does not encode the key type. For
example, for symmetric ciphers based on a block cipher, psa_algorithm_t encodes the block cipher mode
and the padding mode while the block cipher itself is encoded via psa_key_type_t.

The Algorithm and key type encoding on page 410 appendix provides a full definition of the algorithm
identifier encoding.

PSA_ALG_NONE (macro)

An invalid algorithm identifier value.

#define PSA_ALG_NONE ((psa_algorithm_t)0)

Zero is not the encoding of any algorithm.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 131
1.4.0 Non-confidential

10.1.2 Algorithm categories
PSA_ALG_IS_HASH(nﬂaCFO)

Whether the specified algorithm is a hash algorithm.

#define PSA_ALG_IS_HASH(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a hash algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a supported
algorithm identifier.

Description
See Hash algorithms on page 138 for a list of defined hash algorithms.

PSA_ALG_IS_XOF (macro)
Whether the specified algorithm is an XOF algorithm.
Added in version 1.4.

#define PSA_ALG_IS_XOF(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1 if alg is an XOF algorithm, @ otherwise. This macro can return either o or 1 if alg is not a supported
algorithm identifier.

Description

See XOF algorithms on page 158 for a list of defined XOF algorithms.

PSA_ALG_IS_MAC (macro)
Whether the specified algorithm is a MAC algorithm.

#define PSA_ALG_IS_MAC(alg) /* specification-defined value */
Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if algis a MAC algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a supported
algorithm identifier.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 132
1.4.0 Non-confidentia

Description
See MAC algorithms on page 165 for a list of defined MAC algorithms.

PSA_ALG_IS_CIPHER (macro)

Whether the specified algorithm is a symmetric cipher algorithm.
#define PSA_ALG_IS_CIPHER(alg) /* specification-defined value */
Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1 if alg is a symmetric cipher algorithm, @ otherwise. This macro can return either @ or 1 if algis not a
supported algorithm identifier.

Description

See Cipher algorithms on page 182 for a list of defined cipher algorithms.

PSA_ALG_IS_AEAD (macro)
Whether the specified algorithm is an authenticated encryption with associated data (AEAD) algorithm.

#define PSA_ALG_IS_AEAD(alg) /* specification-defined value */
Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is an AEAD algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a supported
algorithm identifier.

Description

See AEAD algorithms on page 208 for a list of defined AEAD algorithms.

PSA_ALG_IS_KEY_WRAP (macro)
Whether the specified algorithm is a key wrapping algorithm.
Added in version 1.4.

#define PSA_ALG_IS_KEY_WRAP(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 133

14.0 Non-confidential

Returns

1if alg is a key-wrapping algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a supported
algorithm identifier.

Description

See Key-wrapping algorithms on page 237 for a list of defined key-wrapping algorithms.

PSA_ALG_IS_KEY_DERIVATION (macro)
Whether the specified algorithm is a key-derivation algorithm.

#define PSA_ALG_IS_KEY_DERIVATION(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a key-derivation algorithm, @ otherwise. This macro can return either @ or 1 if algis not a
supported algorithm identifier.

Description

See Key-derivation algorithms on page 245 for a list of defined key-derivation algorithms.

PSA_ALG_IS_SIGN (macro)

Whether the specified algorithm is an asymmetric signature algorithm, also known as public-key signature
algorithm.

#define PSA_ALG_IS_SIGN(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is an asymmetric signature algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a
supported algorithm identifier.

Description

See Asymmetric signature on page 278 for a list of defined signature algorithms.

PSA_ALG_IS_ASYMMETRIC_ENCRYPTION (macro)

Whether the specified algorithm is an asymmetric encryption algorithm, also known as public-key
encryption algorithm.

#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) /* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 134
1.4.0 Non-confidential

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is an asymmetric encryption algorithm, @ otherwise. This macro can return either @ or 1 if algis not a
supported algorithm identifier.

Description

See Asymmetric encryption algorithms on page 311 for a list of defined asymmetric encryption algorithms.

PSA_ALG_IS_KEY_AGREEMENT (macro)
Whether the specified algorithm is a key-agreement algorithm.

#define PSA_ALG_IS_KEY_AGREEMENT(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a key-agreement algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a
supported algorithm identifier.

Description

See Key-agreement algorithms on page 317 for a list of defined key-agreement algorithms.

PSA_ALG_IS_PAKE (macro)
Whether the specified algorithm is a password-authenticated key exchange.

Added in version 1.1.

#define PSA_ALG_IS_PAKE(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a password-authenticated key exchange (PAKE) algorithm, @ otherwise. This macro can return
either @ or 1 if alg is not a supported algorithm identifier.

PSA_ALG_IS_KEY_ENCAPSULATION (macro)
Whether the specified algorithm is a key-encapsulation algorithm.

Added in version 1.3.

#define PSA_ALG_IS_KEY_ENCAPSULATION(alg) /* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 135
1.4.0 Non-confidential

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a key-encapsulation algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a
supported algorithm identifier.

Description
See Key encapsulation on page 329 for a list of defined key-encapsulation algorithms.

10.1.3 Support macros

PSA_ALG_IS_WILDCARD (macro)

Whether the specified algorithm encoding is a wildcard.

#define PSA_ALG_IS_WILDCARD(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a wildcard algorithm encoding.
0 if alg is a non-wildcard algorithm encoding that is suitable for an operation.
This macro can return either @ or 1 if alg is not a supported algorithm identifier.

Description

Wildcard algorithm values can only be used to set the permitted-algorithm field in a key policy, wildcard
values cannot be used to perform an operation.

See PSA_ALG_ANY_HASH for example of how a wildcard algorithm can be used in a key policy.

PSA_ALG_GET_HASH (macro)

Get the hash used by a composite algorithm.
#define PSA_ALG_GET_HASH(alg) /* specification-defined value */
Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
The underlying hash algorithm if alg is a composite algorithm that uses a hash algorithm.

PSA_ALG_NONE if alg is not a composite algorithm that uses a hash.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 136
1.4.0 Non-confidential

Description
The following composite algorithms require a hash algorithm:
® PSA_ALG_DETERMINISTIC_ECDSA()
® PSA_ALG_ECDSA()
® PSA_ALG_HKDF ()
® PSA_ALG_HKDF_EXPAND()
® PSA_ALG_HKDF_EXTRACT()
® PSA_ALG_HMAC()
® PSA_ALG_JPAKE()
® PSA_ALG_PBKDF2_HMAC()
® PSA_ALG_RSA_OAEP()
® PSA_ALG_RSA_PKCS1V15_SIGN()
® PSA_ALG_RSA_PSS()
® PSA_ALG_RSA_PSS_ANY_SALT()
® PSA_ALG_SP80@_108_COUNTER_HMAC ()
® PSA_ALG_SPAKE2P_CMAC()
® PSA_ALG_SPAKE2P_HMAC()
® PSA_ALG_TLS12_PRF()

® PSA_ALG_TLS12 PSK_TO_MS()

10.2 Message digests (Hashes)

The single-part hash functions are:

e psa_hash_compute() to calculate the hash of a message.

e psa_hash_compare() to compare the hash of a message with a reference value.

The psa_hash_operation_t multi-part operation allows messages to be processed in fragments. A multi-part
hash operation is used as follows:

1. Initialize the psa_hash_operation_t object to zero, or by assigning the value of the associated macro
PSA_HASH_OPERATION_INIT.

2. Call psa_hash_setup() to specify the required hash algorithm, call psa_hash_clone() to duplicate the
state of active psa_hash_operation_t object, or call psa_hash_resume() to restart a hash operation with
the output from a previously suspended hash operation.

3. Call the psa_hash_update() function on successive chunks of the message.
4. At the end of the message, call the required finishing function:

e To suspend the hash operation and extract a hash suspend state, call psa_hash_suspend(). The
output state can subsequently be used to resume the hash operation.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 137
1.4.0 Non-confidential

e o calculate the digest of a message, call psa_hash_finish().
e o verify the digest of a message against a reference value, call psa_hash_verify().

To abort the operation or recover from an error, call psa_hash_abort().

10.2.1 Hash algorithms

PSA_ALG_MD2 (macro)
The MD2 message-digest algorithm.

#define PSA_ALG_MD2 ((psa_algorithm_t)@x02000001)

A Warning

The MD2 hash is weak and deprecated and is only recommended for use in legacy applications.

MD2 is defined in The MD2 Message-Digest Algorithm [RFC1319].

PSA_ALG_MD4 (macro)
The MD4 message-digest algorithm.

#define PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)

A Warning

The MD4 hash is weak and deprecated and is only recommended for use in legacy applications.

MD4 is defined in The MD4 Message-Digest Algorithm [RFC1320].

PSA_ALG_MD5 (macro)
The MD5 message-digest algorithm.

#define PSA_ALG_MD5 ((psa_algorithm_t)@x02000003)

A Warning

The MD5 hash is weak and deprecated and is only recommended for use in legacy applications.

MD5 is defined in The MD5 Message-Digest Algorithm [RFC1321].

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates
1.4.0 Non-confidential

Page 138

PSA_ALG_RIPEMD160 (macro)
The RIPEMD-160 message-digest algorithm.

#define PSA_ALG_RIPEMD160 ((psa_algorithm_t)@x02000004)

RIPEMD-160 is defined in RIPEMD-160: A Strengthened Version of RIPEMD [RIPEMD], and also in ISO/IEC
10118-3:2018 IT Security techniques — Hash-functions — Part 3: Dedicated hash-functions [ISO10118].

PSA_ALG_AES_MMO_ZIGBEE (macro)
The Zigbee 1.0 hash function based on a Matyas-Meyer-Oseas (MMO) construction using AES-128.
Added in version 1.2.

#define PSA_ALG_AES_MMO_ZIGBEE ((psa_algorithm_t)0x02000007)

This is the cryptographic hash function based on the Merkle-Damgéard construction over a
Matyas-Meyer-Oseas one-way compression function and the AES-128 block cipher, with the
parametrization defined in zighee Specification [ZIGBEE] §B.6.

This hash function can operate on input strings of up to 232 — 1 bits.

Note:

The Zigbee keyed hash function from [ZIGBEE] §B.1.4 is PSA_ALG_HMAC (PSA_ALG_AES_MMO_ZIGBEE).

PSA_ALG_SHA_1 (macro)

The SHA-1 message-digest algorithm.

#define PSA_ALG_SHA_1 ((psa_algorithm_t)0x02000005)

A Warning

The SHA-1 hash is weak and deprecated and is only recommended for use in legacy applications.

SHA-1 is defined in FIPS Publication 180-4: Secure Hash Standard (SHS) [FIPS180-4].

PSA_ALG_SHA_224 (macro)
The SHA-224 message-digest algorithm.

#define PSA_ALG_SHA_224 ((psa_algorithm_t)0x02000008)

SHA-224 is defined in [FIPS180-4].

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 139
1.4.0 Non-confidential

PSA_ALG_SHA_256 (macro)
The SHA-256 message-digest algorithm.

#define PSA_ALG_SHA 256 ((psa_algorithm_t)0x02000009)

SHA-256 is defined in [FIPS180-4].

PSA_ALG_SHA_384 (macro)
The SHA-384 message-digest algorithm.

#define PSA_ALG_SHA_384 ((psa_algorithm_t)0x0200000a)

SHA-384 is defined in [FIPS180-4].

PSA_ALG_SHA_SlZ(nﬂaCFO)
The SHA-512 message-digest algorithm.

#define PSA_ALG_SHA_ 512 ((psa_algorithm_t)0x0200000b)

SHA-512 is defined in [FIPS180-4].

PSA_ALG_SHA_512_224 (macro)
The SHA-512/224 message-digest algorithm.

#define PSA_ALG_SHA_512_ 224 ((psa_algorithm_t)0x0200000c)

SHA-512/224 is defined in [FIPS180-4].

PSA_ALG_SHA_512_256 (macro)
The SHA-512/256 message-digest algorithm.

#define PSA_ALG_SHA 512 256 ((psa_algorithm_t)0x0200000d)

SHA-512/256 is defined in [FIPS180-4].

PSA_ALG_SHA3_224 (macro)
The SHA3-224 message-digest algorithm.

#define PSA_ALG_SHA3_224 ((psa_algorithm_t)@x02000010)

SHA3-224 is defined in FIPS Publication 202: SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions [FIPS202].

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 140
1.4.0 Non-confidentia

PSA_ALG_SHA3_256 (macro)
The SHA3-256 message-digest algorithm.

#define PSA_ALG_SHA3_ 256 ((psa_algorithm_t)0x02000011)

SHA3-256 is defined in [FIPS202].

PSA_ALG_SHA3_384 (macro)
The SHA3-384 message-digest algorithm.

#define PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)

SHA3-384 is defined in [FIPS202].

PSA_ALG_SHA3_512 (macro)
The SHA3-512 message-digest algorithm.

#define PSA_ALG_SHA3_ 512 ((psa_algorithm_t)0x02000013)

SHA3-512 is defined in [FIPS202].

PSA_ALG_SHAKE256_512 (macro)
The first 512 bits (64 bytes) of the output from SHAKE256.
Added in version 1.1.

#define PSA_ALG_SHAKE256_512 ((psa_algorithm_t)0x02000015)

This is used for pre-hashing in Ed448ph, see PSA_ALG_ED448PH.
The SHAKE256 XOF is defined in [FIPS202].

Note:

To use SHAKE256 as an XOF, see Extendable-output functions (XOF) on page 157 and
PSA_ALG_SHAKE256.

Note:

For other scenarios where a hash function based on SHA3 or SHAKE is required, SHA3-512 is
recommended. SHA3-512 has the same output size, and a theoretically higher security strength.

PSA_ALG_SM3 (macro)
The SM3 message-digest algorithm.

#define PSA_ALG_SM3 ((psa_algorithm_t)0x02000014)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 141
1.4.0 Non-confidentia

SM3 is defined in ISO/IEC 10118-3:2018 IT Security techniques — Hash-functions — Part 3: Dedicated
hash-functions [ISO10118], and also in GM/T 0004-2012: SM3 cryptographic hash algorithm [CSTCO004].

PSA_ALG_ASCON_HASH256 (macro)
The Ascon-Hash256 message-digest algorithm.
Added in version 1.4.

#define PSA_ALG_ASCON_HASH256 ((psa_algorithm_t)0x02000019)

Ascon-Hash256 is defined in NIST Special Publication 800-232: Ascon-Based Lightweight Cryptography
Standards for Constrained Devices [SP800-232] §5.1.

Note:

To use the Ascon XOF algorithms, see PSA_ALG_ASCON_XOF128 and PSA_ALG_ASCON_CXOF128.

10.2.2 Single-part hashing functions

psa_hash_compute (function)

Calculate the hash (digest) of a message.

psa_status_t psa_hash_compute(psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * hash,
size_t hash_size,
size_t * hash_length);

Parameters

alg The hash algorithm to compute: a value of type psa_algorithm_t such
that PSA_ALG_IS_HASH(alg) is true.

input Buffer containing the message to hash.

input_length Size of the input buffer in bytes.

hash Buffer where the hash is to be written.

hash_size Size of the hash buffer in bytes. This must be at least
PSA_HASH_LENGTH(alg).

hash_length On success, the number of bytes that make up the hash value. This is

always PSA_HASH_LENGTH(alg).

Returns: psa_status_t

PSA_SUCCESS Success. The first (*hash_length) bytes of hash contain the hash value.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_BUFFER_TOO_SMALL The size of the hash buffer is too small. PSA_HASH_LENGTH() can be used

to determine a sufficient buffer size.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 142
1.4.0 Non-confidentia

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e algis not a hash algorithm.
e input_length is too large for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e algis not supported or is not a hash algorithm.
e input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Note:

To verify the hash of a message against an expected value, use psa_hash_compare() instead.

psa_hash_compare (function)

Calculate the hash (digest) of a message and compare it with a reference value.

psa_status_t psa_hash_compare(psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * hash,
size_t hash_length);

Parameters
alg The hash algorithm to compute: a value of type psa_algorithm_t such
that PSA_ALG_IS_HASH(alg) is true.
input Buffer containing the message to hash.
input_length Size of the input buffer in bytes.
hash Buffer containing the expected hash value.
hash_length Size of the hash buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success. The expected hash is identical to the actual hash of the input.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_SIGNATURE The calculated hash of the message does not match the value in hash.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e algis not a hash algorithm.
e input_length is too large for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 143
1.4.0 Non-confidentia

e algis not supported or is not a hash algorithm.
e input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

10.2.3 Multi-part hashing operations

psa_hash_operation_t (typedef)

The type of the state object for multi-part hash operations.

typedef /* implementation-defined type */ psa_hash_operation_t;

Before calling any function on a hash operation object, the application must initialize it by any of the
following means:

Set the object to all-bits-zero, for example:

psa_hash_operation_t operation;
memset (&operation, @, sizeof(operation));

Initialize the object to logical zero values by declaring the object as static or global without an explicit
initializer, for example:

static psa_hash_operation_t operation;
Initialize the object to the initializer PSA_HASH_OPERATION_INIT, for example:

psa_hash_operation_t operation = PSA_HASH_OPERATION_INIT;

Assign the result of the function psa_hash_operation_init() to the object, for example:

psa_hash_operation_t operation;
operation = psa_hash_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in implementation-specific behavior, and are non-portable.

PSA_HASH_OPERATION_INIT (macro)

This macro returns a suitable initializer for a hash operation object of type psa_hash_operation_t.

#define PSA_HASH_OPERATION_INIT /* implementation-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 144

1.4.0

Non-confidentia

psa_hash_operation_init (function)

Return an initial value for a hash operation object.
psa_hash_operation_t psa_hash_operation_init(void);
Returns: psa_hash_operation_t

psa_hash_setup (function)

Set up a multi-part hash operation.

psa_status_t psa_hash_setup(psa_hash_operation_t * operation,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per the
documentation for psa_hash_operation_t and not yet in use.
alg The hash algorithm to compute: a value of type psa_algorithm_t such

that PSA_ALG_IS_HASH(alg) is true.

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be inactive.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT alg is not a hash algorithm.
PSA_ERROR_NOT_SUPPORTED alg is not supported or is not a hash algorithm.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNTCATION_FATLURE

PSA_ERROR_CORRUPTION_DETECTED

Description

The sequence of operations to calculate a hash (message digest) is as follows:

1. Allocate a hash operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_hash_operation_t, €.8. PSA_HASH_OPERATION_INIT.

3. Call psa_hash_setup() to specify the algorithm.

4. Call psa_hash_update() zero, one or more times, passing a fragment of the message each time. The
hash that is calculated is the hash of the concatenation of these messages in order.

5. To calculate the hash, call psa_hash_finish(). To compare the hash with an expected value, call
psa_hash_verify (). To suspend the hash operation and extract the current state, call
psa_hash_suspend().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 145
1.4.0 Non-confidential

After a successful call to psa_hash_setup(), the operation is active, and the application must eventually
terminate the operation. The following events terminate an operation:

e A successful call to psa_hash_finish() or psa_hash_verify() or psa_hash_suspend().

e A call to psa_hash_abort().

If psa_hash_setup() returns an error, the operation object is unchanged. If a subsequent function call with an
active operation returns an error, the operation enters an error state.

To abandon an active operation, or reset an operation in an error state, call psa_hash_abort().

See Multi-part operations on page 27.

psa_hash_update (function)
Add a message fragment to a multi-part hash operation.
psa_status_t psa_hash_update(psa_hash_operation_t * operation,

const uint8_t * input,
size_t input_length);

Parameters
operation Active hash operation.
input Buffer containing the message fragment to hash.
input_length Size of the input buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The total input for the operation is too large for the hash algorithm.
PSA_ERROR_NOT_SUPPORTED The total input for the operation is too large for the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
Description
The application must call psa_hash_setup() or psa_hash_resume() before calling this function.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_hash_abort().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 146
1.4.0 Non-confidentia

psa_hash_finish (function)

Finish the calculation of the hash of a message.

psa_status_t psa_hash_finish(psa_hash_operation_t * operation,
uint8_t * hash,
size_t hash_size,
size_t * hash_length);

Parameters
operation
hash

hash_size

hash_length

Returns: psa_status_t
PSA_SUCCESS

PSA_ERROR_BAD_STATE

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Active hash operation.
Buffer where the hash is to be written.

Size of the hash buffer in bytes. This must be at least
PSA_HASH_LENGTH(alg) where alg is the algorithm that the operation
performs.

On success, the number of bytes that make up the hash value. This is
always PSA_HASH_LENGTH(alg) where alg is the hash algorithm that the
operation performs.

Success. The first (*hash_length) bytes of hash contain the hash value.
The following conditions can result in this error:

e The operation state is not valid: it must be active.
e The library requires initializing by a call to psa_crypto_init().

The size of the hash buffer is too small. PSA_HASH_LENGTH() can be used
to determine a sufficient buffer size.

The application must call psa_hash_setup() or psa_hash_resume() before calling this function. This function
calculates the hash of the message formed by concatenating the inputs passed to preceding calls to

psa_hash_update().

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_hash_abort().

A Warning

It is not recommended to use this function when a specific value is expected for the hash. Call
psa_hash_verify() instead with the expected hash value.

Comparing integrity or authenticity data such as hash values with a function such as memcmp () is risky
because the time taken by the comparison might leak information about the hashed data which could
allow an attacker to guess a valid hash and thereby bypass security controls.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 147

1.4.0

Non-confidentia

psa_hash_verify (function)
Finish the calculation of the hash of a message and compare it with an expected value.
psa_status_t psa_hash_verify(psa_hash_operation_t * operation,

const uint8_t * hash,
size_t hash_length);

Parameters
operation Active hash operation.
hash Buffer containing the expected hash value.
hash_length Size of the hash buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success. The expected hash is identical to the actual hash of the
message.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_SIGNATURE The calculated hash of the message does not match the value in hash.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

The application must call psa_hash_setup() before calling this function. This function calculates the hash of
the message formed by concatenating the inputs passed to preceding calls to psa_hash_update(). It then
compares the calculated hash with the expected hash passed as a parameter to this function.

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_hash_abort().

Note:

Implementations must make the best effort to ensure that the comparison between the actual hash
and the expected hash is performed in constant time.

psa_hash_abort (function)

Abort a hash operation.

psa_status_t psa_hash_abort(psa_hash_operation_t * operation);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 148
1.4.0 Non-confidentia

Parameters

operation Initialized hash operation.

Returns: psa_status_t
PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,
the operation object can be reused for another operation by calling psa_hash_setup() again.

This function can be called any time after the operation object has been initialized by one of the methods
described in psa_hash_operation_t.

In particular, calling psa_hash_abort () after the operation has been terminated by a call to psa_hash_abort(),
psa_hash_finish() or psa_hash_verify() is safe and has no effect.

psa_hash_suspend (function)

Halt the hash operation and extract the intermediate state of the hash computation.

psa_status_t psa_hash_suspend(psa_hash_operation_t * operation,
uint8_t * hash_state,
size_t hash_state_size,
size_t * hash_state_length);

Parameters
operation Active hash operation.
hash_state Buffer where the hash suspend state is to be written.
hash_state_size Size of the hash_state buffer in bytes. This must be appropriate for the
selected algorithm:
e A sufficient output size is PSA_HASH_SUSPEND_OUTPUT_SIZE(alg)
where alg is the algorithm that was used to set up the operation.
e PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE evaluates to the maximum
output size of any supported hash algorithm.
hash_state_length On success, the number of bytes that make up the hash suspend state.

Returns: psa_status_t

PSA_SUCCESS Success. The first (*hash_state_length) bytes of hash_state contain
the intermediate hash state.

PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active.
e The library requires initializing by a call to psa_crypto_init().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 149
1.4.0 Non-confidential

PSA_ERROR_BUFFER_TOO_SMALL The size of the hash_state buffer is too small.
PSA_HASH_SUSPEND_OUTPUT_SIZE() OF PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE
can be used to determine a sufficient buffer size.

PSA_ERROR_NOT_SUPPORTED The hash algorithm being computed does not support suspend and
resume.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

The application must call psa_hash_setup() or psa_hash_resume() before calling this function. This function
extracts an intermediate state of the hash computation of the message formed by concatenating the inputs
passed to preceding calls to psa_hash_update().

This function can be used to halt a hash operation, and then resume the hash operation at a later time, or in
another application, by transferring the extracted hash suspend state to a call to psa_hash_resume().

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_hash_abort().

Hash suspend and resume is not defined for the SHA3 family of hash algorithms. Hash suspend state on
page 155 defines the format of the output from psa_hash_suspend().

A Warning

Applications must not use any of the hash suspend state as if it was a hash output. Instead, the suspend
state must only be used to resume a hash operation, and psa_hash_finish() or psa_hash_verify() can
then calculate or verify the final hash value.

Usage

The sequence of operations to suspend and resume a hash operation is as follows:

1. Compute the first part of the hash.
a. Allocate an operation object and initialize it as described in the documentation for
psa_hash_operation_t.
b. Call psa_hash_setup() to specify the algorithm.
c. Call psa_hash_update() zero, one or more times, passing a fragment of the message each time.
d. Call psa_hash_suspend() to extract the hash suspend state into a buffer.

2. Pass the hash state buffer to the application which will resume the operation.
3. Compute the rest of the hash.
a. Allocate an operation object and initialize it as described in the documentation for
psa_hash_operation_t.
b. Call psa_hash_resume() with the extracted hash state.

c. Call psa_hash_update() zero, one or more times, passing a fragment of the message each time.

d. To calculate the hash, call psa_hash_finish(). To compare the hash with an expected value, call
psa_hash_verify().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 150
1.4.0 Non-confidential

If an error occurs at any step after a call to psa_hash_setup() or psa_hash_resume(), the operation will need
to be reset by a call to psa_hash_abort (). The application can call psa_hash_abort() at any time after the
operation has been initialized.

psa_hash_resume (function)

Set up a multi-part hash operation using the hash suspend state from a previously suspended hash
operation.

psa_status_t psa_hash_resume(psa_hash_operation_t * operation,
const uint8_t * hash_state,
size_t hash_state_length);

Parameters
operation The operation object to set up. It must have been initialized as per the
documentation for psa_hash_operation_t and not yet in use.
hash_state A buffer containing the suspended hash state which is to be resumed.
This must be in the format output by psa_hash_suspend(), which is
described in Hash suspend state format on page 155.
hash_state_length Length of hash_state in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be inactive.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT hash_state does not correspond to a valid hash suspend state. See
Hash suspend state format on page 155 for the definition.

PSA_ERROR_NOT_SUPPORTED The provided hash suspend state is for an algorithm that is not
supported.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
See psa_hash_suspend() for an example of how to use this function to suspend and resume a hash operation.

After a successful call to psa_hash_resume(), the application must eventually terminate the operation. The
following events terminate an operation:

e A successful call to psa_hash_finish(), psa_hash_verify() oOr psa_hash_suspend().

e A call to psa_hash_abort().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 151
1.4.0 Non-confidential

psa_hash_clone (function)

Clone a hash operation.

psa_status_t psa_hash_clone(const psa_hash_operation_t * source_operation,
psa_hash_operation_t * target_operation);

Parameters
source_operation The active hash operation to clone.
target_operation The operation object to set up. It must be initialized but not active.

Returns: psa_status_t

PSA_SUCCESS Success. target_operation is ready to continue the same hash
operation as source_operation.

PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The source_operation state is not valid: it must be active.
e The target_operation state is not valid: it must be inactive.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

This function copies the state of an ongoing hash operation to a new operation object. In other words, this
function is equivalent to calling psa_hash_setup() on target_operation with the same algorithm that
source_operation was set up for, then psa_hash_update() ONn target_operation with the same input that that
was passed to source_operation. After this function returns, the two objects are independent, i.e.
subsequent calls involving one of the objects do not affect the other object.

10.2.4 Support macros

PSA_HASH_LENGTH (macro)

The size of the output of psa_hash_compute() and psa_hash_finish(), in bytes.

#define PSA_HASH_LENGTH(alg) /* implementation-defined value */

Parameters
alg A hash algorithm or an HMAC algorithm: a value of type
psa_algorithm_t such that (PSA_ALG_IS_HASH(alg) ||
PSA_ALG_IS_HMAC(alg)) is true.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 152

14.0 Non-confidential

Returns

The hash length for the specified hash algorithm. If the hash algorithm is not recognized, return @. An
implementation can return either @ or the correct size for a hash algorithm that it recognizes, but does not
support.

Description
This is also the hash length that psa_hash_compare() and psa_hash_verify() expect.

See also PSA_HASH_MAX_SIZE.

PSA_HASH_MAX_SIZE (macro)

Maximum size of a hash.

#define PSA_HASH_MAX_SIZE /* implementation-defined value */

It is recommended that this value is the maximum size of a hash supported by the implementation, in bytes.
The value must not be smaller than this maximum.

See also PSA_HASH_LENGTH().

PSA_HASH_SUSPEND_OUTPUT_SIZE (macro)

A sufficient hash suspend state buffer size for psa_hash_suspend(), in bytes.

#define PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) /* specification-defined value */

Parameters
alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(alg) is true.
Returns

A sufficient output size for the algorithm. If the hash algorithm is not recognized, or is not supported by
psa_hash_suspend(), return . An implementation can return either @ or a correct size for a hash algorithm
that it recognizes, but does not support.

For a supported hash algorithm alg, the following expression is true:
PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) == PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH +
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) +

PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) +
PSA_HASH_BLOCK_LENGTH(alg) - 1

Description

If the size of the hash state buffer is at least this large, it is guaranteed that psa_hash_suspend() will not fail
due to an insufficient buffer size. The actual size of the output might be smaller in any given call.

See also PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 153
1.4.0 Non-confidential

PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE (macro)

A sufficient hash suspend state buffer size for psa_hash_suspend(), for any supported hash algorithms.

#define PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE /* implementation-defined value */

If the size of the hash state buffer is at least this large, it is guaranteed that psa_hash_suspend() will not fail
due to an insufficient buffer size.

See also PSA_HASH_SUSPEND_OUTPUT_SIZE().

PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH(nﬂaCFO)
The size of the algorithm field that is part of the output of psa_hash_suspend(), in bytes.

#define PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH ((size_t)4)

Applications can use this value to unpack the hash suspend state that is output by psa_hash_suspend().

PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(nnaCFO)
The size of the input-length field that is part of the output of psa_hash_suspend(), in bytes.

#define PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) \
/* specification-defined value */

Parameters
alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(alg) is true.
Returns

The size, in bytes, of the input-length field of the hash suspend state for the specified hash algorithm. If the
hash algorithm is not recognized, return @. An implementation can return either @ or the correct size for a
hash algorithm that it recognizes, but does not support.

The algorithm-specific values are defined in Hash suspend state field sizes on page 157.

Description

Applications can use this value to unpack the hash suspend state that is output by psa_hash_suspend ().

PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(nnaCFO)
The size of the hash-state field that is part of the output of psa_hash_suspend(), in bytes.

#define PSA_HASH_SUSPEND_HASH_ STATE_FIELD_LENGTH(alg) \
/* specification-defined value */

Parameters
alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(alg) is true.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 154

1.4.0 Non-confidentia

Returns

The size, in bytes, of the hash-state field of the hash suspend state for the specified hash algorithm. If the
hash algorithm is not recognized, return . An implementation can return either @ or the correct size for a
hash algorithm that it recognizes, but does not support.

The algorithm-specific values are defined in Hash suspend state field sizes on page 157.
Description

Applications can use this value to unpack the hash suspend state that is output by psa_hash_suspend().

PSA_HASH_BLOCK_LENGTH (macro)
The input block size of a hash algorithm, in bytes.

#define PSA_HASH_BLOCK_LENGTH(alg) /* implementation-defined value */

Parameters
alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(alg) is true.
Returns

The block size in bytes for the specified hash algorithm. If the hash algorithm is not recognized, return . An
implementation can return either @ or the correct size for a hash algorithm that it recognizes, but does not
support.

Description

Hash algorithms process their input data in blocks. Hash operations will retain any partial blocks until they
have enough input to fill the block or until the operation is finished.

This affects the output from psa_hash_suspend().

10.2.5 Hash suspend state

The hash suspend state is output by psa_hash_suspend() and input to psa_hash_resume().

Note:

Hash suspend and resume is not defined for the SM3 algorithm and the SHA3 family of hash
algorithms.

Hash suspend state format

The hash suspend state has the following format:
hash_suspend_state = algorithm || input_length || hash_state || unprocessed_input

The fields in the hash suspend state are defined as follows:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 155
1.4.0 Non-confidential

algorithm A big-endian 32-bit unsigned integer.
The Crypto API algorithm identifier value.
The byte length of the algorithm field can be evaluated using
PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH.
input_length
A big-endian unsigned integer
The content of this field is algorithm-specific:

e For MD2, this is the number of bytes in unprocessed_input.
e For all other hash algorithms, this is the total number of bytes of input to the hash
computation. This includes the unprocessed_input bytes.
The size of this field is algorithm-specific:

e For MD2: input_length is an 8-bit unsigned integer.

e For MD4, MD5, RIPEMD-160, SHA-1, SHA-224, and SHA-256: input_length is a
64-bit unsigned integer.

e For SHA-512/224, SHA-512/256, SHA-384, and SHA-512: input_length is a 128-bit
unsigned integer.

The length, in bytes, of the input_length field can be calculated using
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) wWhere alg is a hash algorithm. See Hash
suspend state field sizes on page 157.

hash_state An array of bytes
Algorithm-specific intermediate hash state:

e For MD2: 16 bytes of internal checksum, then 48 bytes of intermediate digest.

e For MD4 and MD5: 4x 32-bit integers, in little-endian encoding.

e For RIPEMD-160: 5x 32-bit integers, in little-endian encoding.

e For SHA-1: 5x 32-bit integers, in big-endian encoding.

e For SHA-224 and SHA-256: 8x 32-bit integers, in big-endian encoding.

e For SHA-512/224, SHA-512/256, SHA-384, and SHA-512: 8x 64-bit integers, in
big-endian encoding.

The length of this field is specific to the algorithm. The length, in bytes, of the hash_state
field can be calculated using PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) where algis a
hash algorithm. See Hash suspend state field sizes on page 157.

unprocessed_input

0 to (hash_block_size — 1) bytes

A partial block of unprocessed input data. This is between zero and hash_block_size — 1
bytes of data, the length can be calculated by:

length(unprocessed_input) = input_length mod hash_block_size.
The value of hash_block_size is specific to the hash algorithm. The size of a hash block can

be calculated using PSA_HASH_BLOCK_LENGTH(alg) where alg is a hash algorithm. See Hash
suspend state field sizes on page 157.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 156
1.4.0 Non-confidential

Hash suspend state field sizes

The following table defines the algorithm-specific field lengths for the hash suspend state returned by
psa_hash_suspend (). All of the field lengths are in bytes. To compute the field lengths for algorithm alg, use
the following expressions:

® PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH returns the length of the algorithm field.

e PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) returns the length of the input_length field.
e PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) returns the length of the hash_state field.

® PSA_HASH_BLOCK_LENGTH(alg) - 1is the maximum length of the unprocessed_bytes field.

e PSA_HASH_SUSPEND_OUTPUT_SIZE (alg) returns the maximum size of the hash suspend state.

Hash algorithm input_length size (bytes) hash_state length (bytes) unprocessed_bytes length (bytes)
PSA_ALG_MD2 1 64 0-15
PSA_ALG_MD4 8 16 0 - 63
PSA_ALG_MD5 8 16 0 - 63
PSA_ALG_RIPEMD160 8 20 0-63
PSA_ALG_SHA_1 8 20 0-63
PSA_ALG_SHA 224 8 32 0 - 63
PSA_ALG_SHA_256 8 32 0 - 63
PSA_ALG_SHA_512_224 16 64 0-127
PSA_ALG_SHA_512_256 16 64 0-127
PSA_ALG_SHA 384 16 64 0-127
PSA_ALG_SHA_512 16 64 0-127

10.3 Extendable-output functions (XOF)

An extendable-Output Function (XOF) is similar to a cryptographic hash, transforming an arbitrary amount
of input data into pseudorandom output. Unlike hash algorithms, an XOF can produce an arbitrary amount
of output.

XOF algorithms are often used as a building block in other algorithms, as they are suitable for use in
hashing, key-derivation, and as a pseudorandom function (PRF).

In the Crypto API, support for XOF algorithms is provided by the psa_xof_operation_t multi-part operation,
and XOF algorithm identifiers. A multi-part XOF operation is used as follows:

1. Initialize the psa_xof_operation_t object to zero, or by assigning the value of the associated macro
PSA_XOF_OPERATION_INIT.

2. Call psa_xof_setup() to specify the required XOF algorithm.
3. If the algorithm has a context, call psa_xof_set_context() to provide the context value.

4. Call the psa_xof_update() function on successive chunks of the input data.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 157
1.4.0 Non-confidential

5. After input is complete, call psa_xof_output() one or more times to extract successive chunks of
output.

6. When output is complete, call psa_xof_abort() to end the operation.

To abort the operation or recover from an error, call psa_xof_abort().

Note:
For an XOF algorithm:

e The result does not depend on how the overall input is fragmented. For example, calling
psa_xof_update() twice with input 71 and iy has the same effect as calling psa_xof_update() once
with the concatenation iy || 2.

e The overall output does not depend on how the output is fragmented. If the output is
considered as a stream of bytes, psa_xof_output() is an operation that reads bytes in sequence
from the stream of data.

10.3.1 XOF algorithms
PSA_ALG_SHAKE128 (macro)
The SHAKE128 XOF algorithm.
Added in version 1.4.

#define PSA_ALG_SHAKE128 ((psa_algorithm_t)0x@D000100)

SHAKE128 is one of the KECCAK family of algorithms.

SHAKE128 is defined in FIPS Publication 202: SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions [FIPS202].

Some fixed output-length hash algorithms based on SHAKE128 are also provided in the Crypto API:
e PSA_ALG_SHAKE128_256 — defined in PSA Certified Crypto APl 1.4 PQC Extension [PSA-PQC]

PSA_ALG_SHAKE256 (macro)
The SHAKE256 XOF algorithm.
Added in version 1.4.

#define PSA_ALG_SHAKE256 ((psa_algorithm_t)@x0D000200)

SHAKE256 is one of the KECCAK family of algorithms.
SHAKE256 is defined in [FIPS202].
Some fixed output-length hash algorithms based on SHAKE256 are also provided in the Crypto API:

® PSA_ALG_SHAKE256_192 — defined in [PSA-PQC]
® PSA_ALG_SHAKE256_256 — defined in [PSA-PQC]

® PSA_ALG_SHAKE256_512

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 158
1.4.0 Non-confidential

PSA_ALG_ASCON_XOF128 (macro)
The Ascon-XOF128 XOF algorithm.
Added in version 1.4.

#define PSA_ALG_ASCON_XOF128 ((psa_algorithm_t)0x0D000300)

Ascon-XOF128 is defined in NIST Special Publication 800-232: Ascon-Based Lightweight Cryptography
Standards for Constrained Devices [SP800-232] §5.2.

Note:

To use the Ascon-Hash256 hash algorithm, see PSA_ALG_ASCON_HASH256.

PSA_ALG_ASCON_CXOF128 (macro)
The Ascon-CXOF128 XOF algorithm, with context.
Added in version 1.4.

#define PSA_ALG_ASCON_CXOF128 ((psa_algorithm_t)@x0D008300)

Ascon-CXOF128 is defined in NIST Special Publication 800-232: Ascon-Based Lightweight Cryptography
Standards for Constrained Devices [SP800-232] §5.3.

The context value must be provided by calling psa_xof_set_context () on the XOF mluti-part operation,
before providing any input data.

10.3.2 Multi-part XOF operations

psa_xof_operation_t (typedef)
The type of the state object for multi-part XOF operations.
Added in version 1.4.

typedef /* implementation-defined type */ psa_xof_operation_t;

Before calling any function on an XOF operation object, the application must initialize it by any of the
following means:

e Set the object to all-bits-zero, for example:

psa_xof_operation_t operation;
memset (&operation, @, sizeof(operation));

e |nitialize the object to logical zero values by declaring the object as static or global without an explicit
initializer, for example:

static psa_xof_operation_t operation;

e Initialize the object to the initializer PSA_XOF_OPERATION_INIT, for example:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 159
1.4.0 Non-confidential

psa_xof_operation_t operation = PSA_XOF_OPERATION_INIT;

e Assign the result of the function psa_xof_operation_init() to the object, for example:

psa_xof_operation_t operation;
operation = psa_xof_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in implementation-specific behavior, and are non-portable.

PSA_XOF_OPERATION_INIT (macro)
This macro returns a suitable initializer for an XOF operation object of type psa_xof_operation_t.
Added in version 1.4.

#define PSA_XOF_OPERATION_INIT /* implementation-defined value */

psa_xof_operation_init (function)
Return an initial value for an XOF operation object.

Added in version 1.4.

psa_xof_operation_t psa_xof_operation_init(void);

Returns: psa_xof_operation_t
psa_xof_setup (function)
Set up an XOF operation.
Added in version 1.4.

psa_status_t psa_xof_setup(psa_xof_operation_t * operation,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per the
documentation for psa_xof_operation_t and not yet in use.
alg The XOF algorithm to compute: a value of type psa_algorithm_t such

that PSA_ALG_IS_XOF (alg) is true.

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be inactive.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT alg is not an XOF algorithm.
PSA_ERROR_NOT_SUPPORTED alg is not supported or is not an XOF algorithm.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 160

1.4.0 Non-confidentia

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

The sequence of operations to generate XOF output is as follows:

1. Allocate an XOF operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_xof_operation_t, €.8. PSA_XOF_OPERATION_INIT.

Call psa_xof_setup() to specify the algorithm.

3.

4. For an XOF algorithm that has a context, call psa_xof_set_context() to provide the context.
5. Call psa_xof_update() zero, one, or more times, passing a fragment of the input each time.
6.

To extract XOF output data, call psa_xof_output() one or more times.

After a successful call to psa_xof_setup(), the operation is active, and the application must eventually
terminate the operation with a call to psa_xof_abort().

If psa_xof_setup() returns an error, the operation object is unchanged. If a subsequent function call with an
active operation returns an error, the operation enters an error state.

To abandon an active operation, or reset an operation in an error state, call psa_xof_abort().

See Multi-part operations on page 27.

psa_xof_set_context (function)

Provide a context for a multi-part XOF operation.

Added in version 1.4.

psa_status_t psa_xof_set_context(psa_xof_operation_t * operation,

const uint8_t * context,
size_t context_length);

Parameters
operation Active XOF operation.
context Buffer containing the input fragment.
context_length Size of the context buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active, and no call to
psa_xof_set_context(), psa_xof_output(), Or psa_xof_output() has
been made.

e The library requires initializing by a call to psa_crypto_init().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 161
1.4.0 Non-confidential

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e The algorithm does not support a context value. See
PSA_ALG_XOF_HAS_CONTEXT().

e The context value is not valid for the XOF algorithm.
PSA_ERROR_NOT_SUPPORTED The context value is not supported by this implementation.
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

This function sets the context value in a multi-part XOF operation, when using an XOF algorithm that has a
context parameter.

The application must call psa_xof_setup() before calling this function. For an XOF algorithm with a context
parameter, this function must be called immediately after psa_xof_setup(), before calling any other function
on the XOF operation.

This function must not be called if the XOF algorithm does not have a context parameter. The macro
PSA_ALG_XOF_HAS_CONTEXT () can be used to determine if a context value is required for the XOF algorithm.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_xof_abort().

psa_xof_update (function)

Add input to a multi-part XOF operation.

Added in version 1.4.

psa_status_t psa_xof_update(psa_xof_operation_t * operation,

const uint8_t * input,
size_t input_length);

Parameters
operation Active XOF operation.
input Buffer containing the input fragment.
input_length Size of the input buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active, and no call to
psa_xof_output() has been made.

e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The total input for the operation is too large for the XOF algorithm.
PSA_ERROR_NOT_SUPPORTED The total input for the operation is too large for the implementation.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 162

1.4.0 Non-confidentia

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description
The application must call psa_xof_setup() before calling this function.

This function can be called zero, one, or more times to provide input for the XOF. The input to the XOF is
only finalized on the first call to psa_xof_output().

psa_xof_update() cannot be called on an XOF operation once psa_xof_output() has been called on the
operation.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_xof_abort().

psa_xof_output (function)

Extract data from an XOF operation.

Added in version 1.4.

psa_status_t psa_xof_output(psa_xof_operation_t * operation,

uint8_t * output,
size_t output_length);

Parameters
operation Active XOF operation.
output Buffer where the output will be written.
output_length Number of bytes to output.

Returns: psa_status_t
PSA_SUCCESS Success. The first output_length bytes of output contain the data.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

This function calculates output bytes from the XOF algorithm and returns those bytes. If the key
derivation’s output is viewed as a stream of bytes, this function consumes the requested number of bytes
from the stream and returns them to the caller.

The application must call psa_xof_setup() and supply all input data, using calls to psa_xof_update(), before
calling this function. The input to the XOF is finalized on the first call to psa_xof_output() before data is

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 163
1.4.0 Non-confidential

extracted from the XOF.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_xof_abort().

psa_xof_abort (function)
Abort an XOF operation.
Added in version 1.4.

psa_status_t psa_xof_abort(psa_xof_operation_t * operation);

Parameters

operation Initialized XOF operation.

Returns: psa_status_t
PSA_SUCCESS Success. The operation object can now be discarded or reused.

PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,
the operation object can be reused for another operation by calling psa_xof_setup() again.

This function can be called any time after the operation object has been initialized by one of the methods
described in psa_xof_operation_t.

In particular, calling psa_xof_abort () after the operation has been terminated by a call to psa_xof_abort() is
safe and has no effect.

10.3.3 Support macros

PSA_ALG_XOF_HAS_CONTEXT (macro)
Whether the specified XOF algorithm has a context parameter.
Added in version 1.4.

#define PSA_ALG_XOF_HAS_CONTEXT(alg) /* specification-defined value */

Parameters
alg An XOF algorithm identifier: a value of type psa_algorithm_t such that
PSA_ALG_IS_XOF (alg) is true.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 164

1.4.0 Non-confidential

Returns

1if alg is an XOF algorithm that has a context parameter. @ if alg is an XOF algorithm that does not have a
context parameter. This macro can return either @ or 1 if alg is not a supported XOF algorithm identifier.

10.4 Message authentication codes (MAC)
The single-part MAC functions are:

e psa_mac_compute() to calculate the MAC of a message.

e psa_mac_verify() to compare the MAC of a message with a reference value.

The psa_mac_operation_t multi-part operation allows messages to be processed in fragments. A multi-part
MAC operation is used as follows:

1. Initialize the psa_mac_operation_t object to zero, or by assigning the value of the associated macro
PSA_MAC_OPERATION_INIT.

2. Call psa_mac_sign_setup() Or psa_mac_verify_setup() to specify the algorithm and key.
3. Call the psa_mac_update() function on successive chunks of the message.
4. At the end of the message, call the required finishing function:

e o calculate the MAC of the message, call psa_mac_sign_finish().

e o verify the MAC of the message against a reference value, call psa_mac_verify_finish().

To abort the operation or recover from an error, call psa_mac_abort().

10.4.1 MAC algorithms

PSA_ALG_HMAC (macro)

Macro to build an HMAC message-authentication-code algorithm from an underlying hash algorithm.

#define PSA_ALG_HMAC(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.
See below on selecting a hash algorithm for use with HMAC.
Returns

The corresponding HMAC algorithm.

Unspecified if hash_alg is not a supported hash algorithm.

Description

For example, PSA_ALG_HMAC (PSA_ALG_SHA_256) is HMAC-SHA-256.

The HMAC construction is defined in HMAC: Keyed-Hashing for Message Authentication [RFC2104].

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 165
1.4.0 Non-confidential

Choice of hash algorithm

An HMAC block size must be defined for use with each hash algorithm, which is at least as large as the hash

output size.

HMAC was designed for hashes that use a Merkle-Damgard construction, for example, MD5, SHA-1, and

SHA-2. For these hash algorithms, the HMAC block size is defined to be the hash input-block size.

Some algorithms do not have a defined HMAC block size. For example, Ascon (PSA_ALG_ASCON_HASH256) Or
Shake-based hashes (PSA_ALG_SHAKE256_512).

Table 15 lists the valid hash algorithms for use with HMAC, and their HMAC block and output sizes in bytes.

Algorithm

PSA_ALG_MD2
PSA_ALG_MD4
PSA_ALG_MD5
PSA_ALG_RIPEMD160
PSA_ALG_SHA_1
PSA_ALG_SHA_ 224
PSA_ALG_SHA_256
PSA_ALG_SHA 384
PSA_ALG_SHA_ 512
PSA_ALG_SHA_512_224
PSA_ALG_SHA_512_256
PSA_ALG_SHA3_224
PSA_ALG_SHA3_256
PSA_ALG_SHA3_384
PSA_ALG_SHA3_512

PSA_ALG_SM3

Implementation note

Table 15 Hash algorithms that can be used with HMAC

HMAC block size

16
64
64
64
64
64
64
128
128
128
128
144
136
104
/2
64

Output size

16
16
16
20
20
28
32
48
64
28
32
28
32
48
64
32

It is recommended that other hash algorithms are not supported with PSA_ALG_HMAC. Future versions of
the Crypto API might specify HMAC support for these hash algorithms, and will define the block size

to use for HMAC.

Compatible key types
PSA_KEY_TYPE_HMAC

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidentia

Page 166

PSA_ALG_CBC_MAC (macro)

The CBC-MAC message-authentication-code algorithm, constructed over a block cipher.

#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x@03c00100)

A Warning

CBC-MAC is insecure in many cases. A more secure mode, such as PSA_ALG_CMAC, is recommended.

The CBC-MAC algorithm must be used with a key for a block cipher. For example, one of PSA_KEY_TYPE_AES.

CBC-MAC is defined as MAC Algorithm 1 in ISO/IEC 9797-1:2011 Information technology — Security
techniques — Message Authentication Codes (MACs) — Part 1: Mechanisms using a block cipher [ISO9797].

Compatible key types

PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARIA
PSA_KEY_TYPE_DES
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_SM4

PSA_ALG_CMAC (macro)

The CMAC message-authentication-code algorithm, constructed over a block cipher.

#define PSA_ALG_CMAC ((psa_algorithm_t)0x03c00200)

The CMAC algorithm must be used with a key for a block cipher. For example, when used with a key with
type PSA_KEY_TYPE_AES, the resulting operation is AES-CMAC.

CMAC is defined in NIST Special Publication 800-38B: Recommendation for Block Cipher Modes of Operation:
the CMAC Mode for Authentication [SP800-38B].

Compatible key types
PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARIA
PSA_KEY_TYPE_DES
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_SM4

PSA_ALG_TRUNCATED_MAC (macro)
Macro to build a truncated MAC algorithm.

#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
/* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 167
1.4.0 Non-confidentia

Parameters

mac_alg A MAC algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_MAC(mac_alg) is true. This can be a truncated or
untruncated MAC algorithm.

mac_length Desired length of the truncated MAC in bytes. This must be at most
the untruncated length of the MAC and must be at least an
implementation-specified minimum. The implementation-specified
minimum must not be zero.
Returns

The corresponding MAC algorithm with the specified length.

Unspecified if mac_alg is not a supported MAC algorithm or if mac_length is too small or too large for the
specified MAC algorithm.

Description

A truncated MAC algorithm is identical to the corresponding MAC algorithm except that the MAC value for
the truncated algorithm consists of only the first mac_length bytes of the MAC value for the untruncated
algorithm.

Note:

This macro might allow constructing algorithm identifiers that are not valid, either because the
specified length is larger than the untruncated MAC or because the specified length is smaller than
permitted by the implementation.

Note:

It is implementation-defined whether a truncated MAC that is truncated to the same length as the
MAC of the untruncated algorithm is considered identical to the untruncated algorithm for policy
comparison purposes.

The untruncated MAC algorithm can be recovered using PSA_ALG_FULL_LENGTH_MAC().

Compatible key types

The resulting truncated MAC algorithm is compatible with the same key types as the MAC algorithm used
to construct it.

PSA_ALG_FULL_LENGTH_MAC (macro)
Macro to construct the MAC algorithm with an untruncated MAC, from a truncated MAC algorithm.

#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) /* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 168
1.4.0 Non-confidential

Parameters

mac_alg A MAC algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_MAC(mac_alg) is true. This can be a truncated or
untruncated MAC algorithm.

Returns

The corresponding MAC algorithm with an untruncated MAC.
Unspecified if mac_alg is not a supported MAC algorithm.

Compatible key types

The resulting untruncated MAC algorithm is compatible with the same key types as the MAC algorithm
used to construct it.

PSA_ALG_AT_LEAST_THIS_LENGTH_MAC (macro)
Macro to build a MAC minimum-MAC-length wildcard algorithm.
Added in version 1.1.

#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
/* specification-defined value */

Parameters
mac_alg A MAC algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_MAC(alg) is true. This can be a truncated or untruncated
MAC algorithm.
min_mac_length Desired minimum length of the message authentication code in bytes.
This must be at most the untruncated length of the MAC and must be
at least 1.
Returns

The corresponding MAC wildcard algorithm with the specified minimum MAC length.

Unspecified if mac_alg is not a supported MAC algorithm or if min_mac_length is less than 1 or too large for
the specified MAC algorithm.

Description

A key with a minimum-MAC-length MAC wildcard algorithm as permitted-algorithm policy can be used with
all MAC algorithms sharing the same base algorithm, and where the (potentially truncated) MAC length of
the specific algorithm is equal to or larger then the wildcard algorithm’s minimum MAC length.

Note:

When setting the minimum required MAC length to less than the smallest MAC length permitted by
the base algorithm, this effectively becomes an ‘any-MAC-length-permitted’ policy for that base
algorithm.

The untruncated MAC algorithm can be recovered using PSA_ALG_FULL_LENGTH_MAC().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 169
1.4.0 Non-confidentia

Compatible key types

The resulting wildcard MAC algorithm is compatible with the same key types as the MAC algorithm used to

construct it.

10.4.2 Single-part MAC functions

psa_mac_compute (function)

Calculate the message authentication code (MAC) of a message.

psa_status_t psa_mac_compute(

Parameters

key

alg

input
input_length
mac

mac_size

mac_length

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_ARGUMENT

IHI 0086
1.4.0

psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * mac,

size_t mac_size,
size_t * mac_length);

|dentifier of the key to use for the operation. It must permit the usage

PSA_KEY_USAGE_SIGN_MESSAGE.

The MAC algorithm to compute: a value of type psa_algorithm_t such

that PSA_ALG_IS_MAC(alg) is true.
Buffer containing the input message.
Size of the input buffer in bytes.

Buffer where the MAC value is to be written.

Size of the mac buffer in bytes. This must be appropriate for the

selected algorithm and key:

e The exact MAC size is PSA_MAC_LENGTH (key_type, key_bits, alg)
where key_type and key_bits are attributes of the key used to

compute the MAC.

e PSA_MAC_MAX_SIZE evaluates to the maximum MAC size of any

supported MAC algorithm.

On success, the number of bytes that make up the MAC value.

Copyright © 2018-2025 Arm Limited and/or its affiliates

Success. The first (*mac_length) bytes of mac contain the MAC value.
The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.

The key does not have the PSA_KEY_USAGE_SIGN_MESSAGE flag, or it does
not permit the requested algorithm.

The size of the mac buffer is too small. PSA_MAC_LENGTH() or
PSA_MAC_MAX_SIZE can be used to determine a sufficient buffer size.

The following conditions can result in this error:

Page 170
Non-confidentia

PSA_ERROR_NOT_SUPPORTED

e algis not a MAC algorithm.
e key is not compatible with alg.
e input_length is too large for alg.

The following conditions can result in this error:

e alg is not supported or is not a MAC algorithm.
e key is not supported for use with alg.
e input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description

Note:

To verify the MAC of a message against an expected value, use psa_mac_verify() instead. Beware that
comparing integrity or authenticity data such as MAC values with a function such as memcmp() is risky
because the time taken by the comparison might leak information about the MAC value which could
allow an attacker to guess a valid MAC and thereby bypass security controls.

psa_mac_verify (function)

Calculate the MAC of a message and compare it with a reference value.

psa_status_t psa_mac_verify(psa_key_id_t key,

Parameters

key

alg

input
input_length
mac

mac_length

IHI 0086
1.4.0

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * mac,
size_t mac_length);

Identifier of the key to use for the operation. It must permit the usage
PSA_KEY_USAGE_VERIFY_MESSAGE.

The MAC algorithm to compute: a value of type psa_algorithm_t such
that PSA_ALG_IS_MAC(alg) is true.

Buffer containing the input message.
Size of the input buffer in bytes.
Buffer containing the expected MAC value.

Size of the mac buffer in bytes.

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 171
Non-confidentia

Returns: psa_status_t

PSA_SUCCESS Success. The expected MAC is identical to the actual MAC of the
input.

PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_MESSAGE flag, or it
does not permit the requested algorithm.

PSA_ERROR_INVALID_SIGNATURE The calculated MAC of the message does not match the value in mac.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e algis not a MAC algorithm.
e key is not compatible with alg.
e input_length is too large for alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e algis not supported or is not a MAC algorithm.
e key is not supported for use with alg.
e input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

10.4.3 Multi-part MAC operations

psa_mac_operation_t (typedef)
The type of the state object for multi-part MAC operations.

typedef /* implementation-defined type */ psa_mac_operation_t;

Before calling any function on a MAC operation object, the application must initialize it by any of the
following means:

e Set the object to all-bits-zero, for example:

psa_mac_operation_t operation;
memset (&operation, @, sizeof(operation));

e |nitialize the object to logical zero values by declaring the object as static or global without an explicit
initializer, for example:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 172
1.4.0 Non-confidential

static psa_mac_operation_t operation;

e Initialize the object to the initializer PSA_MAC_OPERATION_INIT, for example:

psa_mac_operation_t operation = PSA_MAC_OPERATION_INIT;

e Assign the result of the function psa_mac_operation_init() to the object, for example:
psa_mac_operation_t operation;

operation = psa_mac_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in implementation-specific behavior, and are non-portable.

PSA_MAC_OPERATION_INIT (macro)

This macro returns a suitable initializer for a MAC operation object of type psa_mac_operation_t.

#define PSA_MAC_OPERATION_INIT /* implementation-defined value */

psa_mac_operation_init (function)

Return an initial value for a MAC operation object.

psa_mac_operation_t psa_mac_operation_init(void);

Returns: psa_mac_operation_t

psa_mac_sign_setup (function)

Set up a multi-part MAC calculation operation.

psa_status_t psa_mac_sign_setup(psa_mac_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per the
documentation for psa_mac_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain valid until
the operation terminates. It must permit the usage
PSA_KEY_USAGE_SIGN_MESSAGE.
alg The MAC algorithm to compute: a value of type psa_algorithm_t such

that PSA_ALG_IS_MAC(alg) is true.

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be inactive.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 173
1.4.0 Non-confidentia

e The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_STGN_MESSAGE flag, or it does
not permit the requested algorithm.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e algis not a MAC algorithm.
e key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e alg is not supported or is not a MAC algorithm.
e key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description

This function sets up the calculation of the message authentication code (MAC) of a byte string. To verify
the MAC of a message against an expected value, use psa_mac_verify_setup() instead.

The sequence of operations to calculate a MAC is as follows:

1. Allocate a MAC operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_mac_operation_t, €.8. PSA_MAC_OPERATION_INIT.

3. Call psa_mac_sign_setup() to specify the algorithm and key.

4. Call psa_mac_update() zero, one or more times, passing a fragment of the message each time. The
MAC that is calculated is the MAC of the concatenation of these messages in order.

5. At the end of the message, call psa_mac_sign_finish() to finish calculating the MAC value and retrieve
it.

After a successful call to psa_mac_sign_setup(), the operation is active, and the application must eventually
terminate the operation. The following events terminate an operation:

e A successful call to psa_mac_sign_finish().

e A call to psa_mac_abort().

If psa_mac_sign_setup() returns an error, the operation object is unchanged. If a subsequent function call
with an active operation returns an error, the operation enters an error state.

To abandon an active operation, or reset an operation in an error state, call psa_mac_abort().

See Multi-part operations on page 27.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 174
1.4.0 Non-confidential

psa_mac_verify_setup (function)
Set up a multi-part MAC verification operation.
psa_status_t psa_mac_verify_setup(psa_mac_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per the
documentation for psa_mac_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain valid until
the operation terminates. It must permit the usage
PSA_KEY_USAGE_VERIFY_MESSAGE.
alg The MAC algorithm to compute: a value of type psa_algorithm_t such

that PSA_ALG_IS_MAC(alg) is true.

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be inactive.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_VERIFY_MESSAGE flag, or it
does not permit the requested algorithm.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e algis not a MAC algorithm.
e key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e algis not supported or is not a MAC algorithm.
e key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 175
1.4.0 Non-confidential

Description

This function sets up the verification of the message authentication code (MAC) of a byte string against an
expected value.

The sequence of operations to verify a MAC is as follows:

1. Allocate a MAC operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_mac_operation_t, €.8. PSA_MAC_OPERATION_INIT

3. Call psa_mac_verify_setup() to specify the algorithm and key.

4. Call psa_mac_update() zero, one or more times, passing a fragment of the message each time. The
MAC that is calculated is the MAC of the concatenation of these messages in order.

5. At the end of the message, call psa_mac_verify_finish() to finish calculating the actual MAC of the
message and verify it against the expected value.

After a successful call to psa_mac_verify_setup(), the operation is active, and the application must
eventually terminate the operation. The following events terminate an operation:

e A successful call to psa_mac_verify_finish().

e A call to psa_mac_abort().

If psa_mac_verify_setup() returns an error, the operation object is unchanged. If a subsequent function call
with an active operation returns an error, the operation enters an error state.

To abandon an active operation, or reset an operation in an error state, call psa_mac_abort().

See Multi-part operations on page 27.

psa_mac_update (function)
Add a message fragment to a multi-part MAC operation.
psa_status_t psa_mac_update(psa_mac_operation_t * operation,

const uint8_t * input,
size_t input_length);

Parameters
operation Active MAC operation.
input Buffer containing the message fragment to add to the MAC
calculation.
input_length Size of the input buffer in bytes.
Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The total input for the operation is too large for the MAC algorithm.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 176
1.4.0 Non-confidentia

PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description

The total input for the operation is too large for the implementation.

The application must call psa_mac_sign_setup() or psa_mac_verify_setup() before calling this function.

If this function returns an error status, the operation enters an error state and must be aborted by calling

psa_mac_abort().

psa_mac_sign_finish (function)

Finish the calculation of the MAC of a message.

psa_status_t psa_mac_sign_finish(psa_mac_operation_t * operation,
uint8_t * mac,

size_t mac_size,
size_t * mac_length);

Parameters
operation
mac

mac_size

mac_length

Returns: psa_status_t
PSA_SUCCESS

PSA_ERROR_BAD_STATE

Active MAC operation.
Buffer where the MAC value is to be written.

Size of the mac buffer in bytes. This must be appropriate for the
selected algorithm and key:

e The exact MAC size is PSA_MAC_LENGTH(key_type, key_bits, alg)
where key_type and key_bits are attributes of the key, and alg is
the algorithm used to compute the MAC.

e PSA_MAC_MAX_SIZE evaluates to the maximum MAC size of any
supported MAC algorithm.

On success, the number of bytes that make up the MAC value. This is
always PSA_MAC_LENGTH(key_type, key_bits, alg) where key_type and
key_bits are attributes of the key, and alg is the algorithm used to
compute the MAC.

Success. The first (*mac_length) bytes of mac contain the MAC value.
The following conditions can result in this error:

e The operation state is not valid: it must be an active mac sign
operation.

e The library requires initializing by a call to psa_crypto_init().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 177

1.4.0

Non-confidentia

PSA_ERROR_BUFFER_TOO_SMALL The size of the mac buffer is too small. PSA_MAC_LENGTH() or
PSA_MAC_MAX_SIZE can be used to determine a sufficient buffer size.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The application must call psa_mac_sign_setup() before calling this function. This function calculates the
MAC of the message formed by concatenating the inputs passed to preceding calls to psa_mac_update().

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_mac_abort ().

A Warning

It is not recommended to use this function when a specific value is expected for the MAC. Call
psa_mac_verify_finish() instead with the expected MAC value.

Comparing integrity or authenticity data such as MAC values with a function such as mememp() is risky
because the time taken by the comparison might leak information about the hashed data which could
allow an attacker to guess a valid MAC and thereby bypass security controls.

psa_mac_verify_finish (function)
Finish the calculation of the MAC of a message and compare it with an expected value.
psa_status_t psa_mac_verify_finish(psa_mac_operation_t * operation,

const uint8_t * mac,
size_t mac_length);

Parameters
operation Active MAC operation.
mac Buffer containing the expected MAC value.
mac_length Size of the mac buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success. The expected MAC is identical to the actual MAC of the
message.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be an active mac verify
operation.

e The library requires initializing by a call to psa_crypto_init().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 178
1.4.0 Non-confidential

PSA_ERROR_INVALID_SIGNATURE The calculated MAC of the message does not match the value in mac.
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNTCATION_FATLURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description

The application must call psa_mac_verify_setup() before calling this function. This function calculates the
MAC of the message formed by concatenating the inputs passed to preceding calls to psa_mac_update(). It
then compares the calculated MAC with the expected MAC passed as a parameter to this function.

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_mac_abort().

Note:

Implementations must make the best effort to ensure that the comparison between the actual MAC
and the expected MAC is performed in constant time.

psa_mac_abort (function)
Abort a MAC operation.

psa_status_t psa_mac_abort(psa_mac_operation_t * operation);

Parameters

operation Initialized MAC operation.

Returns: psa_status_t
PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,
the operation object can be reused for another operation by calling psa_mac_sign_setup() or
psa_mac_verify_setup() again.

This function can be called any time after the operation object has been initialized by one of the methods
described in psa_mac_operation_t.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 179
1.4.0 Non-confidential

In particular, calling psa_mac_abort () after the operation has been terminated by a call to psa_mac_abort(),
psa_mac_sign_finish() or psa_mac_verify_finish() is safe and has no effect.

10.4.4 Support macros

PSA_ALG_IS_HMAC (macro)
Whether the specified algorithm is an HMAC algorithm.

#define PSA_ALG_IS_HMAC(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1 if alg is an HMAC algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a supported
algorithm identifier.

Description
HMAC is a family of MAC algorithms that are based on a hash function.

PSA_ALG_IS_BLOCK_CIPHER_MAC (macro)

Whether the specified algorithm is a MAC algorithm based on a block cipher.

#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if algis a MAC algorithm based on a block cipher, @ otherwise. This macro can return either @ or 1 if alg is
not a supported algorithm identifier.

PSA_MAC_LENGTH (macro)

The size of the output of psa_mac_compute() and psa_mac_sign_finish(), in bytes

#define PSA_MAC_LENGTH(key_type, key_bits, alg) \
/* implementation-defined value */

Parameters
key_type The type of the MAC key.
key_bits The size of the MAC key in bits.
alg A MAC algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_MAC(alg) is true.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 180

1.4.0 Non-confidentia

Returns

The MAC length for the specified algorithm with the specified key parameters.
0 if the MAC algorithm is not recognized.

Either @ or the correct length for a MAC algorithm that the implementation recognizes, but does not
support.

Unspecified if the key parameters are not consistent with the algorithm.

Description

If the size of the MAC buffer is at least this large, it is guaranteed that psa_mac_compute() and
psa_mac_sign_finish() will not fail due to an insufficient buffer size.

This is also the MAC length that psa_mac_verify() and psa_mac_verify_finish() expect.

See also PSA_MAC_MAX_SIZE.

PSA_MAC_MAX_SIZE (macro)

A sufficient buffer size for storing the MAC output by psa_mac_verify() and psa_mac_verify_finish(), for
any of the supported key types and MAC algorithms.

#define PSA_MAC_MAX_SIZE /* implementation-defined value */

If the size of the MAC buffer is at least this large, it is guaranteed that psa_mac_verify() and
psa_mac_verify_finish() will not fail due to an insufficient buffer size.

See also PSA_MAC_LENGTH().

10.5 Unauthenticated ciphers

A\ Warning

The unauthenticated cipher APl is provided to implement legacy protocols and for use cases where the
data integrity and authenticity is guaranteed by non-cryptographic means.

It is recommended that newer protocols use Authenticated encryption with associated data (AEAD) on
page 207.

The single-part functions for encrypting or decrypting a message using an unauthenticated symmetric
cipher are:

e psa_cipher_encrypt() to encrypt a message using an unauthenticated symmetric cipher. The
encryption function generates a random initialization vector (V). Use the multi-part API to provide a
deterministic IV: this is not secure in general, but can be secure in some conditions that depend on
the algorithm.

e psa_cipher_decrypt() to decrypt a message using an unauthenticated symmetric cipher.

The psa_cipher_operation_t multi-part operation permits alternative initialization parameters and allows
messages to be processed in fragments. A multi-part cipher operation is used as follows:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 181
1.4.0 Non-confidential

1. Initialize the psa_cipher_operation_t object to zero, or by assigning the value of the associated macro
PSA_CIPHER_OPERATION_INIT.

2. Call psa_cipher_encrypt_setup() Or psa_cipher_decrypt_setup() to specify the algorithm and key.
3. Provide additional parameters:

e \When encrypting data, generate or set an IV, nonce, or similar initial value such as an initial
counter value. To generate a random IV, which is recommended in most protocols, call
psa_cipher_generate_iv(). To set the IV, call psa_cipher_set_iv().

e When decrypting, set the IV or nonce. To set the IV, call psa_cipher_set_iv().

4. Call the psa_cipher_update() function on successive chunks of the message.

5. Call psa_cipher_finish() to complete the operation and return any final output.

To abort the operation or recover from an error, call psa_cipher_abort().

10.5.1 Cipher algorithms

PSA_ALG_STREAM_CIPHER (macro)

The stream cipher mode of a stream cipher algorithm.

#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)@x04800100)

The underlying stream cipher is determined by the key type. The ARC4, ChaCha20, and XChaCha20
ciphers use this algorithm identifier.

ARC4
To use ARC4, use a key type of PSA_KEY_TYPE_ARC4 and algorithm id PSA_ALG_STREAM_CIPHER.

A Warning

The ARC4 cipher is weak and deprecated and is only recommended for use in legacy applications.

The ARC4 cipher does not use an initialization vector (IV). When using a multi-part cipher operation with
the PSA_ALG_STREAM_CIPHER algorithm and an ARC4 key, psa_cipher_generate_iv() and psa_cipher_set_iv()
must not be called.

ChaCha20
To use ChaCha20, use a key type of PSA_KEY_TYPE_CHACHA20 and algorithm id PSA_ALG_STREAM_CIPHER.

Implementations must support the variant that is defined in ChaCha20 and Poly1305 for IETF Protocols
[RFC8439] §2.4, which has a 96-bit nonce and a 32-bit counter. Implementations can optionally also
support the original variant, as defined in ChaCha, a variant of Salsa20 [CHACHA20], which has a 64-bit
nonce and a 64-bit counter. Except where noted, the [RFC8439] variant must be used.

ChaCha20 defines a nonce and an initial counter to be provided to the encryption and decryption
operations. When using a ChaChaZ20 key with the PSA_ALG_STREAM_CIPHER algorithm, these values are
provided using the initialization vector (IV) functions in the following ways:

e A call to psa_cipher_encrypt() will generate a random 12-byte nonce, and set the counter value to
zero. The random nonce is output as a 12-byte IV value in the output.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 182
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8439.html#section-2.4

e A call to psa_cipher_decrypt() will use first 12 bytes of the input buffer as the nonce and set the
counter value to zero.

e A call to psa_cipher_generate_iv() on a multi-part cipher operation will generate and return a random
12-byte nonce and set the counter value to zero.

e A call to psa_cipher_set_iv() on a multi-part cipher operation can support the following IV sizes:

— 12 bytes: the provided IV is used as the nonce, and the counter value is set to zero.

— 16 bytes: the first four bytes of the IV are used as the counter value (encoded as little-endian),
and the remaining 12 bytes are used as the nonce.

— 8 bytes: the cipher operation uses the original [CHACHA20] definition of ChaCha20: the
provided IV is used as the 64-bit nonce, and the 64-bit counter value is set to zero.

— It is recommended that implementations do not support other sizes of IV.

XChaCha20
To use XChaCha20, use a key type of PSA_KEY_TYPE_XCHACHA20 and algorithm id PSA_ALG_STREAM_CIPHER.

XChaCha20 is a variation of ChaChaZ20 that uses a 192-bit nonce and a 64-bit counter. The larger nonce
provides much lower probability of nonce misuse.

When using an XChaCha20 key with the PSA_ALG_STREAM_CIPHER algorithm, the nonce and an initial counter
values are provided using the initialization vector (IV) functions in the following ways:
e A call to psa_cipher_encrypt() will generate a random 24-byte nonce, and set the counter value to

zero. The random nonce is output as a 24-byte IV value in the output.

e A call to psa_cipher_decrypt() will use first 24 bytes of the input buffer as the nonce and set the
counter value to zero.

e A call to psa_cipher_generate_iv() on a multi-part cipher operation will generate and return a random
24-byte nonce and set the counter value to zero.

e A call to psa_cipher_set_iv() on a multi-part cipher operation can support the following IV sizes:

— 24 bytes: the provided IV is used as the nonce, and the counter value is set to zero.

— 32 bytes: the first 8 bytes of the IV are used as the counter value (encoded as little-endian), and
the remaining 24 bytes are used as the nonce.

Other sizes of IV are invalid.
XChaCha20 is defined in XChaCha: eXtended-nonce ChaCha and AEAD_XChaCha20_Poly1305 [XCHACHA].

Compatible key types

PSA_KEY_TYPE_ARC4
PSA_KEY_TYPE_CHACHA20
PSA_KEY_TYPE_XCHACHA20

PSA_ALG_CTR (macro)
A stream cipher built using the Counter (CTR) mode of a block cipher.

#define PSA_ALG_CTR ((psa_algorithm_t)@x04c01000)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 183
1.4.0 Non-confidential

CTR is a stream cipher which is built from a block cipher. The underlying block cipher is determined by the
key type. For example, to use AES-128-CTR, use this algorithm with a key of type PSA_KEY_TYPE_AES and a
size of 128 bits (16 bytes).

The CTR block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block Cipher
Modes of Operation: Methods and Techniques [SP800-38A).

CTR mode operates using a counter block which is the same size as the cipher block length. The counter
block is updated for each block, or a partial final block, that is encrypted or decrypted.

For the PsA_ALG_CTR algorithm, the counter block is initialized from the IV. The counter block is then treated
as a single, big-endian encoded integer, and the counter block is updated by incrementing this integer by 1.

The security of CTR mode depends on using counter block values that are unique across all messages
encrypted using the same key value. This is achieved by using suitable initial counter block values, the
appropriate way to do this depends on the application use case:

e |f the application is using CTR mode to implement a protocol that specifies the construction of the 1V,
then the application must use a multi-part cipher operation, and call psa_cipher_set_iv() with the
appropriate IV for encryption and decryption operations.

Note:
The protocol must use the same counter block update strategy as the one specified here.

e |f the application is able to construct a unique nonce value for each time the same key is used to
encrypt data, then it is recommended that the application uses a multi-part cipher operation, and call
psa_cipher_set_iv() using the nonce as the IV for encryption and decryption operations.

The nonce length, n bytes, must satisfy 1 < n < b, where b is the cipher block size in bytes. To avoid a
counter-block collision with other nonce values, the application must ensure that at most 28(0=7)
blocks of data are encrypted in any single operation.

For example, when using CTR encryption with an AES key, the cipher block size is 16 bytes. The
application can provide a 12-byte nonce when setting the IV. This leaves 4 bytes for the counter,
allowing up to 232 blocks (64GB) of message data to be encrypted in each message.

e Otherwise, it is recommended that the application uses a random IV value when encrypting data, and
transmits the IV along with the ciphertext for use when decrypting the data. This can be achieved
with either the single-part cipher functions or the multi-part cipher operation:

— In a multi-part cipher encryption operation, call psa_cipher_generate_iv(), which returns the IV
value. To use the same IV in a multi-part cipher decryption operation, call psa_cipher_set_iv().

— A call to psa_cipher_encrypt() will generate a random counter block value. This is the first block
of output. A call to psa_cipher_decrypt() will use first block of the input buffer as the initial
counter block value.

When using PSA_ALG_CTR, if the IV passed to psa_cipher_set_iv() is shorter than a cipher block, the initial
counter block is formed by padding the end of the IV with zero bytes up to the block length.

Note:
The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 184
1.4.0 Non-confidential

Compatible key types

PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARIA
PSA_KEY_TYPE_DES
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_SM4

PSA_ALG_CCM_STAR_NO_TAG (macro)
The CCM* cipher mode without authentication.
Added in version 1.2.

#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300)

This is CCM* as specified in IEEE Standard for Low-Rate Wireless Networks [IEEE-CCM] §7, with a tag length
of 0. For CCM* with a nonzero tag length, use the AEAD algorithm PSA_ALG_ccM.

The underlying block cipher is determined by the key type.

The IV generated or set in the cipher APl is used as the nonce in the CCM* operation. An implementation
must support the default IV length of 13. Support for setting a shorter IV is optional.

The maximum message length that can be encrypted is dependent on the length of the IV. See PsA_ALG_CCM
for details of this relationship.

Usage in Zigbee

The Zigbee message encryption algorithm is based on CCM*. This is detailed in zighee Specification
[ZIGBEE] §B.1.1 and §A.

For unauthenticated messages — when tag length M = 0 — the PSA_ALG_CCM_STAR_NO_TAG algorithm is
used with an AES-128 key in a multi-part cipher operation. The 13-byte IV must be constructed as
specified in [ZIGBEE], and provided to the operation using psa_cipher_set_iv().

Note:

An implementation of Zighee cannot use the single-part psa_cipher_encrypt() function, as this
generates a random IV, which is not valid for the Zigbee protocol.

For authenticated messages — when tag length M € {4,8,16} — the
PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, tag_length) algorithm is used with an AES-128 key,
where tag_length is the required value of M. The 13-byte nonce must be constructed as specified in
[ZIGBEE].

As the default tag length for CCM is 16, then psa_ALG_ccMm algorithm can be used when M = 16.
To enable a single AES-128 key to be used for both the PSA_ALG_CCM_STAR_NO_TAG cipher and

PSA_ALG_ccM AEAD algorithm, the key can be defined with the wildcard PSA_ALG_CCM_STAR_ANY_TAG
permitted algorithm.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 185

1.4.0

Non-confidential

Compatible key types

PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARIA
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_SM4

PSA_ALG_CFB (macro)

A stream cipher built using the Cipher Feedback (CFB) mode of a block cipher.

#define PSA_ALG_CFB ((psa_algorithm_t)0x04c01100)

The underlying block cipher is determined by the key type. This is the variant of CFB where each iteration
encrypts or decrypts a segment of the input that is the same length as the cipher block size. For example,
using PSA_ALG_CFB with a key of type PSA_KEY_TYPE_AES will result in the AES-CFB-128 cipher.

CFB mode requires an initialization vector (IV) that is the same size as the cipher block length.

Note:

The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The CFB block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block Cipher
Modes of Operation: Methods and Techniques [SP800-38A], using a segment size s equal to the block size b.
The definition in [SP800-38A] is extended to allow an incomplete final block of input, in which case the
algorithm discards the final bytes of the key stream when encrypting or decrypting the final partial block.
Compatible key types

PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARIA
PSA_KEY_TYPE_DES
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_SM4

PSA_ALG_OFB (macro)
A stream cipher built using the Output Feedback (OFB) mode of a block cipher.

#define PSA_ALG_OFB ((psa_algorithm_t)@x04c01200)

The underlying block cipher is determined by the key type.

OFB mode requires an initialization vector (IV) that is the same size as the cipher block length. OFB mode
requires that the IV is a nonce, and must be unique for each use of the mode with the same key.

Note:

The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 186
1.4.0 Non-confidential

The OFB block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block Cipher
Modes of Operation: Methods and Techniques [SP800-38A).

Compatible key types
PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARIA
PSA_KEY_TYPE_DES
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_SM4

PSA_ALG_XTS (macro)
The XEX with Ciphertext Stealing (XTS) cipher mode of a block cipher.

#define PSA_ALG_XTS ((psa_algorithm_t)@0x0440ff00)

XTS is a cipher mode which is built from a block cipher, designed for use in disk encryption. It requires at
least one full cipher block length of input, but beyond this minimum the input does not need to be a whole
number of blocks.

XTS mode uses two keys for the underlying block cipher. These are provided by using a key that is twice the
normal key size for the cipher. For example, to use AES-256-XTS the application must create a key with
type PSA_KEY_TYPE_AES and bit size 512.

XTS mode requires an initialization vector (IV) that is the same size as the cipher block length. The IV for
XTS is typically defined to be the sector number of the disk block being encrypted or decrypted.

The XTS block cipher mode is defined in 1619-2018 --- IEEE Standard for Cryptographic Protection of Data on
Block-Oriented Storage Devices [IEEE-XTS].

Compatible key types

PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARIA
PSA_KEY_TYPE_DES
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_SM4

PSA_ALG_ECB_NO_PADDING (macro)
The Electronic Codebook (ECB) mode of a block cipher, with no padding.

#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)@x04404400)

A Warning

ECB mode does not protect the confidentiality of the encrypted data except in extremely narrow
circumstances. It is recommended that applications only use ECB if they need to construct an operating
mode that the implementation does not provide. Implementations are encouraged to provide the modes
that applications need in preference to supporting direct access to ECB.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 187
1.4.0 Non-confidentia

The underlying block cipher is determined by the key type.

This symmetric cipher mode can only be used with messages whose lengths are a multiple of the block size
of the chosen block cipher.

ECB mode does not accept an initialization vector (IV). When using a multi-part cipher operation with this
algorithm, psa_cipher_generate_iv() and psa_cipher_set_iv() must not be called.

Note:

The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The ECB block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block Cipher
Modes of Operation: Methods and Techniques [SP800-38A].

Compatible key types

PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARIA
PSA_KEY_TYPE_DES
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_SM4

PSA_ALG_CBC_NO_PADDING (macro)
The Cipher Block Chaining (CBC) mode of a block cipher, with no padding.

#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)0x04404000)

The underlying block cipher is determined by the key type.

This symmetric cipher mode can only be used with messages whose lengths are a multiple of the block size
of the chosen block cipher.

CBC mode requires an initialization vector (IV) that is the same size as the cipher block length.

Note:

The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The CBC block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block Cipher
Modes of Operation: Methods and Techniques [SP800-38A].

Compatible key types

PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARIA
PSA_KEY_TYPE_DES
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_SM4

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 188
1.4.0 Non-confidential

PSA_ALG_CBC_PKCS7 (macro)
The Cipher Block Chaining (CBC) mode of a block cipher, with PKCS#7 padding.

#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)@x04404100)

The underlying block cipher is determined by the key type.

CBC mode requires an initialization vector (IV) that is the same size as the cipher block length.

Note:

The cipher block length can be determined using PSA_BLOCK_CIPHER_BLOCK_LENGTH().

The CBC block cipher mode is defined in NIST Special Publication 800-38A: Recommendation for Block Cipher
Modes of Operation: Methods and Techniques [SP800-38A]. The padding operation is defined by PKCS #7:
Cryptographic Message Syntax Version 1.5 [RFC2315] §10.3.

Compatible key types

PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARIA
PSA_KEY_TYPE_DES
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_SM4

10.5.2 Single-part cipher functions

psa_cipher_encrypt (function)

Encrypt a message using a symmetric cipher.

psa_status_t psa_cipher_encrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters
key Identifier of the key to use for the operation. It must permit the usage
PSA_KEY_USAGE_ENCRYPT.
alg The cipher algorithm to compute: a value of type psa_algorithm_t such
that PSA_ALG_IS_CIPHER(alg) is true.
input Buffer containing the message to encrypt.
input_length Size of the input buffer in bytes.
output Buffer where the output is to be written. The output contains the IV
followed by the ciphertext proper.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 189

14.0 Non-confidentia

https://datatracker.ietf.org/doc/html/rfc2315.html#section-10.3

output_size

output_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Size of the output buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE (key_type, alg, input_length)
where key_type is the type of key.

e PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input_length) evaluates to
the maximum output size of any supported cipher encryption.

On success, the number of bytes that make up the output.

Success. The first (*output_length) bytes of output contain the
encrypted output.

The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.

The key does not have the psA_KEY_USAGE_ENCRYPT flag, or it does not
permit the requested algorithm.

The size of the output buffer is too small.
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE() Or
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE() can be used to determine a
sufficient buffer size.

The following conditions can result in this error:

e algis not a cipher algorithm.
e key is not compatible with alg.

e The input_length is not valid for the algorithm and key type. For
example, the algorithm is a based on block cipher and requires a
whole number of blocks, but the total input size is not a multiple
of the block size.

The following conditions can result in this error:

e algis not supported or is not a cipher algorithm.
e key is not supported for use with alg.
e input_length is too large for the implementation.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 190

1.4.0

Non-confidentia

Description

This function encrypts a message with a random initialization vector (IV). The length of the IV is
PSA_CIPHER_IV_LENGTH(key_type, alg) Where key_type is the type of key. The output of psa_cipher_encrypt()

is the IV followed by the ciphertext.

Use the multi-part operation interface with a psa_cipher_operation_t object to provide other forms of IV or
to manage the IV and ciphertext independently.

psa_cipher_decrypt (function)

Decrypt a message using a symmetric cipher.

psa_status_t psa_cipher_decrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters

key

alg

input

input_length
output

output_size

output_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

Identifier of the key to use for the operation. It must remain valid until
the operation terminates. It must permit the usage
PSA_KEY_USAGE_DECRYPT.

The cipher algorithm to compute: a value of type psa_algorithm_t such
that PSA_ALG_IS_CIPHER(alg) is true.

Buffer containing the message to decrypt. This consists of the IV
followed by the ciphertext proper.

Size of the input buffer in bytes.
Buffer where the plaintext is to be written.

Size of the output buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is
PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, input_length)
where key_type is the type of key.

e PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE (input_length) evaluates to
the maximum output size of any supported cipher decryption.

On success, the number of bytes that make up the output.

Success. The first (*output_length) bytes of output contain the
plaintext.

The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.

The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does not
permit the requested algorithm.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 191

1.4.0

Non-confidentia

PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.
PSA_CIPHER_DECRYPT_OUTPUT_SIZE() Or
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE() can be used to determine a
sufficient buffer size.

PSA_ERROR_INVALID_PADDING The algorithm uses padding, and the input does not contain valid
padding.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e algis not a cipher algorithm.
e key is not compatible with alg.

e The input_length is not valid for the algorithm and key type. For
example, the algorithm is a based on block cipher and requires a
whole number of blocks, but the total input size is not a multiple
of the block size.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e algis not supported or is not a cipher algorithm.
e key is not supported for use with alg.
e input_length is too large for the implementation.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID
Description
This function decrypts a message encrypted with a symmetric cipher.

The input to this function must contain the IV followed by the ciphertext, as output by
psa_cipher_encrypt(). The IV must be PSA_CIPHER_IV_LENGTH(key_type, alg) bytes in length, where key_type
is the type of key.

Use the multi-part operation interface with a psa_cipher_operation_t object to decrypt data which is not in
the expected input format.

10.5.3 Multi-part cipher operations

psa_cipher_operation_t (typedef)

The type of the state object for multi-part cipher operations.

typedef /* implementation-defined type */ psa_cipher_operation_t;

Before calling any function on a cipher operation object, the application must initialize it by any of the
following means:

e Set the object to all-bits-zero, for example:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 192
1.4.0 Non-confidential

psa_cipher_operation_t operation;
memset (&operation, @, sizeof(operation));

e |nitialize the object to logical zero values by declaring the object as static or global without an explicit
initializer, for example:

static psa_cipher_operation_t operation;

e Initialize the object to the initializer PSA_CTPHER_OPERATION_INTT, for example:

psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;

e Assign the result of the function psa_cipher_operation_init() to the object, for example:
psa_cipher_operation_t operation;

operation = psa_cipher_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in implementation-specific behavior, and are non-portable.

PSA_CIPHER_OPERATION_INIT (macro)

This macro returns a suitable initializer for a cipher operation object of type psa_cipher_operation_t.

#define PSA_CIPHER_OPERATION_INIT /* implementation-defined value */

psa_cipher_operation_init (function)

Return an initial value for a cipher operation object.

psa_cipher_operation_t psa_cipher_operation_init(void);

Returns:psa_cipher_operation_t

psa_cipher_encrypt_setup (function)

Set the key for a multi-part symmetric encryption operation.

psa_status_t psa_cipher_encrypt_setup(psa_cipher_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per the
documentation for psa_cipher_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain valid until
the operation terminates. It must permit the usage
PSA_KEY_USAGE_ENCRYPT.
alg The cipher algorithm to compute: a value of type psa_algorithm_t such
that PSA_ALG_IS_CIPHER(alg) is true.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 193

1.4.0 Non-confidentia

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be inactive.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does not
permit the requested algorithm.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e algis not a cipher algorithm.
e key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e algis not supported or is not a cipher algorithm.
e key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The sequence of operations to encrypt a message with a symmetric cipher is as follows:

1. Allocate a cipher operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_cipher_operation_t, €.8. PSA_CIPHER_OPERATION_INIT.

3. Call psa_cipher_encrypt_setup() to specify the algorithm and key.

4. Call either psa_cipher_generate_iv() Or psa_cipher_set_iv() to generate or set the initialization vector
(IV), if the algorithm requires one. It is recommended to use psa_cipher_generate_iv() unless the
protocol being implemented requires a specific IV value.

5. Call psa_cipher_update() zero, one or more times, passing a fragment of the message each time.

6. Call psa_cipher_finish().

After a successful call to psa_cipher_encrypt_setup(), the operation is active, and the application must
eventually terminate the operation. The following events terminate an operation:

e A successful call to psa_cipher_finish().

e A call to psa_cipher_abort().

If psa_cipher_encrypt_setup() returns an error, the operation object is unchanged. If a subsequent function
call with an active operation returns an error, the operation enters an error state.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 194
1.4.0 Non-confidential

To abandon an active operation, or reset an operation in an error state, call psa_cipher_abort ().

See Multi-part operations on page 27/.

psa_cipher_decrypt_setup (function)
Set the key for a multi-part symmetric decryption operation.
psa_status_t psa_cipher_decrypt_setup(psa_cipher_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

Parameters
operation The operation object to set up. It must have been initialized as per the
documentation for psa_cipher_operation_t and not yet in use.
key Identifier of the key to use for the operation. It must remain valid until
the operation terminates. It must permit the usage
PSA_KEY_USAGE_DECRYPT.
alg The cipher algorithm to compute: a value of type psa_algorithm_t such

that PSA_ALG_IS_CIPHER(alg) is true.

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be inactive.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.

PSA_ERROR_NOT_PERMITTED The key does not have the psA_KEY_USAGE_DECRYPT flag, or it does not
permit the requested algorithm.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e algis not a cipher algorithm.
e key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e alg is not supported or is not a cipher algorithm.
e key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 195
1.4.0 Non-confidential

Description
The sequence of operations to decrypt a message with a symmetric cipher is as follows:
1. Allocate a cipher operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_cipher_operation_t, €.8. PSA_CIPHER_OPERATION_INIT.

3. Call psa_cipher_decrypt_setup() to specify the algorithm and key.

4. Call psa_cipher_set_iv() with the initialization vector (IV) for the decryption, if the algorithm requires
one. This must match the IV used for the encryption.

5. Call psa_cipher_update() zero, one or more times, passing a fragment of the message each time.

6. Call psa_cipher_finish().

After a successful call to psa_cipher_decrypt_setup(), the operation is active, and the application must
eventually terminate the operation. The following events terminate an operation:

e A successful call to psa_cipher_finish().

e A call to psa_cipher_abort().

If psa_cipher_decrypt_setup() returns an error, the operation object is unchanged. If a subsequent function
call with an active operation returns an error, the operation enters an error state.

To abandon an active operation, or reset an operation in an error state, call psa_cipher_abort().

See Multi-part operations on page 27.

psa_cipher_generate_iv (function)

Generate an initialization vector (IV) for a symmetric encryption operation.

psa_status_t psa_cipher_generate_iv(psa_cipher_operation_t * operation,
uint8_t * iv,
size_t iv_size,
size_t * iv_length);

Parameters

operation Active cipher operation.

iv Buffer where the generated IV is to be written.

iv_size Size of the iv buffer in bytes. This must be at least
PSA_CIPHER_IV_LENGTH(key_type, alg) where key_type and alg are type
of key and the algorithm respectively that were used to set up the
cipher operation.

iv_length On success, the number of bytes of the generated V.

Returns: psa_status_t
PSA_SUCCESS Success. The first (*iv_length) bytes of iv contain the generated IV.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The cipher algorithm does not use an IV.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 196
1.4.0 Non-confidential

e The operation state is not valid: it must be active, with no IV set.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the iv buffer is too small. PSA_CIPHER_IV_LENGTH() Or
PSA_CIPHER_IV_MAX_SIZE can be used to determine a sufficient buffer
size.

PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function generates a random |V, nonce or initial counter value for the encryption operation as
appropriate for the chosen algorithm, key type and key size.

The generated IV is always the default length for the key and algorithm: PSA_CIPHER_IV_LENGTH(key_type,
alg), where key_type is the type of key and alg is the algorithm that were used to set up the operation. To
generate different lengths of IV, use psa_generate_random() and psa_cipher_set_iv().

If the cipher algorithm does not use an 1V, calling this function returns a PSA_ERROR_BAD_STATE error. For
these algorithms, PSA_CIPHER_IV_LENGTH(key_type, alg) will be zero.

The application must call psa_cipher_encrypt_setup() before calling this function.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_cipher_abort().

psa_cipher_set_iv (function)
Set the initialization vector (IV) for a symmetric encryption or decryption operation.
psa_status_t psa_cipher_set_iv(psa_cipher_operation_t * operation,

const uint8_t * iv,
size_t iv_length);

Parameters
operation Active cipher operation.
iv Buffer containing the IV to use.
iv_length Size of the IV in bytes.

Returns: psa_status_t

PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The cipher algorithm does not use an IV.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 197
1.4.0 Non-confidential

e The operation state is not valid: it must be an active cipher
encrypt operation, with no IV set.

e The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e The chosen algorithm does not use an IV.
e iv_length is not valid for the chosen algorithm.

PSA_ERROR_NOT_SUPPORTED iv_length is not supported for use with the operation’s algorithm and
key.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

This function sets the IV, nonce or initial counter value for the encryption or decryption operation.

If the cipher algorithm does not use an 1V, calling this function returns a PSA_ERROR_BAD_STATE error. For
these algorithms, PSA_CIPHER_IV_LENGTH(key_type, alg) will be zero.

The application must call psa_cipher_encrypt_setup() Or psa_cipher_decrypt_setup() before calling this
function.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_cipher_abort().

Note:

When encrypting, psa_cipher_generate_iv() is recommended instead of using this function, unless
implementing a protocol that requires a non-random IV.

psa_cipher_update (function)

Encrypt or decrypt a message fragment in an active cipher operation.

psa_status_t psa_cipher_update(psa_cipher_operation_t * operation,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 198
1.4.0 Non-confidentia

Parameters
operation
input
input_length
output

output_size

output_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Active cipher operation.

Buffer containing the message fragment to encrypt or decrypt.
Size of the input buffer in bytes.

Buffer where the output is to be written.

Size of the output buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is
PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input_length)
where key_type is the type of key and alg is the algorithm that
were used to set up the operation.

e PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input_length) evaluates to
the maximum output size of any supported cipher algorithm.

On success, the number of bytes that make up the returned output.

Success. The first (*output_length) bytes of output contain the output
data.

The following conditions can result in this error:
e The operation state is not valid: it must be active, with an IV set if
required for the algorithm.
e The library requires initializing by a call to psa_crypto_init().
The size of the output buffer is too small.
PSA_CIPHER_UPDATE_OUTPUT_SIZE() Or

PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE() can be used to determine a
sufficient buffer size.

The total input size passed to this operation is too large for this
particular algorithm.

The total input size passed to this operation is too large for the
implementation.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 199

1.4.0

Non-confidentia

Description

The following must occur before calling this function:

1. Call either psa_cipher_encrypt_setup() Or psa_cipher_decrypt_setup(). The choice of setup function
determines whether this function encrypts or decrypts its input.

2. If the algorithm requires an IV, call psa_cipher_generate_iv() Or psa_cipher_set_iv().
psa_cipher_generate_iv() is recommended when encrypting.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_cipher_abort().

Note:

This function does not require the input to be aligned to any particular block boundary. If the
implementation can only process a whole block at a time, it must consume all the input provided, but
it might delay the end of the corresponding output until a subsequent call to psa_cipher_update()
provides sufficient input, or a subsequent call to psa_cipher_finish() indicates the end of the input.
The amount of data that can be delayed in this way is bounded by the associated output size macro:
PSA_CIPHER_UPDATE_OUTPUT_SIZE() OF PSA_CIPHER_FINISH_OUTPUT_SIZE().

psa_cipher_finish (function)

Finish encrypting or decrypting a message in a cipher operation.

psa_status_t psa_cipher_finish(psa_cipher_operation_t * operation,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters
operation Active cipher operation.
output Buffer where the last part of the output is to be written.
output_size Size of the output buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is
PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg) where key_type is
the type of key and alg is the algorithm that were used to set up
the operation.

e PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE evaluates to the maximum
output size of any supported cipher algorithm.

output_length On success, the number of bytes that make up the returned output.

Returns: psa_status_t

PSA_SUCCESS Success. The first (*output_length) bytes of output contain the final
output.
PSA_ERROR_BAD_STATE The following conditions can result in this error:
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 200

1.4.0 Non-confidential

e The operation state is not valid: it must be active, with an IV set if
required for the algorithm.

e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.
PSA_CIPHER_FINISH_OUTPUT_SIZE() Or
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE can be used to determine a
sufficient buffer size.

PSA_ERROR_INVALID_PADDING This is a decryption operation for an algorithm that includes padding,
and the ciphertext does not contain valid padding.

PSA_ERROR_INVALID_ARGUMENT The total input size passed to this operation is not valid for this
particular algorithm. For example, the algorithm is a based on block
cipher and requires a whole number of blocks, but the total input size
is not a multiple of the block size.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description

The application must call psa_cipher_encrypt_setup() Or psa_cipher_decrypt_setup() before calling this
function. The choice of setup function determines whether this function encrypts or decrypts its input.

This function finishes the encryption or decryption of the message formed by concatenating the inputs
passed to preceding calls to psa_cipher_update().

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_cipher_abort().

psa_cipher_abort (function)

Abort a cipher operation.
psa_status_t psa_cipher_abort(psa_cipher_operation_t * operation);
Parameters

operation Initialized cipher operation.

Returns: psa_status_t
PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 201
1.4.0 Non-confidential

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,
the operation object can be reused for another operation by calling psa_cipher_encrypt_setup() or
psa_cipher_decrypt_setup() again.

This function can be called any time after the operation object has been initialized as described in
psa_cipher_operation_t.

In particular, calling psa_cipher_abort () after the operation has been terminated by a call to
psa_cipher_abort() Or psa_cipher_finish() is safe and has no effect.

10.5.4 Support macros

PSA_ALG_IS_STREAM_CIPHER (macro)

Whether the specified algorithm is a stream cipher.

#define PSA_ALG_IS_STREAM_CIPHER(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a stream cipher algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a supported
algorithm identifier or if it is not a symmetric cipher algorithm.

Description

A stream cipher is a symmetric cipher that encrypts or decrypts messages by applying a bitwise-xor with a
stream of bytes that is generated from a key.

PSA_ALG_CCM_STAR_ANY_TAG (macro)

A wildcard algorithm that permits the use of the key with CCM* as both an AEAD and an unauthenticated
cipher algorithm.

Added in version 1.2.

#define PSA_ALG_CCM_STAR_ANY_TAG ((psa_algorithm_t)0x04c09300)

If a block-cipher key specifies PSA_ALG_CCM_STAR_ANY_TAG as its permitted algorithm, then the key can be used
with the PSA_ALG_CCM_STAR_NO_TAG unauthenticated cipher, the psa_aLG_ccv AEAD algorithm, and truncated
PSA_ALG_ccM AEAD algorithms.

PSA_CIPHER_ENCRYPT_OUTPUT_SIZE (macro)

A sufficient output buffer size for psa_cipher_encrypt(), in bytes.

#define PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 202
1.4.0 Non-confidentia

Parameters

key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_CIPHER(alg) is true.
input_length Size of the input in bytes.
Returns

A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is not
recognized, or the parameters are incompatible, return 8. An implementation can return either @ or a correct
size for a key type and cipher algorithm that it recognizes, but does not support.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_encrypt() will not fail
due to an insufficient buffer size. Depending on the algorithm, the actual size of the output might be smaller.

See also PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE.

PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_cipher_encrypt(), for any of the supported key types and cipher
algorithms.

#define PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input_length) \
/* implementation-defined value */

Parameters

input_length Size of the input in bytes.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_encrypt() will not fail
due to an insufficient buffer size.

See also PSA_CIPHER_ENCRYPT_OUTPUT_SIZE().

PSA_CIPHER_DECRYPT_OUTPUT_SIZE (macro)

A sufficient output buffer size for psa_cipher_decrypt(), in bytes.

#define PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_CIPHER(alg) is true.
input_length Size of the input in bytes.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 203

1.4.0 Non-confidentia

Returns

A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is not
recognized, or the parameters are incompatible, return . An implementation can return either @ or a correct
size for a key type and cipher algorithm that it recognizes, but does not support.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_decrypt() will not fail
due to an insufficient buffer size. Depending on the algorithm, the actual size of the output might be smaller.

See also PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE.

PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_cipher_decrypt(), for any of the supported key types and cipher
algorithms.

#define PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(input_length) \
/* implementation-defined value */

Parameters

input_length Size of the input in bytes.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_decrypt() will not fail
due to an insufficient buffer size.

See also PSA_CIPHER_DECRYPT_OUTPUT_SIZE().

PSA_CIPHER_IV_LENGTH (macro)

The default IV size for a cipher algorithm, in bytes.

#define PSA_CIPHER_IV_LENGTH(key_type, alg) /* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_CIPHER(alg) is true.
Returns

The default IV size for the specified key type and algorithm. If the algorithm does not use an IV, return o. If
the key type or cipher algorithm is not recognized, or the parameters are incompatible, return o. An
implementation can return either @ or a correct size for a key type and cipher algorithm that it recognizes,
but does not support.

Description

The IV that is generated as part of a call to psa_cipher_encrypt() is always the default IV length for the
algorithm.

This macro can be used to allocate a buffer of sufficient size to store the IV output from
psa_cipher_generate_iv() when using a multi-part cipher operation.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 204
1.4.0 Non-confidential

See also PSA_CIPHER_IV_MAX_SIZE.

PSA_CIPHER_IV_MAX_SIZE (macro)

A sufficient buffer size for storing the IV generated by psa_cipher_generate_iv(), for any of the supported
key types and cipher algorithms.

#define PSA_CIPHER_IV_MAX_SIZE /* implementation-defined value */

If the size of the IV buffer is at least this large, it is guaranteed that psa_cipher_generate_iv() will not fail
due to an insufficient buffer size.

See also PSA_CIPHER_IV_LENGTH().

PSA_CIPHER_UPDATE_OUTPUT_SIZE (macro)

A sufficient output buffer size for psa_cipher_update(), in bytes.

#define PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_CIPHER(alg) is true.
input_length Size of the input in bytes.
Returns

A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is not
recognized, or the parameters are incompatible, return . An implementation can return either @ or a correct
size for a key type and cipher algorithm that it recognizes, but does not support.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_update() will not fail due
to an insufficient buffer size. The actual size of the output might be smaller in any given call.

See also PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE.

PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_cipher_update(), for any of the supported key types and cipher
algorithms.

#define PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input_length) \
/* implementation-defined value */

Parameters
input_length Size of the input in bytes.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 205

1.4.0 Non-confidentia

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_update() will not fail due
to an insufficient buffer size.

See also PSA_CIPHER_UPDATE_OUTPUT_SIZE().

PSA_CIPHER_FINISH_OUTPUT_SIZE (macro)

A sufficient output buffer size for psa_cipher_finish().

#define PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg A cipher algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_CIPHER(alg) is true.
Returns

A sufficient output size for the specified key type and algorithm. If the key type or cipher algorithm is not
recognized, or the parameters are incompatible, return . An implementation can return either @ or a correct
size for a key type and cipher algorithm that it recognizes, but does not support.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_finish() will not fail due
to an insufficient buffer size. The actual size of the output might be smaller in any given call.

See also PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE.

PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_cipher_finish(), for any of the supported key types and cipher
algorithms.

#define PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE /* implementation-defined value */

If the size of the output buffer is at least this large, it is guaranteed that psa_cipher_finish() will not fail due
to an insufficient buffer size.

See also PSA_CIPHER_FINISH_OUTPUT_SIZE().

PSA_BLOCK_CIPHER_BLOCK_LENGTH (macro)

The block size of a block cipher.

#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) /* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 206
1.4.0 Non-confidentia

Parameters

type A cipher key type: a value of type psa_key_type_t.

Returns

The block size for a block cipher, or 1 for a stream cipher. The return value is undefined if type is not a
supported cipher key type.

Description

Note:

It is possible to build stream cipher algorithms on top of a block cipher, for example CTR mode
(PSA_ALG_CTR). This macro only takes the key type into account, so it cannot be used to determine the
size of the data that psa_cipher_update() might buffer for future processing in general.

See also PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE.

PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE (macro)

The maximum block size of a block cipher supported by the implementation.

#define PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE /* implementation-defined value */

See also PSA_BLOCK_CIPHER_BLOCK_LENGTH().

10.6 Authenticated encryption with associated data (AEAD)
The single-part AEAD functions are:

e psa_aead_encrypt() to encrypt a message using an authenticated symmetric cipher.

e psa_aead_decrypt() to decrypt a message using an authenticated symmetric cipher.
These functions follow the interface recommended by An Interface and Algorithms for Authenticated
Encryption [RFC5116].

The encryption function requires a nonce to be provided. To generate a random nonce, either call
psa_generate_random() or use the AEAD multi-part API.

The psa_aead_operation_t multi-part operation permits alternative initialization parameters and allows
messages to be processed in fragments. A multi-part AEAD operation is used as follows:
1. Initialize the psa_aead_operation_t object to zero, or by assigning the value of the associated macro
PSA_AEAD_OPERATION_INIT.
2. Call psa_aead_encrypt_setup() Or psa_aead_decrypt_setup() to specify the algorithm and key.
3. Provide additional parameters:

e |f the algorithm requires it, call psa_aead_set_lengths() to specify the length of the
non-encrypted and encrypted inputs to the operation.

e \When encrypting, call either psa_aead_generate_nonce() Or psa_aead_set_nonce() to generate or
set the nonce.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 207
1.4.0 Non-confidential

e \When decrypting, call psa_aead_set_nonce() to set the nonce.
4. Call psa_aead_update_ad() zero or more times with fragments of the non-encrypted additional data.

5. Call psa_aead_update() zero or more times with fragments of the plaintext or ciphertext to encrypt or
decrypt.

6. At the end of the message, call the required finishing function:

e To complete an encryption operation, call psa_aead_finish() to compute and return
authentication tag.

e To complete a decryption operation, call psa_aead_verify() to compute the authentication tag
and verify it against a reference value.

To abort the operation or recover from an error, call psa_aead_abort().

Note:

Using a multi-part interface to authenticated encryption raises specific issues.

e Multi-part authenticated decryption produces intermediate results that are not authenticated.
Revealing unauthenticated results, either directly or indirectly through the application’s behavior,
can compromise the confidentiality of all inputs that are encrypted with the same key. See the
detailed warning.

e For encryption, some common algorithms cannot be processed in a streaming fashion. For SIV
mode, the whole plaintext must be known before the encryption can start; the multi-part AEAD
APl is not meant to be usable with SIV mode. For CCM mode, the length of the plaintext must
be known before the encryption can start; the application can call the function
psa_aead_set_lengths() to provide these lengths before providing input.

10.6.1 AEAD algorithms

PSA_ALG_CCM (macro)
The Counter with CBC-MAC (CCM) authenticated encryption algorithm.

#define PSA_ALG_CCM ((psa_algorithm_t)@x05500100)

CCM is defined for block ciphers that have a 128-bit block size. The underlying block cipher is determined
by the key type.

To use PSA_ALG_CcM with a multi-part AEAD operation, the application must call psa_aead_set_lengths()
before providing the nonce, the additional data and plaintext to the operation.

CCM requires a nonce of between 7 and 13 bytes in length. The length of the nonce affects the maximum
length of the plaintext than can be encrypted or decrypted. If the nonce has length NV, then the plaintext
length pLen is encoded in L = 15 — N octets, this requires that pLen < 28F.

The value for L that is used with PsA_ALG_ccm depends on the function used to provide the nonce:
e A call to psa_aead_encrypt(), psa_aead_decrypt(), OF psa_aead_set_nonce() will set

L =15 — nonce_length. If the plaintext length cannot be encoded in L octets, then a
PSA_ERROR_INVALID_ARGUMENT error is returned.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 208
1.4.0 Non-confidential

e A call to psa_aead_generate_nonce() on a multi-part cipher operation will select the smallest integer
L > 2, where pLen < 28 with pLen being the plaintext_length provided to psa_aead_set_lengths().
The call to psa_aead_generate_nonce() will generate and return a random nonce of length 15 — L bytes.

CCM supports authentication tag sizes of 4, 6, 8, 10, 12, 14, and 16 bytes. The default tag length is 16.
Shortened tag lengths can be requested using PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, tag_length),
where tag_length is a valid CCM tag length.

The CCM block cipher mode is defined in Counter with CBC-MAC (CCM) [RFC3610].

Usage in Zigbee
The CCM* algorithm is required by zigbee Specification [ZIGBEE].

e PSA_ALG_CCM, and its truncated variants, can be used to implement CCM* for non-zero tag lengths.

e For unauthenticated CCM*, with a zero-length tag, use the PSA_ALG_CCM_STAR_NO_TAG cipher algorithm.
See also Usage in Zigbee under PSA_ALG_CCM_STAR_NO_TAG.

Compatible key types
PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARIA
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_SM4

PSA_ALG_GCM (macro)
The Galois/Counter Mode (GCM) authenticated encryption algorithm.

#define PSA_ALG_GCM ((psa_algorithm_t)@x05500200)

GCM is defined for block ciphers that have a 128-bit block size. The underlying block cipher is determined
by the key type.

GCM requires a nonce of at least 1 byte in length. The maximum supported nonce size is IMPLEMENTATION
DEFINED. Calling psa_aead_generate_nonce() will generate a random 12-byte nonce.

GCM supports authentication tag sizes of 4, 8, 12, 13, 14, 15, and 16 bytes. The default tag length is 16.
Shortened tag lengths can be requested using PSA_ALG_AEAD_WITH_SHORTENED_TAG (PSA_ALG_GCM, tag_length),
where tag_length is a valid GCM tag length.

The GCM block cipher mode is defined in NIST Special Publication 800-38D: Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC [SP800-38D)].

Compatible key types
PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARTIA
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_SM4

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 209
1.4.0 Non-confidential

PSA_ALG_CHACHA2@_POLY1305 (macro)
The ChaCha20-Poly1305 AEAD algorithm.

#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0@x05100500)

There are two defined variants of ChaCha20-Poly1305:

e An implementation that supports ChaCha20-Poly1305 must support the variant defined by
ChaCha20 and Poly1305 for IETF Protocols [RFC8439], which has a 96-bit nonce and 32-bit counter.

e An implementation can optionally also support the original variant defined by ChaCha, a variant of
Salsa20 [CHACHA20], which has a 64-bit nonce and 64-bit counter.

The variant used for the AEAD encryption or decryption operation, depends on the nonce provided for an
AEAD operation using PSA_ALG_CHACHA20_POLY1305:

e A nonce provided in a call to psa_aead_encrypt(), psa_aead_decrypt() Or psa_aead_set_nonce() must be
8 or 12 bytes. The size of nonce will select the appropriate variant of the algorithm.

e A nonce generated by a call to psa_aead_generate_nonce() will be 12 bytes, and will use the
[RFC8439] variant.

Implementations must support 16-byte tags. It is recommended that truncated tag sizes are rejected.

Compatible key types
PSA_KEY_TYPE_CHACHA20

PSA_ALG_XCHACHA20_POLY1305 (macro)
The XChaCha20-Poly1305 AEAD algorithm.
Added in version 1.2.

#define PSA_ALG_XCHACHA20_POLY1305 ((psa_algorithm_t)0x05100600)

XChaCha20-Poly1305 is a variation of the ChaCha20-Poly1305 AEAD algorithm, but uses a 192-bit nonce.
The larger nonce provides much lower probability of nonce misuse.

XChaCha20-Poly1305 requires a 24-byte nonce.

Implementations must support 16-byte tags. It is recommended that truncated tag sizes are rejected.

XChaCha20-Poly1305 is defined in XChaCha: eXtended-nonce ChaCha and AEAD_XChaCha20_Poly1305
[XCHACHA].

Compatible key types
PSA_KEY_TYPE_XCHACHA20

PSA_ALG_ASCON_AEAD128 (macro)
The Ascon-AEAD128 AEAD algorithm.
Added in version 1.4.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 210
1.4.0 Non-confidential

#define PSA_ALG_ASCON_AEAD128 ((psa_algorithm_t)0x05100700)

There are two variants of Ascon-AEAD128 defined in NIST Special Publication 800-232: Ascon-Based
Lightweight Cryptography Standards for Constrained Devices [SP800-232]:

e An implementation that supports Ascon-AEAD128 must provide the standard variant, using a 128-bit
key. This is defined in [SP800-232] §4.1.

e An implementation can optionally also provide the nonce-masking variant, using a 256-bit key. This is
defined in [SP800-232] §4.2.2.

The variant is selected based on the size of the key.
Both variants require a 128-bit (16 byte) nonce, which must not be reused with the same key.

Implementations must support 16-byte tags. Truncated tags of at least 4 bytes are permitted, but it is
recommended that truncated tag sizes are at least 8 bytes. See [SP800-232] §4.2.1 and §4.3.R4.

Compatible key types
PSA_KEY_TYPE_ASCON

PSA_ALG_AEAD_WITH_SHORTENED_TAG(nnaCFO)
Macro to build a AEAD algorithm with a shortened tag.

#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
/* specification-defined value */

Parameters
aead_alg An AEAD algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_AEAD(aead_alg) is true.
tag_length Desired length of the authentication tag in bytes.
Returns

The corresponding AEAD algorithm with the specified tag length.

Unspecified if aead_alg is not a supported AEAD algorithm or if tag_length is not valid for the specified
AEAD algorithm.

Description

An AEAD algorithm with a shortened tag is similar to the corresponding AEAD algorithm, but has an
authentication tag that consists of fewer bytes. Depending on the algorithm, the tag length might affect the
calculation of the ciphertext.

The AEAD algorithm with a default length tag can be recovered using
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG().

Compatible key types

The resulting AEAD algorithm is compatible with the same key types as the AEAD algorithm used to
construct it.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 211
1.4.0 Non-confidentia

PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(nnaCFO)
An AEAD algorithm with the default tag length.

#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
/* specification-defined value */

Parameters
aead_alg An AEAD algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_AEAD(aead_alg) is true.
Returns

The corresponding AEAD algorithm with the default tag length for that algorithm.

Description
This macro can be used to construct the AEAD algorithm with default tag length from an AEAD algorithm
with a shortened tag. See also PSA_ALG_AEAD_WITH_SHORTENED_TAG().

Compatible key types

The resulting AEAD algorithm is compatible with the same key types as the AEAD algorithm used to
construct it.

PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(n1acr0)
Macro to build an AEAD minimum-tag-length wildcard algorithm.
Added in version 1.1.

#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
/* specification-defined value */

Parameters
aead_alg An AEAD algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_AEAD(aead_alg) is true.
min_tag_length Desired minimum length of the authentication tag in bytes. This must
be at least 1 and at most the largest permitted tag length of the
algorithm.
Returns

The corresponding AEAD wildcard algorithm with the specified minimum tag length.

Unspecified if aead_alg is not a supported AEAD algorithm or if min_tag_length is less than 1 or too large for
the specified AEAD algorithm.

Description

A key with a minimum-tag-length AEAD wildcard algorithm as permitted-algorithm policy can be used with
all AEAD algorithms sharing the same base algorithm, and where the tag length of the specific algorithm is
equal to or larger then the minimum tag length specified by the wildcard algorithm.

Note:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 212
1.4.0 Non-confidentia

When setting the minimum required tag length to less than the smallest tag length permitted by the
base algorithm, this effectively becomes an ‘any-tag-length-permitted’ policy for that base algorithm.

The AEAD algorithm with a default length tag can be recovered using
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG().

Compatible key types

The resulting wildcard AEAD algorithm is compatible with the same key types as the AEAD algorithm used

to construct it.

10.6.2 Single-part AEAD functions

psa_aead_encrypt (function)

Process an authenticated encryption operation.

psa_status_t psa_aead_encrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * nonce,
size_t nonce_length,
const uint8_t * additional_data,
size_t additional_data_length,
const uint8_t * plaintext,
size_t plaintext_length,
uint8_t * ciphertext,
size_t ciphertext_size,
size_t * ciphertext_length);

Parameters
key Identifier of the key to use for the operation. It must permit the usage
PSA_KEY_USAGE_ENCRYPT.
alg The AEAD algorithm to compute: a value of type psa_algorithm_t such
that PSA_ALG_IS_AEAD(alg) is true.
nonce Nonce or IV to use.
nonce_length Size of the nonce buffer in bytes. This must be appropriate for the
selected algorithm. The default nonce size is
PSA_AEAD_NONCE_LENGTH(key_type, alg) where key_type is the type of
key.
additional_data Additional data that will be authenticated but not encrypted.
additional_data_length Size of additional_data in bytes.
plaintext Data that will be authenticated and encrypted.
plaintext_length Size of plaintext in bytes.
ciphertext Output buffer for the authenticated and encrypted data. The
additional data is not part of this output. For algorithms where the
encrypted data and the authentication tag are defined as separate
outputs, the authentication tag is appended to the encrypted data.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 213

1.4.0 Non-confidentia

ciphertext_size

ciphertext_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Size of the ciphertext buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is
PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg, plaintext_length)
where key_type is the type of key.

® PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(plaintext_length) evaluates
to the maximum ciphertext size of any supported AEAD
encryption.

On success, the size of the output in the ciphertext buffer.

Success. The first (*ciphertext_length) bytes of ciphertext contain
the output.

The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.

The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does not
permit the requested algorithm.

The size of the ciphertext buffer is too small.
PSA_AEAD_ENCRYPT_OUTPUT_SIZE() Or
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE() can be used to determine a
sufficient buffer size.

The following conditions can result in this error:

alg is not an AEAD algorithm.

key is not compatible with alg.

e nonce_length is not valid for use with alg and key.

e additional_data_length Or plaintext_length are too large for alg.

The following conditions can result in this error:

alg is not supported or is not an AEAD algorithm.
key is not supported for use with alg.
nonce_length is not supported for use with alg and key.

additional_data_length Or plaintext_length are too large for the
implementation.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 214

1.4.0

Non-confidential

psa_aead_decrypt (function)

Process an authenticated decryption operation.

psa_status_t psa_aead_decrypt(psa_key_id_t key,

Parameters

key

alg

nonce

nonce_length

additional_data
additional_data_length

ciphertext

ciphertext_length
plaintext

plaintext_size

plaintext_length

IHI 0086
1.4.0

psa_algorithm_t alg,

const uint8_t * nonce,

size_t nonce_length,

const uint8_t * additional_data,
size_t additional_data_length,
const uint8_t * ciphertext,
size_t ciphertext_length,
uint8_t * plaintext,

size_t plaintext_size,

size_t * plaintext_length);

Identifier of the key to use for the operation. It must permit the usage
PSA_KEY_USAGE_DECRYPT.

The AEAD algorithm to compute: a value of type psa_algorithm_t such
that PSA_ALG_IS_AEAD(alg) is true.

Nonce or IV to use.

Size of the nonce buffer in bytes. This must be appropriate for the
selected algorithm. The default nonce size is
PSA_AEAD_NONCE_LENGTH(key_type, alg) where key_type is the type of
key.

Additional data that has been authenticated but not encrypted.
Size of additional_data in bytes.

Data that has been authenticated and encrypted. For algorithms
where the encrypted data and the authentication tag are defined as
separate inputs, the buffer must contain the encrypted data followed
by the authentication tag.

Size of ciphertext in bytes.
Output buffer for the decrypted data.

Size of the plaintext buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is
PSA_AEAD_DECRYPT_OUTPUT_SIZE (key_type, alg,
ciphertext_length) where key_type is the type of key.

e PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(ciphertext_length) evaluates
to the maximum plaintext size of any supported AEAD
decryption.

On success, the size of the output in the plaintext buffer.

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 215

Non-confidentia

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_SIGNATURE

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Success. The first (*plaintext_length) bytes of plaintext contain the
output.

The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.

The key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does not
permit the requested algorithm.

The ciphertext is not authentic.

The size of the plaintext buffer is too small.
PSA_AEAD_DECRYPT_OUTPUT_SIZE() Or
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE() can be used to determine a
sufficient buffer size.

The following conditions can result in this error:
alg is not an AEAD algorithm.
key is not compatible with alg.

nonce_length is not valid for use with alg and key.
additional_data_length Or ciphertext_length are too large for alg.

The following conditions can result in this error:

alg is not supported or is not an AEAD algorithm.
e key is not supported for use with alg.
e nonce_length is not supported for use with alg and key.

e additional_data_length Or plaintext_length are too large for the
implementation.

10.6.3 Multi-part AEAD operations

A Warning

input and output is valid.

When decrypting using a multi-part AEAD operation, there is no guarantee that the input or output is
valid until psa_aead_verify() has returned PSA_SUCCESS.

A call to psa_aead_update() Or psa_aead_update_ad() returning PSA_SUCCESS does not indicate that the

Until an application calls psa_aead_verify() and it has returned PSA_SUCCESS, the following rules apply to

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 216

1.4.0

Non-confidential

input and output data from a multi-part AEAD operation:

e Do not trust the input. If the application takes any action that depends on the input data, this
action will need to be undone if the input turns out to be invalid.

e Store the output in a confidential location. In particular, the application must not copy the output
to a memory or storage space which is shared.

e Do not trust the output. If the application takes any action that depends on the tentative
decrypted data, this action will need to be undone if the input turns out to be invalid. Furthermore,
if an adversary can observe that this action took place, for example, through timing, they might be
able to use this fact as an oracle to decrypt any message encrypted with the same key.

An application that does not follow these rules might be vulnerable to maliciously constructed AEAD
input data.

psa_aead_operation_t (typedef)
The type of the state object for multi-part AEAD operations.

typedef /* implementation-defined type */ psa_aead_operation_t;

Before calling any function on an AEAD operation object, the application must initialize it by any of the
following means:

e Set the object to all-bits-zero, for example:

psa_aead_operation_t operation;
memset (&operation, @, sizeof(operation));

e |nitialize the object to logical zero values by declaring the object as static or global without an explicit
initializer, for example:

static psa_aead_operation_t operation;
e Initialize the object to the initializer PSA_AEAD_OPERATION_INIT, for example:
psa_aead_operation_t operation = PSA_AEAD_OPERATION_INIT;

e Assign the result of the function psa_aead_operation_init() to the object, for example:

psa_aead_operation_t operation;
operation = psa_aead_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in implementation-specific behavior, and are non-portable.

PSA_AEAD_OPERATION_INIT (macro)

This macro returns a suitable initializer for an AEAD operation object of type psa_aead_operation_t.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 217
1.4.0 Non-confidentia

#define PSA_AEAD_OPERATION_INIT /* implementation-defined value */

psa_aead_operation_init (function)

Return an initial value for an AEAD operation object.

psa_aead_operation_t psa_aead_operation_init(void);

Returns:psa_aead_operation_t

psa_aead_encrypt_setup (function)

Set the key for a multi-part authenticated encryption operation.

psa_status_t psa_aead_encrypt_setup(psa_aead_operation_t * operation,

Parameters

operation

key

alg

Returns: psa_status_t
PSA_SUCCESS

PSA_ERROR_BAD_STATE

PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

psa_key_id_t key,
psa_algorithm_t alg);

The operation object to set up. It must have been initialized as per the
documentation for psa_aead_operation_t and not yet in use.

Identifier of the key to use for the operation. It must remain valid until
the operation terminates. It must permit the usage
PSA_KEY_USAGE_ENCRYPT.

The AEAD algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_AEAD(alg) is true.

Success. The operation is now active.
The following conditions can result in this error:

e The operation state is not valid: it must be inactive.
e The library requires initializing by a call to psa_crypto_init().

key is not a valid key identifier.

The key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does not
permit the requested algorithm.

The following conditions can result in this error:

e algis not an AEAD algorithm.
e key is not compatible with alg.

The following conditions can result in this error:

e algis not supported or is not an AEAD algorithm.
e key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates

1.4.0 Non-confidentia

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The sequence of operations to encrypt a message with authentication is as follows:

1.
2.

Allocate an AEAD operation object which will be passed to all the functions listed here.

Initialize the operation object with one of the methods described in the documentation for
psa_aead_operation_t, €.8. PSA_AEAD_OPERATION_INIT.

Call psa_aead_encrypt_setup() to specify the algorithm and key.

4. If needed, call psa_aead_set_lengths() to specify the length of the inputs to the subsequent calls to

8.

psa_aead_update_ad() and psa_aead_update(). See the documentation of psa_aead_set_lengths() for
details.

. Call either psa_aead_generate_nonce() Or psa_aead_set_nonce() to generate or set the nonce. It is

recommended to use psa_aead_generate_nonce() unless the protocol being implemented requires a
specific nonce value.

. Call psa_aead_update_ad() zero, one or more times, passing a fragment of the non-encrypted

additional authenticated data each time.

. Call psa_aead_update() zero, one or more times, passing a fragment of the message to encrypt each

time.

Call psa_aead_finish().

After a successful call to psa_aead_encrypt_setup(), the operation is active, and the application must
eventually terminate the operation. The following events terminate an operation:

e A successful call to psa_aead_finish().

e A call to psa_aead_abort().

If psa_aead_encrypt_setup() returns an error, the operation object is unchanged. If a subsequent function
call with an active operation returns an error, the operation enters an error state.

To abandon an active operation, or reset an operation in an error state, call psa_aead_abort().

See Multi-part operations on page 27.

psa_aead_decrypt_setup (function)

Set the key for a multi-part authenticated decryption operation.

psa_status_t psa_aead_decrypt_setup(psa_aead_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 219

1.4.0

Non-confidential

Parameters

operation The operation object to set up. It must have been initialized as per the
documentation for psa_aead_operation_t and not yet in use.

key Identifier of the key to use for the operation. It must remain valid until
the operation terminates. It must permit the usage
PSA_KEY_USAGE_DECRYPT.

alg The AEAD algorithm to compute: a value of type psa_algorithm_t such
that PSA_ALG_IS_AEAD(alq) is true.

Returns: psa_status_t

PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be inactive.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.

PSA_ERROR_NOT_PERMITTED The key does not have the PsA_KEY_USAGE_DECRYPT flag, or it does not
permit the requested algorithm.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e algis not an AEAD algorithm.
e key is not compatible with alg.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e algis not supported or is not an AEAD algorithm.
e key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description

The sequence of operations to decrypt a message with authentication is as follows:

1. Allocate an AEAD operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_aead_operation_t, €.8. PSA_AEAD_OPERATION_INIT.

3. Call psa_aead_decrypt_setup() to specify the algorithm and key.

4. If needed, call psa_aead_set_lengths() to specify the length of the inputs to the subsequent calls to
psa_aead_update_ad() and psa_aead_update(). See the documentation of psa_aead_set_lengths() for
details.

5. Call psa_aead_set_nonce() with the nonce for the decryption.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 220
1.4.0 Non-confidential

6. Call psa_aead_update_ad() zero, one or more times, passing a fragment of the non-encrypted
additional authenticated data each time.

7. Call psa_aead_update() zero, one or more times, passing a fragment of the ciphertext to decrypt each
time.

8. Call psa_aead_verify().

After a successful call to psa_aead_decrypt_setup(), the operation is active, and the application must
eventually terminate the operation. The following events terminate an operation:

e A successful call to psa_aead_verify().

e A call to psa_aead_abort().

If psa_aead_decrypt_setup() returns an error, the operation object is unchanged. If a subsequent function
call with an active operation returns an error, the operation enters an error state.

To abandon an active operation, or reset an operation in an error state, call psa_aead_abort().

See Multi-part operations on page 27.

psa_aead_set_lengths (function)
Declare the lengths of the message and additional data for AEAD.
psa_status_t psa_aead_set_lengths(psa_aead_operation_t * operation,

size_t ad_length,
size_t plaintext_length);

Parameters
operation Active AEAD operation.
ad_length Size of the non-encrypted additional authenticated data in bytes.
plaintext_length Size of the plaintext to encrypt in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active, and
psa_aead_set_nonce() and psa_aead_generate_nonce() must not
have been called yet.

e The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_ARGUMENT ad_length or plaintext_length are too large for the chosen algorithm.
PSA_ERROR_NOT_SUPPORTED ad_length or plaintext_length are too large for the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 221
1.4.0 Non-confidential

Description

The application must call this function before calling psa_aead_set_nonce() Or psa_aead_generate_nonce(), if
the algorithm for the operation requires it. If the algorithm does not require it, calling this function is
optional, but if this function is called then the implementation must enforce the lengths.

e For Psa_ALG_cam, calling this function is required.
e For the other AEAD algorithms defined in this specification, calling this function is not required.

e For vendor-defined algorithm, refer to the vendor documentation.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().

psa_aead_generate_nonce (function)

Generate a random nonce for an authenticated encryption operation.

psa_status_t psa_aead_generate_nonce(psa_aead_operation_t * operation,
uint8_t * nonce,
size_t nonce_size,
size_t * nonce_length);

Parameters
operation Active AEAD operation.
nonce Buffer where the generated nonce is to be written.
nonce_size Size of the nonce buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is PSA_AEAD_NONCE_LENGTH(key_type, alg)
where key_type is the type of key and alg is the algorithm that
were used to set up the operation.

e PSA_AEAD_NONCE_MAX_SIZE evaluates to a sufficient output size for
any supported AEAD algorithm.

nonce_length On success, the number of bytes of the generated nonce.

Returns: psa_status_t

PSA_SUCCESS Success. The first (*nonce_length) bytes of nonce contain the
generated nonce.

PSA_ERROR_BAD_STATE The following conditions can result in this error:
e The operation state is not valid: it must be an active AEAD
encryption operation, with no nonce set.

e The operation state is not valid: this is an algorithm which
requires psa_aead_set_lengths() to be called before setting the
nonce.

e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the nonce buffer is too small. PSA_AEAD_NONCE_LENGTH() or
PSA_AEAD_NONCE_MAX_SIZE can be used to determine a sufficient buffer
size.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 222

1.4.0 Non-confidential

PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description

This function generates a random nonce for the authenticated encryption operation with an appropriate
size for the chosen algorithm, key type and key size.

Most algorithms generate a default-length nonce, as returned by PSA_AEAD_NONCE_LENGTH(). Some algorithms
can return a shorter nonce from psa_aead_generate_nonce(), see the individual algorithm descriptions for
details.

The application must call psa_aead_encrypt_setup() before calling this function. If applicable for the
algorithm, the application must call psa_aead_set_lengths() before calling this function.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().

psa_aead_set_nonce (function)
Set the nonce for an authenticated encryption or decryption operation.
psa_status_t psa_aead_set_nonce(psa_aead_operation_t * operation,

const uint8_t * nonce,
size_t nonce_length);

Parameters
operation Active AEAD operation.
nonce Buffer containing the nonce to use.
nonce_length Size of the nonce in bytes. This must be a valid nonce size for the

chosen algorithm. The default nonce size is
PSA_AEAD_NONCE_LENGTH(key_type, alg) where key_type and alg are
type of key and the algorithm respectively that were used to set up
the AEAD operation.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:
e The operation state is not valid: it must be active, with no nonce
set.

e The operation state is not valid: this is an algorithm which
requires psa_aead_set_lengths() to be called before setting the
nonce.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 223
1.4.0 Non-confidential

e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT nonce_length is not valid for the chosen algorithm.
PSA_ERROR_NOT_SUPPORTED nonce_length is not supported for use with the operation’s algorithm
and key.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
This function sets the nonce for the authenticated encryption or decryption operation.

The application must call psa_aead_encrypt_setup() Or psa_aead_decrypt_setup() before calling this function.
If applicable for the algorithm, the application must call psa_aead_set_lengths() before calling this function.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().

Note:

When encrypting, psa_aead_generate_nonce() is recommended instead of using this function, unless
implementing a protocol that requires a non-random IV.

psa_aead_update_ad (function)
Pass additional data to an active AEAD operation.
psa_status_t psa_aead_update_ad(psa_aead_operation_t * operation,

const uint8_t * input,
size_t input_length);

Parameters
operation Active AEAD operation.
input Buffer containing the fragment of additional data.
input_length Size of the input buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success.

A\ Warning

When decrypting, do not trust the additional data until
psa_aead_verify() succeeds.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 224
1.4.0 Non-confidential

See the detailed warning.

PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active, have a nonce
set, have lengths set if required by the algorithm, and
psa_aead_update() must not have been called yet.

e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT Excess additional data: the total input length to psa_aead_update_ad()
is greater than the additional data length that was previously specified
with psa_aead_set_lengths(), or is too large for the chosen AEAD
algorithm.

PSA_ERROR_NOT_SUPPORTED The total additional data length is too large for the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
Additional data is authenticated, but not encrypted.

This function can be called multiple times to pass successive fragments of the additional data. This function
must not be called after passing data to encrypt or decrypt with psa_aead_update().

The following must occur before calling this function:

1. Call either psa_aead_encrypt_setup() Or psa_aead_decrypt_setup().

2. Set the nonce with psa_aead_generate_nonce() Or psa_aead_set_nonce().

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_aead_abort().

psa_aead_update (function)

Encrypt or decrypt a message fragment in an active AEAD operation.

psa_status_t psa_aead_update(psa_aead_operation_t * operation,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 225
1.4.0 Non-confidentia

Parameters
operation
input
input_length
output

output_size

output_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Active AEAD operation.

Buffer containing the message fragment to encrypt or decrypt.
Size of the input buffer in bytes.

Buffer where the output is to be written.

Size of the output buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is PSA_AEAD_UPDATE_OUTPUT_SIZE (key_type,
alg, input_length) where key_type is the type of key and alg is
the algorithm that were used to set up the operation.

e PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE(input_length) evaluates to the
maximum output size of any supported AEAD algorithm.

On success, the number of bytes that make up the returned output.

Success. The first (*output_length) of output contains the output data.

A Warning

When decrypting, do not use the output until psa_aead_verify()
succeeds.

See the detailed warning.

The following conditions can result in this error:

e The operation state is not valid: it must be active, have a nonce
set, and have lengths set if required by the algorithm.

e The library requires initializing by a call to psa_crypto_init().

The size of the output buffer is too small.
PSA_AEAD_UPDATE_OUTPUT_SIZE() O PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE()
can be used to determine a sufficient buffer size.

The following conditions can result in this error:

e Incomplete additional data: the total length of input to
psa_aead_update_ad() is less than the additional data length that
was previously specified with psa_aead_set_lengths().

e Excess input data: the total length of input to psa_aead_update()
is greater than the plaintext length that was previously specified
with psa_aead_set_lengths(), or is too large for the specific AEAD
algorithm.

The total input length is too large for the implementation.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 226

1.4.0

Non-confidentia

PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The following must occur before calling this function:

1. Call either psa_aead_encrypt_setup() Or psa_aead_decrypt_setup(). The choice of setup function
determines whether this function encrypts or decrypts its input.

2. Set the nonce with psa_aead_generate_nonce() Or psa_aead_set_nonce().

3. Call psa_aead_update_ad(

) to pass all the additional data.

If this function returns an error status, the operation enters an error state and must be aborted by calling

psa_aead_abort().

Note:

This function does not require the input to be aligned to any particular block boundary. If the
implementation can only process a whole block at a time, it must consume all the input provided, but
it might delay the end of the corresponding output until a subsequent call to psa_aead_update()
provides sufficient input, or a subsequent call to psa_aead_finish() or psa_aead_verify() indicates the
end of the input. The amount of data that can be delayed in this way is bounded by the associated
output size macro: PSA_AEAD_UPDATE_OUTPUT_SIZE(), PSA_AEAD_FINISH_OUTPUT_SIZE(), Or
PSA_AEAD_VERIFY_OUTPUT_SIZE().

psa_aead_finish (function)

Finish encrypting a message in an AEAD operation.

psa_status_t psa_aead_finish(psa_aead_operation_t * operation,

Parameters
operation
ciphertext

ciphertext_size

IHI 0086
1.4.0

uint8_t * ciphertext,
size_t ciphertext_size,
size_t * ciphertext_length,
uint8_t * tag,

size_t tag_size,

size_t * tag_length);

Active AEAD operation.
Buffer where the last part of the ciphertext is to be written.

Size of the ciphertext buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is PSA_AEAD_FINISH_OUTPUT_SIZE (key_type,
alg) where key_type is the type of key and alg is the algorithm
that were used to set up the operation.

® PSA_AEAD_FINISH_OUTPUT_MAX_SIZE evaluates to the maximum
output size of any supported AEAD algorithm.

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 227
Non-confidentia

ciphertext_length
tag

tag_size

tag_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

On success, the number of bytes of returned ciphertext.
Buffer where the authentication tag is to be written.

Size of the tag buffer in bytes. This must be appropriate for the
selected algorithm and key:

e The exact tag size is PSA_AEAD_TAG_LENGTH (key_type, key_bits,
alg) where key_type and key_bits are the type and bit-size of the
key, and alg is the algorithm that were used in the call to
psa_aead_encrypt_setup().

e PSA_AEAD_TAG_MAX_SIZE evaluates to the maximum tag size of any
supported AEAD algorithm.

On success, the number of bytes that make up the returned tag.

Success. The first (*tag_length) bytes of tag contain the
authentication tag.

The following conditions can result in this error:

e The operation state is not valid: it must be an active encryption
operation with a nonce set.

e The library requires initializing by a call to psa_crypto_init().

The size of the ciphertext or tag buffer is too small.
PSA_AEAD_FINISH_OUTPUT_SIZE() Or PSA_AEAD_FINISH_OUTPUT_MAX_SIZE
can be used to determine the required ciphertext buffer size.
PSA_AEAD_TAG_LENGTH() Or PSA_AEAD_TAG_MAX_SIZE can be used to
determine the required tag buffer size.

The following conditions can result in this error:

e Incomplete additional data: the total length of input to
psa_aead_update_ad() is less than the additional data length that
was previously specified with psa_aead_set_lengths().

e Incomplete plaintext: the total length of input to
psa_aead_update() is less than the plaintext length that was
previously specified with psa_aead_set_lengths().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 228

1.4.0

Non-confidential

Description
The operation must have been set up with psa_aead_encrypt_setup().

This function finishes the authentication of the additional data formed by concatenating the inputs passed
to preceding calls to psa_aead_update_ad() with the plaintext formed by concatenating the inputs passed to
preceding calls to psa_aead_update().

This function has two output buffers:

e ciphertext contains trailing ciphertext that was buffered from preceding calls to psa_aead_update().

e tag contains the authentication tag.

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_aead_abort().

psa_aead_verify (function)

Finish authenticating and decrypting a message in an AEAD operation.

psa_status_t psa_aead_verify(psa_aead_operation_t * operation,
uint8_t * plaintext,
size_t plaintext_size,
size_t * plaintext_length,
const uint8_t * tag,
size_t tag_length);

Parameters
operation Active AEAD operation.
plaintext Buffer where the last part of the plaintext is to be written. This is the
remaining data from previous calls to psa_aead_update() that could not
be processed until the end of the input.
plaintext_size Size of the plaintext buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient output size is PSA_AEAD_VERIFY_OUTPUT_SIZE (key_type,
alg) where key_type is the type of key and alg is the algorithm
that were used to set up the operation.

e PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE evaluates to the maximum
output size of any supported AEAD algorithm.

plaintext_length On success, the number of bytes of returned plaintext.
tag Buffer containing the expected authentication tag.
tag_length Size of the tag buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success. For a decryption operation, it is now safe to use the
additional data and the plaintext output.

PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be an active decryption
operation with a nonce set.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 229
1.4.0 Non-confidentia

e The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_SIGNATURE The calculated authentication tag does not match the value in tag.

PSA_ERROR_BUFFER_TOO_SMALL The size of the plaintext buffer is too small.
PSA_AEAD_VERIFY_OUTPUT_SIZE() Or PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE
can be used to determine a sufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e Incomplete additional data: the total length of input to
psa_aead_update_ad() is less than the additional data length that
was previously specified with psa_aead_set_lengths().

e Incomplete ciphertext: the total length of input to
psa_aead_update() is less than the plaintext length that was
previously specified with psa_aead_set_lengths().

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description
The operation must have been set up with psa_aead_decrypt_setup().

This function finishes the authenticated decryption of the message components:

e The additional data consisting of the concatenation of the inputs passed to preceding calls to
psa_aead_update_ad().

e The ciphertext consisting of the concatenation of the inputs passed to preceding calls to
psa_aead_update().

e The tag passed to this function call.

If the authentication tag is correct, this function outputs any remaining plaintext and reports success. If the
authentication tag is not correct, this function returns PSA_ERROR_INVALID_SIGNATURE.

When this function returns successfully, the operation becomes inactive. If this function returns an error
status, the operation enters an error state and must be aborted by calling psa_aead_abort ().

Implementation note

Implementations must make the best effort to ensure that the comparison between the actual tag and
the expected tag is performed in constant time.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 230
1.4.0 Non-confidential

psa_aead_abort (function)
Abort an AEAD operation.

psa_status_t psa_aead_abort(psa_aead_operation_t * operation);

Parameters

operation Initialized AEAD operation.

Returns: psa_status_t
PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,
the operation object can be reused for another operation by calling psa_aead_encrypt_setup() Or
psa_aead_decrypt_setup() again.

This function can be called any time after the operation object has been initialized as described in
psa_aead_operation_t.

In particular, calling psa_aead_abort () after the operation has been terminated by a call to psa_aead_abort(),
psa_aead_finish() or psa_aead_verify() is safe and has no effect.

10.6.4 Support macros

PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER (macro)
Whether the specified algorithm is an AEAD mode on a block cipher.

#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is an AEAD algorithm which is an AEAD mode based on a block cipher, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

PSA_AEAD_ENCRYPT_OUTPUT_SIZE (macro)

A sufficient ciphertext buffer size for psa_aead_encrypt(), in bytes.

#define PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg, plaintext_length) \
/* implementation-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 231
1.4.0 Non-confidentia

Parameters

key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_AEAD(alg) is true.
plaintext_length Size of the plaintext in bytes.
Returns

The AEAD ciphertext size for the specified key type and algorithm. If the key type or AEAD algorithm is not
recognized, or the parameters are incompatible, return 8. An implementation can return either @ or a correct
size for a key type and AEAD algorithm that it recognizes, but does not support.

Description

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_encrypt() will not fail
due to an insufficient buffer size. Depending on the algorithm, the actual size of the ciphertext might be
smaller.

See also PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE.

PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient ciphertext buffer size for psa_aead_encrypt(), for any of the supported key types and AEAD
algorithms.

#define PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(plaintext_length) \
/* implementation-defined value */

Parameters

plaintext_length Size of the plaintext in bytes.

Description

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_encrypt() will not fail
due to an insufficient buffer size.

See also PSA_AEAD_ENCRYPT_OUTPUT_SIZE().

PSA_AEAD_DECRYPT_OUTPUT_SIZE (macro)

A sufficient plaintext buffer size for psa_aead_decrypt(), in bytes.

#define PSA_AEAD_DECRYPT_OUTPUT_SIZE(key_type, alg, ciphertext_length) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_AEAD(alg) is true.
ciphertext_length Size of the ciphertext in bytes.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 232

1.4.0 Non-confidentia

Returns

The AEAD plaintext size for the specified key type and algorithm. If the key type or AEAD algorithm is not
recognized, or the parameters are incompatible, return . An implementation can return either @ or a correct
size for a key type and AEAD algorithm that it recognizes, but does not support.

Description

If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_decrypt () will not fail due
to an insufficient buffer size. Depending on the algorithm, the actual size of the plaintext might be smaller.

See also PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE.

PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient plaintext buffer size for psa_aead_decrypt(), for any of the supported key types and AEAD
algorithms.

#define PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(ciphertext_length) \
/* implementation-defined value */

Parameters

ciphertext_length Size of the ciphertext in bytes.

Description

If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_decrypt () will not fail
due to an insufficient buffer size.

See also PSA_AEAD_DECRYPT_OUTPUT_SIZE().

PSA_AEAD_NONCE_LENGTH (macro)
The default nonce size for an AEAD algorithm, in bytes.

#define PSA_AEAD_NONCE_LENGTH(key_type, alg) /* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_AEAD(alg) is true.
Returns

The default nonce size for the specified key type and algorithm. If the key type or AEAD algorithm is not
recognized, or the parameters are incompatible, return . An implementation can return either @ or a correct
size for a key type and AEAD algorithm that it recognizes, but does not support.

Description

If the size of the nonce buffer is at least this large, it is guaranteed that psa_aead_generate_nonce() will not
fail due to an insufficient buffer size.

For most AEAD algorithms, PSA_AEAD_NONCE_LENGTH () evaluates to the exact size of the nonce generated by
psa_aead_generate_nonce().

See also PSA_AEAD_NONCE_MAX_SIZE.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 233
1.4.0 Non-confidentia

PSA_AEAD_NONCE_MAX_SIZE (macro)

A sufficient buffer size for storing the nonce generated by psa_aead_generate_nonce(), for any of the
supported key types and AEAD algorithms.

#define PSA_AEAD_NONCE_MAX_SIZE /* implementation-defined value */

If the size of the nonce buffer is at least this large, it is guaranteed that psa_aead_generate_nonce() will not
fail due to an insufficient buffer size.

See also PSA_AEAD_NONCE_LENGTH().

PSA_AEAD_UPDATE_OUTPUT_SIZE (macro)

A sufficient output buffer size for psa_aead_update().

#define PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_AEAD(alg) is true.
input_length Size of the input in bytes.
Returns

A sufficient output buffer size for the specified key type and algorithm. If the key type or AEAD algorithm is
not recognized, or the parameters are incompatible, return o. An implementation can return either @ or a
correct size for a key type and AEAD algorithm that it recognizes, but does not support.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_aead_update() will not fail due
to an insufficient buffer size. The actual size of the output might be smaller in any given call.

See also PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE.

PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_aead_update(), for any of the supported key types and AEAD
algorithms.

#define PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE(input_length) \
/* implementation-defined value */

Parameters
input_length Size of the input in bytes.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 234

1.4.0 Non-confidentia

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_aead_update() will not fail due
to an insufficient buffer size.

See also PSA_AEAD_UPDATE_OUTPUT_SIZE().

PSA_AEAD_FINISH_OUTPUT_SIZE (macro)

A sufficient ciphertext buffer size for psa_aead_finish().

#define PSA_AEAD_FINISH_OUTPUT_SIZE(key_type, alg) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_AEAD(alg) is true.
Returns

A sufficient ciphertext buffer size for the specified key type and algorithm. If the key type or AEAD
algorithm is not recognized, or the parameters are incompatible, return @. An implementation can return
either @ or a correct size for a key type and AEAD algorithm that it recognizes, but does not support.

Description

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_finish() will not fail
due to an insufficient ciphertext buffer size. The actual size of the output might be smaller in any given call.

See also PSA_AEAD_FINISH_OUTPUT_MAX_SIZE.

PSA_AEAD_FINISH_OUTPUT_MAX_SIZE (macro)

A sufficient ciphertext buffer size for psa_aead_finish(), for any of the supported key types and AEAD
algorithms.

#define PSA_AEAD_FINISH_OUTPUT_MAX_SIZE /* implementation-defined value */

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_aead_finish() will not fail
due to an insufficient ciphertext buffer size.

See also PSA_AEAD_FINISH_OUTPUT_SIZE().

PSA_AEAD_TAG_LENGTH (macro)
The length of a tag for an AEAD algorithm, in bytes.

#define PSA_AEAD_TAG_LENGTH(key_type, key_bits, alg) \
/* implementation-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 235
1.4.0 Non-confidentia

Parameters

key_type The type of the AEAD key.
key_bits The size of the AEAD key in bits.
alg An AEAD algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_AEAD(alg) is true.

Returns

The tag length for the specified algorithm and key. If the AEAD algorithm does not have an identified tag
that can be distinguished from the rest of the ciphertext, return o. If the AEAD algorithm is not recognized,
return @. An implementation can return either @ or a correct size for an AEAD algorithm that it recognizes,
but does not support.

Description
This is the size of the tag output from psa_aead_finish().

If the size of the tag buffer is at least this large, it is guaranteed that psa_aead_finish() will not fail due to an
insufficient tag buffer size.

See also PSA_AEAD_TAG_MAX_SIZE.

PSA_AEAD_TAG_MAX_SIZE (macro)

A sufficient buffer size for storing the tag output by psa_aead_finish(), for any of the supported key types
and AEAD algorithmes.

#define PSA_AEAD_TAG_MAX_SIZE /* implementation-defined value */

If the size of the tag buffer is at least this large, it is guaranteed that psa_aead_finish() will not fail due to an
insufficient buffer size.

See also PSA_AEAD_TAG_LENGTH().

PSA_AEAD_VERIFY_OUTPUT_SIZE (macro)

A sufficient plaintext buffer size for psa_aead_verify(), in bytes.

#define PSA_AEAD_VERIFY_OUTPUT_SIZE(key_type, alg) \
/* implementation-defined value */

Parameters
key_type A symmetric key type that is compatible with algorithm alg.
alg An AEAD algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_AEAD(alg) is true.
Returns

A sufficient plaintext buffer size for the specified key type and algorithm. If the key type or AEAD algorithm
is not recognized, or the parameters are incompatible, return @. An implementation can return either @ or a
correct size for a key type and AEAD algorithm that it recognizes, but does not support.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 236
1.4.0 Non-confidentia

Description

If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_verify() will not fail due
to an insufficient plaintext buffer size. The actual size of the output might be smaller in any given call.

See also PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE.

PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE (macro)
A sufficient plaintext buffer size for psa_aead_verify(), for any of the supported key types and AEAD
algorithms.

#define PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE /* implementation-defined value */

If the size of the plaintext buffer is at least this large, it is guaranteed that psa_aead_verify() will not fail due
to an insufficient buffer size.

See also PSA_AEAD_VERIFY_OUTPUT_SIZE().

10.7 Key wrapping

Key wrapping is the process of encrypting a key, so that the resulting ciphertext can be stored, or
transported, in a form that maintains the confidentiality of the key material. Key unwrapping reverses this
process, extracting the key from the ciphertext. Some key-wrapping schemes also provide integrity
protection, to ensure that modification of the ciphertext can be detected.

Some key-wrapping algorithms operate on arbitrary data, and provide authenticated encryption that is
specifically designed for key values. For example, the AES Key-wrap algorithm AES-KW. For this type of
algorithm, the Crypto API provides a simple pair of functions, psa_unwrap_key() and psa_wrap_key(), that
unwrap or wrap key data in the default export format. When using one of these key-wrapping algorithms,
the key attributes are managed by the application.

Note:

Other key-wrapping schemes define both the format of the wrapped key material and the algorithm
that is used to perform the wrapping. For example PKCS#8 defines EncryptedPrivateKeyinfo, which is
also described in Asymmetric Key Packages [RFC5958]. Wrapped-key formats typically encode the key
type and wrapping algorithm within the output data, and can also include other key attributes. This
version of the Crypto API does not support these key-wrapping schemes, but this is planned for a
future version.

10.7.1 Key-wrapping algorithms

PSA_ALG_KW (macro)
A key-wrapping algorithm based on the NIST Key Wrap (KW) mode of a block cipher.

Added in version 1.4.

#define PSA_ALG_KW ((psa_algorithm_t)0x0B400100)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 237
1.4.0 Non-confidential

KW is defined for block ciphers that have a 128-bit block size. The underlying block cipher is determined by
the key type.

Keys to be wrapped must have a length equal to a multiple of the ‘semi-block’ size for the block cipher. That
is, a multiple of 8 bytes.

To wrap keys that are not a multiple of the semi-block size, PSA_ALG_KwP can be used.

This is the NIST Key Wrap algorithm, using any block-cipher that operates on 128-bit blocks, as defined in
NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methods for Key
Wrapping [SP800-38F]. A definition of AES-KW is also found in Advanced Encryption Standard (AES) Key
Wrap Algorithm [RFC3394].

Compatible key types

PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARIA
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_SM4

PSA_ALG_KWP (macro)
A key-wrapping algorithm based on the NIST Key Wrap with Padding (KWP) mode of a block cipher.
Added in version 1.4.

#define PSA_ALG_KWP ((psa_algorithm_t)@x0BC00200)

KWP is defined for block ciphers that have a 128-bit block size. The underlying block cipher is determined
by the key type.

This algorithm can wrap a key of any length.

This is the NIST Key Wrap with Padding algorithm, using any block-cipher that operates on 128-bit blocks,
as defined in NIST Special Publication 800-38F: Recommendation for Block Cipher Modes of Operation: Methods
for Key Wrapping [SP800-38F]. A definition of AES-KWP is also found in Advanced Encryption Standard (AES)
Key Wrap with Padding Algorithm [RFC5649].

Compatible key types

PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARIA
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_SM4

10.7.2 Key wrapping functions
psa_unwrap_key (function)

Unwrap and import a key using a specified wrapping key.
Added in version 1.4.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 238
1.4.0 Non-confidential

psa_status_t psa_unwrap_key(const psa_key_attributes_t * attributes,

Parameters

attributes

wrapping_key

alg

data

data_length

key

IHI 0086
1.4.0

psa_key_id_t wrapping_key,
psa_algorithm_t alg,

const uint8_t * data,
size_t data_length,
psa_key_id_t * key);

The attributes for the new key.
The following attributes are required for all keys:

e The key type determines how the decrypted data buffer is

interpreted.

The following attributes must be set for keys used in cryptogra
operations:

phic

e The key permitted-algorithm policy, see Permitted algorithms on

page 101.
e The key usage flags, see Key usage flags on page 102.

The following attributes must be set for keys that do not use the

default volatile lifetime:

e The key lifetime, see Key lifetimes on page 90.

e The key identifier is required for a key with a persistent lifetime,

see Key identifiers on page 98.
The following attributes are optional:

e If the key size is nonzero, it must be equal to the key size
determined from data.

Note:
This is an input parameter: it is not updated with the fina

| key

attributes. The final attributes of the new key can be queried by

calling psa_get_key_attributes() with the key's identifier.

Identifier of the key to use for the unwrapping operation. It must

permit the usage PSA_KEY_USAGE_UNWRAP.

The key-wrapping algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_KEY_WRAP(alg) is true.

Buffer containing the wrapped key data. The content of this buffer is
unwrapped using the algorithm alg, and then interpreted according to

the type declared in attributes.

Size of the data buffer in bytes.

On success, an identifier for the newly created key. PSA_KEY_ID_NULL on

failure.

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidentia

Page 239

Returns: psa_status_t

PSA_SUCCESS Success. If the key is persistent, the key material and the key’s
metadata have been saved to persistent storage.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE wrapping_key is not a valid key identifier.
PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:

e The wrapping key does not have the PSA_KEY_USAGE_UNWRAP flag,
or it does not permit the requested algorithm.

e [he implementation does not permit creating a key with the
specified attributes due to some implementation-specific policy.
PSA_ERROR_INVALID_SIGNATURE The wrapped key data could not be authenticated.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already a
persistent key with the given identifier.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e algis not a key-wrapping algorithm.
e wrapping_key is not compatible with alg.
e The key type is invalid.

e The key size is nonzero, and is incompatible with the wrapped
key data in data.

The key lifetime is invalid.

The key identifier is not valid for the key lifetime.

The key usage flags include invalid values.

The key's permitted-usage algorithm is invalid.

The key attributes, as a whole, are invalid.

e The key data is not correctly formatted for the key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e algis not supported or is not a key-wrapping algorithm.
e wrapping_key is not supported for use with alg.

e The key attributes, as a whole, are not supported, either by the
implementation in general or in the specified storage location.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 240
1.4.0 Non-confidential

Description

The key is unwrapped and extracted from the provided data buffer. Its location, policy, and type are taken
from attributes.

The wrapped key data determines the key size. :code:psa_get_key_bits(attributes) must either match the
determined key size or be o.

Implementations must reject an attempt to unwrap a key if the determined key size is .

Note:

A call to psa_unwrap_key () first applies the decryption procedure associated with the key-wrapping
algorithm alg, using the wrapping_key key, to the supplied data buffer. The resulting plaintext is
retained within the cryptoprocessor, and used with the provided attributes to create a key, as if they
were inputs to psa_import_key ().

Note:

The Crypto API does not support asymmetric private key objects outside of a key pair. When
unwrapping a private key, the corresponding key-pair type is created. If the imported key data does
not contain the public key, then the implementation will reconstruct the public key from the private
key as needed.

Implementation note

It is recommended that the implementation supports unwrapping any key data that can be produced
by a call to psa_wrap_key (), with the same key-wrapping algorithm and key, and matching key
attributes.

It is recommended that implementations reject wrapped key data if it might be erroneous, for
example, if it is the wrong type or is truncated.

psa_wrap_key (function)
Wrap and export a key using a specified wrapping key.
Added in version 1.4.

psa_status_t psa_wrap_key(psa_key_id_t wrapping_key,
psa_algorithm_t alg,
psa_key_id_t key,
uint8_t * data,
size_t data_size,
size_t * data_length);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 241
1.4.0 Non-confidentia

Parameters

wrapping_key

alg

key

data

data_size

data_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE

PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

IHI 0086
1.4.0

Identifier of the key to use for the wrapping operation. It must permit
the usage PSA_KEY_USAGE_WRAP.

The key-wrapping algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_KEY_WRAP(alg) is true.

Identifier of the key to wrap. It must permit the usage
PSA_KEY_USAGE_EXPORT.

Buffer where the wrapped key data is to be written.
Size of the data buffer in bytes. This must be appropriate for the key:

e The required output size is
PSA_WRAP_KEY_OUTPUT_SIZE (wrap_key_type, alg, type, bits),
where wrap_key_type is the type of the wrapping key, alg is the
key-wrapping algorithm, type is the type of the key being
wrapped, and bits is the bit-size of the key being wrapped.

e PSA_WRAP_KEY_PAIR_MAX_SIZE evaluates to the maximum wrapped
output size of any supported key pair, in any supported
combination of key-wrapping algorithm and wrapping-key type.

e This APl defines no maximum size for wrapped symmetric keys.
Arbitrarily large data items can be stored in the key store, for
example certificates that correspond to a stored private key or
input material for key derivation.

On success, the number of bytes that make up the wrapped key data.

Success. The first (*data_length) bytes of data contain the wrapped
key.

The library requires initializing by a call to psa_crypto_init().
The following conditions can result in this error:

e wrapping_key is not a valid key identifier.
e key is not a valid key identifier.

The following conditions can result in this error:

e [he wrapping key does not have the PSA_KEY_USAGE_WRAP flag, or it
does not permit the requested algorithm.

e The key to be wrapped does not have the PSA_KEY_USAGE_EXPORT
flag.

The size of the data buffer is too small. PSA_WRAP_KEY_OUTPUT_SIZE() Or
PSA_WRAP_KEY_PAIR_MAX_SIZE can be used to determine a sufficient
buffer size.

The following conditions can result in this error:

e algis not a key-wrapping algorithm.
e wrapping_key is not compatible with alg.
e key has a size that is not valid for alg.

The following conditions can result in this error:

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 242

Non-confidentia

alg is not supported or is not a key-wrapping algorithm.
wrapping_key is not supported for use with alg.

The storage location of key does not support export of the key.
The implementation does not support export of keys with the
type of key.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description

Wrap a key from the key store into a data buffer using a specified key-wrapping algorithm and key-wrapping
key. On success, the output contains the wrapped key value. The policy of the key to be wrapped must
have the usage flag PSA_KEY_USAGE_EXPORT set.

The output of this function can be passed to psa_unwrap_key (), specifying the same algorithm and wrapping
key, with the same attributes as key, to create an equivalent key object.

Note:

A call to psa_wrap_key () first evaluates the key data for key, as if psa_export_key() is called, but
retaining the key data within the cryptoprocessor. If this succeeds, the encryption procedure
associated with the key-wrapping algorithm alg, using the wrapping_key key, is applied to the key data.
The resulting ciphertext is then returned.

10.7.3 Support macros

PSA_WRAP_KEY_OUTPUT_SIZE (macro)
Sufficient output buffer size for psa_wrap_key ().

Added in version 1.4.

#define PSA_WRAP_KEY_OUTPUT_SIZE(wrap_key_type, alg, key_type, key_bits) \
/* implementation-defined value */

Parameters
wrap_key_type A supported key-wrapping key type.
alg A supported key-wrapping algorithm.
key_type A supported key type.
key_bits The size of the key in bits.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 243

1.4.0 Non-confidentia

Returns

If the parameters are valid and supported, return a buffer size in bytes that guarantees that psa_wrap_key ()
will not fail with PSA_ERROR_BUFFER_TOO_SMALL. If the parameters are a valid combination that is not supported
by the implementation, this macro must return either a sensible size or 0. If the parameters are not valid, the
return value is unspecified.

Description
See also PSA_WRAP_KEY_PAIR_MAX_SIZE.

PSA_WRAP_KEY_PAIR_MAX_SIZE (macro)
Sufficient buffer size for wrapping any asymmetric key pair.

Added in version 1.4.

#define PSA_WRAP_KEY_PAIR_MAX_SIZE /* implementation-defined value */
This value must be a sufficient buffer size when calling psa_wrap_key () to export any asymmetric key pair
that is supported by the implementation, regardless of the exact key type and key size.

See also PSA_WRAP_KEY_OUTPUT_SIZE().

10.8 Key derivation

A key derivation encodes a deterministic method to generate a finite stream of bytes. This data stream is
computed by the cryptoprocessor and extracted in chunks. If two key-derivation operations are constructed
with the same parameters, then they produce the same output.

A key derivation consists of two phases:

1. Input collection. This is sometimes known as extraction: the operation “extracts” information from the
inputs to generate a pseudorandom intermediate secret value.

2. Output generation. This is sometimes known as expansion: the operation “expands” the intermediate
secret value to the desired output length.

The specification defines a multi-part operation API for key derivation that allows:

e Multiple key and non-key outputs to be produced from a single derivation operation object.

e Key and non-key outputs can be extracted from the key-derivation object, or compared with existing
key and non-key values.

e Algorithms that require high-entropy secret inputs. For example PSA_ALG_HKDF.

e Algorithms that work with low-entropy secret inputs, or passwords. For example
PSA_ALG_PBKDF2_HMAC ().

An implementation with isolation has the following properties:

e The intermediate state of the key derivation is not visible to the caller.

e If an output of the derivation is a non-exportable key, then this key cannot be recovered outside the
isolation boundary.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 244
1.4.0 Non-confidential

e |f an output of the derivation is compared using psa_key_derivation_verify_bytes() or

psa_key_derivation_verify_key(), then the output is not visible to the caller.

Applications use the psa_key_derivation_operation_t type to create key-derivation operations. The
operation object is used as follows:

1.
2.

Initialize a psa_key_derivation_operation_t object to zero or to PSA_KEY_DERTIVATION_OPERATION_INTT.
Call psa_key_derivation_setup() to select a key-derivation algorithm.

Call the functions psa_key_derivation_input_key () Or psa_key_derivation_key_agreement() to provide
the secret inputs, and psa_key_derivation_input_bytes() Or psa_key_derivation_input_integer() to
provide the non-secret inputs, to the key-derivation algorithm. Many key-derivation algorithms take
multiple inputs; the step parameter to these functions indicates which input is being provided. The
documentation for each key-derivation algorithm describes the expected inputs for that algorithm and
in what order to pass them.

Optionally, call psa_key_derivation_set_capacity() to set a limit on the amount of data that can be
output from the key-derivation operation.

. Call an output or verification function:

e psa_key_derivation_output_key() Or psa_key_derivation_output_key_custom() to create a derived
key.

e psa_key_derivation_output_bytes() to export the derived data.

e psa_key_derivation_verify_key() to compare a derived key with an existing key value.

e psa_key_derivation_verify_bytes() to compare derived data with a buffer.

These functions can be called multiple times to read successive output from the key derivation, until
the stream is exhausted when its capacity has been reached.

. Key derivation does not finish in the same way as other multi-part operations. Call

psa_key_derivation_abort() to release the key-derivation operation memory when the object is no
longer required.

To recover from an error, call psa_key_derivation_abort() to release the key-derivation operation memory.

A key-derivation operation cannot be rewound. Once a part of the stream has been output, it cannot be
output again. This ensures that the same part of the output will not be used for different purposes.

10.8.1 Key-derivation algorithms

PSA_ALG_HKDF (macro)
Macro to build an HKDF algorithm.

#define PSA_ALG_HKDF(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 245

1.4.0

Non-confidential

Returns

The corresponding HKDF algorithm. For example, PSA_ALG_HKDF (PSA_ALG_SHA_256) is HKDF using
HMAC-SHA-256.

Unspecified if hash_alg is not a supported hash algorithm.

Description

This is the HMAC-based Extract-and-Expand Key Derivation Function (HKDF) specified by HMAC-based
Extract-and-Expand Key Derivation Function (HKDF) [RFC5869].

This key-derivation algorithm uses the following inputs:

e PSA_KEY_DERIVATION_INPUT_SALT is the salt used in the “extract” step. It is optional; if omitted, the
derivation uses an empty salt.

e PSA_KEY_DERIVATION_INPUT_SECRET is the secret key (input keying material) used in the “extract” step.
e PSA_KEY_DERIVATION_INPUT_INFO is the info string used in the “expand” step.
If PSA_KEY_DERIVATION_INPUT_SALT is provided, it must be before PSA_KEY_DERIVATION_INPUT_SECRET.

PSA_KEY_DERIVATION_INPUT_INFO can be provided at any time after setup and before starting to generate
output.

A Warning

HKDF processes the salt as follows: first hash it with hash_alg if the salt is longer than the block size of
the hash algorithm; then pad with null bytes up to the block size. As a result, it is possible for distinct salt
inputs to result in the same outputs. To ensure unigue outputs, it is recommended to use a fixed length
for salt values.

Each input may only be passed once.

Compatible key types

PSA_KEY_TYPE_DERIVE (for the secret key)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_HKDF_EXTRACT (macro)
Macro to build an HKDF-Extract algorithm.
Added in version 1.1.

#define PSA_ALG_HKDF_EXTRACT (hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 246

1.4.0 Non-confidential

Returns

The corresponding HKDF-Extract algorithm. For example, PSA_ALG_HKDF_EXTRACT (PSA_ALG_SHA_256) is
HKDF-Extract using HMAC-SHA-256.

Unspecified if hash_alg is not a supported hash algorithm.

Description

This is the Extract step of HKDF as specified by HMAC-based Extract-and-Expand Key Derivation Function
(HKDF) [RFC5869] §2.2.

This key-derivation algorithm uses the following inputs:

e PSA_KEY_DERIVATION_INPUT_SALT is the salt.

e PSA_KEY_DERIVATION_INPUT_SECRET is the input keying material used in the “extract” step.

The inputs are mandatory and must be passed in the order above. Each input may only be passed once.

A Warning

HKDF-Extract is not meant to be used on its own. PSA_ALG_HKDF should be used instead if possible.
PSA_ALG_HKDF_EXTRACT is provided as a separate algorithm for the sake of protocols that use it as a
building block. It may also be a slight performance optimization in applications that use HKDF with the
same salt and key but many different info strings.

A Warning

HKDF processes the salt as follows: first hash it with hash_alg if the salt is longer than the block size of
the hash algorithm; then pad with null bytes up to the block size. As a result, it is possible for distinct salt
inputs to result in the same outputs. To ensure unigue outputs, it is recommended to use a fixed length
for salt values.

Compatible key types

PSA_KEY_TYPE_DERIVE (for the input keying material)
PSA_KEY_TYPE_RAW_DATA (for the salt)

PSA_ALG_HKDF_EXPAND (macro)
Macro to build an HKDF-Expand algorithm.
Added in version 1.1.

#define PSA_ALG_HKDF_EXPAND(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 247

1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc5869.html#section-2.2

Returns

The corresponding HKDF-Expand algorithm. For example, PSA_ALG_HKDF_EXPAND (PSA_ALG_SHA_256) iS
HKDF-Expand using HMAC-SHA-256.

Unspecified if hash_alg is not a supported hash algorithm.

Description

This is the Expand step of HKDF as specified by HMAC-based Extract-and-Expand Key Derivation Function
(HKDF) [RFC5869] §2.3.

This key-derivation algorithm uses the following inputs:

e PSA_KEY_DERIVATION_INPUT_SECRET is the pseudorandom key (PRK).

e PSA_KEY_DERIVATION_INPUT_INFO is the info string.

The inputs are mandatory and must be passed in the order above. Each input may only be passed once.

A Warning

HKDF-Expand is not meant to be used on its own. PSA_ALG_HKDF should be used instead if possible.
PSA_ALG_HKDF_EXPAND is provided as a separate algorithm for the sake of protocols that use it as a building
block. It may also be a slight performance optimization in applications that use HKDF with the same salt
and key but many different info strings.

Compatible key types

PSA_KEY_TYPE_DERIVE (for the pseudorandom key)
PSA_KEY_TYPE_RAW_DATA (for the info string)

PSA_ALG_SP800_108_COUNTER_HMAC (macro)
Macro to build a NIST SP 800-108 conformant, counter-mode KDF algorithm based on HMAC.
Added in version 1.2.

#define PSA_ALG_SP800_108_COUNTER_HMAC(hash_alg) \
/* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.
Returns

The corresponding key-derivation algorithm. For example, the counter-mode KDF using HMAC-SHA-256 is
PSA_ALG_SP800_108_COUNTER_HMAC (PSA_ALG_SHA_256).

Unspecified if hash_alg is not a supported hash algorithm.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 248
1.4.0 Non-confidentia

https://datatracker.ietf.org/doc/html/rfc5869.html#section-2.3

Description

This is an HMAC-based, counter mode key-derivation function, using the construction recommended by
NIST Special Publication 800-108r1: Recommendation for Key Derivation Using Pseudorandom Functions
[SP800-108], §4.1.

This key-derivation algorithm uses the following inputs:

e PSA_KEY_DERIVATION_INPUT_SECRET is the secret input keying material, K.

e PSA_KEY_DERIVATION_INPUT_LABEL is the Label. It is optional; if omitted, Label is a zero-length string. If
provided, it must not contain any null bytes.

e PSA_KEY_DERIVATION_INPUT_CONTEXT is the Context. It is optional; if omitted, Context is a zero-length
string.
Each input can only be passed once. Inputs must be passed in the order above.

This algorithm uses the output length as part of the derivation process. In the derivation this value is L, the
required output size in bits. After setup, the initial capacity of the key-derivation operation is 229 — 1 bytes
(ex1fFFffff). The capacity can be set to a lower value by calling psa_key_derivation_set_capacity().

When the first output is requested, the value of L is calculated as L = 8 x cap, where cap is the value of
psa_key_derivation_get_capacity(). Subsequent calls to psa_key_derivation_set_capacity() are not
permitted for this algorithm.

The derivation is constructed as described in [SP800-108] §4.1, with the iteration counter 7 and output
length L encoded as big-endian, 32-bit values. The resulting output stream K || Ks || K3 || ... is computed
as:

K; = HMAC(Kn, [i]4 || Label || ox00 || Context || [L]s), fori=1,2,3,...
Where [z],, is the big-endian, n-byte encoding of the integer .

Compatible key types

PSA_KEY_TYPE_HMAC (for the secret key)
PSA_KEY_TYPE_DERIVE (for the secret key)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_SP800_108_COUNTER_CMAC (macro)
Macro to build a NIST SP 800-108 conformant, counter-mode KDF algorithm based on CMAC.
Added in version 1.2.

#define PSA_ALG_SP800_108_COUNTER_CMAC ((psa_algorithm_t)@x08000800)

This is a CMAC-based, counter mode key-derivation function, using the construction recommended by
NIST Special Publication 800-108r1: Recommendation for Key Derivation Using Pseudorandom Functions
[SPB0O0-108], §4.1.

This key-derivation algorithm uses the following inputs:
e PSA_KEY_DERIVATION_INPUT_SECRET is the secret input keying material, K;n. This must be a block-cipher

key that is compatible with the CMAC algorithm, and must be input using
psa_key_derivation_input_key (). See also PSA_ALG_CMAC.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 249
1.4.0 Non-confidential

e PSA_KEY_DERIVATION_INPUT_LABEL is the Label. It is optional; if omitted, Label is a zero-length string. If
provided, it must not contain any null bytes.

e PSA_KEY_DERIVATION_INPUT_CONTEXT is the Context. It is optional; if omitted, Context is a zero-length
string.
Each input can only be passed once. Inputs must be passed in the order above.

This algorithm uses the output length as part of the derivation process. In the derivation this value is L, the
required output size in bits. After setup, the initial capacity of the key-derivation operation is 22 — 1 bytes
(ex1fffffff). The capacity can be set to a lower value by calling psa_key_derivation_set_capacity().

When the first output is requested, the value of L is calculated as L = 8 % cap, where cap is the value of
psa_key_derivation_get_capacity(). Subsequent calls to psa_key_derivation_set_capacity() are not
permitted for this algorithm.

The derivation is constructed as described in [SP800-108] §4.1, with the following details:

e The iteration counter ¢ and output length L are encoded as big-endian, 32-bit values.

e The mitigation to make the CMAC-based construction robust is implemented.
The resulting output stream K || K2 || K3 || ... is computed as:

Ko = CMAC(K N, Label || ox00 || Context || [L]4)
K; = CMAC(K|n, [i]a || Label || ox00 || Context || [L]a || Ko), fori=1,2,3,...

Where [z],, is the big-endian, n-byte encoding of the integer .

Compatible key types

PSA_KEY_TYPE_AES (for the secret key)
PSA_KEY_TYPE_ARIA (for the secret key)
PSA_KEY_TYPE_CAMELLIA (for the secret key)
PSA_KEY_TYPE_SM4 (for the secret key)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_TLS12_PRF (macro)
Macro to build a TLS-1.2 PRF algorithm.

#define PSA_ALG_TLS12_PRF(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.
Returns

The corresponding TLS-1.2 PRF algorithm. For example, PSA_ALG_TLS12_PRF (PSA_ALG_SHA_256) represents the
TLS 1.2 PRF using HMAC-SHA-256.

Unspecified if hash_alg is not a supported hash algorithm.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 250
1.4.0 Non-confidential

Description

TLS 1.2 uses a custom pseudorandom function (PRF) for key schedule, specified in The Transport Layer
Security (TLS) Protocol Version 1.2 [RFC5246] §5. It is based on HMAC and can be used with either SHA-256
or SHA-384.

This key-derivation algorithm uses the following inputs, which must be passed in the order given here:

e PSA_KEY_DERIVATION_INPUT_SEED is the seed.
e PSA_KEY_DERIVATION_INPUT_SECRET is the secret key.

e PSA_KEY_DERIVATION_INPUT_LABEL is the label.
Each input may only be passed once.
For the application to TLS-1.2 key expansion:
e The seed is the concatenation of ServerHello.Random + ClientHello.Random.

e The label is "key expansion".

Compatible key types

PSA_KEY_TYPE_DERIVE (for the secret key)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_TLS12_PSK_TO_MS (macro)
Macro to build a TLS-1.2 PSK-to-MasterSecret algorithm.
Changed in version 1.1: Added step to support cipher-suites that include a key-exchange.

#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.
Returns

The corresponding TLS-1.2 PSK to MS algorithm. For example, PSA_ALG_TLS12_PSK_TO_MS (PSA_ALG_SHA_256)
represents the TLS-1.2 PSK to MasterSecret derivation PRF using HMAC-SHA-256.

Unspecified if hash_alg is not a supported hash algorithm.

Description

In a pure-PSK handshake in TLS 1.2, the master secret (MS) is derived from the pre-shared key (PSK)
through the application of padding (Pre-Shared Key Ciphersuites for Transport Layer Security (TLS) [RFC4279]
§2) and the TLS-1.2 PRF (The Transport Layer Security (TLS) Protocol Version 1.2 [RFC5246] §5). The latter is
based on HMAC and can be used with either SHA-256 or SHA-384.

This key-derivation algorithm uses the following inputs, which must be passed in the order given here:

e PSA KEY DERIVATION_INPUT SEED is the seed.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 251
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc5246.html#section-5
https://datatracker.ietf.org/doc/html/rfc4279.html#section-2
https://datatracker.ietf.org/doc/html/rfc5246.html#section-5

e PSA_KEY_DERIVATION_INPUT_OTHER_SECRET is the other secret for the computation of the premaster
secret. This input is optional; if omitted, it defaults to a string of null bytes with the same length as the
secret (PSK) input.

e PSA_KEY_DERIVATION_INPUT_SECRET is the PSK. The PSK must not be larger than
PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE.

e PSA_KEY_DERIVATION_INPUT_LABEL is the label.

Each input may only be passed once.
For the application to TLS-1.2:

e The seed, which is forwarded to the TLS-1.2 PRF, is the concatenation of the ClientHello.Random +
ServerHello.Random.

e The other secret depends on the key exchange specified in the cipher suite:

— For a plain PSK cipher suite ([RFC4279] §2), omit PSA_KEY_DERIVATION_INPUT_OTHER_SECRET.

— For a DHE-PSK ([RFC4279] §3) or ECDHE-PSK cipher suite (ECDHE_PSK Cipher Suites for
Transport Layer Security (TLS) [RFC5489] §2), the other secret should be the output of the
PSA_ALG_FFDH Or PSA_ALG_ECDH key agreement performed with the peer. The recommended way to
pass this input is to use a key-derivation algorithm constructed as PSA_ALG_KEY_AGREEMENT (ka_alg,
PSA_ALG_TLS12_PSK_TO_MS(hash_alg)) and to call psa_key_derivation_key_agreement().
Alternatively, this input may be an output of psa_key_agreement () passed with
psa_key_derivation_input_key (), Or an equivalent input passed with
psa_key_derivation_input_bytes() Or psa_key_derivation_input_key().

— For a RSA-PSK cipher suite ([RFC4279] §4), the other secret should be the 48-byte client
challenge (the PreMasterSecret of [RFC5246] §7.4.7.1) concatenation of the TLS version and a
46-byte random string chosen by the client. On the server, this is typically an output of
psa_asymmetric_decrypt() USINg PSA_ALG_RSA_PKCS1V15_CRYPT, passed to the key-derivation
operation with psa_key_derivation_input_bytes().

e The label is "master secret" Or "extended master secret".

Compatible key types

PSA_KEY_TYPE_DERIVE (for the PSK)
PSA_KEY_TYPE_RAW_DATA (for the other inputs)

PSA_ALG_TLS12_ECJPAKE_TO_PMS (macro)
The TLS 1.2 ECJPAKE-to-PMS key-derivation algorithm.
Added in version 1.2.

#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t)0x08000609)

This KDF is defined in Elliptic Curve J-PAKE Cipher Suites for Transport Layer Security (TLS) [TLS-ECJPAKE]
§8.7. This specifies the use of a KDF to derive the TLS 1.2 session secrets from the output of EC J-PAKE
over the secp256r1 Elliptic curve (the 256-bit curve in PSA_EcC_FAMILY_SECP_R1). EC J-PAKE operations can
be performed using a PAKE operation, see Password-authenticated key exchange (PAKE) on page 338.

This KDF takes the shared secret K (an uncompressed EC point in case of EC J-PAKE) and calculates
SHA256(K.x).

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 252
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc4279.html#section-2
https://datatracker.ietf.org/doc/html/rfc4279.html#section-3
https://datatracker.ietf.org/doc/html/rfc5489.html#section-2
https://datatracker.ietf.org/doc/html/rfc4279.html#section-4
https://datatracker.ietf.org/doc/html/rfc5246.html#section-7.4.7.1

This function takes a single input:

e PSA_KEY_DERIVATION_INPUT_SECRET is the shared secret K from EC J-PAKE. For secp256r1, the input is
exactly 65 bytes.

The shared secret can be obtained by calling psa_pake_get_shared_key() on a PAKE operation that is
performing the EC J-PAKE algorithm. See Password-authenticated key exchange (PAKE) on page 338.

The 32-byte output has to be read in a single call to either psa_key_derivation_output_bytes(),
psa_key_derivation_output_key (), Or psa_key_derivation_output_key_custom(). The size of the output is
defined as PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE.

Compatible key types

PSA_KEY_TYPE_DERIVE — the secret key is extracted from a PAKE operation by calling
psa_pake_get_shared_key().

PSA_ALG_WPA3_SAE_H2E (macro)
The WPA3-SAE hash-to-element password token key-derivation algorithm.
Added in version 1.4.

#define PSA_ALG_WPA3_SAE_H2E(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Description

This KDF is defined in IEEE 802.11-2024: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications [IEEE-802.11] §12.4.4. This specifies the hash-to-element procedures for deriving a
WPAS3-SAE password token from a network SSID and password. The resulting password token is then used
during a WPA3-SAE PAKE operation.

This key-derivation algorithm uses the following inputs, which must be passed in the order given here:

® PSA_KEY_DERIVATION_INPUT_SALT is the network SSID.
e PSA_KEY_DERIVATION_INPUT_PASSWORD is the password.

e PSA_KEY_DERIVATION_INPUT_INFO is the password identifier. It is optional.

This key derivation algorithm can only be used to derive and output a single key, which is obtained by a call
to psa_key_derivation_output_key (). The output has to be read as a key of type PSA_KEY_TYPE_WPA3_SAE_DH
Or PSA_KEY_TYPE_WPA3_SAE_ECC. Requesting any other key type, or calling psa_key_derivation_output_bytes(),
returns an error status.

The hash_alg parameter to PSA_ALG_WPA3_SAE_H2E() determines the hash function used for the derivation.
The key attributes of the output key indicate the elliptic curve or finite field group used for the derivation.

If the elliptic curve or finite field group specified in the key attributes is not compatible with the hash
function used for the derivation, psa_key_derivation_output_bytes() returns PSA_ERROR_INVALID_ARGUMENT.
See WPA3-SAE cipher suites on page 381.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 253
1.4.0 Non-confidential

WPA3-SAE password tokens on page 72 provides details of the derivation procedures.

Note:

To use a single password key with PSA_ALG_WPA3_SAE_H2E for any WPA3-SAE cipher suite, create the
key with the wildcard PSA_ALG_WPA3_SAE_ANY permitted algorithm.

PSA_ALG_PBKDF2_HMAC (macro)
Macro to build a PBKDF2-HMAC password-hashing or key-stretching algorithm.
Added in version 1.1.

#define PSA_ALG_PBKDF2_HMAC(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.
Returns

The corresponding PBKDF2-HMAC-XXX algorithm. For example, PSA_ALG_PBKDF2_HMAC (PSA_ALG_SHA_256) iS
the algorithm identifier for PBKDF2-HMAC-SHA-256.

Unspecified if hash_alg is not a supported hash algorithm.

Description

PBKDF2 is specified by PKCS #5: Password-Based Cryptography Specification Version 2.1 [RFC8018] §5.2.
This macro constructs a PBKDF2 algorithm that uses a pseudorandom function based on HMAC with the
specified hash.

This key-derivation algorithm uses the following inputs, which must be provided in the following order:

e PSA_KEY_DERIVATION_INPUT_COST is the iteration count. This input step must be used exactly once.

e PSA_KEY_DERIVATION_INPUT_SALT is the salt. This input step must be used one or more times; if used
several times, the inputs will be concatenated. This can be used to build the final salt from multiple
sources, both public and secret (also known as pepper).

e PSA_KEY_DERIVATION_INPUT_PASSWORD is the password to be hashed. This input step must be used
exactly once.

Compatible key types

PSA_KEY_TYPE_DERIVE (for password input)
PSA_KEY_TYPE_PASSWORD (for password input)
PSA_KEY_TYPE_PEPPER (for salt input)
PSA_KEY_TYPE_RAW_DATA (for salt input)
PSA_KEY_TYPE_PASSWORD_HASH (for key verification)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 254
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8018.html#section-5.2

PSA_ALG_PBKDF2_AES_CMAC_PRF_128 (macro)
The PBKDF2-AES-CMAC-PRF-128 password-hashing or key-stretching algorithm.
Added in version 1.1.

#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)

PBKDF2 is specified by PKCS #5: Password-Based Cryptography Specification Version 2.1 [RFC8018] §5.2.
This algorithm specifies the PBKDF2 algorithm using the AES-CMAC-PRF-128 pseudorandom function
specified by [RFC4615]

This key-derivation algorithm uses the same inputs as PSA_ALG_PBKDF2_HMAC () with the same constraints.

Compatible key types

PSA_KEY_TYPE_DERIVE (for password input)
PSA_KEY_TYPE_PASSWORD (for password input)
PSA_KEY_TYPE_PEPPER (for salt input)
PSA_KEY_TYPE_RAW_DATA (for salt input)
PSA_KEY_TYPE_PASSWORD_HASH (for key verification)

10.8.2 Input step types

psa_key_derivation_step_t (typedef)

Encoding of the step of a key derivation.

typedef uintl6_t psa_key_derivation_step_t;

Implementation note

It is recommended that the value o is not allocated as a valid key-derivation step.

PSA_KEY_DERIVATION_INPUT_SECRET (macro)
A high-entropy secret input for key derivation.

#define PSA_KEY_DERIVATION_INPUT_SECRET /* implementation-defined value */

This is typically a key of type PSA_KEY_TYPE_DERIVE passed to psa_key_derivation_input_key (), or the shared
secret resulting from a key agreement obtained via psa_key_derivation_key_agreement ().

For some algorithms, a specific type of key is required. For example, see PSA_ALG_SP80@_108_COUNTER_CMAC.

The secret can also be a direct input passed to psa_key_derivation_input_bytes(). In this case, the
derivation operation cannot be used to derive keys: the operation will not permit a call to
psa_key_derivation_output_key() Or psa_key_derivation_output_key_custom().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 255
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8018.html#section-5.2

PSA_KEY_DERIVATION_INPUT_OTHER_SECRET(nnaCFO)
A high-entropy additional secret input for key derivation.
Added in version 1.1.

#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
/* implementation-defined value */

This is typically the shared secret resulting from a key agreement obtained via
psa_key_derivation_key_agreement(). It may alternatively be a key of type PSA_KEY_TYPE_DERIVE passed to
psa_key_derivation_input_key (), or a direct input passed to psa_key_derivation_input_bytes().

PSA_KEY_DERIVATION_INPUT_PASSWORD (macro)
A low-entropy secret input for password hashing or key stretching.

Added in version 1.1.

#define PSA_KEY_DERIVATION_INPUT_PASSWORD /* implementation-defined value */

This is usually a key of type PSA_KEY_TYPE_PASSWORD passed to psa_key_derivation_input_key() or a direct
input passed to psa_key_derivation_input_bytes() thatis a password or passphrase. It can also be
high-entropy secret, for example, a key of type PSA_KEY_TYPE_DERIVE, or the shared secret resulting from a
key agreement.

If the secret is a direct input, the derivation operation cannot be used to derive keys: the operation will not
permit a call to psa_key_derivation_output_key() Or psa_key_derivation_output_key_custom().

PSA_KEY_DERIVATION_INPUT_LABEL (macro)

A label for key derivation.

#define PSA_KEY_DERIVATION_INPUT_LABEL /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.

PSA_KEY_DERIVATION_INPUT_CONTEXT(nﬂaCFO)

A context for key derivation.

#define PSA_KEY_DERIVATION_INPUT_CONTEXT /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.

PSA_KEY_DERIVATION_INPUT_SALT (macro)

A salt for key derivation.

#define PSA_KEY_DERIVATION_INPUT_SALT /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA Or PSA_KEY_TYPE_PEPPER.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 256
1.4.0 Non-confidentia

PSA_KEY_DERIVATION_INPUT_INFO (macro)

An information string for key derivation.

#define PSA_KEY_DERIVATION_INPUT_INFO /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.

PSA_KEY_DERIVATION_INPUT_SEED (macro)

A seed for key derivation.

#define PSA_KEY_DERIVATION_INPUT_SEED /* implementation-defined value */

This is typically a direct input. It can also be a key of type PSA_KEY_TYPE_RAW_DATA.

PSA_KEY_DERIVATION_INPUT_COST (macro)
A cost parameter for password hashing or key stretching.

Added in version 1.1.

#define PSA_KEY_DERIVATION_INPUT_COST /* implementation-defined value */

This must be a direct input, passed to psa_key_derivation_input_integer().

10.8.3 Key-derivation functions

psa_key_derivation_operation_t (typedef)

The type of the state object for key-derivation operations.

typedef /* implementation-defined type */ psa_key_derivation_operation_t;

Before calling any function on a key-derivation operation object, the application must initialize it by any of
the following means:

e Set the object to all-bits-zero, for example:

psa_key_derivation_operation_t operation;
memset (&operation, @, sizeof(operation));

e [nitialize the object to logical zero values by declaring the object as static or global without an explicit
initializer, for example:

static psa_key_derivation_operation_t operation;

e |nitialize the object to the initializer PSA_KEY_DERIVATION_OPERATION_INIT, for example:

psa_key_derivation_operation_t operation = PSA_KEY_DERIVATION_OPERATION_INIT;

e Assign the result of the function psa_key_derivation_operation_init() to the object, for example:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 257
1.4.0 Non-confidential

psa_key_derivation_operation_t operation;
operation = psa_key_derivation_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in implementation-specific behavior, and are non-portable.

PSA_KEY_DERIVATION_OPERATION_INIT (macro)

This macro returns a suitable initializer for a key-derivation operation object of type
psa_key_derivation_operation_t.

#define PSA_KEY_DERIVATION_OPERATION_INIT /* implementation-defined value */

psa_key_derivation_operation_init (function)

Return an initial value for a key-derivation operation object.
psa_key_derivation_operation_t psa_key_derivation_operation_init(void);
Returns: psa_key_derivation_operation_t

psa_key_derivation_setup (function)

Set up a key-derivation operation.

psa_status_t psa_key_derivation_setup(psa_key_derivation_operation_t * operation,
psa_algorithm_t alg);

Parameters
operation The key-derivation operation object to set up. It must have been
initialized but not set up yet.
alg The algorithm to compute. This must be one of the following:

e A key-derivation algorithm: a value of type psa_algorithm_t such
that PSA_ALG_IS_KEY_DERIVATION(alg) is true.

e A key-agreement and key-derivation algorithm: a value of type
psa_algorithm_t such that PSA_ALG_IS_KEY_AGREEMENT (alg) is true
and PSA_ALG_IS_RAW_KEY_AGREEMENT (alg) is false.

Returns: psa_status_t
PSA_SUCCESS Success. The operation is now active.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be inactive.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT alg is neither a key-derivation algorithm, nor a key-agreement and
key-derivation algorithm.

PSA_ERROR_NOT_SUPPORTED alg is not supported or is not a key-derivation algorithm, or a
key-agreement and key-derivation algorithm.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 258
1.4.0 Non-confidential

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

A key-derivation algorithm takes some inputs and uses them to generate a byte stream in a deterministic
way. This byte stream can be used to produce keys and other cryptographic material.

A key-agreement and key-derivation algorithm uses a key-agreement protocol to provide a shared secret
which is used for the key derivation. See psa_key_derivation_key_agreement().

The sequence of operations to derive a key is as follows:

1. Allocate a key-derivation operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_key_derivation_operation_t, €.8. PSA_KEY_DERIVATION_OPERATION_INIT.

3. Call psa_key_derivation_setup() to specify the algorithm.

4. Provide the inputs for the key derivation by calling psa_key_derivation_input_bytes() or
psa_key_derivation_input_key () as appropriate. Which inputs are needed, in what order, whether keys
are permitted, and what type of keys depends on the algorithm.

5. Optionally set the operation’s maximum capacity with psa_key_derivation_set_capacity(). This can be
done before, in the middle of, or after providing inputs. For some algorithms, this step is mandatory
because the output depends on the maximum capacity.

6. To derive a key, call psa_key_derivation_output_key() Or psa_key derivation_output_key_custom(). 1O
derive a byte string for a different purpose, call psa_key_derivation_output_bytes (). Successive calls to
these functions use successive output bytes calculated by the key-derivation algorithm.

7. Clean up the key-derivation operation object with psa_key_derivation_abort().

After a successful call to psa_key_derivation_setup(), the operation is active, and the application must
eventually terminate the operation with a call to psa_key_derivation_abort().

If psa_key_derivation_setup() returns an error, the operation object is unchanged. If a subsequent function
call with an active operation returns an error, the operation enters an error state.

To abandon an active operation, or reset an operation in an error state, call psa_key_derivation_abort().

See Multi-part operations on page 27.

psa_key_derivation_get_capacity (function)

Retrieve the current capacity of a key-derivation operation.

psa_status_t psa_key_derivation_get_capacity(const psa_key_derivation_operation_t * operation,
size_t * capacity);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 259
1.4.0 Non-confidential

Parameters
operation The operation to query.

capacity On success, the capacity of the operation.

Returns: psa_status_t

PSA_SUCCESS Success. The maximum number of bytes that this key derivation can
return is (*capacity).

PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active.
e The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

The capacity of a key derivation is the maximum number of bytes that it can return. Reading N bytes of
output from a key-derivation operation reduces its capacity by at least N. The capacity can be reduced by
more than N in the following situations:

e Calling psa_key_derivation_output_key() Or psa_key_derivation_output_key_custom() can reduce the
capacity by more than the key size, depending on the type of key being generated. See
psa_key_derivation_output_key () for details of the key-derivation process.

e \When the psa_key_derivation_operation_t object is operating as a deterministic random bit generator
(DBRG), which reduces capacity in whole blocks, even when less than a block is read.

psa_key_derivation_set_capacity (function)
Set the maximum capacity of a key-derivation operation.

psa_status_t psa_key_derivation_set_capacity(psa_key_derivation_operation_t * operation,
size_t capacity);

Parameters
operation The key-derivation operation object to modify.
capacity The new capacity of the operation. It must be less or equal to the

operation’s current capacity.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT capacity is larger than the operation’s current capacity. In this case,
the operation object remains valid and its capacity remains unchanged.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 260
1.4.0 Non-confidential

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

The capacity of a key-derivation operation is the maximum number of bytes that the key-derivation
operation can return from this point onwards.

Note:

For some algorithms, the capacity value can affect the output of the key derivation. For example, see
PSA_ALG_SP800_108_COUNTER_HMAC.

psa_key_derivation_input_bytes (function)

Provide an input for key derivation or key agreement.

psa_status_t psa_key_derivation_input_bytes(psa_key_derivation_operation_t * operation,
psa_key_derivation_step_t step,
const uint8_t * data,
size_t data_length);

Parameters
operation The key-derivation operation object to use. It must have been set up
with psa_key_derivation_setup() and must not have produced any
output yet.
step Which step the input data is for.
data Input data to use.
data_length Size of the data buffer in bytes.
Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e [he operation state is not valid for this input step. This can
happen if the application provides a step out of order or repeats
a step that may not be repeated.

e The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e step is not compatible with the operation’s algorithm.
e step does not permit direct inputs.

e data_length is too small or too large for step in this particular
algorithm.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e step is not supported with the operation’s algorithm.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 261
1.4.0 Non-confidential

e data_length is is not supported for step in this particular
algorithm.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

Which inputs are required and in what order depends on the algorithm. Refer to the documentation of each
key-derivation or key-agreement algorithm for information.

This function passes direct inputs, which is usually correct for non-secret inputs. To pass a secret input,
which is normally in a key object, call psa_key_derivation_input_key() instead of this function. Refer to the
documentation of individual step types (PSA_KEY_DERIVATION_INPUT_xxx Values of type
psa_key_derivation_step_t) for more information.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_key_derivation_abort().

psa_key_derivation_input_integer (function)

Provide a numeric input for key derivation or key agreement.

Added in version 1.1.

psa_status_t psa_key_derivation_input_integer(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,
uint64_t value);

Parameters
operation The key-derivation operation object to use. It must have been set up
with psa_key_derivation_setup() and must not have produced any
output yet.
step Which step the input data is for.
value The value of the numeric input.
Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid for this input step. This can
happen if the application provides a step out of order or repeats
a step that may not be repeated.

e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 262
1.4.0 Non-confidential

e step is not compatible with the operation’s algorithm.
e step does not permit numerical inputs.
e value is not valid for step in the operation’s algorithm.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e step is not supported with the operation’s algorithm.
e value is not supported for step in the operation’s algorithm.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

Which inputs are required and in what order depends on the algorithm. However, when an algorithm
requires a particular order, numeric inputs usually come first as they tend to be configuration parameters.
Refer to the documentation of each key-derivation or key-agreement algorithm for information.

This function is used for inputs which are fixed-size non-negative integers.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_key_derivation_abort().

psa_key_derivation_input_key (function)
Provide an input for key derivation in the form of a key.
psa_status_t psa_key_derivation_input_key(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,
psa_key_id_t key);

Parameters
operation The key-derivation operation object to use. It must have been set up
with psa_key_derivation_setup() and must not have produced any
output yet.
step Which step the input data is for.
key Identifier of the key. The key must have an appropriate type for step, it
must permit the usage PSA_KEY_USAGE_DERIVE Or
PSA_KEY_USAGE_VERIFY_DERIVATION (see note), and it must permit the
algorithm used by the operation.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 263

1.4.0 Non-confidential

Returns: psa_status_t
PSA_SUCCESS

PSA_ERROR_BAD_STATE

PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

Which inputs are required and in what order depends on the algorithm. Refer to the documentation of each

Success.
The following conditions can result in this error:

e The operation state is not valid for this input step. This can
happen if the application provides a step out of order or repeats
a step that may not be repeated.

e The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.
The following conditions can result in this error:

e The key has neither the PSA_KEY_USAGE_DERIVE nor the
PSA_KEY_USAGE_VERIFY_DERIVATION usage flag.

e The key does not permit the operation’s algorithm.
The following conditions can result in this error:

e step is not compatible with the operation’s algorithm.
e step does not permit key inputs of the given type, or does not
permit key inputs at all.
The following conditions can result in this error:

e step is not supported with the operation’s algorithm.

e Key inputs of the given type are not supported for step in the
operation’s algorithm.

key-derivation or key-agreement algorithm for information.

This function obtains input from a key object, which is usually correct for secret inputs or for non-secret
personalization strings kept in the key store. To pass a non-secret parameter which is not in the key store,

call psa_key_derivation_input_bytes(

) instead of this function. Refer to the documentation of individual

step types (PSA_KEY_DERIVATION_INPUT_xxx values of type psa_key_derivation_step_t) for more information.

Note:

Once all inputs steps are completed, the following operations are permitted:

e psa_key_derivation_output_bytes() — if each input was either a direct input, or a key with usage
flag PSA_KEY_USAGE_DERIVE.

e psa_key_derivation_output_key() Or psa_key_derivation_output_key_custom() — if the input for

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates

1.4.0

Non-confidential

Page 264

step PSA_KEY_DERIVATION_INPUT_SECRET Or PSA_KEY_DERIVATION_INPUT_PASSWORD was a key with
usage flag PSA_KEY_USAGE_DERIVE, and every other input was either a direct input or a key with
usage flag PSA_KEY_USAGE_DERIVE.

® psa_key_derivation_verify_bytes()

® psa_key_derivation_verify_key()

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_key_derivation_abort().

psa_key_derivation_output_bytes (function)
Read some data from a key-derivation operation.
psa_status_t psa_key_derivation_output_bytes(psa_key_derivation_operation_t * operation,

uint8_t * output,
size_t output_length);

Parameters
operation The key-derivation operation object to read from.
output Buffer where the output will be written.
output_length Number of bytes to output.

Returns: psa_status_t

PSA_SUCCESS Success. The first output_length bytes of output contain the derived
data.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e [he operation state is not valid: it must be active, with all
required input steps complete.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_NOT_PERMITTED One of the inputs was a key whose policy did not permit
PSA_KEY_USAGE_DERIVE.

PSA_ERROR_INSUFFICIENT_DATA The operation’s capacity was less than output_length bytes. In this
case, the following occurs:

e No output is written to the output buffer.
e The operation’s capacity is set to zero.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 265
1.4.0 Non-confidentia

Description

This function calculates output bytes from a key-derivation algorithm and returns those bytes. If the key
derivation’s output is viewed as a stream of bytes, this function consumes the requested number of bytes
from the stream and returns them to the caller. The operation’s capacity decreases by the number of bytes
read.

A request to extract more data than the remaining capacity — output_length >
psa_key_derivation_get_capacity() — fails with PSA_ERROR_INSUFFICIENT_DATA, and sets the remaining
capacity to zero.

If the operation’s capacity is zero, and output_length is zero, then it is IMPLEMENTATION DEFINED whether this
function returns PSA_SUCCESS Or PSA_ERROR_INSUFFICIENT_DATA.

If this function returns an error status other than PSA_ERROR_INSUFFICIENT_DATA, the operation enters an
error state and must be aborted by calling psa_key_derivation_abort().

psa_key_derivation_output_key (function)

Derive a key from an ongoing key-derivation operation.

psa_status_t psa_key_derivation_output_key(const psa_key_attributes_t * attributes,
psa_key_derivation_operation_t * operation,
psa_key_id_t * key);

Parameters
attributes The attributes for the new key.
The following attributes are required for all keys:

e The key type. It must not be an asymmetric public key.
e The key size. It must be a valid size for the key type.

The following attributes must be set for keys used in cryptographic
operations:

e The key permitted-algorithm policy, see Permitted algorithms on
page 101.
If the key type to be created is PSA_KEY_TYPE_PASSWORD_HASH, then
the permitted-algorithm policy must be either the same as the
current operation’s algorithm, or PSA_ALG_NONE.

e The key usage flags, see Key usage flags on page 102.
The following attributes must be set for keys that do not use the
default PSA_KEY_LIFETIME_VOLATILE lifetime:

e The key lifetime, see Key lifetimes on page 90.

e The key identifier is required for a key with a persistent lifetime,
see Key identifiers on page 98.

Note:

This is an input parameter: it is not updated with the final key
attributes. The final attributes of the new key can be queried by
calling psa_get_key_attributes() with the key’s identifier.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 266
1.4.0 Non-confidential

operation The key-derivation operation object to read from.

key On success, an identifier for the newly created key. For persistent
keys, this is the key identifier defined in attributes. PSA_KEY_ID_NULL
on failure.

Returns: psa_status_t

PSA_SUCCESS Success. If the key is persistent, the key material and the key’s
metadata have been saved to persistent storage.

PSA_ERROR_BAD_STATE The following conditions can result in this error:
e [he operation state is not valid: it must be active, with all
required input steps complete.
e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:

e A PSA_KEY_DERIVATION_INPUT_SECRET Or
PSA_KEY_DERIVATION_INPUT_PASSWORD input step was neither
provided through a key, nor the result of a key agreement.

e One of the inputs was a key whose policy did not permit
PSA_KEY_USAGE_DERIVE.

e The implementation does not permit creating a key with the
specified attributes due to some implementation-specific policy.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already a
persistent key with the given identifier.

PSA_ERROR_INSUFFICIENT_DATA There was not enough data to create the desired key. In this case, the
following occurs:
e No key is generated.
e The operation’s capacity is set to zero.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e The key type is invalid, or is an asymmetric public-key type.

e The key type is PSA_KEY_TYPE_PASSWORD_HASH, and the
permitted-algorithm policy is not the same as the current
operation’s algorithm.

e The key size is not valid for the key type. Implementations must
reject an attempt to derive a key of size o.

e The key lifetime is invalid.

e The key identifier is not valid for the key lifetime.
e The key usage flags include invalid values.

e The key's permitted-usage algorithm is invalid.

e The key attributes, as a whole, are invalid.

PSA_ERROR_NOT_SUPPORTED The key attributes, as a whole, are not supported, either by the
implementation in general or in the specified storage location.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 267
1.4.0 Non-confidential

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description

This function calculates output bytes from a key-derivation algorithm and uses those bytes to generate a
key deterministically. The key’s location, policy, type and size are taken from attributes.

If the key derivation’s output is viewed as a stream of bytes, this function consumes the required number of
bytes from the stream. The operation’s capacity decreases by the number of bytes used to derive the key.

A request that needs to extract more data than the remaining capacity fails with
PSA_ERROR_INSUFFICIENT_DATA, and sets the remaining capacity to zero.

If this function returns an error status other than PSA_ERROR_INSUFFICIENT_DATA, the operation enters an
error state and must be aborted by calling psa_key_derivation_abort().

How much output is produced and consumed from the operation, and how the key is derived, depends on
the key type. The key-derivation procedures for standard key-derivation algorithms are described in the Key
derivation section of each key definition in Key types on page 53. Implementations can use other methods
for implementation-specific algorithms.

For algorithms that take a PSA_KEY_DERIVATION_INPUT_SECRET OF PSA_KEY_DERIVATION_INPUT_PASSWORD input
step, the input to that step must be provided with psa_key_derivation_input_key (). Future versions of this
specification might include additional restrictions on the derived key based on the attributes and strength of
the secret key.

Note:

This function is equivalent to calling psa_key_derivation_output_key_custom() with the
production parameters PSA_CUSTOM_KEY_PARAMETERS_INIT and custom_data_length ==
(custom_data is ignored).

psa_key_derivation_output_key_custom (function)
Derive a key from an ongoing key-derivation operation with custom production parameters.

Added in version 1.3.

psa_status_t psa_key_derivation_output_key_custom(const psa_key_attributes_t * attributes,
psa_key_derivation_operation_t * operation,
const psa_custom_key_parameters_t * custom,
const uint8_t * custom_data,
size_t custom_data_length,
psa_key_id_t * key);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 268
1.4.0 Non-confidentia

Parameters

attributes

operation

custom

custom_data
custom_data_length

key

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE

PSA_ERROR_NOT_PERMITTED

IHI 0086
1.4.0

The attributes for the new key.
The following attributes are required for all keys:

e The key type. It must not be an asymmetric public key.
e The key size. It must be a valid size for the key type.

The following attributes must be set for keys used in cryptographic
operations:

e The key permitted-algorithm policy, see Permitted algorithms on
page 101.
If the key type to be created is PSA_KEY_TYPE_PASSWORD_HASH, then

the permitted-algorithm policy must be either the same as the
current operation’s algorithm, or PSA_ALG_NONE.

e The key usage flags, see Key usage flags on page 102.

The following attributes must be set for keys that do not use the
default PSA_KEY_LIFETIME_VOLATILE lifetime:

e The key lifetime, see Key lifetimes on page 90.

e The key identifier is required for a key with a persistent lifetime,
see Key identifiers on page 98.

Note:

This is an input parameter: it is not updated with the final key
attributes. The final attributes of the new key can be queried by
calling psa_get_key_attributes() with the key's identifier.

The key-derivation operation object to read from.

Customized production parameters for the key derivation.

When this is PSA_CUSTOM_KEY_PARAMETERS_INIT wWith custom_data_length
== 9, this function is equivalent to psa_key_derivation_output_key ().

A buffer containing additional variable-sized production parameters.
Length of custom_data in bytes.

On success, an identifier for the newly created key. For persistent
keys, this is the key identifier defined in attributes. PSA_KEY_ID_NULL
on failure.

Success. If the key is persistent, the key material and the key’s
metadata have been saved to persistent storage.

The following conditions can result in this error:

e The operation state is not valid: it must be active, with all
required input steps complete.

e The library requires initializing by a call to psa_crypto_init().

The following conditions can result in this error:

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 269

Non-confidentia

e A PSA_KEY_DERIVATION_INPUT_SECRET Or
PSA_KEY_DERIVATION_INPUT_PASSWORD input step was neither
provided through a key, nor the result of a key agreement.

e One of the inputs was a key whose policy did not permit
PSA_KEY_USAGE_DERIVE.

e The implementation does not permit creating a key with the
specified attributes due to some implementation-specific policy.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already a

persistent key with the given identifier.

PSA_ERROR_INSUFFICIENT_DATA There was not enough data to create the desired key. In this case, the

following occurs:

e No key is generated.
e The operation’s capacity is set to zero.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e The key type is invalid, or is an asymmetric public-key type.

e The key type is PSA_KEY_TYPE_PASSWORD_HASH, and the
permitted-algorithm policy is not the same as the current
operation’s algorithm.

e The key size is not valid for the key type. Implementations must
reject an attempt to derive a key of size o.

e The key lifetime is invalid.

e The key identifier is not valid for the key lifetime.
e The key usage flags include invalid values.

e The key's permitted-usage algorithm is invalid.

e The key attributes, as a whole, are invalid.

e The production parameters are invalid.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e The key attributes, as a whole, are not supported, either by the
implementation in general or in the specified storage location.

e The production parameters are not supported by the
implementation.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

PSA_ERROR_STORAGE_FAILURE

PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 270
Non-confidentia

Description

This function calculates output bytes from a key-derivation algorithm and uses those bytes to generate a
key deterministically. The key’s location, policy, type and size are taken from attributes.

This function operates in a similar way to psa_key_derivation_output_key (), but enables explicit production
parameters to be provided when deriving a key. For example, the production parameters can be used to
select an alternative key-derivation process, or configure additional key parameters. See
psa_key_derivation_output_key () for the operation of this function with the default production parameters.

See psa_custom_key_parameters_t for a list of non-default production parameters. See the key type
definitions in Key types on page 53 for details of the custom production parameters used for key derivation.

psa_key_derivation_verify_bytes (function)

Compare output data from a key-derivation operation to an expected value.

Added in version 1.1.

psa_status_t psa_key_derivation_verify_bytes(psa_key_derivation_operation_t * operation,

Parameters
operation
expected_output

output_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE

PSA_ERROR_INVALID_SIGNATURE

PSA_ERROR_INSUFFICIENT_DATA

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

const uint8_t * expected_output,
size_t output_length);

The key-derivation operation object to read from.
Buffer containing the expected derivation output.

Length of the expected output. This is also the number of bytes that
will be read.

Success. The output of the key-derivation operation matches
expected_output

The following conditions can result in this error:

e [he operation state is not valid: it must be active, with all
required input steps complete.
e The library requires initializing by a call to psa_crypto_init().
The output of the key-derivation operation does not match the value
in expected_output.

The operation’s capacity was less than output_length bytes. In this
case, the operation’s capacity is set to zero.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 271

1.4.0

Non-confidentia

Description

This function calculates output bytes from a key-derivation algorithm and compares those bytes to an
expected value. If the key derivation’s output is viewed as a stream of bytes, this function destructively
reads output_length bytes from the stream before comparing them with expected_output. The operation’s
capacity decreases by the number of bytes read.

A request to extract more data than the remaining capacity — output_length >
psa_key_derivation_get_capacity() — fails with PSA_ERROR_INSUFFICIENT_DATA, and sets the remaining
capacity to zero.

If the operation’s capacity is zero, and output_length is zero, then it is IMPLEMENTATION DEFINED whether this
function returns PSA_SUCCESS Or PSA_ERROR_INSUFFICIENT_DATA.

If this function returns an error status other than PSA_ERROR_INSUFFICIENT_DATA, the operation enters an
error state and must be aborted by calling psa_key_derivation_abort().

Note:

A call to psa_key_derivation_verify_bytes() is functionally equivalent to the following code:
uint8_t tmp[output_length];
psa_key_derivation_output_bytes(operation, tmp, output_length);

if (memcmp(expected_output, tmp, output_length) != 0)
return PSA_ERROR_INVALID_SIGNATURE;

However, calling psa_key_derivation_verify_bytes() works even if an input key’s policy does not
include PSA_KEY_USAGE_DERIVE.

Implementation note

Implementations must make the best effort to ensure that the comparison between the actual
key-derivation output and the expected output is performed in constant time.

psa_key_derivation_verify_key (function)
Compare output data from a key-derivation operation to an expected value stored in a key.
Added in version 1.1.

psa_status_t psa_key_derivation_verify_key(psa_key_derivation_operation_t * operation,
psa_key_id_t expected);

Parameters
operation The key-derivation operation object to read from.
expected A key of type PSA_KEY_TYPE_PASSWORD_HASH containing the expected
output. The key must permit the usage
PSA_KEY_USAGE_VERIFY_DERIVATION, and the permitted algorithm must
match the operation’s algorithm.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 272

14.0 Non-confidential

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE

PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_SIGNATURE

PSA_ERROR_INSUFFICIENT_DATA

PSA_ERROR_INVALID_ARGUMENT
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The value of this key is typically computed by a previous call to
psa_key_derivation_output_key() Or
psa_key_derivation_output_key_custom().

Success. The output of the key-derivation operation matches the
expected key value.

The following conditions can result in this error:

e The operation state is not valid: it must be active, with all
required input steps complete.

e The library requires initializing by a call to psa_crypto_init().
expected is not a valid key identifier.

The expected key does not have the PSA_KEY_USAGE_VERIFY_DERIVATION
flag, or it does not permit the requested algorithm.

The output of the key-derivation operation does not match the value
of the expected key.

The operation’s capacity was less than the length of the expected key.
In this case, the operation’s capacity is set to zero.

The key type is not PSA_KEY_TYPE_PASSWORD_HASH.

This function calculates output bytes from a key-derivation algorithm and compares those bytes to an
expected value, provided as key of type PSA_KEY_TYPE_PASSWORD_HASH. If the key derivation’s output is viewed
as a stream of bytes, this function destructively reads the number of bytes corresponding to the length of
the expected key from the stream before comparing them with the key value. The operation’s capacity
decreases by the number of bytes read.

A request that needs to extract more data than the remaining capacity fails with
PSA_ERROR_INSUFFICIENT_DATA, and sets the remaining capacity to zero.

If this function returns an error status other than PSA_ERROR_INSUFFICIENT_DATA, the operation enters an
error state and must be aborted by calling psa_key_derivation_abort().

Note:

A call to psa_key_derivation_verify_key() is functionally equivalent to exporting the expected key and
calling psa_key_derivation_verify_bytes() on the result, except that it works when the key cannot be

exported.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates

1.4.0

Page 273
Non-confidential

Implementation note

Implementations must make the best effort to ensure that the comparison between the actual
key-derivation output and the expected output is performed in constant time.

psa_key_derivation_abort (function)

Abort a key-derivation operation.

psa_status_t psa_key_derivation_abort(psa_key_derivation_operation_t * operation);

Parameters
operation The operation to abort.

Returns: psa_status_t

PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,
the operation object can be reused for another operation by calling psa_key_derivation_setup() again.

This function can be called at any time after the operation object has been initialized as described in
psa_key_derivation_operation_t.

In particular, it is valid to call psa_key_derivation_abort() twice, or to call psa_key_derivation_abort() on an
operation that has not been set up.

10.8.4 Support macros

PSA_ALG_IS_KEY_DERIVATION_STRETCHING (macro)

Whether the specified algorithm is a key-stretching or password-hashing algorithm.
Added in version 1.1.

#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
/* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 274

1.4.0 Non-confidentia

Returns

1 if alg is a key-stretching or password-hashing algorithm, @ otherwise. This macro can return either @ or 1 if
alg is not a supported key-derivation algorithm algorithm identifier.

Description

A key-stretching or password-hashing algorithm is a key-derivation algorithm that is suitable for use with a
low-entropy secret such as a password. Equivalently, it's a key-derivation algorithm that uses a
PSA_KEY_DERIVATION_INPUT_PASSWORD input step.

PSA_ALG_IS_HKDF (macro)
Whether the specified algorithm is an HKDF algorithm (PSA_ALG_HKDF (hash_alg)).

#define PSA_ALG_IS_HKDF(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if algis an HKDF algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a supported
key-derivation algorithm identifier.

Description

HKDF is a family of key-derivation algorithms that are based on a hash function and the HMAC
construction.

PSA_ALG_IS_HKDF_EXTRACT (macro)
Whether the specified algorithm is an HKDF-Extract algorithm (PSA_ALG_HKDF_EXTRACT (hash_alg)).
Added in version 1.1.

#define PSA_ALG_IS_HKDF_EXTRACT(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is an HKDF-Extract algorithm, @ otherwise. This macro can return either @ or 1 if algis not a
supported key-derivation algorithm identifier.

PSA_ALG_IS_HKDF_EXPAND (macro)
Whether the specified algorithm is an HKDF-Expand algorithm (PSA_ALG_HKDF_EXPAND (hash_alg)).
Added in version 1.1.

#define PSA_ALG_IS_HKDF_EXPAND(alg) /* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 275
1.4.0 Non-confidential

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is an HKDF-Expand algorithm, @ otherwise. This macro can return either @ or 1 if algis not a
supported key-derivation algorithm identifier.

PSA_ALG_IS_SP800_108_COUNTER_HMAC (macro)

Whether the specified algorithm is a key-derivation algorithm constructed using
PSA_ALG_SP800_108_COUNTER_HMAC (hash_alg).

Added in version 1.2.

#define PSA_ALG_IS_SP800_108_COUNTER_HMAC(alg) \
/* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a key-derivation algorithm constructed using PSA_ALG_SP800_108_COUNTER_HMAC(), @ otherwise. This
macro can return either @ or 1 if alg is not a supported key-derivation algorithm identifier.

PSA_ALG_IS_TLS12_PRF (macro)
Whether the specified algorithm is a TLS-1.2 PRF algorithm.

#define PSA_ALG_IS_TLS12 PRF(alg) /* specification-defined value */
Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if algis a TLS-1.2 PRF algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a supported
key-derivation algorithm identifier.

PSA_ALG_IS_TLS12_PSK_TO_MS (macro)
Whether the specified algorithm is a TLS-1.2 PSK to MS algorithm.

#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 276

14.0 Non-confidentia

Returns

1if algis a TLS-1.2 PSK to MS algorithm, @ otherwise. This macro can return either @ or 1 if algis not a
supported key-derivation algorithm identifier.

PSA_ALG_IS_PBKDF2_HMAC (macro)
Whether the specified algorithm is a PBKDF2-HMAC algorithm.
Added in version 1.1.

#define PSA_ALG_IS_PBKDF2_HMAC(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a PBKDF2-HMAC algorithm, @ otherwise. This macro can return either @ or 1 if algis not a
supported key-derivation algorithm identifier.

PSA_ALG_IS_WPA3_SAE_H2E (macro)
Whether the specified algorithm is a WPA3-SAE hash-to-element key-derivation algorithm
Added in version 1.4.

#define PSA_ALG_IS_WPA3_SAE_H2E(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1 if alg is @ WPA3-SAE hash-to-element algorithm, @ otherwise. This macro can return either @ or 1 if alg is
not a supported key-derivation algorithm identifier.

PSA_KEY_DERIVATION_UNLIMITED_CAPACITY(nﬂaCFO)

Use the maximum possible capacity for a key-derivation operation.

#define PSA_KEY_DERIVATION_UNLIMITED_CAPACITY \
/* implementation-defined value */

Use this value as the capacity argument when setting up a key derivation to specify that the operation will
use the maximum possible capacity. The value of the maximum possible capacity depends on the
key-derivation algorithm.

PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE (macro)
This macro returns the maximum supported length of the PSK for the TLS-1.2 PSK-to-MS key derivation.

#define PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE /* implementation-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 277
1.4.0 Non-confidentia

This implementation-defined value specifies the maximum length for the PSK input used with a
PSA_ALG_TLS12_PSK_TO_MS() key-agreement algorithm.

Quoting Pre-Shared Key Ciphersuites for Transport Layer Security (TLS) [RFC4279] §5.3:

TLS implementations supporting these cipher suites MUST support arbitrary PSK identities up
to 128 octets in length, and arbitrary PSKs up to 64 octets in length. Supporting longer
identities and keys is RECOMMENDED.

Therefore, it is recommended that implementations define PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE with a value
greater than or equal to 64.

PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE (macro)
The size of the output from the TLS 1.2 ECJPAKE-to-PMS key-derivation algorithm, in bytes.
Added in version 1.2.

#define PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE 32

This value can be used when extracting the result of a key-derivation operation that was set up with the
PSA_ALG_TLS12_ECJPAKE_TO_PMS algorithm.

10.9 Asymmetric signature

An asymmetric signature algorithm provides two functions:

e Sign: Calculate a message signature using a private, or secret, key.

e Verify: Check that a signature matches a message using a public key.

Successful verification indicates that the message signature was calculated using the private key that is
associated with the public key.

In the Crypto API, an asymmetric-sign function requires an asymmetric key pair; and an asymmetric-verify
function requires an asymmetric public key or key pair.

Signature schemes

The Crypto API supports the following signature schemes:

e RSA signature algorithms on page 280
e ECDSA signature algorithms on page 285
e EdDSA signature algorithms on page 289

Types of signature algorithm

There are three categories of asymmetric signature algorithm in the Crypto API:

e Hash-and-sign algorithms, that have two distinct phases:

— Calculate a hash of the message
— Calculate a signature over the hash

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 278
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc4279.html#section-5.3

For these algorithms, the asymmetric signature API allows applications to either calculate the full
message signature, or calculate the signature of a pre-computed hash. For example, this enables the
application to use a multi-part hash operation to calculate the hash of a large message, prior to
calculating or verifying a signature on the calculated hash.

The following algorithms are in this category:

PSA_ALG_RSA_PKCS1V15_SIGN
PSA_ALG_RSA_PSS
PSA_ALG_RSA_PSS_ANY_SALT
PSA_ALG_ECDSA
PSA_ALG_DETERMINISTIC_ECDSA
PSA_ALG_ED25519PH
PSA_ALG_ED448PH

e Message signature algorithms that do not separate the message processing from the signature
calculations. This approach can provide better security against certain types of attack.

For these algorithms, it is not possible to inject a pre-computed hash into the middle of the algorithm.
An application can choose to calculate a message hash, and sign that instead of the message — but
this is not functionally equivalent to signing the message, and eliminates the security benefits of
signing the message directly.

Some of these algorithms still permit the signature of a large message to be calculated, or verified, by
providing the message data in fragments. This is possible when the algorithm only processes the
message data once. See the individual algorithm descriptions for details.

The following algorithms are in this category:

PSA_ALG_PURE_EDDSA
PSA_ALG_EDDSA_CTX

e Specialized signature algorithms, that use part of a standard signature algorithm within a specific
protocol. It is recommended that these algorithms are only used for that purpose, with inputs as
specified by the higher-level protocol. See the individual algorithm descriptions for details on their
usage.

The following algorithms are in this category:

PSA_ALG_RSA_PKCS1V15_SIGN_RAW
PSA_ALG_ECDSA_ANY

Signature functions

The Crypto API provides several functions for calculating and verifying signatures:

e The single-part signature and verification functions, psa_sign_message() and psa_verify_message(),
take a message as one of their inputs, and perform the sign or verify algorithm.

These functions can be used on any hash-and-sign, or message signature, algorithms. See also
PSA_ALG_IS_SIGN_MESSAGE().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 279
1.4.0 Non-confidential

e The single-part functions, psa_sign_hash() and psa_verify_hash(), typically take a message hash as
one of their inputs, and perform the sign or verify algorithm.

These functions can be used on any hash-and-sign signature algorithm. It is recommended that the
input to these functions is a hash, computed using the corresponding hash algorithm. To determine
which hash algorithm to use, the macro PSA_ALG_GET_HASH() can be called on the signature algorithm
identifier.

These functions can also be used on the specialized signature algorithms, with a hash or
encoded-hash as input. See also PSA_ALG_IS_SIGN_HASH().

e Many modern signature algorithms have been designed to also accept a context parameter to provide
domain separation. Version 1.4 of the Crypto APl introduced four new functions that accept contexts:
psa_sign_message_with_context(), psa_sign_hash_with_context(), psa_verify_message_with_context(),
and psa_verify_hash_with_context().

If called with a zero-length context, these functions produce the same signature as the associated
function without a context parameter.

Note:

If a signature scheme treats the absence of a context parameter differently to a zero-length
context, the Crypto API defines distinct algorithm identifiers for the two variants. For example,
when using a 255-bit key with EADSA, PSA_ALG_PURE_EDDSA implements Ed25519 (without a
context) and PSA_ALG_EDDSA_CTX implements Ed25519ctx (with a context, which can be
zero-length). See EdDSA signature algorithms on page 289.

It is an error to provide a non-zero-length context with an algorithm that does not accept contexts.

Code written to be cryptographically agile can use the new functions, provided it guards against
providing a non-zero-length context with an algorithm that does not support them.

The PSA_ALG_SIGN_SUPPORTS_CONTEXT() macro can be used to determine if the implementation of an
algorithm supports the use of non-zero-length contexts.

See Asymmetric signature functions on page 294.

10.9.1 RSA signature algorithms

PSA_ALG_RSA_PKCS1V15_SIGN (macro)
The RSA PKCS#1 v1.5 message signature scheme, with hashing.

#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding RSA PKCS#1 v1.5 signature algorithm.

Unspecified if hash_alg is not a supported hash algorithm.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 280
1.4.0 Non-confidential

Description

This hash-and-sign signature algorithm can be used with both the message and hash signature functions.
RSA PKCS#1 v1.5 does not have a context parameter. However, the sign or verify with context functions
can be used with a zero-length context.

This signature scheme is defined by PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC8017] §8.2
under the name RSASSA-PKCS1-v1 5.

When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is used as H from step
2 onwards in the message encoding algorithm EMSA-PKCS1-V1_5-ENCODE () in [RFC8017] §9.2. H is the
message digest, computed using the hash_alg hash algorithm.

Compatible key types

PSA_KEY_TYPE_RSA_KEY_PAIR
PSA_KEY_TYPE_RSA_PUBLIC_KEY (signature verification only)

PSA_ALG_RSA_PKCS1V15_SIGN_RAW (macro)
The raw RSA PKCS#1 v1.5 signature algorithm, without hashing.

#define PSA_ALG_RSA_PKCS1V15_SIGN_RAW ((psa_algorithm_t) 0x06000200)

This specialized signature algorithm can only be used with the psa_sign_hash() and psa_verify_hash()
functions. RSA PKCS#1 v1.5 does not have a context parameter. However, psa_sign_hash_with_context() or
psa_verify_hash_with_context() can be used with a zero-length context.

This signature scheme is defined by PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC8017] §8.2
under the name RSASSA-PKCS1-v1 5.

The hash parameter to psa_sign_hash() or psa_verify_hash() is used as T from step 3 onwards in the
message encoding algorithm EMSA-PKCS1-V1_5-ENCODE() in [RFC8017] §9.2. T is normally the DER encoding
of the Digestinfo structure produced by step 2 in the message encoding algorithm, but it can be any byte
string within the available length.

The wildcard key policy PSA_ALG_RSA_PKCS1V15_SIGN(PSA_ALG_ANY_HASH) also permits a key to be used with
the PSA_ALG_RSA_PKCS1V15_SIGN_RAW signature algorithm.

Compatible key types

PSA_KEY_TYPE_RSA_KEY_PAIR
PSA_KEY_TYPE_RSA_PUBLIC_KEY (signature verification only)

PSA_ALG_RSA_PSS (macro)
The RSA PSS message signature scheme, with hashing.

#define PSA_ALG_RSA_PSS(hash_alg) /* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 281
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8017.html#section-8.2
https://datatracker.ietf.org/doc/html/rfc8017.html#section-9.2
https://datatracker.ietf.org/doc/html/rfc8017.html#section-8.2
https://datatracker.ietf.org/doc/html/rfc8017.html#section-9.2

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.

Returns

The corresponding RSA PSS signature algorithm.

Unspecified if hash_alg is not a supported hash algorithm.

Description

This hash-and-sign signature algorithm can be used with both the message and hash signature functions.
RSA PSS does not have a context parameter. However, the sign or verify with context functions can be
used with a zero-length context.

This algorithm is randomized: each invocation returns a different, equally valid signature.
This is the signature scheme defined by [RFC8017] §8.1 under the name RSASSA-PSS, with the following
options:

e The mask generation function is MGF1 defined by [RFC8017] Appendix B.

e \When creating a signature, the salt length is equal to the length of the hash, or the largest possible
salt length for the algorithm and key size if that is smaller than the hash length.

e \When verifying a signature, the salt length must be equal to the length of the hash, or the largest
possible salt length for the algorithm and key size if that is smaller than the hash length.

e The specified hash algorithm, hash_alg, is used to hash the input message, to create the salted hash,
and for the mask generation.

When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is the message digest,
computed using the hash_alg hash algorithm.

Note:

The PSA_ALG_RSA_PSS_ANY_SALT() algorithm is equivalent to PSA_ALG_RSA_PSS() when creating a
signature, but permits any salt length when verifying a signature.

Compatible key types

PSA_KEY_TYPE_RSA_KEY_PAIR
PSA_KEY_TYPE_RSA_PUBLIC_KEY (signature verification only)

PSA_ALG_RSA_PSS_ANY_SALT (macro)

The RSA PSS message signature scheme, with hashing. This variant permits any salt length for signature
verification.

Added in version 1.1.

#define PSA_ALG_RSA_PSS_ANY_SALT(hash_alg) /* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 282
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8017.html#section-8.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B

Parameters

hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.

Returns

The corresponding RSA PSS signature algorithm.
Unspecified if hash_alg is not a supported hash algorithm.

Description

This hash-and-sign signature algorithm can be used with both the message and hash signature functions.
RSA PSS does not have a context parameter. However, the sign or verify with context functions can be
used with a zero-length context.

This algorithm is randomized: each invocation returns a different, equally valid signature.
This is the signature scheme defined by [RFC8017] §8.1 under the name RSASSA-PSS, with the following
options:

e The mask generation function is MGF1 defined by [RFC8017] Appendix B.

e \When creating a signature, the salt length is equal to the length of the hash, or the largest possible
salt length for the algorithm and key size if that is smaller than the hash length.

e \When verifying a signature, any salt length permitted by the RSASSA-PSS signature algorithm is
accepted.

e The specified hash algorithm, hash_alg, is used to hash the input message, to create the salted hash,
and for the mask generation.

When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is the message digest,
computed using the hash_alg hash algorithm.

Note:

The PsA_ALG_RSA_PSS() algorithm is equivalent to PSA_ALG_RSA_PSS_ANY_SALT() when creating a
signature, but is strict about the permitted salt length when verifying a signature.

Compatible key types

PSA_KEY_TYPE_RSA_KEY_PAIR
PSA_KEY_TYPE_RSA_PUBLIC_KEY (signature verification only)

PSA_ALG_IS_RSA_PKCS1V15_SIGN (macro)
Whether the specified algorithm is an RSA PKCS#1 v1.5 signature algorithm.

#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) /* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 283
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8017.html#section-8.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1if algis an RSA PKCS#1 v1.5 signature algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

PSA_ALG_IS_RSA_PSS (macro)
Whether the specified algorithm is an RSA PSS signature algorithm.

#define PSA_ALG_IS_RSA PSS(alg) /* specification-defined value */
Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if algis an RSA PSS signature algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

Description

This macro returns 1 for algorithms constructed using either PSA_ALG_RSA_PSS() or
PSA_ALG_RSA_PSS_ANY_SALT().

PSA_ALG_IS_RSA_PSS_ANY_SALT (macro)

Whether the specified algorithm is an RSA PSS signature algorithm that permits any salt length.

Added in version 1.1.

#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1if algis an RSA PSS signature algorithm that permits any salt length, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

Description

An RSA PSS signature algorithm that permits any salt length is constructed using
PSA_ALG_RSA_PSS_ANY_SALT().

See also PSA_ALG_IS_RSA_PSS() and PSA_ALG_IS_RSA_PSS_STANDARD_SALT().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates
1.4.0 Non-confidential

Page 284

PSA_ALG_IS_RSA_PSS_STANDARD_SALT (macro)
Whether the specified algorithm is an RSA PSS signature algorithm that requires the standard salt length.
Added in version 1.1.

#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1if alg is an RSA PSS signature algorithm that requires the standard salt length, @ otherwise.
This macro can return either @ or 1 if alg is not a supported algorithm identifier.

Description

An RSA PSS signature algorithm that requires the standard salt length is constructed using
PSA_ALG_RSA_PSS().

See also PSA_ALG_IS_RSA_PSS() and PSA_ALG_IS_RSA_PSS_ANY_SALT().

10.9.2 ECDSA signature algorithms

PSA_ALG_ECDSA (macro)
The randomized ECDSA signature scheme, with hashing.

#define PSA_ALG_ECDSA(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding randomized ECDSA signature algorithm.

Unspecified if hash_alg is not a supported hash algorithm.

Description

This hash-and-sign signature algorithm can be used with both the message and hash signature functions.
ECDSA does not have a context parameter. However, the sign or verify with context functions can be used
with a zero-length context.

When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is the message digest,
computed using the hash_alg hash algorithm.

This algorithm is randomized: each invocation returns a different, equally valid signature.

The ECDSA signature scheme is defined by SEC 1: Elliptic Curve Cryptography [SEC1], and also by Public Key
Cryptography For The Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA) [X9-62],
with a random per-message secret number k.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 285
1.4.0 Non-confidential

The representation of the signature as a byte string consists of the concatenation of the signature values r
and s. Each of r» and s is encoded as a big-endian m-octet string, where m is the integer for which
28(m=1) < ¢ < 28™ and ¢ is the order of the elliptic curve.

When based on the same hash algorithm, the verification operations for PSA_ALG_ECDSA and
PSA_ALG_DETERMINISTIC_ECDSA are identical. A signature created using PSA_ALG_ECDSA can be verified with the
same key using either PSA_ALG_ECDSA Or PSA_ALG_DETERMINISTIC_ECDSA. Similarly, a signature created using
PSA_ALG_DETERMINISTIC_ECDSA can be verified with the same key using either PSA_ALG_ECDSA or
PSA_ALG_DETERMINISTIC_ECDSA.

Note:

A verifier cannot determine whether a signature was produced with deterministic ECDSA or with
randomized ECDSA: it is only possible to verify that a signature was made with ECDSA with the
private key corresponding to the public key used for the verification.

When PSA_ALG_ECDSA(hash_alg) is used as a permitted algorithm in a key policy, this permits:

e PSA_ALG_ECDSA(hash_alg) as the algorithm in a call to any signing function.

e PSA_ALG_ECDSA(hash_alg) Or PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) as the algorithm in a call to any
signature verification function.

Compatible key types
PSA_KEY_TYPE_ECC_KEY_PAIR(family)
PSA_KEY_TYPE_ECC_PUBLIC_KEY(family) (signature verification only)

where family is a Weierstrass Elliptic curve family. That is, one of the following values:

® PSA_ECC_FAMILY_SECT_XX
o PSA_ECC_FAMILY_SECP_XX
® PSA_ECC_FAMILY_FRP

® PSA_ECC_FAMILY_BRAINPOOL_P_R1

PSA_ALG_ECDSA_ANY (macro)
The randomized ECDSA signature scheme, without hashing.

#define PSA_ALG_ECDSA_ANY ((psa_algorithm_t) ©0x06000600)

This specialized signature algorithm can only be used with the psa_sign_hash() and psa_verify_hash()
functions. ECDSA does not have a context parameter. However, psa_sign_hash_with_context() Or
psa_verify_hash_with_context() can be used with a zero-length context.

This algorithm is randomized: each invocation returns a different, equally valid signature.

This is the same signature scheme as PSA_ALG_ECDSA, but without specifying a hash algorithm, and skipping
the message hashing operation.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 286
1.4.0 Non-confidential

A Warning

This algorithm is only recommended to sign or verify a sequence of bytes that are a pre-computed hash.
Note that the input is padded with zeros on the left or truncated on the right as required to fit the curve
size.

This algorithm cannot be used with the wildcard key policy PSA_ALG_ECDSA(PSA_ALG_ANY_HASH). It is only
permitted when PSA_ALG_ECDSA_ANY is the key’s permitted-algorithm policy.

Compatible key types

PSA_KEY_TYPE_ECC_KEY_PAIR(family)
PSA_KEY_TYPE_ECC_PUBLIC_KEY(family) (signature verification only)

where family is a Weierstrass Elliptic curve family. That is, one of the following values:

® PSA_ECC_FAMILY_SECT_XX

PSA_ECC_FAMILY_SECP_XX

PSA_ECC_FAMILY_FRP

PSA_ECC_FAMILY_BRAINPOOL_P_R1

PSA_ALG_DETERMINISTIC_ECDSA (macro)
Deterministic ECDSA signature scheme, with hashing.

#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding deterministic ECDSA signature algorithm.
Unspecified if hash_alg is not a supported hash algorithm.

Description

This hash-and-sign signature algorithm can be used with both the message and hash signature functions.
ECDSA does not have a context parameter. However, the sign or verify with context functions can be used
with a zero-length context.

When used with psa_sign_hash() or psa_verify_hash(), the provided hash parameter is the message digest,
computed using the hash_alg hash algorithm.

This is the deterministic ECDSA signature scheme defined by Deterministic Usage of the Digital Signature
Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) [RFC6979].

The representation of a signature is the same as with PSA_ALG_ECDSA.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 287
1.4.0 Non-confidential

When based on the same hash algorithm, the verification operations for PSA_ALG_ECDSA and
PSA_ALG_DETERMINISTIC_ECDSA are identical. A signature created using PSA_ALG_ECDSA can be verified with the
same key using either PSA_ALG_ECDSA or PSA_ALG_DETERMINISTIC_ECDSA. Similarly, a signature created using
PSA_ALG_DETERMINISTIC_ECDSA can be verified with the same key using either PSA_ALG_ECDSA or
PSA_ALG_DETERMINISTIC_ECDSA.

Note:

A verifier cannot determine whether a signature was produced with deterministic ECDSA or with
randomized ECDSA: it is only possible to verify that a signature was made with ECDSA with the
private key corresponding to the public key used for the verification.

When PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) is used as a permitted algorithm in a key policy, this permits:

e PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) as the algorithm in a call to any signing function.

e PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) Or PSA_ALG_ECDSA(hash_alg) as the algorithm in a call to any
signature verification function.

Compatible key types
PSA_KEY_TYPE_ECC_KEY_PAIR(family)
PSA_KEY_TYPE_ECC_PUBLIC_KEY(family) (signature verification only)

where family is a Weierstrass Elliptic curve family. That is, one of the following values:

o PSA_ECC_FAMILY_SECT_XX

PSA_ECC_FAMILY_SECP_XX

PSA_ECC_FAMILY_FRP

PSA_ECC_FAMILY_BRAINPOOL_P_R1

PSA_ALG_IS_ECDSA (macro)
Whether the specified algorithm is ECDSA.

#define PSA_ALG_IS_ECDSA(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns
1if alg is an ECDSA algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 288
1.4.0 Non-confidential

PSA_ALG_IS_DETERMINISTIC_ECDSA (macro)
Whether the specified algorithm is deterministic ECDSA.

#define PSA_ALG_IS_DETERMINISTIC ECDSA(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1if alg is a deterministic ECDSA algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

Description

See also PSA_ALG_TIS_ECDSA() and PSA_ALG_IS RANDOMIZED ECDSA().

PSA_ALG_IS_RANDOMIZED_ECDSA (macro)
Whether the specified algorithm is randomized ECDSA.

#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1if alg is a randomized ECDSA algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

Description
See also PSA_ALG_IS_ECDSA() and PSA_ALG_IS_DETERMINISTIC_ECDSA().

10.9.3 EdDSA signature algorithms

The PureEdDSA and HashEdDSA digital signature algorithms are defined by Edwards-Curve Digital Signature
Algorithm (EdDSA) [RFC8032]. They are used with the Edwards25519 and Edwards448 elliptic curve keys,
see PSA_ECC_FAMILY_TWISTED_EDWARDS.

e PureEdDSA is a set of message-signing algorithms, that cannot be split into a hash step, followed by a
signature or verification step.
e HashEdDSA is a pair of hash-and-sign algorithms, with a specified hash algorithm associated with

each key size.

Both PureEdDSA and HashEdDSA can be used with contexts, which enables domain-separation when
signatures are made of different message structures with the same key. For EADSA, the context is an
arbitrary byte string between zero and 255 bytes in length.

The development of EADSA resulted in a total of five distinct algorithms:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 289
1.4.0 Non-confidential

Ed25519: the original PureEdDSA algorithm for the Edwards25519 curve, which does not accept a
context.

Ed2551%ctx: a second PureEdDSA algorithm for the Edwards25519 curve, with a context parameter.
Ed448: the PureEdDSA algorithm for the Edwards448 curve, with a context parameter.

Ed25519ph: the HashEdDSA algorithm for the Edwards25519 curve, with a context parameter.
Ed448ph: the HashEdDSA algorithm for the Edwards448 curve, with a context parameter.

Table 16 shows the algorithm identifiers in the Crypto API, and how they are used to select the appropriate
EdDSA algorithm.

Table 16 EdDSA algorithm identifiers

Algorithm identifier ~ With 255-bit With 448-bit Sign/verify Support non-zero-length
key key hash context
PSA_ALG_PURE_EDDSA Ed25519 Ed448 No No
PSA_ALG_ED25519PH Ed25519ph Invalid Yes Yes
PSA_ALG_ED448PH Invalid Ed448ph Yes Yes
PSA_ALG_EDDSA_CTX Ed25519ctx Ed448 No Yes
Note:

Ed25519ctx produces a distinct signature to Ed25519, even with a zero-length context.

PSA_ALG_PURE_EDDSA (macro)
Edwards-curve digital signature algorithm without pre-hashing (PureEdDSA), with zero-length context.
Added in version 1.1.

#define PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)

This message-signature algorithm can be used with the psa_sign_message() and psa_verify_message()
functions. With a zero-length context, PSA_ALG_PURE_EDDSA can also be used with the
psa_sign_message_with_context() and psa_verify_message_with_context () functions. It cannot be used to
sign hashes.

This is the PureEdDSA digital signature algorithm defined by Edwards-Curve Digital Signature Algorithm
(EdDSA) [RFC8032], with zero-length context.

PureEdDSA requires an elliptic curve key on a twisted Edwards curve (see PSA_ECC_FAMILY_TWISTED_EDWARDS).
The following curves are supported:

e Edwards25519: the Ed25519 algorithm is computed. The output signature is a 64-byte string: the
concatenation of R and S as defined by [RFC8032] §5.1.6.

e Edwards448: the Ed448 algorithm is computed, with a zero-length context. The output signature is a
114-byte string: the concatenation of R and S as defined by [RFC8032] §5.2.6.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 290
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.1.6
https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.2.6

Note:

To sign or verify the pre-computed hash of a message using EADSA, the HashEdDSA algorithms
(PSA_ALG_ED25519PH and PSA_ALG_ED448PH) can be used. The signature produced by HashEdDSA is
distinct from that produced by PureEdDSA.

Note:

To sign or verify a message with a non-zero-length context using PureEdDSA, use the
PSA_ALG_EDDSA_CTX algorithm.

With an Edwards25519 curve key, PSA_ALG_EDDSA_CTX with a zero-length context creates different
signatures to PSA_ALG_PURE_EDDSA.

Compatible key types

PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_TWISTED_EDWARDS)
PSA_KEY_TYPE_ECC_PUBLIC_KEY (PSA_ECC_FAMILY_TWISTED_EDWARDS) (signature verification only)

PSA_ALG_EDDSA_CTX (macro)
Edwards-curve digital signature algorithm without pre-hashing (PureEdDSA), with a context.
Added in version 1.4.

#define PSA_ALG_EDDSA_CTX ((psa_algorithm_t) ©0x06000A00)

This message-signature algorithm can be used with both the message and message with context signature
functions. It cannot be used to sign hashes.

This is the PureEdDSA digital signature algorithm defined by Edwards-Curve Digital Signature Algorithm
(EdDSA) [RFC8032], with a context parameter. The context parameter can be between zero and 255 bytes
in length.

PureEdDSA requires an elliptic curve key on a twisted Edwards curve (see PSA_ECC_FAMILY_TWISTED_EDWARDS).
The following curves are supported:

e Edwards25519: the Ed25519ctx algorithm is computed. The output signature is a 64-byte string: the
concatenation of R and S as defined by [RFC8032] §5.1.6.

e Edwards448: the Ed448 algorithm is computed, with a zero-length context. The output signature is a
114-byte string: the concatenation of R and S as defined by [RFC8032] §5.2.6.

To use a non-zero-length context, use the message-signature functions that accept a context parameter,
psa_sign_message_with_context() and psa_verify_message_with_context() The psa_sign_message() and
psa_verify_message() functions use a zero-length context when computing or verifying signatures.

Note:

To sign or verify the pre-computed hash of a message using EADSA, the HashEdDSA algorithms
(PSA_ALG_ED25519PH and PSA_ALG_ED448PH) can be used. The signature produced by HashEdDSA is

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 291
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.1.6
https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.2.6

distinct from that produced by PureEdDSA.

Note:

With an Edwards25519 curve key, PSA_ALG_EDDSA_CTX with a zero-length context creates different
signatures to PSA_ALG_PURE_EDDSA.

Usage

This is a message signing algorithm. To calculate a signature, use one of the following approaches:
e Call psa_sign_message() Or psa_sign_message_with_context() with the message.
Verifying a signature is similar, using psa_verify_message() Or psa_verify_message_with_context().

Compatible key types

PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_TWISTED_EDWARDS)
PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_TWISTED_EDWARDS) (signature verification only)

PSA_ALG_ED25519PH (macro)
Edwards-curve digital signature algorithm with pre-hashing (HashEdDSA), using the Edwards25519 curve.
Added in version 1.1.

#define PSA_ALG_ED25519PH ((psa_algorithm_t) 0x86000908)

This hash-and-sign signature algorithm can be used with both the message and hash signature functions.

This calculates the Ed25519ph algorithm as specified in Edwards-Curve Digital Signature Algorithm (EdDSA)
[RFC8032] §5.1, and requires an Edwards25519 curve key.

The pre-hash function is SHA-512, see PSA_ALG_SHA_512. When used to sign or verify a hash, the hash
parameter is the SHA-512 message digest.

The signature functions without a context parameter use a zero-length context when computing or
verifying signatures. To use a non-zero-length context, use the signature functions that accept a context
parameter, such as psa_sign_hash_with_context() Or psa_verify_message with_context() The context
parameter can be between zero and 255 bytes in length.

Implementation note

When used to sign or verify a hash, the hash parameter to the call should be used as PH(M) in the
algorithms defined in [RFC8032] §5.1.

Usage
This is a hash-and-sign algorithm. To calculate a signature, use one of the following approaches:

e Call psa_sign_message() Or psa_sign_message_with_context() with the message.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 292
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.1
https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.1

e Calculate the SHA-512 hash of the message with psa_hash_compute(), or with a multi-part hash
operation, using the hash algorithm PSA_ALG_SHA_512. Then sign the calculated hash with
psa_sign_hash() Or psa_sign_hash_with_context().

Verifying a signature is similar, using one of the following approaches:

e Call psa_verify_message(), Or psa_verify_message_with_context() with the message.

e Calculate the SHA-512 hash of the message with psa_hash_compute(), or with a multi-part hash
operation, using the hash algorithm PSA_ALG_SHA_512. Then sign the calculated hash with
psa_verify_hash() Or psa_verify_hash_with_context().

Compatible key types

PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_TWISTED_EDWARDS)
PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_TWISTED_EDWARDS) (signature verification only)

PSA_ALG_ED448PH (macro)
Edwards-curve digital signature algorithm with pre-hashing (HashEdDSA), using the Edwards448 curve.
Added in version 1.1.

#define PSA_ALG_ED448PH ((psa_algorithm_t) ©x06000915)

This hash-and-sign signature algorithm can be used with both the message and hash signature functions.

This calculates the Ed448ph algorithm as specified in Edwards-Curve Digital Signature Algorithm (EADSA)
[RFC8032] §5.2, and requires an Edwards448 curve key.

The pre-hash function is the first 64 bytes of the output from SHAKE256, see PSA_ALG_SHAKE256_512. When
used to sign or verify a hash, the hash parameter is the truncated SHAKE256 message digest.

The signature functions without a context parameter use a zero-length context when computing or
verifying signatures. To use a non-zero-length context, use the signature functions that accept a context
parameter, for example, psa_sign_hash_with_context() Or psa_verify message_with_context() The context
parameter can be between zero and 255 bytes in length.

Implementation note

When used to sign or verify a hash, the hash parameter to the call should be used as PH(M) in the
algorithms defined in [RFC8032] §5.2.

Usage
This is a hash-and-sign algorithm. To calculate a signature, use one of the following approaches:

e Call psa_sign_message(), Or psa_sign_message_with_context() with the message.

e Calculate the first 64 bytes of the SHAKE256 output of the message with psa_hash_compute(), or with
a multi-part hash operation, using the hash algorithm PSA_ALG_SHAKE256_512. Then sign the calculated
hash with psa_sign_hash() or psa_sign_hash_with_context().

Verifying a signature is similar, using one of the following approaches:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 293
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.2
https://datatracker.ietf.org/doc/html/rfc8032.html#section-5.2

e Call psa_verify_message(), Or psa_verify_message_with_context() with the message.

e Calculate the first 64 bytes of the SHAKE256 output of the message with psa_hash_compute(), or with
a multi-part hash operation, using the hash algorithm PSA_ALG_SHAKE256_512. Then sign the calculated
hash with psa_verify_hash() or psa_verify_hash_with_context().
Compatible key types

PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_TWISTED_EDWARDS)
PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_TWISTED_EDWARDS) (signature verification only)

PSA_ALG_IS_HASH_EDDSA (macro)
Whether the specified algorithm is HashEdDSA.
Added in version 1.1.

#define PSA_ALG_IS_HASH_EDDSA(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1if alg is a HashEdDSA algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

10.9.4 Asymmetric signature functions

psa_sign_message (function)

Sign a message with a private key. For hash-and-sign algorithms, this includes the hashing step.

psa_status_t psa_sign_message(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * signature,
size_t signature_size,
size_t * signature_length);

Parameters
key Identifier of the key to use for the operation. It must be an asymmetric
key pair. The key must permit the usage PSA_KEY_USAGE_SIGN_MESSAGE.
alg An asymmetric signature algorithm: a value of type psa_algorithm_t
such that PSA_ALG_IS_SIGN_MESSAGE (alg) is true.
input The input message to sign.
input_length Size of the input buffer in bytes.
signature Buffer where the signature is to be written.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 294

1.4.0 Non-confidentia

signature_size

signature_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Size of the signature buffer in bytes. This must be appropriate for the
selected algorithm and key:

e The required signature size is PSA_SIGN_OUTPUT_SIZE (key_type,
key_bits, alg) where key_type and key_bits are the type and
bit-size respectively of key.

e PSA_SIGNATURE_MAX_SIZE evaluates to the maximum signature size
of any supported signature algorithm.

On success, the number of bytes that make up the returned signature
value.

Success. The first (*signature_length) bytes of signature contain the
signature value.

The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.

The key does not have the PSA_KEY_USAGE_SIGN_MESSAGE flag, or it does
not permit the requested algorithm.

The size of the signature buffer is too small. PSA_SIGN_OUTPUT_SIZE() Or
PSA_SIGNATURE_MAX_SIZE can be used to determine a sufficient buffer
size.

The following conditions can result in this error:
e algis not an asymmetric signature algorithm that permits signing
a message.
e key is not an asymmetric key pair, that is compatible with alg.
e input_length is too large for the algorithm and key type.

The following conditions can result in this error:

e alg is not supported, or is not an asymmetric signature algorithm
that permits signing a message.

e key is not supported for use with alg.

e input_length is too large for the implementation.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 295

1.4.0

Non-confidential

Description

If the algorithm has a context parameter, a zero-length context is used. To provide a context value, use
psa_sign_message_with_context() instead.

Note:

To perform a multi-part hash-and-sign signature algorithm, first use a multi-part hash operation and
then pass the resulting hash to psa_sign_hash(). PSA_ALG_GET_HASH(alg) can be used to determine the

hash algorithm to use.

psa_sign_message_with_context (function)

Sign a message with a private key using a supplied context. For hash-and-sign algorithms, this includes the

hashing step.
Added in version 1.4.

psa_status_t psa_sign_message_with_context(psa_key_id_t key,

Parameters

key

alg

input
input_length
context
context_length
signature

signature_size

signature_length

IHI 0086
1.4.0

psa_algorithm_t alg,

const uint8_t * input,
size_t input_length,

const uint8_t * context,
size_t context_length,
uint8_t * signature,

size_t signature_size,
size_t * signature_length);

Identifier of the key to use for the operation. It must be an asymmetric
key pair. The key must permit the usage PSA_KEY_USAGE_SIGN_MESSAGE.

An asymmetric signature algorithm: a value of type psa_algorithm_t
such that PSA_ALG_IS_SIGN_MESSAGE(alg) is true.

The input message to sign.

Size of the input buffer in bytes.

The context to use for this signature.

Size of the context buffer in bytes.

Buffer where the signature is to be written.

Size of the signature buffer in bytes. This must be appropriate for the
selected algorithm and key:

e The required signature size is PSA_SIGN_OUTPUT_SIZE (key_type,
key_bits, alg) where key_type and key_bits are the type and
bit-size respectively of key.

e PSA_SIGNATURE_MAX_SIZE evaluates to the maximum signature size
of any supported signature algorithm.

On success, the number of bytes that make up the returned signature
value.

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 296

Non-confidentia

Returns: psa_status_t

PSA_SUCCESS Success. The first (*signature_length) bytes of signature contain the
signature value.

PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.

PSA_ERROR_NOT_PERMITTED The key does not have the PSA_KEY_USAGE_SIGN_MESSAGE flag, or it does
not permit the requested algorithm.

PSA_ERROR_BUFFER_TOO_SMALL The size of the signature buffer is too small. PSA_SIGN_OUTPUT_SIZE() Or
PSA_SIGNATURE_MAX_SIZE can be used to determine a sufficient buffer
size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e algis not an asymmetric signature algorithm that permits signing
a message with a non-zero-length context.

e key is not an asymmetric key pair, that is compatible with alg.

e input_length is too large for the algorithm and key type.

e context_length is not valid for the algorithm and key type.

e context is not a valid input value for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e alg is not supported, or is not an asymmetric signature algorithm
that permits signing a message.

e key is not supported for use with alg.

e The implementation does not support this value of
context_length for alg.

e input_length is too large for the implementation.
PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

If a context parameter is not required, psa_sign_message() can be used instead.

Note:

To perform a multi-part hash-and-sign signature algorithm, first use a multi-part hash operation and
then pass the resulting hash to psa_sign_hash_with_context(). PSA_ALG_GET_HASH(alg) can be used to
determine the hash algorithm to use.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 297
1.4.0 Non-confidential

psa_verify_message (function)

Verify the signature of a message with a public key. For hash-and-sign algorithms, this includes the hashing

step.

psa_status_t psa_verify_message(psa_key_id_t key,

Parameters

key

alg

input
input_length
signature

signature_length

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_SIGNATURE

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_MEMORY

IHI 0086
1.4.0

psa_algorithm_t alg,

const uint8_t * input,
size_t input_length,

const uint8_t * signature,
size_t signature_length);

|dentifier of the key to use for the operation. It must be a public key or
an asymmetric key pair. The key must permit the usage
PSA_KEY_USAGE_VERIFY_MESSAGE.

An asymmetric signature algorithm: a value of type psa_algorithm_t
such that PSA_ALG_IS_SIGN_MESSAGE(alg) is true.

The message whose signature is to be verified.
Size of the input buffer in bytes.
Buffer containing the signature to verify.

Size of the signature buffer in bytes.

Success. The signature is valid.
The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.

The key does not have the PSA_KEY_USAGE_VERIFY_MESSAGE flag, or it
does not permit the requested algorithm.

signature is not the result of signing the input message with algorithm
alg using the private key corresponding to key.

The following conditions can result in this error:
e alg is not an asymmetric signature algorithm that permits

verifying a message.

e key is not a public key or an asymmetric key pair, that is
compatible with alg.

e input_length is too large for the algorithm and key type.
The following conditions can result in this error:

e alg is not supported, or is not an asymmetric signature algorithm
that permits verifying a message.

e key is not supported for use with alg.

e input_length is too large for the implementation.

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 298

Non-confidentia

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description

If the algorithm has a context parameter, a zero-length context is used. To provide a context value, use
psa_verify_mesSage_with_context()instead.

Note:

To perform a multi-part hash-and-sign signature verification algorithm, first use a multi-part hash
operation to hash the message and then pass the resulting hash to psa_verify_hash().
PSA_ALG_GET_HASH(alg) can be used to determine the hash algorithm to use.

psa_verify_message_with_context (function)

Verify the signature of a message with a public key and a supplied context. For hash-and-sign algorithms,

this includes the hashing step.
Added in version 1.4.

psa_status_t psa_verify_message_with_context(psa_key_id_t key,

Parameters

key

alg

input
input_length
context
context_length
signature

signature_length

psa_algorithm_t alg,

const uint8_t * input,
size_t input_length,

const uint8_t * context,
size_t context_length,
const uint8_t * signature,
size_t signature_length);

Identifier of the key to use for the operation. It must be a public key or
an asymmetric key pair. The key must permit the usage
PSA_KEY_USAGE_VERIFY_MESSAGE.

An asymmetric signature algorithm: a value of type psa_algorithm_t
such that PSA_ALG_IS_SIGN_MESSAGE(alg) is true.

The message whose signature is to be verified.
Size of the input buffer in bytes.

The context to use for this signature.

Size of the context buffer in bytes.

Buffer containing the signature to verify.

Size of the signature buffer in bytes.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 299

1.4.0

Non-confidentia

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_SIGNATURE

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

Success. The signature is valid.
The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.

The key does not have the PSA_KEY_USAGE_VERIFY_MESSAGE flag, or it
does not permit the requested algorithm.

signature is not the result of signing the input message with algorithm
alg using the private key corresponding to key.

The following conditions can result in this error:
e alg is not an asymmetric signature algorithm that permits
verifying a message with a non-zero-length context.

e key is not a public key or an asymmetric key pair, that is
compatible with alg.

e input_length is too large for the algorithm and key type.
e context_length is not valid for the algorithm and key type.
context is not a valid input value for the algorithm and key type.

The following conditions can result in this error:
e alg is not supported, or is not an asymmetric signature algorithm
that permits verifying a message.
e key is not supported for use with alg.

e The implementation does not support this value of
context_length for alg.

e input_length is too large for the implementation.

If a context parameter is not required, psa_verify_message() can be used instead.

Note:

To perform a multi-part hash-and-sign signature verification algorithm, first use a multi-part hash
operation to hash the message and then pass the resulting hash to psa_verify_hash_with_context().
PSA_ALG_GET_HASH(alg) can be used to determine the hash algorithm to use.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 300

1.4.0

Non-confidential

psa_sign_hash (function)

Sign a pre-computed hash with a private key.

psa_status_t psa_sign_hash(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * hash,

size_t hash_length,
uint8_t * signature,

size_t signature_size,
size_t * signature_length);

Parameters

key

alg

hash

hash_length
signature

signature_size

signature_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_ARGUMENT

IHI 0086
1.4.0

|dentifier of the key to use for the operation. It must be an asymmetric
key pair. The key must permit the usage PSA_KEY_USAGE_SIGN_HASH.

An asymmetric signature algorithm that separates the hash and sign
operations: a value of type psa_algorithm_t such that
PSA_ALG_IS_SIGN_HASH(alg) is true.

The input to sign. This is usually the hash of a message.

See the description of this function, or the description of individual
signature algorithms, for details of the acceptable inputs.

Size of the hash buffer in bytes.
Buffer where the signature is to be written.

Size of the signature buffer in bytes. This must be appropriate for the
selected algorithm and key:

e The required signature size is PSA_SIGN_OUTPUT_SIZE (key_type,
key_bits, alg) where key_type and key_bits are the type and
bit-size respectively of key.

e PSA_SIGNATURE_MAX_SIZE evaluates to the maximum signature size
of any supported signature algorithm.

On success, the number of bytes that make up the returned signature
value.

Success. The first (*signature_length) bytes of signature contain the
signature value.

The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.

The key does not have the PSA_KEY_USAGE_STGN_HASH flag, or it does not
permit the requested algorithm.

The size of the signature buffer is too small. PSA_SIGN_OUTPUT_SIZE() Or
PSA_SIGNATURE_MAX_SIZE can be used to determine a sufficient buffer
size.

The following conditions can result in this error:

e alg is not an asymmetric signature algorithm that permits signing

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 301

Non-confidentia

a pre-computed hash.

e key is not an asymmetric key pair, that is compatible with alg.

e hash_length is not valid for the algorithm and key type.

e hash is not a valid input value for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e algis not supported, or is not an asymmetric signature algorithm
that permits signing a pre-computed hash.

e key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

For hash-and-sign signature algorithms, the hash input to this function is the hash of the message to sign.
The algorithm used to calculate this hash is encoded in the signature algorithm. For such algorithms,
hash_length must equal the length of the hash output: hash_length ==

PSA_HASH_LENGTH (PSA_ALG_GET_HASH(alg)).

Specialized signature algorithms can apply a padding or encoding to the hash. In such cases, the encoded
hash must be passed to this function. For example, see PSA_ALG_RSA_PKCS1V15_SIGN_RAW.

If the algorithm has a context parameter, a zero-length context is used. To provide a context value, use
psa_sign_hash_with_context()instead.

psa_sign_hash_with_context (function)
Sign a pre-computed hash with a private key and a supplied context.

Added in version 1.4.

psa_status_t psa_sign_hash_with_context(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * hash,
size_t hash_length,
const uint8_t * context,
size_t context_length,
uint8_t * signature,
size_t signature_size,
size_t * signature_length);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 302
1.4.0 Non-confidentia

Parameters

key

alg

hash

hash_length
context
context_length
signature

signature_size

signature_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

IHI 0086
1.4.0

Identifier of the key to use for the operation. It must be an asymmetric
key pair. The key must permit the usage PSA_KEY_USAGE_SIGN_HASH.

An asymmetric signature algorithm that separates the hash and sign
operations: a value of type psa_algorithm_t such that
PSA_ALG_IS_SIGN_HASH(alg) is true.

The input to sign. This is usually the hash of a message.

See the description of this function, or the description of individual
signature algorithms, for details of the acceptable inputs.

Size of the hash buffer in bytes.

The context to use for this signature.

Size of the context buffer in bytes.

Buffer where the signature is to be written.

Size of the signature buffer in bytes. This must be appropriate for the
selected algorithm and key:

e The required signature size is PSA_SIGN_OUTPUT_SIZE (key_type,
key_bits, alg) where key_type and key_bits are the type and
bit-size respectively of key.

e PSA_SIGNATURE_MAX_SIZE evaluates to the maximum signature size
of any supported signature algorithm.

On success, the number of bytes that make up the returned signature
value.

Success. The first (*signature_length) bytes of signature contain the
signature value.

The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.

The key does not have the PSA_KEY_USAGE_SIGN_HASH flag, or it does not
permit the requested algorithm.

The size of the signature buffer is too small. PSA_SIGN_OUTPUT_SIZE() Or
PSA_SIGNATURE_MAX_SIZE can be used to determine a sufficient buffer
size.

The following conditions can result in this error:
e algis not an asymmetric signature algorithm that permits signing
a pre-computed hash with a context.
e key is not an asymmetric key pair, that is compatible with alg.
e hash_length is not valid for the algorithm and key type.
e hash is not a valid input value for the algorithm and key type.
e context_length is not valid for the algorithm and key type.
e context is not a valid input value for the algorithm and key type.

The following conditions can result in this error:

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 303

Non-confidentia

e alg is not supported, or is not an asymmetric signature algorithm
that permits signing a pre-computed hash.

e The implementation does not support this value of
context_length for alg.

e key is not supported for use with alg.
PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description

For hash-and-sign signature algorithms, the hash input to this function is the hash of the message to sign.
The algorithm used to calculate this hash is encoded in the signature algorithm. For such algorithms,
hash_length must equal the length of the hash output: hash_length ==

PSA_HASH_LENGTH (PSA_ALG_GET_HASH(alg)).

Specialized signature algorithms can apply a padding or encoding to the hash. In such cases, the encoded
hash must be passed to this function. For example, see PSA_ALG_RSA_PKCS1V15_SIGN_RAW.

If a context parameter is not required, psa_sign_hash() can be used instead.

psa_verify_hash (function)

Verify the signature of a hash or short message using a public key.

psa_status_t psa_verify_hash(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * hash,
size_t hash_length,
const uint8_t * signature,
size_t signature_length);

Parameters
key Identifier of the key to use for the operation. It must be a public key or
an asymmetric key pair. The key must permit the usage
PSA_KEY_USAGE_VERIFY_HASH.
alg An asymmetric signature algorithm that separates the hash and sign
operations: a value of type psa_algorithm_t such that
PSA_ALG_IS_SIGN_HASH(alg) is true.
hash The input whose signature is to be verified. This is usually the hash of
a message.
See the description of this function, or the description of individual
signature algorithms, for details of the acceptable inputs.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 304

1.4.0 Non-confidentia

hash_length Size of the hash buffer in bytes.
signature Buffer containing the signature to verify.

signature_length Size of the signature buffer in bytes.

Returns: psa_status_t

PSA_SUCCESS Success. The signature is valid.

PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_HANDLE key is not a valid key identifier.

PSA_ERROR_NOT_PERMITTED The key does not have the PsA_KEY_USAGE_VERIFY_HASH flag, or it does

not permit the requested algorithm.

PSA_ERROR_INVALID_SIGNATURE signature is not the result of signing hash with algorithm alg using the
private key corresponding to key.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e alg is not an asymmetric signature algorithm that permits
verifying a pre-computed hash.

e key is not a public key or an asymmetric key pair, that is
compatible with alg.

e hash_length is not valid for the algorithm and key type.
e hash is not a valid input value for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e alg is not supported, or is not an asymmetric signature algorithm
that permits verifying a pre-computed hash.

e key is not supported for use with alg.
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

For hash-and-sign signature algorithms, the hash input to this function is the hash of the message to verify.
The algorithm used to calculate this hash is encoded in the signature algorithm. For such algorithms,
hash_length must equal the length of the hash output: hash_length ==
PSA_HASH_LENGTH(PSA_ALG_GET_HASH(alg)).

Specialized signature algorithms can apply a padding or encoding to the hash. In such cases, the encoded
hash must be passed to this function. For example, see PSA_ALG_RSA_PKCS1V15_SIGN_RAW.

If the algorithm has a context parameter, a zero-length context is used. To provide a context value, use
psa_verify_hash_with_context() instead.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 305
1.4.0 Non-confidential

psa_verify_hash_with_context (function)

Verify the signature of a hash or short message using a public key and a supplied context.

Added in version 1.4.

psa_status_t psa_verify_hash_with_context(psa_key_id_t key,

Parameters

key

alg

hash

hash_length
context
context_length
signature

signature_length

Returns: psa_status_t
PSA_SUCCESS
PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_SIGNATURE

PSA_ERROR_INVALID_ARGUMENT

IHI 0086
1.4.0

psa_algorithm_t alg,

const uint8_t * hash,
size_t hash_length,

const uint8_t * context,
size_t context_length,
const uint8_t * signature,
size_t signature_length);

Identifier of the key to use for the operation. It must be a public key or
an asymmetric key pair. The key must permit the usage
PSA_KEY_USAGE_VERIFY_HASH.

An asymmetric signature algorithm that separates the hash and sign
operations: a value of type psa_algorithm_t such that
PSA_ALG_IS_SIGN_HASH(alg) is true.

The input whose signature is to be verified. This is usually the hash of
a message.

See the description of this function, or the description of individual
signature algorithms, for details of the acceptable inputs.

Size of the hash buffer in bytes.

The context to use for this signature.
Size of the context buffer in bytes.
Buffer containing the signature to verify.

Size of the signature buffer in bytes.

Success. The signature is valid.
The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.

The key does not have the PSA_KEY_USAGE_VERIFY_HASH flag, or it does
not permit the requested algorithm.

signature is not the result of signing hash with algorithm alg using the
private key corresponding to key.

The following conditions can result in this error:

e algis not an asymmetric signature algorithm that permits
verifying a pre-computed hash with a context.

e key is not a public key or an asymmetric key pair, that is
compatible with alg.

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 306

Non-confidentia

hash_length is not valid for the algorithm and key type.

hash is not a valid input value for the algorithm and key type.
context_length is not valid for the algorithm and key type.
context is not a valid input value for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e algis not supported, or is not an asymmetric signature algorithm
that permits verifying a pre-computed hash.

e The implementation does not support this value of
context_length for alg.

e key is not supported for use with alg.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

For hash-and-sign signature algorithms, the hash input to this function is the hash of the message to verify.
The algorithm used to calculate this hash is encoded in the signature algorithm. For such algorithms,
hash_length must equal the length of the hash output: hash_length ==
PSA_HASH_LENGTH(PSA_ALG_GET_HASH(alg)).

Specialized signature algorithms can apply a padding or encoding to the hash. In such cases, the encoded
hash must be passed to this function. For example, see PSA_ALG_RSA_PKCS1V15_SIGN_RAW.

If a context parameter is not required, psa_verify_hash() can be used instead.

10.9.5 Support macros

PSA_ALG_IS_SIGN_MESSAGE (macro)
Whether the specified algorithm is a signature algorithm that can be used with psa_sign_message() and

psa_verify_message().

#define PSA_ALG_IS_SIGN_MESSAGE(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1 if alg is a signature algorithm that can be used to sign a message. o if alg is a signature algorithm that can
only be used to sign a pre-computed hash. o if alg is not a signature algorithm. This macro can return either
0 or 1 if alg is not a supported algorithm identifier.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 307
1.4.0 Non-confidential

Description

This macro evaluates to 1 for hash-and-sign and message-signature algorithms.

PSA_ALG_IS_SIGN_HASH Unacro)
Whether the specified algorithm is a signature algorithm that can be used with psa_sign_hash() and
psa_verify_hash().

#define PSA_ALG_IS_SIGN_HASH(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a signature algorithm that can be used to sign a hash. o if alg is a signature algorithm that can only
be used to sign a message. @ if alg is not a signature algorithm. This macro can return either @ or 1 if alg is
not a supported algorithm identifier.

Description

This macro evaluates to 1 for hash-and-sign and specialized signature algorithms.

PSA_ALG_IS_HASH_AND_SIGN(nnaCFO)
Whether the specified algorithm is a hash-and-sign algorithm that signs exactly the hash value.

#define PSA_ALG_IS_HASH_AND_SIGN(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a hash-and-sign algorithm that signs exactly the hash value, @ otherwise. This macro can return
either @ or 1 if alg is not a supported algorithm identifier.

A wildcard signature algorithm policy, using PSA_ALG_ANY_HASH, returns the same value as the signature
algorithm parameterized with a valid hash algorithm.

Description

This macro identifies algorithms that can be used with psa_sign_hash() that use the exact message hash
value as an input the signature operation. For example, if PSA_ALG_IS_HASH_AND_SIGN(alg) is true, the
following call sequence is equivalent to psa_sign_message(key, alg, msg, msg_len, ...):

uint8_t hash[PSA_HASH_MAX_SIZE];

size_t hash_len;

psa_hash_compute(PSA_ALG_GET_HASH(alg), msg, msg_len,
hash, sizeof(hash), &hash_len);

psa_sign_hash(key, alg, hash, hash_len, ...);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 308
1.4.0 Non-confidentia

PSA_ALG_SIGN_SUPPORTS_CONTEXT (macro)
Whether the specified signature algorithm can be used with a non-zero-length context.

Added in version 1.4.

#define PSA_ALG_SIGN_SUPPORTS_CONTEXT(alg) /* implementation-defined value */

Parameters
alg A signature algorithm identifier: a value of type psa_algorithm_t such
that PSA_ALG_IS_SIGN(alg) is true.
Returns

1 if alg is a signature algorithm that can be used with a non-zero-length context. e if alg is a signature
algorithm that cannot be used with a non-zero-length context. This macro can return either @ or 1 if alg is
not a supported signature algorithm identifier.

A wildcard signature algorithm policy, using PSA_ALG_ANY_HASH, returns the same value as the signature
algorithm parameterized with a valid hash algorithm.

Description

This macro identifies signature algorithms that have a context parameter, and can be used with the
appropriate functions that support non-zero-length contexts.

PSA_ALG_ANY_HASH (macro)

When setting a hash-and-sign algorithm in a key policy, permit any hash algorithm.

#define PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)

This value can be used to form the permitted-algorithm attribute of a key policy for a signature algorithm
that is parametrized by a hash. A key with this policy can then be used to perform operations using the
same signature algorithm parametrized with any supported hash. A signature algorithm created using this
macro is a wildcard algorithm, and PSA_ALG_TS_WILDCARD() will return true.

This value must not be used to build other algorithms that are parametrized over a hash. For any valid use
of this macro to build an algorithm alg, PSA_ALG_IS_HASH_AND_SIGN(alg) is true.

This value cannot be used to build an algorithm specification to perform an operation. If used in this way,
the operation will fail with an error.

Usage
For example, suppose that PSA_xxx_SIGNATURE is one of the following macros:
® PSA_ALG_RSA_PKCS1V15_SIGN
® PSA_ALG_RSA_PSS
® PSA_ALG_RSA_PSS_ANY_SALT
® PSA_ALG_ECDSA

® PSA_ALG_DETERMINISTIC_ECDSA

The following sequence of operations shows how PSA_ALG_ANY_HASH can be used in a key policy:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 309
1.4.0 Non-confidential

1. Set the key usage flags using PSA_ALG_ANY_HASH, for example:

psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_MESSAGE); // or VERIFY_MESSAGE
psa_set_key_algorithm(&attributes, PSA_xxx_SIGNATURE (PSA_ALG_ANY_HASH));

2. Import or generate key material.

3. Call psa_sign_message() Or psa_verify_message(), passing an algorithm built from PSA_xxx_SIGNATURE
and a specific hash. Each call to sign or verify a message can use a different hash algorithm.

psa_sign_message(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA 256), ...);
psa_sign_message(key, PSA_xxx_SIGNATURE (PSA_ALG_SHA 512))
6

psa_sign_message(key, PSA_xxx_SIGNATURE(PSA_ALG_SHA3_256), L)

PSA_SIGN_OUTPUT_SIZE (macro)

Sufficient signature buffer size for psa_sign_message() and psa_sign_hash().

#define PSA_SIGN_OUTPUT_SIZE(key_type, key_bits, alg) \
/* implementation-defined value */

Parameters
key_type An asymmetric key type. This can be a key-pair type or a public-key
type.
key_bits The size of the key in bits.
alg The signature algorithm.
Returns

A sufficient signature buffer size for the specified asymmetric signature algorithm and key parameters. An
implementation can return either @ or a correct size for an asymmetric signature algorithm and key
parameters that it recognizes, but does not support. If the parameters are not valid, the return value is
unspecified.

Description

If the size of the signature buffer is at least this large, it is guaranteed that psa_sign_message() and
psa_sign_hash() will not fail due to an insufficient buffer size. The actual size of the output might be smaller
in any given call.

See also PSA_SIGNATURE_MAX_SIZE.

PSA_SIGNATURE_MAX_SIZE (macro)

A sufficient signature buffer size for psa_sign_message() and psa_sign_hash(), for any of the supported key
types and asymmetric signature algorithms.

#define PSA_SIGNATURE_MAX_SIZE /* implementation-defined value */

If the size of the signature buffer is at least this large, it is guaranteed that psa_sign_message() and
psa_sign_hash() will not fail due to an insufficient buffer size.

See also PSA_SIGN_OUTPUT_SIZE().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 310
1.4.0 Non-confidentia

10.10 Asymmetric encryption

Asymmetric encryption is provided through the functions psa_asymmetric_encrypt() and
psa_asymmetric_decrypt().

10.10.1 Asymmetric encryption algorithms

PSA_ALG_RSA_PKCS1V15_CRYPT (macro)
The RSA PKCS#1 v1.5 asymmetric encryption algorithm.

#define PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)0x07000200)

This encryption scheme is defined by PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC8017] §7.2
under the name RSAES-PKCS-v1 5.

Compatible key types

PSA_KEY_TYPE_RSA_KEY_PAIR
PSA_KEY_TYPE_RSA_PUBLIC_KEY (asymmetric encryption only)

PSA_ALG_RSA_OAEP (macro)
The RSA OAEP asymmetric encryption algorithm.

#define PSA_ALG_RSA_OAEP(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. The hash algorithm is used for
MGF1.
Returns

The corresponding RSA OAEP encryption algorithm.
Unspecified if hash_alg is not a supported hash algorithm.

Description

This encryption scheme is defined by [RFC8017] §7.1 under the name RSAES-OAEP, with the following
options:

e The mask generation function MGF1 defined in [RFC8017] Appendix B.2.1.

e The specified hash algorithm is used to hash the label, and for the mask generation function.

Compatible key types

PSA_KEY_TYPE_RSA_KEY_PAIR
PSA_KEY_TYPE_RSA_PUBLIC_KEY (asymmetric encryption only)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 311
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8017.html#section-7.2
https://datatracker.ietf.org/doc/html/rfc8017.html#section-7.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B.2.1

10.10.2 Asymmetric encryption functions

psa_asymmetric_encrypt (function)

Encrypt a short message with a publi

C key.

psa_status_t psa_asymmetric_encrypt(psa_key_id_t key,

Parameters

key

alg

input
input_length

salt

salt_length
output

output_size

output_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * salt,
size_t salt_length,
uint8_t * output,

size_t output_size,
size_t * output_length);

Identifer of the key to use for the operation. It must be a public key or
an asymmetric key pair. It must permit the usage
PSA_KEY_USAGE_ENCRYPT.

The asymmetric encryption algorithm to compute: a value of type
psa_algorithm_t such that PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) iS
true.

The message to encrypt.
Size of the input buffer in bytes.

A salt or label, if supported by the encryption algorithm. If the
algorithm does not support a salt, pass NULL. If the algorithm supports
an optional salt, pass NULL to indicate that there is no salt.

Size of the salt buffer in bytes. If salt is NULL, pass o.
Buffer where the encrypted message is to be written.

Size of the output buffer in bytes. This must be appropriate for the
selected algorithm and key:

e The required output size is
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE (key_type, key_bits, alg)
where key_type and key_bits are the type and bit-size
respectively of key.

e PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE evaluates to the
maximum output size of any supported asymmetric encryption.

On success, the number of bytes that make up the returned output.

Success. The first (*output_length) bytes of output contain the
encrypted output.

The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.

The key does not have the PsA_KEY_USAGE_ENCRYPT flag, or it does not

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 312

1.4.0

Non-confidentia

permit the requested algorithm.

PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small.
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE() Or
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE can be used to determine a
sufficient buffer size.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

alg is not an asymmetric encryption algorithm.

key is not a public key or an asymmetric key pair, that is
compatible with alg.

input_length is not valid for the algorithm and key type.
salt_length is not valid for the algorithm and key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

°
PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

alg is not supported or is not an asymmetric encryption
algorithm.

key is not supported for use with alg.
input_length or salt_length are too large for the implementation.

e [Or PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is supported.

psa_asymmetric_decrypt (function)

Decrypt a short message with a private key.

psa_status_t psa_asymmetric_decrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * salt,
size_t salt_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 313

1.4.0

Non-confidentia

Parameters

key

alg

input

input_length

salt

salt_length
output

output_size

output_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_PADDING

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates

Identifier of the key to use for the operation. It must be an asymmetric
key pair. It must permit the usage PSA_KEY_USAGE_DECRYPT.

The asymmetric encryption algorithm to compute: a value of type
psa_algorithm_t such that PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) iS
true.

The message to decrypt.
Size of the input buffer in bytes.

A salt or label, if supported by the encryption algorithm. If the
algorithm does not support a salt, pass NULL. If the algorithm supports
an optional salt, pass NULL to indicate that there is no salt.

Size of the salt buffer in bytes. If salt is NULL, pass o.
Buffer where the decrypted message is to be written.

Size of the output buffer in bytes. This must be appropriate for the
selected algorithm and key:

e The required output size is
PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg)
where key_type and key_bits are the type and bit-size
respectively of key.

® PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE evaluates to the
maximum output size of any supported asymmetric decryption.

On success, the number of bytes that make up the returned output.

Success. The first (*output_length) bytes of output contain the
decrypted output.

The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.

The key does not have the psa_KEY_USAGE_DECRYPT flag, or it does not
permit the requested algorithm.

The size of the output buffer is too small.
PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE() Or
PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE can be used to determine a
sufficient buffer size.

The algorithm uses padding, and the input does not contain valid
padding.
The following conditions can result in this error:

alg is not an asymmetric encryption algorithm.

key is not an asymmetric key pair, that is compatible with alg.
input_length is not valid for the algorithm and key type.
salt_length is not valid for the algorithm and key type.

The following conditions can result in this error:

Page 314
Non-confidentia

PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description

e alg is not supported or is not an asymmetric encryption
algorithm.

e key is not supported for use with alg.

e input_length Or salt_length are too large for the implementation.

e [Or PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is supported.

10.10.3 Support macros

PSA_ALG_IS_RSA_OAEP (macro)

Whether the specified algorithm is an RSA OAEP encryption algorithm.

#define PSA_ALG_IS_RSA_OAEP(alg) /* specification-defined value */

Parameters

alg

Returns

An algorithm identifier: a value of type psa_algorithm_t.

1if alg is an RSA OAEP algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE (macro)

Sufficient output buffer size for psa_asymmetric_encrypt().

#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \
/* implementation-defined value */

Parameters
key_type An asymmetric key type, either a key pair or a public key.
key_bits The size of the key in bits.
alg An asymmetric encryption algorithm: a value of type psa_algorithm_ t
such that PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) is true.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 315

1.4.0

Non-confidential

Returns

A sufficient output buffer size for the specified asymmetric encryption algorithm and key parameters. An
implementation can return either @ or a correct size for an asymmetric encryption algorithm and key
parameters that it recognizes, but does not support. If the parameters are not valid, the return value is
unspecified.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_asymmetric_encrypt() will not
fail due to an insufficient buffer size. The actual size of the output might be smaller in any given call.

See also PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE.

PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE(nﬂaCFO)

A sufficient output buffer size for psa_asymmetric_encrypt(), for any of the supported key types and
asymmetric encryption algorithms.

#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE \
/* implementation-defined value */

If the size of the output buffer is at least this large, it is guaranteed that psa_asymmetric_encrypt() will not
fail due to an insufficient buffer size.

See also PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE().

PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE (macro)

Sufficient output buffer size for psa_asymmetric_decrypt().

#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \
/* implementation-defined value */

Parameters
key_type An asymmetric key type, either a key pair or a public key.
key_bits The size of the key in bits.
alg An asymmetric encryption algorithm: a value of type psa_algorithm_t
such that PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) is true.
Returns

A sufficient output buffer size for the specified asymmetric encryption algorithm and key parameters. An
implementation can return either @ or a correct size for an asymmetric encryption algorithm and key
parameters that it recognizes, but does not support. If the parameters are not valid, the return value is
unspecified.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_asymmetric_decrypt() will not
fail due to an insufficient buffer size. The actual size of the output might be smaller in any given call.

See also PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 316
1.4.0 Non-confidentia

PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE (macro)

A sufficient output buffer size for psa_asymmetric_decrypt(), for any of the supported key types and
asymmetric encryption algorithms.

#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE \
/* implementation-defined value */

If the size of the output buffer is at least this large, it is guaranteed that psa_asymmetric_decrypt() will not
fail due to an insufficient buffer size.

See also PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE().

10.11 Key agreement

Three functions are provided for a Diffie-Hellman-style key agreement where each party combines its own
private key with the peer’s public key, to produce a shared secret value:

e A call to psa_key_agreement () will compute the shared secret and store the result in a new derivation
key.

e |f the resulting shared secret will be used for a single key derivation, a key-derivation operation can be
used with the psa_key_derivation_key_agreement () input function. This calculates the shared secret
and inputs it directly to the key-derivation operation.

e \Where an application needs direct access to the shared secret, it can call psa_raw_key_agreement ()
instead.

Using psa_key_agreement () Or psa_key_derivation_key_agreement() is recommended, as these do not expose
the shared secret to the application.

Note:

In general the shared secret is not directly suitable for use as a key because it is biased.

10.11.1 Key-agreement algorithms

PSA_ALG_FFDH (macro)
The finite field Diffie-Hellman (DH) key-agreement algorithm.

#define PSA_ALG_FFDH ((psa_algorithm_t)@x09010000)

This standalone key-agreement algorithm can be used directly in a call to psa_key_agreement() or
psa_raw_key_agreement (), or combined with a key-derivation operation using PSA_ALG_KEY_AGREEMENT () for
use with psa_key_derivation_key_agreement().

When used as a key's permitted-algorithm policy, the following uses are permitted:

e |n a call to psa_key_agreement() Or psa_raw_key_agreement (), with algorithm PSA_ALG_FFDH.

e |nacall to psa_key_derivation_key_agreement (), with any combined key-agreement and key-derivation
algorithm constructed with PSA_ALG_FFDH.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 317
1.4.0 Non-confidentia

When used as part of a multi-part key-derivation operation, this implements a Diffie-Hellman
key-agreement scheme using a single finite field Diffie-Hellman key pair for each participant. This includes
the dhEphem, dhOneFlow, and dhStatic schemes. The input step PSA_KEY_DERIVATION_INPUT_SECRET is used
when providing the secret and peer keys to the operation.

The shared secret produced by this key-agreement algorithm is g2 in big-endian format. Itis [(m/8)] bytes
long where m is the size of the prime p in bits.

This key-agreement scheme is defined by NIST Special Publication 800-56A: Recommendation for Pair-Wise
Key-Establishment Schemes Using Discrete Logarithm Cryptography [SP800-56A] §5.7.1.1 under the name
FFC DH.

Compatible key types
PSA_KEY_TYPE_DH_KEY_PAIR()

PSA_ALG_ECDH (macro)

The elliptic curve Diffie-Hellman (ECDH) key-agreement algorithm.

#define PSA_ALG_ECDH ((psa_algorithm_t)@x09020000)

This standalone key-agreement algorithm can be used directly in a call to psa_key_agreement() or
psa_raw_key_agreement (), or combined with a key-derivation operation using PSA_ALG_KEY_AGREEMENT () for
use with psa_key_derivation_key_agreement().

When used as a key’s permitted-algorithm policy, the following uses are permitted:

e |n a call to psa_key_agreement() Or psa_raw_key_agreement (), with algorithm PSA_ALG_ECDH.

e Inacall to psa_key_derivation_key_agreement (), with any combined key-agreement and key-derivation
algorithm constructed with PSA_ALG_ECDH.

When used as part of a multi-part key-derivation operation, this implements a Diffie-Hellman
key-agreement scheme using a single elliptic curve key pair for each participant. This includes the Ephemeral
unified model, the Static unified model, and the One-pass Diffie-Hellman schemes. The input step
PSA_KEY_DERIVATION_INPUT_SECRET is used when providing the secret and peer keys to the operation.

The shared secret produced by key agreement is the x-coordinate of the shared secret point. It is always
[(m/8)] bytes long where m is the bit size associated with the curve, i.e. the bit size of the order of the
curve's coordinate field. When m is not a multiple of 8, the byte containing the most significant bit of the
shared secret is padded with zero bits. The byte order is either little-endian or big-endian depending on the
curve type.

e For Montgomery curves (curve family PSA_ECC_FAMILY_MONTGOMERY), the shared secret is the
x-coordinate of Z = daQp = dgQ@ 4 in little-endian byte order.

— For Curve25519, this is the X25519 function defined in Curve25519: new Diffie-Hellman speed
records [Curve25519]. The bit size m is 255.

— For Curve448, this is the X448 function defined in Ed448-Goldilocks, a new elliptic curve
[Curve448]. The bit size m is 448.

e [For Weierstrass curves (curve families PSA_ECC_FAMILY_SECP_XX, PSA_ECC_FAMILY_SECT_XX,
PSA_ECC_FAMILY_BRAINPOOL P R1 and PSA_ECC_FAMILY_FRP) the shared secret is the x-coordinate of
Z = hdsQp = hdpQ 4 in big-endian byte order. This is the Elliptic Curve Cryptography Cofactor

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 318
1.4.0 Non-confidential

Diffie-Hellman primitive defined by SEC 1: Elliptic Curve Cryptography [SEC1] §3.3.2 as, and also as
ECC CDH by NIST Special Publication 800-56A: Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm Cryptography [SP800-56A] §5.7.1.2.

— QOver prime fields (curve families PSA_ECC_FAMILY_SECP_XX, PSA_ECC_FAMILY_BRAINPOOL_P_R1 and
PSA_ECC_FAMILY_FRP), the bit size is m = [logy(p)] for the field F,,.

— QOver binary fields (curve families PSA_ECC_FAMILY_SECT_xX), the bit size is m for the field Fam.

Note:

The cofactor Diffie-Hellman primitive is equivalent to the standard elliptic curve Diffie-Hellman
calculation Z = daQp = dpQ 4 ([SEC1] §3.3.1) for curves where the cofactor h is 1. This is true
for all curves in the PSA_ECC_FAMILY_SECP_XX, PSA_ECC_FAMILY_BRAINPOOL P_R1, and
PSA_ECC_FAMILY_FRP families.

Compatible key types
PSA_KEY_TYPE_ECC_KEY_PAIR(family)

where family is a Weierstrass or Montgomery Elliptic curve family. That is, one of the following values:

® PSA_ECC_FAMILY_SECT_XX

o PSA_ECC_FAMILY_SECP_XX

® PSA_ECC_FAMILY_FRP

® PSA_ECC_FAMILY_BRAINPOOL_P_R1

® PSA_ECC_FAMILY_MONTGOMERY

PSA_ALG_KEY_AGREEMENT (macro)

Macro to build a combined algorithm that chains a key agreement with a key derivation.

#define PSA_ALG_KEY_AGREEMENT (ka_alg, kdf_alg) \
/* specification-defined value */

Parameters
ka_alg A key-agreement algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_KEY_AGREEMENT (ka_alg) is true.
kdf_alg A key-derivation algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_KEY_DERIVATION(kdf_alg) is true.
Returns

The corresponding key-agreement and key-derivation algorithm.

Unspecified if ka_alg is not a supported key-agreement algorithm or kdf_alg is not a supported
key-derivation algorithm.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 319
1.4.0 Non-confidentia

Description
A combined key-agreement algorithm is used with a multi-part key-derivation operation, using a call to

psa_key_derivation_key_agreement().

The component parts of a key-agreement algorithm can be extracted using
PSA_ALG_KEY_AGREEMENT_GET_BASE () and PSA_ALG_KEY_AGREEMENT_GET_KDF ().

Compatible key types

The resulting combined key-agreement algorithm is compatible with the same key types as the standalone
key-agreement algorithm used to construct it.

10.11.2 Standalone key agreement

psa_key_agreement (function)
Perform a key agreement and return the shared secret as a derivation key.

Added in version 1.2.

psa_status_t psa_key_agreement(psa_key_id_t private_key,
const uint8_t * peer_key,
size_t peer_key_length,
psa_algorithm_t alg,
const psa_key_attributes_t * attributes,
psa_key_id_t * key);

Parameters
private_key Identifier of the private key to use. It must permit the usage
PSA_KEY_USAGE_DERIVE.
peer_key Public key of the peer. The peer key data is parsed with the type
PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) where type is the type of
private_key, and with the same bit-size as private_key. The peer key
must be in the format that psa_import_key () accepts for this public-key
type. These formats are described with the public-key type in Key
types on page 53.
peer_key_length Size of peer_key in bytes.
alg The standalone key-agreement algorithm to compute: a value of type
psa_algorithm_t such that PSA_ALG_IS_STANDALONE_KEY_AGREEMENT (alg)
is true.
attributes The attributes for the new key.
The following attributes are required for all keys:
e The key type, which must be one of PSA_KEY_TYPE_DERIVE,
PSA_KEY_TYPE_RAW_DATA, PSA_KEY_TYPE_HMAC, Or
PSA_KEY_TYPE_PASSWORD.
Implementations must support the PSA_KEY_TYPE_DERIVE and
PSA_KEY_TYPE_RAW_DATA key types.
The following attributes must be set for keys used in cryptographic
operations:
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 320

1.4.0 Non-confidentia

key

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_ALREADY_EXISTS

PSA_ERROR_INVALID_ARGUMENT

IHI 0086
1.4.0

e The key permitted-algorithm policy, see Permitted algorithms on
page 101.

e The key usage flags, see Key usage flags on page 102.
The following attributes must be set for keys that do not use the
default PSA_KEY_LIFETIME_VOLATILE lifetime:
e The key lifetime, see Key lifetimes on page 90.
e The key identifier is required for a key with a persistent lifetime,
see Key identifiers on page 98.
The following attributes are optional:
e [f the key size is nonzero, it must be equal to the output size of
the key agreement, in bits.
The output size, in bits, of the key agreement is 8 *

PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(type, bits), where type and
bits are the type and bit-size of private_key.

Note:

This is an input parameter: it is not updated with the final key
attributes. The final attributes of the new key can be queried by
calling psa_get_key_attributes() with the key's identifier.

On success, an identifier for the newly created key. PSA_KEY_ID_NULL on
failure.

Success. The new key contains the share secret. If the key is
persistent, the key material and the key’s metadata have been saved to
persistent storage.

The library requires initializing by a call to psa_crypto_init().
private_key is not a valid key identifier.
The following conditions can result in this error:

e private_key does not have the PSA_KEY_USAGE_DERIVE flag, or it
does not permit the requested algorithm.

e The implementation does not permit creating a key with the
specified attributes due to some implementation-specific policy.

This is an attempt to create a persistent key, and there is already a
persistent key with the given identifier.

The following conditions can result in this error:
alg is not a key-agreement algorithm.
private_key is not compatible with alg.

peer_key is not a valid public key corresponding to private_key.
The output key attributes in attributes are not valid :

— The key type is not valid for key-agreement output.
— The key size is nonzero, and is not the size of the shared

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 321

Non-confidential

secret.
— The key lifetime is invalid.
— The key identifier is not valid for the key lifetime.
— The key usage flags include invalid values.
— The key’s permitted-usage algorithm is invalid.
— The key attributes, as a whole, are invalid.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e algis not supported or is not a key-agreement algorithm.
e private_key is not supported for use with alg.

e The output key attributes, as a whole, are not supported, either
by the implementation in general or in the specified storage
location.

PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_INSUFFICIENT_STORAGE
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

A key-agreement algorithm takes two inputs: a private key private_key, and a public key peer_key. The result
of this function is a shared secret, returned as a derivation key.

The new key’s location, policy, and type are taken from attributes.

The size of the returned key is always the bit-size of the shared secret, rounded up to a whole number of
bytes.

This key can be used as input to a key-derivation operation using psa_key_derivation_input_key().

A Warning

The shared secret resulting from a key-agreement algorithm such as finite field Diffie-Hellman or elliptic
curve Diffie-Hellman has biases. This makes it unsuitable for use as key material, for example, as an AES
key. Instead, it is recommended that a key-derivation algorithm is applied to the result, to derive
unbiased cryptographic keys.

psa_raw_key_agreement (function)

Perform a key agreement and return the shared secret.

psa_status_t psa_raw_key_agreement(psa_algorithm_t alg,
psa_key_id_t private_key,
const uint8_t * peer_key,
(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 322
1.4.0 Non-confidential

Parameters

alg

private_key

peer_key

peer_key_length
output

output_size

output_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_ARGUMENT

IHI 0086
1.4.0

(continued from previous page)
size_t peer_key_length,
uint8_t * output,
size_t output_size,
size_t * output_length);

The standalone key-agreement algorithm to compute: a value of type
psa_algorithm_t such that PSA_ALG_IS_STANDALONE_KEY_AGREEMENT (alg)
is true.

Identifier of the private key to use. It must permit the usage
PSA_KEY_USAGE_DERIVE.

Public key of the peer. The peer key data is parsed with the type
PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) Where type is the type of
private_key, and with the same bit-size as private_key. The peer key
must be in the format that psa_import_key () accepts for this public-key
type. These formats are described with the public-key type in Key
types on page 53.

Size of peer_key in bytes.
Buffer where the shared secret is to be written.

Size of the output buffer in bytes. This must be appropriate for the
keys:

e The required output size is
PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(type, bits), where type and
bits are the type and bit-size of private_key.

e PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE evaluates to the
maximum output size of any supported standalone
key-agreement algorithm.

On success, the number of bytes that make up the returned output.

Success. The first (*output_length) bytes of output contain the shared
secret.

The library requires initializing by a call to psa_crypto_init().
private_key is not a valid key identifier.

private_key does not have the PSA_KEY_USAGE_DERIVE flag, or it does
not permit the requested algorithm.

The size of the output buffer is too small.
PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE() Or
PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE can be used to determine a
sufficient buffer size.

The following conditions can result in this error:

e algis not a key-agreement algorithm.
e private_key is not compatible with alg.

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 323

Non-confidentia

e peer_key is not a valid public key corresponding to private_key.
PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e alg is not supported or is not a key-agreement algorithm.
e private_key is not supported for use with alg.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

A key-agreement algorithm takes two inputs: a private key private_key, and a public key peer_key. The result
of this function is a shared secret, returned in the output buffer.

A Warning

The result of a key-agreement algorithm such as finite field Diffie-Hellman or elliptic curve
Diffie-Hellman has biases, and is not suitable for direct use as key material, for example, as an AES key.
Instead it is recommended that the result is used as input to a key-derivation algorithm.

To chain a key agreement with a key derivation, either use psa_key_agreement () to obtain the result of
the key agreement as a derivation key, or use psa_key_derivation_key_agreement() and other functions
from the key-derivation interface.

10.11.3 Combining key agreement and key derivation

psa_key_derivation_key_agreement (function)

Perform a key agreement and use the shared secret as input to a key derivation.

psa_status_t psa_key_derivation_key_agreement(psa_key_derivation_operation_t * operation,
psa_key_derivation_step_t step,
psa_key_id_t private_key,
const uint8_t * peer_key,
size_t peer_key_length);

Parameters

operation The key-derivation operation object to use. It must have been set up
with psa_key_derivation_setup() with a combined key-agreement and
key-derivation algorithm alg: a value of type psa_algorithm_t such that
PSA_ALG_IS_KEY_AGREEMENT (alg) is true and
PSA_ALG_IS_STANDALONE_KEY_AGREEMENT (alg) is false.

The operation must be ready for an input of the type given by step.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 324
1.4.0 Non-confidential

step

private_key

peer_key

peer_key_length

Returns: psa_status_t
PSA_SUCCESS

PSA_ERROR_BAD_STATE

PSA_ERROR_INVALID_HANDLE

PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

Which step the input data is for.

Identifier of the private key to use. It must permit the usage
PSA_KEY_USAGE_DERIVE.

Public key of the peer. The peer key data is parsed with the type
PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) where type is the type of
private_key, and with the same bit-size as private_key. The peer key
must be in the format that psa_import_key () accepts for this public-key
type. These formats are described with the public-key type in Key
types on page 53.

Size of peer_key in bytes.

Success.
The following conditions can result in this error:
e The operation state is not valid for this key-agreement step.
e The library requires initializing by a call to psa_crypto_init().
private_key is not a valid key identifier.

private_key does not have the PSA_KEY_USAGE_DERIVE flag, or it does
not permit the operation’s algorithm.

The following conditions can result in this error:

The operation’s algorithm is not a key-agreement algorithm.
step does not permit an input resulting from a key agreement.
private_key is not compatible with the operation’s algorithm.

e peer_key is not a valid public key corresponding to private_key.

private_key is not supported for use with the operation’s algorithm.

A key-agreement algorithm takes two inputs: a private key private_key, and a public key peer_key. The result
of this function is a shared secret, which is directly input to the key-derivation operation. Output from the
key-derivation operation can then be used as keys and other cryptographic material.

If this function returns an error status, the operation enters an error state and must be aborted by calling

psa_key_derivation_abort().

Note:

This function cannot be used when the resulting shared secret is required for multiple key derivations.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 325

1.4.0

Non-confidentia

Instead, the application can call psa_key_agreement () to obtain the shared secret as a derivation key.
This key can be used as input to as many key-derivation operations as required.

10.11.4 Support macros

PSA_ALG_KEY_AGREEMENT_GET_BASE (macro)

Get the standalone key-agreement algorithm from a combined key-agreement and key-derivation algorithm.

#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) /* specification-defined value */

Parameters
alg A key-agreement algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_KEY_AGREEMENT (alg) is true.
Returns

The underlying standalone key-agreement algorithm if alg is a key-agreement algorithm.
Unspecified if alg is not a key-agreement algorithm or if it is not supported by the implementation.
Description

See also PSA_ALG_KEY_AGREEMENT () and PSA_ALG_KEY_AGREEMENT_GET_KDF ().

PSA_ALG_KEY_AGREEMENT_GET_KDF (macro)

Get the key-derivation algorithm used in a combined key-agreement and key-derivation algorithm.

#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) /* specification-defined value */

Parameters
alg A key-agreement algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_KEY_AGREEMENT (alg) is true.
Returns

The underlying key-derivation algorithm if alg is a key-agreement algorithm.
Unspecified if alg is not a key-agreement algorithm or if it is not supported by the implementation.

Description
See also PSA_ALG_KEY_AGREEMENT () and PSA_ALG_KEY_AGREEMENT_GET_BASE().

PSA_ALG_IS_STANDALONE_KEY_AGREEMENT (macro)
Whether the specified algorithm is a standalone key-agreement algorithm.

Added in version 1.2.

#define PSA_ALG_IS_STANDALONE_KEY_AGREEMENT (alg) \
/* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 326
1.4.0 Non-confidentia

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if algis a standalone key-agreement algorithm, @ otherwise. This macro can return either @ or 1 if alg is not
a supported algorithm identifier.

Description

A standalone key-agreement algorithm is one that does not specify a key-derivation function. Usually,
standalone key-agreement algorithms are constructed directly with a PSA_ALG_xxx macro while combined
key-agreement algorithms are constructed with PSA_ALG_KEY_AGREEMENT ().

The standalone key-agreement algorithm can be extracted from a combined key-agreement algorithm
identifier using PSA_ALG_KEY_AGREEMENT_GET_BASE ().

PSA_ALG_IS_RAW_KEY_AGREEMENT (macro)
Whether the specified algorithm is a standalone key-agreement algorithm.

Deprecated since version 1.2: Use PSA_ALG_IS_STANDALONE_KEY_AGREEMENT() instead.

#define PSA_ALG_IS_RAW_KEY_AGREEMENT (alg) \
PSA_ALG_IS_STANDALONE_KEY_AGREEMENT (alg)

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

PSA_ALG_IS_FFDH (macro)
Whether the specified algorithm is a finite field Diffie-Hellman algorithm.

#define PSA_ALG_IS_FFDH(alg) /* specification-defined value */
Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1 if alg is a finite field Diffie-Hellman algorithm, @ otherwise. This macro can return either @ or 1 if alg is not
a supported key-agreement algorithm identifier.

Description

This includes the standalone finite field Diffie-Hellman algorithm, as well as finite field Diffie-Hellman
combined with any supported key-derivation algorithm.

PSA_ALG_IS_ECDH (macro)

Whether the specified algorithm is an elliptic curve Diffie-Hellman algorithm.

#define PSA_ALG_IS_ECDH(alg) /* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 327
1.4.0 Non-confidential

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is an elliptic curve Diffie-Hellman algorithm, @ otherwise. This macro can return either @ or 1 if alg is
not a supported key-agreement algorithm identifier.

Description

This includes the standalone elliptic curve Diffie-Hellman algorithm, as well as elliptic curve Diffie-Hellman
combined with any supported key-derivation algorithm.

PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE (macro)

Sufficient output buffer size for psa_raw_key_agreement ().

#define PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(key_type, key_bits) \
/* implementation-defined value */

Parameters
key_type A supported key type.
key_bits The size of the key in bits.
Returns

A sufficient output buffer size for the specified key type and size. An implementation can return either @ or
a correct size for a key type and size that it recognizes, but does not support. If the parameters are not valid,
the return value is unspecified.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_raw_key_agreement () will not fail
due to an insufficient buffer size. The actual size of the output might be smaller in any given call.

See also PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE.

PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE (macro)

Sufficient output buffer size for psa_raw_key_agreement (), for any of the supported key types and
key-agreement algorithms.

#define PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE \
/* implementation-defined value */

If the size of the output buffer is at least this large, it is guaranteed that psa_raw_key_agreement () will not fail
due to an insufficient buffer size.

See also PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 328
1.4.0 Non-confidentia

10.12 Key encapsulation

A key-encapsulation algorithm can be used by two participants to establish a shared secret key over a public
channel. The shared secret key can then be used with symmetric-key cryptographic algorithms.
Key-encapsulation algorithms are often referred to as ‘key-encapsulation mechanisms’ or KEMs.

In a key-encapsulation algorithm, participants A and B establish a shared secret as follows:

Participant A generates a key pair: a private decapsulation key, and a public encapsulation key.
The public encapsulation key is made available to participant B.
Participant B uses the encapsulation key to generate one copy of a shared secret, and some ciphertext.

The ciphertext is transferred to participant A.

NSNS

Participant A uses the private decapsulation key to compute another copy of the shared secret.

Typically, the shared secret is used as input to a key-derivation function, to create keys for secure
communication between participants A and B. However, some key-encapsulation algorithms result in a
uniformly pseudorandom shared secret, which is suitable to be used directly as a cryptographic key.

Applications can use the resulting keys for different use cases. For example:

e Encrypting and authenticating a single non-interactive message from participant B to participant A.

e Securing an interactive communication channel between participants A and B.

10.12.1 Elliptic Curve Integrated Encryption Scheme

The Elliptic Curve Integrated Encryption Scheme (ECIES) was first proposed by Shoup, then improved by
Ballare and Rogaway.

The original specification permitted a number of variants. The Crypto APl uses the version specified in SEC
1: Elliptic Curve Cryptography [SEC1].

The full ECIES scheme uses an elliptic-curve key agreement between the recipient’s static public key and an
ephemeral private key, to establish encryption and authentication keys for secure transmission of
arbitrary-length messages to the recipient.

An application using ECIES must select all of the following parameters:

e The elliptic curve for the initial key agreement.
e The KDF to derive the symmetric keys, and any label used in that derivation.
e The encryption and MAC algorithms.

e The additional data to include when computing the authentication.

The Crypto API presents the key-agreement step of ECIES as a key-encapsulation algorithm. The key
derivation, encryption, and authentication steps are left to the application.

Implementation note

It is possible that some applications may need to use alternative versions of ECIES to interoperate
with legacy systems.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 329
1.4.0 Non-confidential

While the application can implement this using key agreement functions, an implementation can
choose to add these as a convenience with an IMPLEMENTATION DEFINED key-encapsulation algorithm
identifier.

PSA_ALG_ECIES_SEC1 (macro)
The Elliptic Curve Integrated Encryption Scheme (ECIES).
Added in version 1.3.

#define PSA_ALG_ECIES_SEC1 ((psa_algorithm_t)0x0c000100)
This key-encapsulation algorithm is defined by SEC 1: Elliptic Curve Cryptography [SEC1] §5.1 under the
name Elliptic Curve Integrated Encryption Scheme.

A call to psa_encapsulate() carries out steps 1 to 4 of the ECIES encryption process described in [SEC1]
§5.1.3:

The elliptic curve to use is determined by the key.

The public-key part of the input key is used as Qy .

Cofactor ECDH is used to perform the key agreement.

The octet string Z is output as the shared secret key.

e The ephemeral public key R is output as the ciphertext.

A call to psa_decapsulate() carries out steps 2 to 5 of the ECIES decryption process described in [SEC1]
§5.1.4:

The elliptic curve to use is determined by the key.

The ciphertext is decoded as R.

The private key of the input key is used as dy .

Cofactor ECDH is used to perform the key agreement.

The octet string Z is output as the shared secret key.

The ciphertext produced by PSA_ALG_ECIES_SEC1 is not authenticated. In the full ECIES scheme, the
authentication of the encrypted message using a key derived from the shared secret provides assurance
that the message has not been manipulated.

The shared secret key that is produced by PSA_ALG_ECIES_SEC1 is not suitable for use as an encryption key. It
must be used as an input to a key derivation operation to produce additional cryptographic keys.

Compatible key types

PSA_KEY_TYPE_ECC_KEY_PAIR(family)
PSA_KEY_TYPE_ECC_PUBLIC_KEY(family) (encapsulaton only)

where family is a Weierstrass or Montgomery Elliptic curve family. That is, one of the following values:

® PSA_ECC_FAMILY_SECT_XX

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 330
1.4.0 Non-confidential

PSA_ECC_FAMILY_SECP_XX

e PSA_ECC_FAMILY_FRP

PSA_ECC_FAMILY_BRAINPOOL_P_R1

PSA_ECC_FAMILY_MONTGOMERY

10.12.2 Key-encapsulation functions

psa_encapsulate (function)

Use a public key to generate a new shared secret key and associated ciphertext.

Added in version 1.3.

psa_status_t psa_encapsulate(psa_key_id_t key,

Parameters

key

alg

attributes

IHI 0086
1.4.0

psa_algorithm_t alg,

const psa_key_attributes_t * attributes,
psa_key_id_t * output_key,

uint8_t * ciphertext,

size_t ciphertext_size,

size_t * ciphertext_length);

Identifier of the key to use for the encapsulation. It must be a public
key or an asymmetric key pair. It must permit the usage
PSA_KEY_USAGE_ENCRYPT.

The key-encapsulation algorithm to use: a value of type
psa_algorithm_t such that PSA_ALG_IS_KEY_ENCAPSULATION(alg) is true.

The attributes for the output key. This function uses the attributes as
follows:

e The key type. All key-encapsulation algorithms can output a key
of type PSA_KEY_TYPE_DERIVE Or PSA_KEY_TYPE_HMAC.
Key-encapsulation algorithms that produce a uniformly
pseudorandom shared secret, can also output block-cipher key
types, for example PSA_KEY_TYPE_AES. Refer to the documentation
of individual key-encapsulation algorithms for more information.

The following attributes must be set for keys used in cryptographic
operations:

e The key permitted-algorithm policy, see Permitted algorithms on
page 101.
e The key usage flags, see Key usage flags on page 102.
The following attributes must be set for keys that do not use the
default PSA_KEY_LIFETIME_VOLATILE lifetime:
e The key lifetime, see Key lifetimes on page 90.
e The key identifier is required for a key with a persistent lifetime,
see Key identifiers on page 98.

The following attributes are optional:

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 331

Non-confidentia

output_key

ciphertext

ciphertext_size

ciphertext_length

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_ALREADY_EXISTS

PSA_ERROR_BUFFER_TOO_SMALL

PSA_ERROR_INVALID_ARGUMENT

IHI 0086
1.4.0

e If the key size is nonzero, it must be equal to the size, in bits, of
the shared secret.

Note:

This is an input parameter: it is not updated with the final key
attributes. The final attributes of the new key can be queried by
calling psa_get_key_attributes() with the key’s identifier.

On success, an identifier for the newly created shared secret key.
PSA_KEY_ID_NULL on failure.

Buffer where the ciphertext output is to be written.

Size of the ciphertext buffer in bytes. This must be appropriate for the
selected algorithm and key:

e A sufficient ciphertext size is
PSA_ENCAPSULATE_CIPHERTEXT_SIZE(type, bits, alg), where type
and bits are the type and bit-size of key.

® PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE evaluates to the maximum
ciphertext size of any supported key-encapsulation algorithm.

On success, the number of bytes that make up the ciphertext value.

Success. The bytes of ciphertext contain the data to be sent to the
other participant, and output_key contains the identifier for the shared
secret key.

The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.
The following conditions can result in this error:
e key does not have the PSA_KEY_USAGE_ENCRYPT flag, or it does not
permit the requested algorithm.
e The implementation does not permit creating a key with the
specified attributes due to some implementation-specific policy.

This is an attempt to create a persistent key, and there is already a
persistent key with the given identifier.

The size of the ciphertext buffer is too small.
PSA_ENCAPSULATE_CIPHERTEXT_SIZE() Or
PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE can be used to determine a
sufficient buffer size.

The following conditions can result in this error:

e algis not a key-encapsulation algorithm.

e key is not a public key or an asymmetric key pair, that is
compatible with alg.

e The output key attributes in attributes are not valid:
— The key type is not valid for the shared secret.

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 332

Non-confidentia

The key size is nonzero, and is not the size of the shared
secret.

The key lifetime is invalid.

The key identifier is not valid for the key lifetime.
The key usage flags include invalid values.

The key's permitted-usage algorithm is invalid.
The key attributes, as a whole, are invalid.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e algis not supported or is not a key-encapsulation algorithm.
e key is not supported for use with alg.

e The output key attributes in attributes, as a whole, are not
supported, either by the implementation in general or in the
specified storage location.

PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

The output_key location, policy, and type are taken from attributes.

The size of the returned key is always the bit-size of the shared secret, rounded up to a whole number of
bytes. The size of the shared secret is dependent on the key-encapsulation algorithm and the type and size

of key.

It is recommended that the shared secret key is used as an input to a key derivation operation to produce
additional cryptographic keys. For some key-encapsulation algorithms, the shared secret key is also suitable
for use as a key in cryptographic operations such as encryption. Refer to the documentation of individual
key-encapsulation algorithms for more information.

The output ciphertext is to be sent to the other participant, who uses the decapsulation key to extract

another copy of the shared secret key.

psa_decapsulate (function)

Use a private key to decapsulate a shared secret key from a ciphertext.

Added in version 1.3.

psa_status_t psa_decapsulate(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * ciphertext,

(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 333

1.4.0

Non-confidential

Parameters

key

alg

ciphertext
ciphertext_length

attributes

output_key

IHI 0086
1.4.0

(continued from previous page)

size_t ciphertext_length,
const psa_key_attributes_t * attributes,
psa_key_id_t * output_key);

Identifier of the key to use for the decapsulation. It must be an
asymmetric key pair. It must permit the usage PSA_KEY_USAGE_DECRYPT.

The key-encapsulation algorithm to use: a value of type
psa_algorithm_t such that PSA_ALG_IS_KEY_ENCAPSULATION(alg) is true.

The ciphertext received from the other participant.
Size of the ciphertext buffer in bytes.

The attributes for the output key. This function uses the attributes as
follows:

e The key type. All key-encapsulation algorithms can output a key
of type PSA_KEY_TYPE_DERIVE Or PSA_KEY_TYPE_HMAC.
Key-encapsulation algorithms that produce a uniformly
pseudorandom shared secret, can also output block-cipher key
types, for example PSA_KEY_TYPE_AES. Refer to the documentation
of individual key-encapsulation algorithms for more information.

The following attributes must be set for keys used in cryptographic
operations:

e The key permitted-algorithm policy, see Permitted algorithms on
page 101.
e The key usage flags, see Key usage flags on page 102.
The following attributes must be set for keys that do not use the
default PSA_KEY_LIFETIME_VOLATILE lifetime:
e The key lifetime, see Key lifetimes on page 90.
e The key identifier is required for a key with a persistent lifetime,
see Key identifiers on page 98.
The following attributes are optional:

e If the key size is nonzero, it must be equal to the size, in bits, of
the shared secret.

Note:

This is an input parameter: it is not updated with the final key
attributes. The final attributes of the new key can be queried by
calling psa_get_key_attributes() with the key's identifier.

On success, an identifier for the newly created shared secret key.
PSA_KEY_ID_NULL on failure.

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 334

Non-confidentia

Returns: psa_status_t

PSA_SUCCESS

PSA_ERROR_BAD_STATE
PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_SIGNATURE

PSA_ERROR_ALREADY_EXISTS

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

IHI 0086
1.4.0

Success. output_key contains the identifier for the shared secret key.

Note:

In some key-encapsulation algorithms, decapsulation failure is
not reported with a explicit error code. Instead, an incorrect,
pseudorandom key is output.

The library requires initializing by a call to psa_crypto_init().
key is not a valid key identifier.
The following conditions can result in this error:
e key does not have the PSA_KEY_USAGE_DECRYPT flag, or it does not
permit the requested algorithm.
e The implementation does not permit creating a key with the
specified attributes due to some implementation-specific policy.

Authentication of the ciphertext fails.

Note:

Some key-encapsulation algorithms do not report an
authentication failure explicitly. Instead, an incorrect,
pseudorandom key is output.

This is an attempt to create a persistent key, and there is already a
persistent key with the given identifier.

The following conditions can result in this error:

e algis not a key-encapsulation algorithm.
e key is not an asymmetric key pair, that is compatible with alg.
e The output key attributes in attributes are not valid:

— The key type is not valid for the shared secret.

— The key size is nonzero, and is not the size of the shared
secret.

— The key lifetime is invalid.

— The key identifier is not valid for the key lifetime.
— The key usage flags include invalid values.

— The key’s permitted-usage algorithm is invalid.

— The key attributes, as a whole, are invalid.

e ciphertext is obviously invalid for the selected algorithm and key.
For example, the implementation can detect that it has an
incorrect length.

The following conditions can result in this error:

e algis not supported or is not a key-encapsulation algorithm.
e key is not supported for use with alg.
e The output key attributes in attributes, as a whole, are not

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 335

Non-confidentia

supported, either by the implementation in general or in the
specified storage location.

PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_INSUFFICIENT_STORAGE
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description
The output_key location, policy, and type are taken from attributes.

The size of the returned key is always the bit-size of the shared secret, rounded up to a whole number of
bytes. The size of the shared secret is dependent on the key-encapsulation algorithm and the type and size
of key.

It is recommended that the shared secret key is used as an input to a key derivation operation to produce
additional cryptographic keys. For some key-encapsulation algorithms, the shared secret key is also suitable
for use as a key in cryptographic operations such as encryption. Refer to the documentation of individual
key-encapsulation algorithms for more information.

If the key-encapsulation protocol is executed correctly then, with overwhelming probability, the two copies
of the shared secret are identical. However, the protocol does not protect one participant against the other
participant executing it incorrectly, or against a third party modifying data in transit.

A Warning

A PSA_SUCCESS result from psa_decapsulate() does not guarantee that the output key is identical to the
key produced by the call to psa_encapsulate(). For example, PSA_SUCCESS can be returned with a
mismatched shared secret key value in the following situations:

e The key-encapsulation algorithm does not authenticate the ciphertext. Manipulated or corrupted
ciphertext will not be detected during decapsulation.

e The key-encapsulation algorithm reports authentication failure implicitly, by returning a
pseudorandom key value. This is done to prevent disclosing information to an attacker that has
manipulated the ciphertext.

e The key-encapsulation algorithm is probablistic, and will extremely rarely result in non-identical key
values.

It is strongly recommended that the application uses the output key in a way that will confirm that the
shared secret keys are identical.

Implementation note

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 336
1.4.0 Non-confidential

For key-encapsulation algorithms which involve data padding when computing the ciphertext, the
decapsulation algorithm must not report a distinct error status if invalid padding is detected.

Instead, it is recommended that the decapsulation fails implicitly when invalid padding is detected,
returning a pseudorandom key.

10.12.3 Support macros

PSA_ENCAPSULATE_CIPHERTEXT_SIZE (macro)
Sufficient ciphertext buffer size for psa_encapsulate(), in bytes.

Added in version 1.3.

#define PSA_ENCAPSULATE_CIPHERTEXT_SIZE(key_type, key_bits, alg) \
/* implementation-defined value */

Parameters
key_type A key type that is compatible with algorithm alg.
key_bits The size of the key in bits.
alg A key-encapsulation algorithm: a value of type psa_algorithm_t such
that PSA_ALG_IS_KEY_ENCAPSULATION(alg) is true.
Returns

A sufficient ciphertext buffer size for the specified algorithm, key type, and size. An implementation can
return either @ or a correct size for an algorithm, key type, and size that it recognizes, but does not support.
If the parameters are not valid, the return value is unspecified.

Description

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_encapsulate() will not fail
due to an insufficient buffer size. The actual size of the ciphertext might be smaller in any given call.

See also PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE.

PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE (macro)

Sufficient ciphertext buffer size for psa_encapsulate(), for any of the supported key types and
key-encapsulation algorithms.

Added in version 1.3.

#define PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE /* implementation-defined value */

If the size of the ciphertext buffer is at least this large, it is guaranteed that psa_encapsulate() will not fail
due to an insufficient buffer size.

See also PSA_ENCAPSULATE_CIPHERTEXT_SIZE().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 337
1.4.0 Non-confidentia

10.13 Password-authenticated key exchange (PAKE)

PAKE protocols provide an interactive method for two or more parties to establish cryptographic keys
based on knowledge of a low entropy secret, such as a password.

These can provide strong security for communication from a weak password, because the password is not
directly communicated as part of the key exchange.

This chapter is divided into the following sections:

Common API for PAKE — the common interface elements, including the PAKE operation.

The J-PAKE protocol on page 366 — the J-PAKE protocol, and the associated interface elements.

The SPAKE2+ protocol on page 371 — the SPAKE2+ protocols, and the associated interface elements.

The WPA3-SAE protocol on page 381 — the WPA3-SAE protocol, and the associated interface
elements.

10.13.1 Common API for PAKE

This section defines all of the common interfaces used to carry out a PAKE protocol:

PAKE primitives

PAKE cipher suites on page 342
PAKE roles on page 347

PAKE step types on page 349

Multi-part PAKE operations on page 352

PAKE support macros on page 364

10.13.2 PAKE primitives

A PAKE algorithm specifies a sequence of interactions between the participants. Many PAKE algorithms are
designed to allow different cryptographic primitives to be used for the key establishment operation, so long
as all the participants are using the same underlying cryptography.

The cryptographic primitive for a PAKE operation is specified using a psa_pake_primitive_t value, which can
be constructed using the PSA_PAKE_PRIMITIVE() macro, or can be provided as a numerical constant value.

A PAKE primitive is required when constructing a PAKE cipher-suite object, psa_pake_cipher_suite_t, which
fully specifies the PAKE operation to be carried out.

psa_pake_primitive_t (typedef)
Encoding of the primitive associated with the PAKE.
Added in version 1.1.

typedef uint32_t psa_pake_primitive_t;

PAKE primitive values are constructed using PSA_PAKE_PRIMITIVE().

Figure 2 on page 339 shows how the components of the primitive are encoded into a psa_pake_primitive_t
value.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 338
1.4.0 Non-confidential

31 24 23

PAKE_TYPE PAKE-FAMILY PAKE-BITS

Figure 2 PAKE primitive encoding

The components of a PAKE primitive value can be extracted using the PSA_PAKE_PRIMITIVE_GET_TYPE(),
PSA_PAKE_PRIMITIVE_GET_FAMILY (), and PSA_PAKE_PRIMITIVE_GET_BITS(). These can be used to set key
attributes for keys used in PAKE algorithms. SPAKEZ+ registration on page 372 provides an example of this
usage.

psa_pake_primitive_type_t (typedef)
Encoding of the type of the PAKE’s primitive.
Added in version 1.1.

typedef uint8_t psa_pake_primitive_type_t;

The range of PAKE primitive type values is divided as follows:

0x00 Reserved as an invalid primitive type.

0x01 - ox7f
Specification-defined primitive type. Primitive types defined by this standard always have bit
7 clear. Unallocated primitive type values in this range are reserved for future use.

0x80 - oxff
Implementation-defined primitive type. Implementations that define additional primitive
types must use an encoding with bit 7 set.

For specification-defined primitive types, see PSA_PAKE_PRIMITIVE_TYPE_ECC and PSA_PAKE_PRIMITIVE_TYPE_DH.

PSA_PAKE_PRIMITIVE_TYPE_ECC (macro)
The PAKE primitive type indicating the use of elliptic curves.
Added in version 1.1.

#define PSA_PAKE_PRIMITIVE_TYPE_ECC ((psa_pake_primitive_type_t)0x01)

The values of the family and bits components of the PAKE primitive identify a specific elliptic curve, using
the same mapping that is used for ECC keys. See the definition of psa_ecc_family_t. Here family and bits
refer to the values used to construct the PAKE primitive using PSA_PAKE_PRIMITIVE().

Input and output during the operation can involve group elements and scalar values:

e The format for group elements is the same as that for public keys on the specific elliptic curve. See
Key format within the definition of PSA_KEY_TYPE_ECC_PUBLIC_KEY ().

e The format for scalars is the same as that for private keys on the specific elliptic curve. See Key format
within the definition of PSA_KEY_TYPE_ECC_KEY_PAIR().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 339
1.4.0 Non-confidentia

PSA_PAKE_PRIMITIVE_TYPE_DH (macro)
The PAKE primitive type indicating the use of a finite field Diffie-Hellman group.
Added in version 1.1.

#define PSA_PAKE_PRIMITIVE_TYPE_DH ((psa_pake_primitive_type_t)0x02)

The values of the family and bits components of the PAKE primitive identify a specific finite field
Diffie-Hellman group, using the same mapping that is used for finite field Diffie-Hellman keys. See the
definition of psa_dh_family_t. Here family and bits refer to the values used to construct the PAKE primitive
using PSA_PAKE_PRIMITIVE().

Input and output during the operation can involve group elements and scalar values:

e The format for group elements is the same as that for public keys in the specific finite field
Diffie-Hellman group. See Key format within the definition of PSA_KEY_TYPE_DH_PUBLIC_KEY ().

e The format for scalars is the same as that for private keys in the specific finite field Diffie-Hellman
group. See Key format within the definition of PSA_KEY_TYPE_DH_PUBLIC_KEY ().

psa_pake_family_t (typedef)
Encoding of the family of the primitive associated with the PAKE.
Added in version 1.1.

typedef uint8_t psa_pake_family_t;

For more information on the family values, see PSA_PAKE_PRIMITIVE_TYPE_ECC and
PSA_PAKE_PRIMITIVE_TYPE_DH.

PSA_PAKE_PRIMITIVE (macro)
Construct a PAKE primitive from type, family and bit-size.
Added in version 1.1.

#define PSA_PAKE_PRIMITIVE (pake_type, pake_family, pake_bits) \
/* specification-defined value */

Parameters
pake_type The type of the primitive: a value of type psa_pake_primitive_type_t.
pake_family The family of the primitive. The type and interpretation of this
parameter depends on pake_type. For more information, see
PSA_PAKE_PRIMITIVE_TYPE_ECC and PSA_PAKE_PRIMITIVE_TYPE_DH.
pake_bits The bit-size of the primitive: a value of type size_t. The interpretation
of this parameter depends on pake_type and family. For more
information, see PSA_PAKE_PRIMITIVE TYPE_ECC and
PSA_PAKE_PRIMITIVE_TYPE_DH.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 340

14.0 Non-confidentia

Returns: psa_pake_primitive_t

The constructed primitive value. Return o if the requested primitive can’t be encoded as
psa_pake_primitive_t.

Description

A PAKE primitive value is used to specify a PAKE operation, as part of a PAKE cipher suite.

PSA_PAKE_PRIMITIVE_GET_TYPE (macro)
Extract the PAKE primitive type from a PAKE primitive.
Added in version 1.2.

#define PSA_PAKE_PRIMITIVE_GET_TYPE(pake_primitive) \
/* specification-defined value */

Parameters

pake_primitive A PAKE primitive: a value of type psa_pake_primitive_t

Returns: psa_pake_primitive_type_t

The PAKE primitive type, if pake_primitive is a supported PAKE primitive. Unspecified if pake_primitive is
not a supported PAKE primitive.

PSA_PAKE_PRIMITIVE_GET_FAMILY (macro)
Extract the family from a PAKE primitive.
Added in version 1.2.

#define PSA_PAKE_PRIMITIVE_GET_FAMILY(pake_primitive) \
/* specification-defined value */

Parameters

pake_primitive A PAKE primitive: a value of type psa_pake_primitive_t

Returns: psa_pake_family_t

The PAKE primitive family, if pake_primitive is a supported PAKE primitive. Unspecified if pake_primitive is
not a supported PAKE primitive.

Description

For more information on the family values, see PSA_PAKE_PRIMITIVE_TYPE_ECC and
PSA_PAKE_PRIMITIVE_TYPE_DH.

PSA_PAKE_PRIMITIVE_GET_BITS (macro)
Extract the bit-size from a PAKE primitive.
Added in version 1.2.

#define PSA_PAKE_PRIMITIVE_GET_BITS(pake_primitive) \
/* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 341
1.4.0 Non-confidentia

Parameters

pake_primitive A PAKE primitive: a value of type psa_pake_primitive_t.

Returns: size_t

The PAKE primitive bit-size, if pake_primitive is a supported PAKE primitive. Unspecified if pake_primitive is
not a supported PAKE primitive.

Description

For more information on the bit-size values, see PSA_PAKE_PRIMITIVE_TYPE_ECC and
PSA_PAKE_PRIMITIVE_TYPE_DH.

10.13.3 PAKE cipher suites

Most PAKE algorithms have parameters that must be specified by the application. These parameters include
the following:

e The cryptographic primitive used for key establishment, specified using a PAKE primitive.
e A cryptographic hash algorithm.

e \Whether the application requires the shared secret before, or after, it is confirmed.

The hash algorithm is encoded into the PAKE algorithm identifier. The psa_pake_cipher_suite_t object is
used to fully specify a PAKE operation, combining the PAKE protocol with all of the above parameters.

A PAKE cipher suite is required when setting up a PAKE operation in psa_pake_setup().

psa_pake_cipher_suite_t (typedef)
The type of an object describing a PAKE cipher suite.
Added in version 1.1.

typedef /* implementation-defined type */ psa_pake_cipher_suite_t;

This is the object that represents the cipher suite used for a PAKE algorithm. The PAKE cipher suite
specifies the PAKE algorithm, and the options selected for that algorithm. The cipher suite includes the
following attributes:

e The PAKE algorithm itself.
e The hash algorithm, encoded within the PAKE algorithm.

e The PAKE primitive, which identifies the prime order group used for the key exchange operation. See
PAKE primitives on page 338.

e \Whether to confirm the shared secret.

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in implementation-specific behavior, and are non-portable.

Before calling any function on a PAKE cipher suite object, the application must initialize it by any of the
following means:

e Set the object to all-bits-zero, for example:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 342
1.4.0 Non-confidential

psa_pake_cipher_suite_t cipher_suite;
memset (&cipher_suite, @, sizeof(cipher_suite));

e |nitialize the object to logical zero values by declaring the object as static or global without an explicit
initializer, for example:

static psa_pake_cipher_suite_t cipher_suite;
e Initialize the object to the initializer PSA_PAKE_CTPHER_SUITE_INIT, for example:
psa_pake_cipher_suite_t cipher_suite = PSA_PAKE_CIPHER_SUITE_INIT;

e Assign the result of the function psa_pake_cipher_suite_init() to the object, for example:

psa_pake_cipher_suite_t cipher_suite;
cipher_suite = psa_pake_cipher_suite_init();

Following initialization, the cipher-suite object contains the following values:

Attribute Value

algorithm PSA_ALG_NONE — an invalid algorithm identifier.

primitive 0 — an invalid PAKE primitive.

key confirmation PSA_PAKE_CONFIRMED_KEY — requesting that the secret key is confirmed before it can

be returned.

Valid algorithm, primitive, and key confirmation values must be set when using a PAKE cipher suite.

Implementation note

Implementations are recommended to define the cipher-suite object as a simple data structure, with
fields corresponding to the individual cipher suite attributes. In such an implementation, each function
psa_pake_cs_set_xxx() sets a field and the corresponding function psa_pake_cs_get_xxx() retrieves
the value of the field.

An implementation can report attribute values that are equivalent to the original one, but have a
different encoding. For example, an implementation can use a more compact representation for
attributes where many bit-patterns are invalid or not supported, and store all values that it does not
support as a special marker value. In such an implementation, after setting an invalid value, the
corresponding get function returns an invalid value which might not be the one that was originally
stored.

PSA_PAKE_CIPHER_SUITE_INIT (macro)
This macro returns a suitable initializer for a PAKE cipher suite object of type psa_pake_cipher_suite_t.

Added in version 1.1.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 343
1.4.0 Non-confidentia

#define PSA_PAKE_CIPHER_SUITE_INIT /* implementation-defined value */

psa_pake_cipher_suite_init (function)
Return an initial value for a PAKE cipher suite object.

Added in version 1.1.

psa_pake_cipher_suite_t psa_pake_cipher_suite_init(void);

Returns: psa_pake_cipher_suite_t
psa_pake_cs_get_algorithm (function)

Retrieve the PAKE algorithm from a PAKE cipher suite.
Added in version 1.1.

psa_algorithm_t psa_pake_cs_get_algorithm(const psa_pake_cipher_suite_t* cipher_suite);
Parameters
cipher_suite The cipher suite object to query.

Returns: psa_algorithm_t

The PAKE algorithm stored in the cipher suite object.

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like macro.

psa_pake_cs_set_algorithm (function)
Declare the PAKE algorithm for the cipher suite.
Added in version 1.1.

void psa_pake_cs_set_algorithm(psa_pake_cipher_suite_t* cipher_suite,
psa_algorithm_t alg);

Parameters
cipher_suite The cipher suite object to write to.
alg The PAKE algorithm to write: a value of type psa_algorithm_t such
that PSA_ALG_IS_PAKE(alg) is true.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 344

14.0 Non-confidentia

Returns: void
Description

This function overwrites any PAKE algorithm previously set in cipher_suite.

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like macro.

psa_pake_cs_get_primitive (function)
Retrieve the primitive from a PAKE cipher suite.

Added in version 1.1.
psa_pake_primitive_t psa_pake_cs_get_primitive(const psa_pake_cipher_suite_t* cipher_suite);
Parameters

cipher_suite The cipher suite object to query.

Returns: psa_pake_primitive_t

The primitive stored in the cipher suite object.

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like macro.

psa_pake_cs_set_primitive (function)
Declare the primitive for a PAKE cipher suite.
Added in version 1.1.

void psa_pake_cs_set_primitive(psa_pake_cipher_suite_t* cipher_suite,
psa_pake_primitive_t primitive);

Parameters
cipher_suite The cipher suite object to write to.
primitive The PAKE primitive to write: a value of type psa_pake_primitive_t. If
this is 0, the primitive type in cipher_suite becomes unspecified.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 345

14.0 Non-confidential

Returns: void
Description

This function overwrites any primitive previously set in cipher_suite.

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like macro.

PSA_PAKE_CONFIRMED_KEY (macro)
A key confirmation value that indicates an confirmed key in a PAKE cipher suite.

Added in version 1.2.

#define PSA_PAKE_CONFIRMED_KEY @
This key confirmation value will result in the PAKE algorithm exchanging data to verify that the shared key is
identical for both parties. This is the default key confirmation value in an initialized PAKE cipher suite object.

Some algorithms do not include confirmation of the shared key.

PSA_PAKE_UNCONFIRMED_KEY (macro)
A key confirmation value that indicates an unconfirmed key in a PAKE cipher suite.

Added in version 1.2.

#define PSA_PAKE_UNCONFIRMED_KEY 1

This key confirmation value will result in the PAKE algorithm terminating prior to confirming that the
resulting shared key is identical for both parties.

Some algorithms do not support returning an unconfirmed shared key.

A Warning

When the shared key is not confirmed as part of the PAKE operation, the application is responsible for
mitigating risks that arise from the possible mismatch in the output keys.

psa_pake_cs_get_key_confirmation (function)
Retrieve the key confirmation from a PAKE cipher suite.

Added in version 1.2.

uint32_t psa_pake_cs_get_key_confirmation(const psa_pake_cipher_suite_t* cipher_suite);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 346
1.4.0 Non-confidential

Parameters

cipher_suite The cipher suite object to query.

Returns: uint32_t
A key confirmation value: either PSA_PAKE_CONFIRMED_KEY Or PSA_PAKE_UNCONFIRMED_KEY.

Description

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like macro.

psa_pake_cs_set_key_confirmation (function)
Declare the key confirmation from a PAKE cipher suite.

Added in version 1.2.

void psa_pake_cs_set_key_confirmation(psa_pake_cipher_suite_t* cipher_suite,
uint32_t key_confirmation);

Parameters
cipher_suite The cipher suite object to write to.
key_confirmation The key confirmation value to write: either PSA_PAKE_CONFIRMED_KEY Or

PSA_PAKE_UNCONFIRMED_KEY.

Returns: void
Description

This function overwrites any key confirmation previously set in cipher_suite.

The documentation of individual PAKE algorithms specifies which key confirmation values are valid for the
algorithm.

Implementation note

This is a simple accessor function that is not required to validate its inputs. It can be efficiently
implemented as a static inline function or a function-like macro.

10.13.4 PAKE roles

Some PAKE algorithms need to know which role each participant is taking in the algorithm. For example:

e Augmented PAKE algorithms typically have a client and a server participant.

e Some symmetric PAKE algorithms assign an order to the two participants.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 347
1.4.0 Non-confidential

psa_pake_role_t (typedef)
Encoding of the application role in a PAKE algorithm.
Added in version 1.1.

typedef uint8_t psa_pake_role_t;

This type is used to encode the application’s role in the algorithm being executed. For more information see
the documentation of individual PAKE role constants.

PSA_PAKE_ROLE_NONE (macro)
A value to indicate no role in a PAKE algorithm.

Added in version 1.1.

#define PSA_PAKE_ROLE_NONE ((psa_pake_role_t)0x00)

This value can be used in a call to psa_pake_set_role() for symmetric PAKE algorithms which do not assign
roles.

PSA_PAKE_ROLE_FIRST (macro)
The first peer in a balanced PAKE.
Added in version 1.1.

#define PSA_PAKE_ROLE_FIRST ((psa_pake_role_t)0x01)

Although balanced PAKE algorithms are symmetric, some of them need the peers to be ordered for the
transcript calculations. If the algorithm does not need a specific ordering, then either do not call
psa_pake_set_role(), O USe PSA_PAKE_ROLE_NONE as the role parameter.

PSA_PAKE_ROLE_SECOND (macro)
The second peer in a balanced PAKE.
Added in version 1.1.

#define PSA_PAKE_ROLE_SECOND ((psa_pake_role_t)@x02)

Although balanced PAKE algorithms are symmetric, some of them need the peers to be ordered for the
transcript calculations. If the algorithm does not need a specific ordering, then either do not call
psa_pake_set_role(), Or Use PSA_PAKE_ROLE_NONE as the role parameter.

PSA_PAKE_ROLE_CLIENT (macro)
The client in an augmented PAKE.
Added in version 1.1.

#define PSA_PAKE_ROLE_CLIENT ((psa_pake_role_t)@x11)

Augmented PAKE algorithms need to differentiate between client and server.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 348
1.4.0 Non-confidential

PSA_PAKE_ROLE_SERVER (macro)
The server in an augmented PAKE.

Added in version 1.1.

#define PSA_PAKE_ROLE_SERVER ((psa_pake_role_t)@x12)

Augmented PAKE algorithms need to differentiate between client and server.

10.13.5 PAKE step types

psa_pake_step_t (typedef)
Encoding of input and output steps for a PAKE algorithm.
Added in version 1.1.

typedef uint8_t psa_pake_step_t;

Some PAKE algorithms need to exchange more data than a single key share. This type encodes additional
input and output steps for such algorithms.

PSA_PAKE_STEP_KEY_SHARE (macro)
A key share being sent to or received from a PAKE participant.
Added in version 1.1.

#define PSA_PAKE_STEP_KEY_SHARE ((psa_pake_step_t)0x01)

The format for both input and output using this step is the same as the format for public keys on the group
specified by the PAKE operation’s primitive.

The public-key formats are defined in the documentation for psa_export_public_key ().

For information regarding how the group is determined, consult the documentation PSA_PAKE_PRIMITIVE().

PSA_PAKE_STEP_ZK_PUBLIC (macro)
A Schnorr NIZKP public key being sent to or received from a PAKE participant.
Added in version 1.1.

#define PSA_PAKE_STEP_ZK PUBLIC ((psa_pake_step_t)0x02)
This is the ephemeral public key in the Schnorr Non-Interactive Zero-Knowledge Proof, this is the value
denoted by V in [RFC8235].

The format for both input and output at this step is the same as that for public keys on the group specified
by the PAKE operation’s primitive.

For more information on the format, consult the documentation of psa_export_public_key().

For information regarding how the group is determined, consult the documentation PSA_PAKE_PRIMITIVE().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 349
1.4.0 Non-confidential

PSA_PAKE_STEP_ZK_PROOF (macro)
A Schnorr NIZKP proof being sent to or received from a PAKE participant.
Added in version 1.1.

#define PSA_PAKE_STEP_ZK_PROOF ((psa_pake_step_t)0x03)

This is the proof in the Schnorr Non-Interactive Zero-Knowledge Proof, this is the value denoted by rin
[RFC8235].

Both for input and output, the value at this step is an integer less than the order of the group specified by
the PAKE operation’s primitive. The format depends on the group as well:

e For Montgomery curves, the encoding is little endian.

e For other elliptic curves, and for finite field Diffie-Hellman groups, the encoding is big endian. See
[SEC1] §2.3.8.

In both cases leading zeroes are permitted as long as the length in bytes does not exceed the byte length of
the group order.

For information regarding how the group is determined, consult the documentation PSA_PAKE_PRIMITIVE().

PSA_PAKE_STEP_CONFIRM (macro)
A key confirmation value being sent to or received from a PAKE participant.

Added in version 1.2.

#define PSA_PAKE_STEP_CONFIRM ((psa_pake_step_t)0x04)

This value is used during the key confirmation phase of a PAKE protocol. The use of this step, and format of
the value depends on the algorithm and cipher suite:

e For a SPAKE2+ algorithm, the format for both input and output at this step is the same as the output
of the MAC algorithm specified in the cipher suite. See SPAKEZ+ operation on page 374.

e For a WPA3-SAE algorithm, the format for both input and output at this step is a 2-byte little-endian
send-confirm counter, followed by the confirm value, which is the output from the hash algorithm
specified in the cipher suite. See WPA3-SAE operation on page 384.

PSA_PAKE_STEP_SALT (macro)
A salt value used for deriving shared secrets within a PAKE operation.

Added in version 1.4.

#define PSA_PAKE_STEP_SALT ((psa_pake_step_t)@x05)

This input can be used during the key exchange phase of a PAKE protocol. The use of this step, and format
of the value depends on the algorithm and cipher suite:

e For a WPAB-SAE algorithm, a salt value must be provided as defined in [[EEE-802.11] §12.4.5.4. See
WPA3-SAE operation on page 384.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 350
1.4.0 Non-confidential

PSA_PAKE_STEP_COMMIT (macro)

A commitment value being sent to or received from a PAKE participant.

Added in version 1.4.

#define PSA_PAKE_STEP_COMMIT ((psa_pake_step_t)0x06)

This input and output is used during the key exchange phase of a PAKE protocol. The use of this step, and
format of the value depends on the algorithm and cipher suite:

e For a WPA3-SAE algorithm, the format for input and output at this step is a concatenation of the
commit-scalar and COMMIT-ELEMENT values, as defined in [IEEE-802.11] §12.4.7.3.

See WPA3-SAE operation on page 384.

Note:

These values are adjacent in the WPA3-SAE Authentication frame defined in [IEEE-802.11]
§9.3.3.11. The concatenated value can be output directly to, or input directly from, the frame
buffer.

PSA_PAKE_STEP_CONFIRM_COUNT (macro)
A counter used as part of key confirmation.

Added in version 1.4.

#define PSA_PAKE_STEP_CONFIRM_COUNT ((psa_pake_step_t)@x07)

This value is input during the key confirmation phase of a PAKE protocol. It enables multiple confirmation
attempts to result in distinct confirmation values. The use of this step, and format of the value depends on
the algorithm and cipher suite:

e For a WPA3-SAE algorithm, the format for input at this step is the 2-byte little-endian send-confirm
counter. See WPA3-SAE operation on page 384.

PSA_PAKE_STEP_KEY_ID (macro)
A key identifier value from a PAKE operation.

Added in version 1.4.

#define PSA_PAKE_STEP_KEY_ID ((psa_pake_step_t)0x08)

This value can be output from a PAKE operation following key confirmation. The use of this step, and
format of the value depends on the algorithm and cipher suite:

e For a WPA3-SAE algorithm, the format of the output at this step is the 16-byte PMKID. See
WPAS3-SAE operation on page 384.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 351
1.4.0 Non-confidential

10.13.6 Multi-part PAKE operations

psa_pake_operation_t (typedef)
The type of the state object for PAKE operations.
Added in version 1.1.

typedef /* implementation-defined type */ psa_pake_operation_t;

Before calling any function on a PAKE operation object, the application must initialize it by any of the
following means:

e Set the object to all-bits-zero, for example:

psa_pake_operation_t operation;
memset (&operation, @, sizeof(operation));

e |nitialize the object to logical zero values by declaring the object as static or global without an explicit
initializer, for example:

static psa_pake_operation_t operation;

e |nitialize the object to the initializer PSA_PAKE_OPERATION_INIT, for example:

psa_pake_operation_t operation = PSA_PAKE_OPERATION_INIT;

e Assign the result of the function psa_pake_operation_init() to the object, for example:

psa_pake_operation_t operation;
operation = psa_pake_operation_init();

This is an implementation-defined type. Applications that make assumptions about the content of this
object will result in implementation-specific behavior, and are non-portable.

PSA_PAKE_OPERATION_INIT (macro)
This macro returns a suitable initializer for a PAKE operation object of type psa_pake_operation_t.

Added in version 1.1.

#define PSA_PAKE_OPERATION_INIT /* implementation-defined value */

psa_pake_operation_init (function)
Return an initial value for a PAKE operation object.

Added in version 1.1.

psa_pake_operation_t psa_pake_operation_init(void);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 352
1.4.0 Non-confidential

Returns: psa_pake_operation_t

psa_pake_setup (function)

Setup a password-authenticated key exchange.

Added in version 1.1.

Changed in version 1.2: Added key to the operation setup.

psa_status_t psa_pake_setup(psa_pake_operation_t * operation,
psa_key_id_t password_key,
const psa_pake_cipher_suite_t * cipher_suite);

Parameters

operation

password_key

cipher_suite

Returns: psa_status_t
PSA_SUCCESS

PSA_ERROR_BAD_STATE

PSA_ERROR_INVALID_HANDLE
PSA_ERROR_NOT_PERMITTED

PSA_ERROR_INVALID_ARGUMENT

PSA_ERROR_NOT_SUPPORTED

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates

The operation object to set up. It must have been initialized as per the
documentation for psa_pake_operation_t and not yet in use.

Identifier of the key holding the password or a value derived from the
password. It must remain valid until the operation terminates.

The valid key types depend on the PAKE algorithm, and participant
role. Refer to the documentation of individual PAKE algorithms for
more information.

The key must permit the usage PSA_KEY_USAGE_DERIVE.

The cipher suite to use. A PAKE cipher suite fully characterizes a PAKE
algorithm, including the PAKE algorithm.

The cipher suite must be compatible with the key type of password_key.

Success. The operation is now active.
The following conditions can result in this error:

e The operation state is not valid: it must be inactive.

e The library requires initializing by a call to psa_crypto_init().
password_key is not a valid key identifier.

password_key does not have the PSA_KEY_USAGE_DERIVE flag, or it does
not permit the algorithm in cipher_suite.

The following conditions can result in this error:
e The algorithm in cipher_suite is not a PAKE algorithm, or
encodes an invalid hash algorithm.

e The PAKE primitive in cipher_suite is not compatible with the
PAKE algorithm.

e The key confirmation value in cipher_suite is not compatible with
the PAKE algorithm and primitive.

e The key type or key size of password_key is not compatible with
cipher_suite

The following conditions can result in this error:

e The algorithm in cipher_suite is not a supported PAKE algorithm,
or encodes an unsupported hash algorithm.

Page 353
Non-confidentia

e The PAKE primitive in cipher_suite is not supported or not
compatible with the PAKE algorithm.

e The key confirmation value in cipher_suite is not supported, or
not compatible, with the PAKE algorithm and primitive.

e The key type or key size of password_key is not supported with
cipher suite.

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description
The sequence of operations to set up a password-authenticated key exchange operation is as follows:

1. Allocate a PAKE operation object which will be passed to all the functions listed here.

2. Initialize the operation object with one of the methods described in the documentation for
psa_pake_operation_t. For example, using PSA_PAKE_OPERATION_INIT.

3. Call psa_pake_setup() to specify the cipher suite and provide the password or password-derived key.

4. Call psa_pake_set_xxx() functions on the operation to complete the setup. The exact sequence of
psa_pake_set_xxx() functions that needs to be called depends on the algorithm in use.

A typical sequence of calls to perform a password-authenticated key exchange:

1. Call psa_pake_output (operation, PSA_PAKE_STEP_KEY_SHARE, ...) to get the key share that needs to be
sent to the peer.

2. Call psa_pake_input(operation, PSA_PAKE_STEP_KEY_SHARE, ...) to provide the key share that was
received from the peer.

3. Depending on the algorithm additional calls to psa_pake_output() and psa_pake_input () might be
necessary.

4. Call psa_pake_get_shared_key() to access the shared secret.

Refer to the documentation of individual PAKE algorithms for details on the required set up and operation
for each algorithm, and for constraints on the format and content of valid passwords.

After a successful call to psa_pake_setup(), the operation is active, and the application must eventually
terminate the operation. The following events terminate an operation:

e A successful call to psa_pake_get_shared_key().

e A call to psa_pake_abort().

If psa_pake_setup() returns an error, the operation object is unchanged. If a subsequent function call with an
active operation returns an error, the operation enters an error state.

To abandon an active operation, or reset an operation in an error state, call psa_pake_abort().

See Multi-part operations on page 27.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 354
1.4.0 Non-confidential

psa_pake_set_role (function)
Set the application role for a password-authenticated key exchange.

Added in version 1.1.

psa_status_t psa_pake_set_role(psa_pake_operation_t * operation,
psa_pake_role_t role);

Parameters
operation Active PAKE operation.
role A value of type psa_pake_role_t indicating the application role in the

PAKE algorithm. See PAKE roles on page 347.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active, and
psa_pake_set_role(), psa_pake_input(), and psa_pake_output()
must not have been called yet.

e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e roleis not a valid PAKE role in the operation’s algorithm.
e role is not compatible with the operation’s key type.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e role is not a valid PAKE role, or is not supported for the
operation’s algorithm.

e role is not supported with the operation’s key type.

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Not all PAKE algorithms need to differentiate the communicating participants. For PAKE algorithms that do
not require a role to be specified, the application can do either of the following:

e Not call psa_pake_set_role() on the PAKE operation.

e Call psa_pake_set_role() with the PSA_PAKE_ROLE_NONE role.
Refer to the documentation of individual PAKE algorithms for more information.
psa_pake_set_user (function)

Set the user ID for a password-authenticated key exchange.

Added in version 1.1.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 355
1.4.0 Non-confidential

psa_status_t psa_pake_set_user(psa_pake_operation_t * operation,
const uint8_t * user_id,
size_t user_id_len);

Parameters
operation Active PAKE operation.
user_id The user ID to authenticate with.
user_id_len Size of the user_id buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e [he operation state is not valid: it must be active, and
psa_pake_set_user(), psa_pake_input(), and psa_pake_output()
must not have been called yet.

e The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_ARGUMENT user_id is not valid for the operation’s algorithm and cipher suite.
PSA_ERROR_NOT_SUPPORTED The value of user_id is not supported by the implementation.
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Call this function to set the user ID. For PAKE algorithms that associate a user identifier with both
participants in the session, also call psa_pake_set_peer() with the peer ID. For PAKE algorithms that
associate a single user identifier with the session, call psa_pake_set_user() only.

Refer to the documentation of individual PAKE algorithms for more information.

psa_pake_set_peer (function)

Set the peer ID for a password-authenticated key exchange.

Added in version 1.1.

psa_status_t psa_pake_set_peer(psa_pake_operation_t * operation,

const uint8_t * peer_id,
size_t peer_id_len);

Parameters
operation Active PAKE operation.
peer_id The peer’s ID to authenticate.
peer_id_len Size of the peer_id buffer in bytes.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 356

1.4.0 Non-confidential

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active, and
psa_pake_set_peer(), psa_pake_input(), and psa_pake_output()
must not have been called yet.

e Calling psa_pake_set_peer() is invalid with the operation’s
algorithm.

e The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_INVALID_ARGUMENT peer_id is not valid for the operation’s algorithm and cipher suite.
PSA_ERROR_NOT_SUPPORTED The value of peer_id is not supported by the implementation.
PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Call this function in addition to psa_pake_set_user() for PAKE algorithms that associate a user identifier with
both participants in the session. For PAKE algorithms that associate a single user identifier with the session,
call psa_pake_set_user() only.

Refer to the documentation of individual PAKE algorithms for more information.

psa_pake_set_context (function)

Set the context data for a password-authenticated key exchange.
Added in version 1.2.

psa_status_t psa_pake_set_context(psa_pake_operation_t * operation,

const uint8_t * context,
size_t context_len);

Parameters
operation Active PAKE operation.
context The peer’s ID to authenticate.
context_len Size of the context buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active, and
psa_pake_set_context(), psa_pake_input(), and psa_pake_output()
must not have been called vyet.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 357
1.4.0 Non-confidential

e Calling psa_pake_set_context() is invalid with the operation’s

algorithm.

e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_ARGUMENT context is not valid for the operation’s algorithm and cipher suite.

PSA_ERROR_NOT_SUPPORTED The value of context is not supported by the implementation.

PSA_ERROR_NOT_SUPPORTED
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Call this function for PAKE algorithms that accept additional context data as part of the protocol setup.

Refer to the documentation of individual PAKE algorithms for more information.

psa_pake_output (function)
Get output for a step of a password-authenticated key exchange.

Added in version 1.1.

psa_status_t psa_pake_output(psa_pake_operation_t * operation,
psa_pake_step_t step,
uint8_t * output,
size_t output_size,
size_t * output_length);

Parameters
operation
step

output

output_size

output_length

IHI 0086
1.4.0

Active PAKE operation.
The step of the algorithm for which the output is requested.

Buffer where the output is to be written. The format of the output
depends on the step, see PAKE step types on page 349.

Size of the output buffer in bytes. This must be appropriate for the
cipher suite and output step:

e A sufficient output size is PSA_PAKE_OUTPUT_SIZE(alg, primitive,
step) where alg and primitive are the PAKE algorithm and
primitive in the operation’s cipher suite, and step is the output
step.

e PSA_PAKE_OUTPUT_MAX_SIZE evaluates to the maximum output size
of any supported PAKE algorithm, primitive and step.

On success, the number of bytes of the returned output.

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 358

Non-confidentia

Returns: psa_status_t
PSA_SUCCESS Success. The first (*output_length) bytes of output contain the output.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active and fully set up,
and this call must conform to the algorithm’s requirements for
ordering of input and output steps.

e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_BUFFER_TOO_SMALL The size of the output buffer is too small. PSA_PAKE_OUTPUT_SIZE() or
PSA_PAKE_OUTPUT_MAX_SIZE can be used to determine a sufficient buffer
size.

PSA_ERROR_INVALID_ARGUMENT step is not compatible with the operation’s algorithm.

PSA_ERROR_NOT_SUPPORTED step is not supported with the operation’s algorithm.

PSA_ERROR_INSUFFICIENT_ENTROPY
PSA_ERROR_INSUFFICIENT_MEMORY
PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT
PSA_ERROR_DATA_INVALID

Description

Depending on the algorithm being executed, you might need to call this function several times or you might
not need to call this at all.

The exact sequence of calls to perform a password-authenticated key exchange depends on the algorithm
in use. Refer to the documentation of individual PAKE algorithms for more information.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_pake_abort().

psa_pake_input (function)

Provide input for a step of a password-authenticated key exchange.

Added in version 1.1.

psa_status_t psa_pake_input(psa_pake_operation_t * operation,
psa_pake_step_t step,

const uint8_t * input,
size_t input_length);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 359
1.4.0 Non-confidentia

Parameters

operation Active PAKE operation.
step The step for which the input is provided.
input Buffer containing the input. The format of the input depends on the

step, see PAKE step types on page 349.

input_length Size of the input buffer in bytes.

Returns: psa_status_t
PSA_SUCCESS Success.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

e The operation state is not valid: it must be active and fully set up,
and this call must conform to the algorithm’s requirements for
ordering of input and output steps.

e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_INVALID_SIGNATURE The verification fails for a PSA_PAKE_STEP_ZK_PROOF Or
PSA_PAKE_STEP_CONFIRM input step.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

e step is not compatible with the operation’s algorithm.

e The inputis not valid for the operation’s algorithm, cipher suite or
step.

PSA_ERROR_NOT_SUPPORTED The following conditions can result in this error:

e step is not supported with the operation’s algorithm.

e The input is not supported for the operation’s algorithm, cipher
suite or step.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description

Depending on the algorithm being executed, you might need to call this function several times or you might
not need to call this at all.

The exact sequence of calls to perform a password-authenticated key exchange depends on the algorithm
in use. Refer to the documentation of individual PAKE algorithms for more information.

PSA_PAKE_INPUT_SIZE() Or PSA_PAKE_INPUT_MAX_SIZE can be used to allocate buffers of sufficient size to
transfer inputs that are received from the peer into the operation.

If this function returns an error status, the operation enters an error state and must be aborted by calling
psa_pake_abort().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 360
1.4.0 Non-confidential

psa_pake_get_shared_key (function)

Extract the shared secret from the PAKE as a key.

Added in version 1.2.

psa_status_t psa_pake_get_shared_key(psa_pake_operation_t * operation,

Parameters
operation

attributes

key

IHI 0086
1.4.0

const psa_key_attributes_t * attributes,
psa_key_id_t * key);

Active PAKE operation.

The attributes for the new key.
The following attributes are required for all keys:

e The key type. All PAKE algorithms can output a key of type
PSA_KEY_TYPE_DERIVE Or PSA_KEY_TYPE_HMAC. PAKE algorithms that
produce a pseudorandom shared secret, can also output
block-cipher key types, for example PSA_KEY_TYPE_AES. Refer to

the documentation of individual PAKE algorithms for more
information.

The following attributes must be set for keys used in cryptographic
operations:

e The key permitted-algorithm policy, see Permitted algorithms on
page 101.
e The key usage flags, see Key usage flags on page 102.
The following attributes must be set for keys that do not use the
default PSA_KEY_LIFETIME_VOLATILE lifetime:
e The key lifetime, see Key lifetimes on page 90.
e The key identifier is required for a key with a persistent lifetime,
see Key identifiers on page 98.
The following attributes are optional:

e If the key size is nonzero, it must be equal to the size of the PAKE
shared secret.

Note:

This is an input parameter: it is not updated with the final key
attributes. The final attributes of the new key can be queried by
calling psa_get_key_attributes() with the key's identifier.

On success, an identifier for the newly created key. PSA_KEY_ID_NULL on
failure.

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 361

Non-confidentia

Returns: psa_status_t

PSA_SUCCESS Success. If the key is persistent, the key material and the key’s
metadata have been saved to persistent storage.

PSA_ERROR_BAD_STATE The following conditions can result in this error:
e The state of PAKE operation operation is not valid: it must be
ready to return the shared secret.
For an unconfirmed key, this will be when the key-exchange
output and input steps are complete, but prior to any
key-confirmation output and input steps.

For a confirmed key, this will be when all key-exchange and
key-confirmation output and input steps are complete.

e The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_NOT_PERMITTED The implementation does not permit creating a key with the specified
attributes due to some implementation-specific policy.

PSA_ERROR_ALREADY_EXISTS This is an attempt to create a persistent key, and there is already a
persistent key with the given identifier.

PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
e The key type is not valid for output from this operation’s
algorithm.
The key size is nonzero.
The key lifetime is invalid.
The key identifier is not valid for the key lifetime.
The key usage flags include invalid values.
The key's permitted-usage algorithm is invalid.
The key attributes, as a whole, are invalid.

PSA_ERROR_NOT_SUPPORTED The key attributes, as a whole, are not supported for creation from a
PAKE secret, either by the implementation in general or in the
specified storage location.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED
PSA_ERROR_STORAGE_FAILURE
PSA_ERROR_DATA_CORRUPT

PSA_ERROR_DATA_INVALID

Description
The shared secret is retrieved as a key. Its location, policy, and type are taken from attributes.

The size of the returned key is always the bit-size of the PAKE shared secret, rounded up to a whole
number of bytes. The size of the shared secret is dependent on the PAKE algorithm and cipher suite.

This is the final call in a PAKE operation, which retrieves the shared secret as a key. It is recommended that
this key is used as an input to a key-derivation operation to produce additional cryptographic keys. For

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 362
1.4.0 Non-confidential

some PAKE algorithms, the shared secret is also suitable for use as a key in cryptographic operations such
as encryption. Refer to the documentation of individual PAKE algorithms for more information.

Depending on the key confirmation requested in the cipher suite, psa_pake_get_shared_key() must be called
either before or after the key-confirmation output and input steps for the PAKE algorithm. The key
confirmation affects the guarantees that can be made about the shared key:

Unconfirmed key If the cipher suite used to set up the operation requested an unconfirmed key, the
application must call psa_pake_get_shared_key () after the key-exchange output and
input steps are completed. The PAKE algorithm provides a cryptographic guarantee
that only a peer who used the same password, and identity inputs, is able to
compute the same key. However, there is no guarantee that the peer is the
participant it claims to be, and was able to compute the same key.

Since the peer is not authenticated, no action should be taken that assumes that
the peer is who it claims to be. For example, do not access restricted resources on
the peer’s behalf until an explicit authentication has succeeded.

Note:

Some PAKE algorithms do not enable the output of the shared secret until it
has been confirmed.

Confirmed key If the cipher suite used to set up the operation requested a confirmed key, the
application must call psa_pake_get_shared_key() after the key-exchange and
key-confirmation output and input steps are completed.

Following key confirmation, the PAKE algorithm provides a cryptographic guarantee
that the peer used the same password and identity inputs, and has computed the
identical shared secret key.

Note:
Some PAKE algorithms do not include any key-confirmation steps.

The exact sequence of calls to perform a password-authenticated key exchange depends on the algorithm
in use. Refer to the documentation of individual PAKE algorithms for more information.

When this function returns successfully, operation becomes inactive. If this function returns an error status,
the operation enters an error state and must be aborted by calling psa_pake_abort ().

psa_pake_abort (function)
Abort a PAKE operation.
Added in version 1.1.

psa_status_t psa_pake_abort(psa_pake_operation_t * operation);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 363
1.4.0 Non-confidential

Parameters

operation Initialized PAKE operation.

Returns: psa_status_t

PSA_SUCCESS Success. The operation object can now be discarded or reused.
PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

Aborting an operation frees all associated resources except for the operation object itself. Once aborted,
the operation object can be reused for another operation by calling psa_pake_setup() again.

This function can be called any time after the operation object has been initialized as described in
psa_pake_operation_t.

In particular, calling psa_pake_abort () after the operation has been terminated by a call to psa_pake_abort()
or psa_pake_get_shared_key() is safe and has no effect.

10.13.7 PAKE support macros

PSA_PAKE_OUTPUT_SIZE (macro)
Sufficient output buffer size for psa_pake_output(), in bytes.

Added in version 1.1.

#define PSA_PAKE_OUTPUT_SIZE(alg, primitive, output_step) \
/* implementation-defined value */

Parameters
alg A PAKE algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_PAKE (alg) is true.
primitive A primitive of type psa_pake_primitive_t that is compatible with
algorithm alg.
output_step A value of type psa_pake_step_t that is valid for the algorithm alg.
Returns

A sufficient output buffer size for the specified PAKE algorithm, primitive, and output step. An
implementation can return either @ or a correct size for a PAKE algorithm, primitive, and output step that it
recognizes, but does not support. If the parameters are not valid, the return value is unspecified.

Description

If the size of the output buffer is at least this large, it is guaranteed that psa_pake_output() will not fail due
to an insufficient buffer size. The actual size of the output might be smaller in any given call.

See also PSA_PAKE_OUTPUT_MAX_SIZE

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 364
1.4.0 Non-confidentia

PSA_PAKE_OUTPUT_MAX_SIZE (macro)

Sufficient output buffer size for psa_pake_output() for any of the supported PAKE algorithms, primitives and
output steps.

Added in version 1.1.

#define PSA_PAKE_OUTPUT_MAX_SIZE /* implementation-defined value */
If the size of the output buffer is at least this large, it is guaranteed that psa_pake_output () will not fail due
to an insufficient buffer size.

See also PSA_PAKE_OUTPUT_SIZE().

PSA_PAKE_INPUT_SIZE (macro)
Sufficient buffer size for inputs to psa_pake_input().
Added in version 1.1.

#define PSA_PAKE_INPUT_SIZE(alg, primitive, input_step) \
/* implementation-defined value */

Parameters
alg A PAKE algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_PAKE (alg) is true.
primitive A primitive of type psa_pake_primitive_t that is compatible with
algorithm alg.
input_step A value of type psa_pake_step_t that is valid for the algorithm alg.
Returns

A sufficient buffer size for the specified PAKE algorithm, primitive, and input step. An implementation can
return either @ or a correct size for a PAKE algorithm, primitive, and output step that it recognizes, but does
not support. If the parameters are not valid, the return value is unspecified.

Description

The value returned by this macro is guaranteed to be large enough for any valid input to psa_pake_input() in
an operation with the specified parameters.

This macro can be useful when transferring inputs from the peer into the PAKE operation.

See also PSA_PAKE_INPUT_MAX_SIZE

PSA_PAKE_INPUT_MAX_SIZE (macro)

Sufficient buffer size for inputs to psa_pake_input () for any of the supported PAKE algorithms, primitives
and input steps.

Added in version 1.1.

#define PSA_PAKE_INPUT_MAX_SIZE /* implementation-defined value */

This macro can be useful when transferring inputs from the peer into the PAKE operation.

See also PSA_PAKE_INPUT_SIZE().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 365
1.4.0 Non-confidential

10.13.8 The J-PAKE protocol

J-PAKE is the password-authenticated key exchange by juggling protocol, defined by J-PAKE:
Password-Authenticated Key Exchange by Juggling [RFC8236]. This protocol uses the Schnorr Non-Interactive
Zero-Knowledge Proof (NIZKP), as defined by Schnorr Non-interactive Zero-Knowledge Proof [RFC8235].

J-PAKE is a balanced PAKE, without key confirmation.

J-PAKE cipher suites
When setting up a PAKE cipher suite to use the J-PAKE protocol:

e Use the PSA_ALG_JPAKE() algorithm, parameterized by the required hash algorithm.
e Use a PAKE primitive for the required elliptic curve, or finite field group.
e J-PAKE does not confirm the shared secret key that results from the key exchange.

For example, the following code creates a cipher suite to select J-PAKE using P-256 with the SHA-256 hash
function:

psa_pake_cipher_suite_t cipher_suite = PSA_PAKE_CIPHER_SUITE_INIT;

psa_pake_cs_set_algorithm(&cipher_suite, PSA_ALG_JPAKE(PSA_ALG_SHA_256));
psa_pake_cs_set_primitive(&cipher_suite,
PSA_PAKE_PRIMITIVE (PSA_PAKE_PRIMITIVE_TYPE_ECC,
PSA_ECC_FAMILY_SECP_R1, 256));
psa_pake_cs_set_key_confirmation(&cipher_suite, PSA_PAKE_UNCONFIRMED_KEY);

More information on selecting a specific elliptic curve or finite field Diffie-Hellman group is provided with
the PSA_PAKE_PRIMITIVE_TYPE_ECC and PSA_PAKE_PRIMITIVE_TYPE_DH constants.

J-PAKE password processing

The PAKE operation for J-PAKE expects a key of type type PSA_KEY_TYPE_PASSWORD Or
PSA_KEY_TYPE_PASSWORD_HASH". The same key value must be provided to the PAKE operation in both
participants.

The key can be the password text itself, in an agreed character encoding, or some value derived from the
password, as required by a higher level protocol. For low-entropy passwords, it is recommended that a
key-stretching derivation algorithm, such as PBKDF2, is used, and the resulting password hash is used as
the key input to the PAKE operation.

J-PAKE operation
The J-PAKE operation follows the protocol shown in Figure 3 on page 367.

Setup
J-PAKE does not assign roles to the participants, so it is not necessary to call psa_pake_set_role().
J-PAKE requires both an application and a peer identity. If the peer identity provided to psa_pake_set_peex()

does not match the data received from the peer, then the call to psa_pake_input () for the
PSA_PAKE_STEP_ZK_PROOF step will fail with PSA_ERROR_INVALID_SIGNATURE.

J-PAKE does not use a context. A call to psa_pake_set_context() for a J-PAKE operation will fail with
PSA_ERROR_BAD_STATE.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 366
1.4.0 Non-confidential

[Shared information: cipher suite, secret s, Userld, and Peerld %

psa_pake_setup()
psa_pake_set_user()
psa_pake_set_peer()

Generate x1 and x2 Generate x3 and x4
Compute public keys g1 and g2 Compute public keys g3 and g4
Compute ZKP (V1, r1) for g1 and (V2, r2) for g2 Compute ZKPs (V3, r3) for g3 and (V4, r4) for g4

psa_pake_output() for g1,V1,r1,g2,V2,and r2

(g1,V1,r1,82,V2,r2)

(g3,V3,r3, g4, V4, rd)

psa_pake_input() for g3, V3,r3, g4, V4, and r4

[Verify ZKPs and compute A and ZKP (V5, r5) for x2*s % [Verify ZKPs and compute B and ZKP (Vé, r6) for x4*s %

psa_pake_output() for A, V5, and r5

(A, V5, r5)

(B, V6, r6)

psa_pake_input() for B, V6, and ré

[Verify ZKP and compute Ka % [Verify ZKP and compute Kb %

[If both sides used the same secret s, then Ka = Kb %

psa_pake_get_shared_key() to extract Ka

Figure 3 The J-PAKE protocol

The variable names 1, g1, and so on, are taken from the finite field implementation of J-PAKE in [RFC8236] §2.
Details of the computation for the key shares and zero-knowledge proofs are in [RFC8236] and [RFC8235].

The following steps demonstrate the application code for ‘User’ in Figure 3. The code flow for the ‘Peer’ is
the same as for ‘User’, as J-PAKE is a balanced PAKE.

1. To prepare a J-PAKE operation, initialize and set up a psa_pake_operation_t object by calling the
following functions:

psa_pake_operation_t jpake = PSA_PAKE_OPERATION_INIT;
(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 367
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8236.html#section-2

(continued from previous page)

psa_pake_setup(&jpake, pake_key, &cipher_suite);
psa_pake_set_user(&jpake, ...);
psa_pake_set_peer(&jpake, ...);

See J-PAKE cipher suites on page 366 and J-PAKE password processing on page 366 for details on the
requirements for the cipher suite and key.

The key material is used as an array of bytes, which is converted to an integer as described in SEC 1:
Elliptic Curve Cryptography [SEC1] §2.3.8, before reducing it modulo q. Here, ¢ is the order of the
group defined by the cipher-suite primitive. psa_pake_setup() will return an error if the result of the
conversion and reduction is .

Key exchange

After setup, the key exchange flow for J-PAKE is as follows:

2. Round one.

The application can either extract the round one output values first, and then provide the round one
inputs that are received from the Peer; or provide the peer inputs first, and then extract the outputs.
To get the first round data that needs to be sent to the peer, make the following calls to
psa_pake_output(), in the order shown:
// Get gl
psa_pake_output(&jpake, PSA_PAKE_STEP_KEY_SHARE, ...);
// Get V1, the ZKP public key for x1
psa_pake_output(&jpake, PSA_PAKE_STEP_ZK_PUBLIC, ...);
// Get rl, the ZKP proof for x1
psa_pake_output(&jpake, PSA_PAKE_STEP_ZK_ PROOF, ...);
// Get g2
psa_pake_output(&jpake, PSA_PAKE_STEP_KEY_SHARE, ...);
// Get V2, the ZKP public key for x2
psa_pake_output(&jpake, PSA_PAKE_STEP_ZK_PUBLIC, ...);
// Get r2, the ZKP proof for x2
psa_pake_output(&jpake, PSA_PAKE_STEP_ZK_PROOF, ...);
To provide the first round data received from the peer to the operation, make the following calls to
psa_pake_input(), in the order shown:
// Set g3
psa_pake_input(&jpake, PSA_PAKE_STEP_KEY_SHARE, ...);
// Set V3, the ZKP public key for x3
psa_pake_input(&jpake, PSA_PAKE_STEP_ZK_PUBLIC, ...);
// Set r3, the ZKP proof for x3
psa_pake_input(&jpake, PSA_PAKE_STEP_ZK_PROOF, ...);
// Set g4
psa_pake_input(&jpake, PSA_PAKE_STEP_KEY_SHARE, ...);
// Set V4, the ZKP public key for x4
psa_pake_input(&jpake, PSA_PAKE_STEP_ZK_PUBLIC, ...);
// Set r4, the ZKP proof for x4
psa_pake_input(&jpake, PSA_PAKE_STEP_ZK_PROOF, ...);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 368

1.4.0

Non-confidentia

3. Round two.

The application can either extract the round two output values first, and then provide the round two
inputs that are received from the Peer; or provide the peer inputs first, and then extract the outputs.

To get the second round data that needs to be sent to the peer, make the following calls to
psa_pake_output(), in the order shown:

/] Get A

psa_pake_output(&jpake, PSA_PAKE_STEP_KEY_SHARE, ...);
// Get V5, the ZKP public key for x2*s
psa_pake_output(&jpake, PSA_PAKE_STEP_ZK_PUBLIC, ...);
// Get 15, the ZKP proof for x2*s
psa_pake_output(&jpake, PSA_PAKE_STEP_ZK_ PROOF, ...);

To provide the second round data received from the peer to the operation, make the following calls to
psa_pake_input(), in the order shown:

// Set B

psa_pake_input(&jpake, PSA_PAKE_STEP_KEY_SHARE, ...);
// Set V6, the ZKP public key for x4*s
psa_pake_input(&jpake, PSA_PAKE_STEP_ZK_PUBLIC, ...);
// Set 16, the ZKP proof for x4*s
psa_pake_input(&jpake, PSA_PAKE_STEP_ZK_PROOF, ...);

Extract shared secret

4. To use the shared secret, extract it as a key-derivation key. For example, to extract a derivation key for
HKDF-SHA-256:

// Set up the key attributes

psa_key_attributes_t att = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_type(&att, PSA_KEY_TYPE_DERIVE);
psa_set_key_usage_flags(&att, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&att, PSA_ALG_HKDF(PSA_ALG_SHA 256));

// Get Ka=Kb=K
psa_key_id_t shared_key;
psa_pake_get_shared_key(&jpake, &att, &shared_key);

For more information about the format of the values which are passed for each step, see PAKE step types on
page 349.

If the verification of a Zero-knowledge proof provided by the peer fails, then the corresponding call to
psa_pake_input() for the PSA_PAKE_STEP_ZK_PROOF step will return PSA_ERROR_INVALID_SIGNATURE.

The shared secret that is produced by J-PAKE is not suitable for use as an encryption key. It must be used
as an input to a key-derivation operation to produce additional cryptographic keys.

A Warning

At the end of this sequence there is a cryptographic guarantee that only a peer that used the same
password is able to compute the same key. But there is no guarantee that the peer is the participant it

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 369
1.4.0 Non-confidentia

claims to be, or that the peer used the same password during the exchange.

At this point, authentication is implicit — material encrypted or authenticated using the computed key
can only be decrypted or verified by someone with the same key. The peer is not authenticated at this
point, and no action should be taken by the application which assumes that the peer is authenticated,
for example, by accessing restricted resources.

To make the authentication explicit, there are various methods to confirm that both parties have the
same key. See [RFC8236] §5 for two examples.

10.13.9 J-PAKE algorithms

PSA_ALG_JPAKE (macro)

Macro to build the Password-authenticated key exchange by juggling (J-PAKE) algorithm.
Added in version 1.1.

Changed in version 1.2: Parameterize J-PAKE algorithm by hash.

#define PSA_ALG_JPAKE(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.
Returns

A J-PAKE algorithm, parameterized by a specific hash.

Unspecified if hash_alg is not a supported hash algorithm.

Description

This is J-PAKE as defined by [RFC8236], instantiated with the following parameters:
e The primitive group can be either an elliptic curve or defined over a finite field.
e The Schnorr NIZKP, using the same group as the J-PAKE algorithm.
e The cryptographic hash function, hash_alg.

J-PAKE does not confirm the shared secret key that results from the key exchange.

The shared secret that is produced by J-PAKE is not suitable for use as an encryption key. It must be used
as an input to a key-derivation operation to produce additional cryptographic keys.

See The J-PAKE protocol on page 366 for the J-PAKE protocol flow and how to implement it with the Crypto
API.

Compatible key types

PSA_KEY_TYPE_PASSWORD
PSA_KEY_TYPE_PASSWORD_HASH

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 370
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8236.html#section-5

PSA_ALG_IS_JPAKE (macro)
Whether the specified algorithm is a J-PAKE algorithm.
Added in version 1.2.

#define PSA_ALG_IS_JPAKE(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if algis a J-PAKE algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a supported PAKE
algorithm identifier.

Description

J-PAKE algorithms are constructed using PSA_ALG_JPAKE (hash_alg).

10.13.10 The SPAKE2+ protocol

SPAKE2+ is the augmented password-authenticated key exchange protocol, defined by SPAKE2+, an
Augmented Password-Authenticated Key Exchange (PAKE) Protocol [RFC9383]. SPAKE2+ includes
confirmation of the shared secret key that results from the key exchange.

SPAKE2+ is required by Matter Specification, Version 1.2 [MATTER], as MATTER_PAKE. [MATTER] uses an
earlier draft of the SPAKE2+ protocol, SPAKE2+, an Augmented PAKE (Draft 02) [SPAKE2P-2].

Although the operation of the PAKE is similar for both of these variants, they have different key schedules
for the derivation of the shared secret.

SPAKE2+ cipher suites
SPAKE2+ is instantiated with the following parameters:

e An elliptic curve group.
e A cryptographic hash function.
e A key-derivation function.

e A keyed MAC function.

Valid combinations of these parameters are defined in the table of cipher suites in [RFC9383] §4.
When setting up a PAKE cipher suite to use the SPAKE2+ protocol defined in [RFC9383]:

e [or cipher-suites that use HMAC for key confirmation, use the PSA_ALG_SPAKE2P_HMAC () algorithm,
parameterized by the required hash algorithm.

e For cipher-suites that use CMAC-AES-128 for key confirmation, use the PSA_ALG_SPAKE2P_CMAC ()
algorithm, parameterized by the required hash algorithm.

e Use a PAKE primitive for the required elliptic curve.

For example, the following code creates a cipher suite to select SPAKE2+ using edwards25519 with the
SHA-256 hash function:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 371
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc9383.html#section-4

psa_pake_cipher_suite_t cipher_suite = PSA_PAKE_CIPHER_SUITE_INIT;

psa_pake_cs_set_algorithm(&cipher_suite, PSA_ALG_SPAKE2P_HMAC(PSA_ALG_SHA_256));
psa_pake_cs_set_primitive(&cipher_suite,
PSA_PAKE_PRIMITIVE (PSA_PAKE_PRIMITIVE_TYPE_ECC,
PSA_ECC_FAMILY_TWISTED_EDWARDS, 255));

When setting up a PAKE cipher suite to use the SPAKE2+ protocol used by [MATTER]:

e Use the PSA_ALG_SPAKE2P_MATTER algorithm.

e Use the PSA_PAKE_PRIMITIVE (PSA_PAKE_PRIMITIVE_TYPE_ECC, PSA_ECC_FAMILY_SECP_R1, 256) PAKE
primitive.

The following code creates a cipher suite to select the [MATTER] variant of SPAKE2+:

psa_pake_cipher_suite_t cipher_suite = PSA_PAKE_CIPHER_SUITE_INIT;

psa_pake_cs_set_algorithm(&cipher_suite, PSA_ALG_SPAKE2P_MATTER);
psa_pake_cs_set_primitive(&cipher_suite,
PSA_PAKE_PRIMITIVE (PSA_PAKE_PRIMITIVE_TYPE_ECC,
PSA_ECC_FAMILY_SECP_R1, 256));

SPAKE2+ registration
The SPAKE2+ protocol has distinct roles for the two participants:

e The Prover takes the role of client. It uses the protocol to prove that it knows the secret password, and
produce a shared secret.

e The Verifier takes the role of server. It uses the protocol to verify the client’s proof, and produce a
shared secret.

The registration phase of SPAKE2+ provides the initial password processing, described in [RFC2383] §3.2.
The result of registration is two pairs of values — (w0, w1) and (w0, L) — that need to be provided during
the authentication phase to the Prover and Verifier, respectively. The design of SPAKE2+ ensures that
knowledge of (w0, L) does not enable an attacker to determine the password, or to compute w1.

In the Crypto API, the registration output values are managed as an asymmetric key pair:

e The Prover values, (w0, w1), are stored in a key of type PSA_KEY_TYPE_SPAKE2P_KEY_PAIR().

e The Verifier values, (w0, L), are stored in a key of type PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY (), or derived
from the matching PSA_KEY_TYPE_SPAKE2P_KEY_PAIR().

The SPAKE2+ key types are parameterized by the same elliptic curve as the SPAKE2+ cipher suite.

The key pair is derived from the initial SPAKE2+ password prior to starting the PAKE operation. It is
recommended to use a key-stretching derivation algorithm, for example PBKDF2. This process can take
place immediately before the PAKE operation, or derived at some earlier point and stored by the
participant. Alternatively, the Verifier can be provisioned with the PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY () for
the protocol, by the Prover, or some other agent. Figure 4 on page 373 illustrates some example SPAKE2+
key-derivation flows.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 372
1.4.0 Non-confidentia

https://datatracker.ietf.org/doc/html/rfc9383.html#section-3.2

The resulting SPAKE2+ key pair must be protected at least as well as the password. The public key, exported
from the key pair, does not need to be kept confidential. It is recommended that the Verifier stores only the
public key, because disclosure of the public key does not enable an attacker to impersonate the Prover.

Prover (Client role) [Verifier (Server role)]

[Initial information : cipher suite, PBKDF-params, password %

psa_key_derivation_setup(PBKDF)
psa_key_derivation_input_key(password)
psa_key_derivation_input_xxx() for PBKDF-params

: psa_key_derivation_output_key(SPAKE2P_KEY_PAIR)
[Compute key pair (w0, w1) [ﬁ

y

alt [Independent registration]
psa_key_derivation_setup(PBKDF)
psa_key_derivation_input_key(password)
psa_key_derivation_input_xxx() for PBKDF-params

X psa_key_derivation_output_key(SPAKE2P_KEY_PAIR)
[Compute key pair (w0, w1) %

[Connected registration]

psa_export_public_key()
[Compute L and output wO || L % :|

Registration record (w0 || L)

sa_i t_key (SPAKE2P_PUBLIC_KEY) from wO || L
[Import public key (w0, L) [ﬁ psa_twor v I

[Use key pair for authentication flow % [Use key for authentication flow %

Figure 4 Examples of SPAKE2+ key-derivation procedures

The variable names w0, w1, and L are taken from the description of SPAKE2+ in [RFC9383].
Details of the computation for the key-derivation values are in [RFC9383] §3.2.

The following steps demonstrate the derivation of a SPAKE2+ key pair using PBKDF2-HMAC-SHA256, for
use with a SPAKE2+ cipher suite, cipher_suite. See SPAKE2+ cipher suites on page 371 for an example of
how to construct the cipher suite object.

1. Allocate and initialize a key-derivation object:

psa_key_derivation_operation_t pbkdf = PSA_KEY_DERIVATION_OPERATION_INIT;

2. Setup the key derivation from the SPAKE2+ password, password_key, and parameters pbkdf2_params:

psa_key_derivation_setup(&pbkdf, PSA_ALG_PBKDF2_HMAC(PSA_ALG_SHA_256));
psa_key_derivation_input_key (&pbkdf, PSA_KEY_DERIVATION_INPUT_PASSWORD, password_key);
psa_key_derivation_input_integer (&pbkdf, PSA_KEY_DERIVATION_INPUT_COST, pbkdf2_params.cost);
psa_key_derivation_input_bytes (&pbkdf, PSA_KEY_DERIVATION_INPUT_SALT,

&pbkdf2_params.salt, pbkdf2_params.salt_len);

3. Allocate and initialize a key attributes object:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 373
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc9383.html#section-3.2

psa_key_attributes_t att = PSA_KEY_ATTRIBUTES_INIT;

4. Set the key type, size, and policy from the cipher_suite object:

const psa_pake_primitive_t primitive = psa_pake_cs_get_primitive(&cipher_suite);

psa_set_key_type(&att,
PSA_KEY_TYPE_SPAKE2P_KEY_PAIR(PSA_PAKE_PRIMITIVE_GET_FAMILY(primitive)));

psa_set_key bits(&att, PSA_PAKE_PRIMITIVE_GET_BITS(primitive));

psa_set_key_usage_flags(&att, PSA_KEY_USAGE_DERIVE);

psa_set_key_algorithm(&att, psa_pake_cs_get_algorithm(&cipher_suite));

5. Derive the key:

psa_key_id_t spake2p_key;
psa_key_derivation_output_key(&att, &pbkdf, &spake2p_key);
psa_key_derivation_abort (&pbkdf) ;

See SPAKE2+ keys on page 86 for details of the key types, key-pair derivation, and public-key format.

SPAKE2+ operation
The SPAKE2+ operation follows the protocol shown in Figure 5 on page 37/5.

Setup

In SPAKE2+, the Prover uses the PSA_PAKE_ROLE_CLIENT role, and the Verifier uses the PSA_PAKE_ROLE_SERVER
role.

The key passed to the Prover must be a SPAKE2+ key pair, which is derived as recommended in SPAKE2+
registration on page 372. The key passed to the Verifier can either be a SPAKE2+ key pair, or a SPAKE2+
public key. A SPAKE2+ public key is imported from data that is output by calling psa_export_public_key() on
a SPAKE2+ key pair.

Both participants in SPAKE2+ have an optional identity. If no identity value is provided, then a zero-length
string is used for that identity in the protocol. If the participants do not supply the same identity values to
the protocol, the computed secrets will be different, and key confirmation will fail.

Participants in SPAKE2+ can optionally provide a context:

e |f psa_pake_set_context() is called, then the context and its encoded length are included in the
SPAKE2+ transcript computation. This includes the case of a zero-length context.

e |f psa_pake_set_context() is not called, then the context and its encoded length are omitted entirely
from the SPAKE2+ transcript computation. See [RFC9383] §3.3.

If the participants do not supply the same context value to the protocol, the computed secrets will be
different, and key confirmation will fail.

The following steps demonstrate the application code for both Prover and Verifier in Figure 5 on page 375.

Prover To prepare a SPAKE2+ operation for the Prover, initialize and set up a psa_pake_operation_t
object by calling the following functions:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 374
1.4.0 Non-confidentia

https://datatracker.ietf.org/doc/html/rfc9383.html#section-3.3

[Prover (Client role)] [Verifier (Server role)]

[Shared information : cipher suite, Proverld, Verifierld, and Context %

[Prover 'key pair' (w0, w1) derived from password % [Registration record (w0, L) derived from password %

psa_pake_setup() with key (w0, w1)
psa_pake_set_role(PSA_PAKE_ROLE_CLIENT)
psa_pake_set_user(ProverId)
psa_pake_set_peer(VerifierId)
psa_pake_set_context(Context)

[G te key share X % psa_pake_output() for shareP = X
enerate key share —
-

(shareP)

psa_pake_setup() with key (w0, L) or key (w0, w1)
psa_pake_set_role(PSA_PAKE_ROLE_SERVER)
psa_pake_set_user(VerifierId)
psa_pake_set_peer(ProverId)
psa_pake_set_context(Context)

. > psa_pake_input() for shareP
Validate shareP —]
<

[G ke h r Y% _Pe :E—OUtpUt()10 ShaleV =Y
enerate Y share —l

psa_pake_output() for confirmV
<

[Compute K_shared, confirmP' and confirmV %

(shareV, confirmV)

Validate shareV % psa_pake_input() for shareV
allaate snare —l
<

Compute K_shared,
confirmP and confirmV'
Verify confirmV' = confirmV

psa_pake_input () for confirmV

psa_pake_output() for confirmP

(confirmP)

psa_pake_get_shared_key() to extract K_shared

[Verify confirmP'

firmP % psa_pake_input() for confirmP
= confirm —]
¢

psa_pake_get_shared_key() to extract K_shared

Figure 5 The SPAKE2+ authentication and key confirmation protocol

The variable names w0, w1, L, and so on, are taken from the description of SPAKE2+ in [RFC9383].
Details of the computation for the key shares is in [RFC92383] §3.3 and confirmation values in [RFC9383] §3.4.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 375
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc9383.html#section-3.3
https://datatracker.ietf.org/doc/html/rfc9383.html#section-3.4

psa_pake_operation_t spake2p_p = PSA_PAKE_OPERATION_INIT;

psa_pake_setup(&spake2p_p, pake_key_p, &cipher_suite);
psa_pake_set_role(&spake2p_p, PSA_PAKE_ROLE_CLIENT);

The key pake_key_p is a SPAKE2+ key pair, PSA_KEY_TYPE_SPAKE2P_KEY_PAIR(). See SPAKE2+
cipher suites on page 371 for details on constructing a suitable cipher suite.

Prover Provide any additional, optional, parameters:
psa_pake_set_user(&spake2p_p, ...); // Prover identity
psa_pake_set_peer(&spake2p_p, ...); // Verifier identity
psa_pake_set_context(&spake2p_p, ...); // Optional context

Verifier To prepare a SPAKE2+ operation for the Verifier, initialize and set up a psa_pake_operation_t

object by calling the following functions:

psa_pake_operation_t spake2p_v = PSA_PAKE_OPERATION_INIT;

psa_pake_setup(&spake2p_v, pake_key_v, &cipher_suite);
psa_pake_set_role(&spake2p_v, PSA_PAKE_ROLE_SERVER);

The key pake_key_v is a SPAKE2+ key pair, PSA_KEY_TYPE_SPAKE2P_KEY_PAIR(), or public key,
PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY (). See SPAKE2+ cipher suites on page 371 for details on
constructing a suitable cipher suite.

Verifier Provide any additional, optional, parameters:
psa_pake_set_user(&spake2p_v, ...); // Verifier identity
psa_pake_set_peer(&spake2p_v, ...); // Prover identity
psa_pake_set_context(&spake2p_v, ...); // Optional context

Key exchange and confirmation

After setup, the key exchange and confirmation flow for SPAKE2+ is as follows.

Note:

The sequence of calls for the Prover, and the sequence for the Verifier, must be in exactly this order.

Prover To get the key share to send to the Verifier, call:

// Get shareP
psa_pake_output(&spake2p_p, PSA_PAKE_STEP_KEY_SHARE, ...);

Verifier To provide and validate the key share received from the Prover, call:

// Set shareP

psa_pake_input(&spake2p_v, PSA_PAKE_STEP_KEY_SHARE, ...);
Verifier To get the Verifier key share and confirmation value to send to the Prover, call:
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 376

14.0 Non-confidentia

// Get shareV

psa_pake_output(&spake2p_v, PSA_PAKE_STEP_KEY_SHARE, ...);
// Get confirmV
psa_pake_output(&spake2p_v, PSA_PAKE_STEP_CONFIRM, ...);
Prover To provide and validate the key share and verify the confirmation value received from the
Verifier, call:

// Set shareV

psa_pake_input(&spake2p_p, PSA_PAKE_STEP_KEY_SHARE, ...);

// Set confirmV

psa_pake_input (&spake2p_p, PSA_PAKE_STEP_KEY_CONFIRM, ...);
Prover To get the Prover key confirmation value to send to the Verifier, call:

// Get confirmP
psa_pake_output (&spake2p_p, PSA_PAKE_STEP_CONFIRM, ...);

Verifier To verify the confirmation value received from the Prover, call:

// Set confirmP
psa_pake_input(&spake2p_v, PSA_PAKE_STEP_CONFIRM, ...);

Extract shared secret

Prover To use the shared secret, extract it as a key-derivation key. For example, to extract a
derivation key for HKDF-SHA-256:

// Set up the key attributes

psa_key_attributes_t att = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_type(&att, PSA_KEY_TYPE_DERIVE);
psa_set_key_usage_flags(&att, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&att, PSA_ALG_HKDF(PSA_ALG_SHA 256));

// Get K_shared
psa_key_id_t shared_key;
psa_pake_get_shared_key(&spake2p_p, &att, &shared_key);

Verifier To use the shared secret, extract it as a key-derivation key. The same key attributes can be
used as the Prover:

// Get K_shared
psa_key_id_t shared_key;
psa_pake_get_shared_key(&spake2p_v, &att, &shared_key);

The shared secret that is produced by SPAKE2+ is pseudorandom. Although it can be used directly as an
encryption key, it is recommended to use the shared secret as an input to a key-derivation operation to
produce additional cryptographic keys.

For more information about the format of the values which are passed for each step, see PAKE step types on
page 349.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 377
1.4.0 Non-confidentia

If the validation of a key share fails, then the corresponding call to psa_pake_input() for the
PSA_PAKE_STEP_KEY_SHARE step will return PSA_ERROR_INVALID_ARGUMENT. If the verification of a key
confirmation value fails, then the corresponding call to psa_pake_input() for the PSA_PAKE_STEP_CONFIRM Step
will return PSA_ERROR_INVALID_SIGNATURE.

10.13.11 SPAKE2+ algorithms

PSA_ALG_SPAKE2P_HMAC (macro)
Macro to build the SPAKE2+ algorithm, using HMAC-based key confirmation.
Added in version 1.2.

#define PSA_ALG_SPAKE2P_HMAC(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.
Returns

A SPAKE2+ algorithm, using HMAC for key confirmation, parameterized by a specific hash.
Unspecified if hash_alg is not a supported hash algorithm.

Description

This is SPAKE2+, as defined by SPAKE2+, an Augmented Password-Authenticated Key Exchange (PAKE)
Protocol [RFC9383], for cipher suites that use HMAC for key confirmation. SPAKE2+ cipher suites are
specified in [RFC92383] §4. See SPAKE2+ cipher suites on page 371.

The shared secret that is produced by SPAKE2+ is pseudorandom. Although it can be used directly as an
encryption key, it is recommended to use the shared secret as an input to a key-derivation operation to
produce additional cryptographic keys.

See The SPAKE2+ protocol on page 371 for the SPAKE2+ protocol flow and how to implement it with the
Crypto API.

Compatible key types

PSA_KEY_TYPE_SPAKE2P_KEY_PAIR
PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY (verification only)

PSA_ALG_SPAKE2P_CMAC (macro)
Macro to build the SPAKE2+ algorithm, using CMAC-based key confirmation.
Added in version 1.2.

#define PSA_ALG_SPAKE2P_CMAC(hash_alg) /* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 378
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc9383.html#section-4

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.
Returns

A SPAKE2+ algorithm, using CMAC for key confirmation, parameterized by a specific hash.

Unspecified if hash_alg is not a supported hash algorithm.

Description

This is SPAKE2+, as defined by SPAKE2+, an Augmented Password-Authenticated Key Exchange (PAKE)
Protocol [RFC9383], for cipher suites that use CMAC-AES-128 for key confirmation. SPAKE2+ cipher suites
are specified in [RFC9383] §4. The cipher suite’s hash algorithm is used as input to PSA_ALG_SPAKE2P_CMAC().

The shared secret that is produced by SPAKE2+ is pseudorandom. Although it can be used directly as an
encryption key, it is recommended to use the shared secret as an input to a key-derivation operation to
produce additional cryptographic keys.

See The SPAKE2+ protocol on page 371 for the SPAKE2+ protocol flow and how to implement it with the
Crypto API.

Compatible key types

PSA_KEY_TYPE_SPAKE2P_KEY_PAIR
PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY (verification only)

PSA_ALG_SPAKE2P_MATTER (macro)
The SPAKE2+ algorithm, as used by the Matter v1 specification.
Added in version 1.2.

#define PSA_ALG_SPAKE2P_MATTER ((psa_algorithm_t)@x0A000609)

This is the PAKE algorithm specified as MATTER_PAKE in Matter Specification, Version 1.2 [MATTER]. This is
based on draft-02 of the SPAKE2+ protocol, SPAKE2+, an Augmented PAKE (Draft 02) [SPAKE2P-2].
[MATTER] specifies a single SPAKE2+ cipher suite, P256-SHA256-HKDF-HMAC-SHA256.

The shared secret that is produced by this operation must be processed as directed by the [MATTER]
specification.

This algorithm uses the same SPAKE2+ key types, key derivation, protocol flow, and the APl usage
described in The SPAKE2+ protocol on page 371. However, the following aspects are different:

e The key schedule is different. This affects the computation of the shared secret and key confirmation
values.

e The protocol inputs and outputs have been renamed between draft-02 and the final RFC, as follows:

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 379
1.4.0 Non-confidential

https://datatracker.ietf.org/doc/html/rfc9383.html#section-4

RFC 9383 Draft-02

shareP pPA
shareV pB
confirmP cA
confirmV. cB
K _shared Ke

Compatible key types

PSA_KEY_TYPE_SPAKE2P_KEY_PAIR
PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY (verification only)

PSA_ALG_IS_SPAKE2P (macro)
Whether the specified algorithm is a SPAKE2+ algorithm.
Added in version 1.2.

#define PSA_ALG_IS_SPAKE2P(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a SPAKE2+ algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a supported
PAKE algorithm identifier.

Description

SPAKE2+ algorithms are constructed using PSA_ALG_SPAKE2P_HMAC (hash_alg),
PSA_ALG_SPAKE2P_CMAC (hash_alg), Or PSA_ALG_SPAKE2P_MATTER.

PSA_ALG_IS_SPAKE2P_HMAC (macro)
Whether the specified algorithm is a SPAKE2+ algorithm that uses a HMAC-based key confirmation.
Added in version 1.2.

#define PSA_ALG_IS_SPAKE2P_HMAC(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 380

1.4.0 Non-confidential

Returns

1if algis a SPAKE2+ algorithm that uses a HMAC-based key confirmation, @ otherwise. This macro can
return either o or 1 if alg is not a supported PAKE algorithm identifier.

Description

SPAKE2+ algorithms, using HMAC-based key confirmation, are constructed using
PSA_ALG_SPAKE2P_HMAC (hash_alg).

PSA_ALG_IS_SPAKE2P_CMAC (macro)
Whether the specified algorithm is a SPAKE2+ algorithm that uses a CMAC-based key confirmation.
Added in version 1.2.

#define PSA_ALG_IS_SPAKE2P_CMAC(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a SPAKE2+ algorithm that uses a CMAC-based key confirmation, @ otherwise. This macro can
return either o or 1 if alg is not a supported PAKE algorithm identifier.

Description

SPAKE2+ algorithms, using CMAC-based key confirmation, are constructed using
PSA_ALG_SPAKE2P_CMAC (hash_alg).

10.13.12 The WPAS3-SAE protocol

WPAS3-SAE is a balanced, password-authenticated key exchange protocol, defined by IEEE 802.11-2024:
Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications [IEEE-802.11]. It is used as
the authentication and key exchange protocol for WLAN access points and mesh networks. WPA3-SAE
includes confirmation of the shared secret key that results from the key exchange.

WPAS3-SAE cipher suites
WPAS3-SAE is instantiated with the following parameters:

e An elliptic curve group or a finite field cyclic group.

e A cryptographic hash function.

[IEEE-802.11] describes three variants of the WPA3-SAE algorithm. These differ in the method used to
generate a password element (PWE) from the password, and in the size of the key confirmation key
(SAE-KCK) and pairwise master key (PMK).

Table 17 on page 382 summarizes the properties of the different algorithm variants.

Table 17 WPA3-SAE algorithm variants

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 381
1.4.0 Non-confidential

Algorithm variant PWE method Hash algorithm SAE-KCK size PMK size

Looping Looping SHA-256 256 256
Hash-to-element Hash-to-element SHA-256 256 256
SHA-384 384 256
SHA-512 512 256
Group-dependent-hash Hash-to-element SHA-256 256 256
SHA-384 384 384
SHA-512 512 512

When setting up a PAKE cipher suite to use the WPA3-SAE protocol:

e For the looping variant, use the PSA_ALG_WPA3_SAE_FIXED(PSA_ALG_SHA_256) algorithm.

e For the hash-to-element variant, use the PSA_ALG_WPA3_SAE_FIXED(hash_alg) algorithm, where hash_alg
is the required hash algorithm.

e For the group-dependent-hash variant, use the PSA_ALG_WPA3_SAE_GDH(hash_alg) algorithm, where
hash_alg is the required hash algorithm.

e Use a PAKE primitive for the required elliptic curve or finite field group.

Valid elliptic curves and finite field groups for WPA3-SAE are defined in [IEEE-802.11] §12.4.4.1. For the
hash-to-element and group-dependent-hash variants, the required hash algorithm is determined from the
size of the prime for the cyclic group. See Table 12-1 in [IEEE-802.11] §12.4.2.

If the hash algorithm in the cipher suite is not compatible with the WPAS-SAE algorithm and PAKE
primitive, the call to psa_pake_setup() will fail with PSA_ERROR_INVALID_ARGUMENT.

For example, the following code creates a PAKE cipher suite for WPA3-SAE using hash-to-element over the
secp256r1 elliptic curve (IANA group 19):

psa_pake_cipher_suite_t cipher_suite = PSA_PAKE_CIPHER_SUITE_INIT;

psa_pake_cs_set_algorithm(&cipher_suite, PSA_ALG_WPA3_SAE_FIXED(PSA_ALG_SHA_256));
psa_pake_cs_set_primitive(&cipher_suite,
PSA_PAKE_PRIMITIVE (PSA_PAKE_PRIMITIVE_TYPE_ECC,
PSA_ECC_FAMILY_SECP_R1, 256));

WPA3-SAE password processing
WPAG3-SAE defines the following two methods for deriving the password element PWE from the password:

Looping method Repeatedly sample candidate element values using a hash computed from the
password, until a valid element is found. This derivation occurs as part of the
authentication flow.

Hash-to-element Derive a password token element PT from the password, using the hash-to-curve

method procedure for elliptic curve groups, and a direct method for finite field groups. This
derivation can be carried out when the network SSID and password is provisioned
to the device, and PT is stored as part of the configuration.

During authentication, PWE is derived from PT.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 382
1.4.0 Non-confidential

The hash-to-element method is recommended, as it is less vulnerable to timing-based attacks, and reduces
the authentication time.

Figure 6 illustrates the password processing required prior to the WPA3-SAE authentication flow.

station (STA)

[Initial information : cipher suite, SSID, password [, password-identifier] lﬁ
|

r

alt [Hash-to-element gene‘"ation of password element]

: psa_key_derivation_setup(WPA3_SAE_H2E)

| psa_key_derivation_input_bytes(SALT = SSID)

| psa_key_derivation_input_key(PASSWORD = password)
I

opt
|
L
|
|

psa_key_derivation_input_bytes(INFO = password-identifier)

|

| psa_key_derivation_output_key(WPA3_SAE_XX)
I

<

[Compute password token PT%

[Use PT for authentication flow lﬁ

[Generation of the password element:by looping]

[Use password for authentication flow %

Figure 6 WPA3-SAE password processing

For both methods, the password must be imported as a key of type PSA_KEY_TYPE_PASSWORD. The password
must be encoded as defined in [IEEE-802.11] §12.4.3.

Note:

[IEEE-802.11] specifies that the same password is used for any configured WPA3-SAE cipher suites,
and with any configured PWE-derivation methods. The wildcard key policy PSA_ALG_WPA3_SAE_ANY
permits a password key to be used for any valid derivation method, and with any valid WPA3-SAE
cipher suite.

Looping method
Provide the password key directly to the WPA3-SAE PAKE operation in the call to psa_pake_setup().

Hash-to-element method
To use the hash-to-element method:
1. A WPAS-SAE password token is derived from the WPA3-SAE password, using a key-derivation

operation with the PSA_ALG_WPA3_SAE_H2E () algorithm. The PSA_ALG_WPA3_SAE_H2E () algorithm is
parameterized by the hash used in the required WPA3-SAE cipher suite.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 383
1.4.0 Non-confidential

The password token is output from the key-derivation operation as a key of type
PSA_KEY_TYPE_WPA3_SAE_ECC() Or PSA_KEY_TYPE_WPA3_SAE_DH(). The key type is parameterized by the
elliptic curve or finite field Diffie-Hellman group used in the required WPA3-SAE cipher suite.

The password token key must be protected at least as well as the password.

2. Pass the password token key to the WPA3-SAE PAKE operation in the call to psa_pake_setup().

Note:

The wildcard key policy PSA_ALG_WPA3_SAE_ANY permits a password token key to be used with both the
PSA_ALG_WPA3_SAE_FIXED() and PSA_ALG_WPA3_SAE_GDH() PAKE algorithms.

The following steps demonstrate the derivation of a password token for use with the
group-dependent-hash variant of WPA3-SAE. The selected cipher suite in the example is IANA Group 20:
ECC using secp384r1, hash function SHA-384.

1. Allocate and initialize a key-derivation object:

psa_key_derivation_operation_t h2e_kdf = PSA_KEY_DERIVATION_OPERATION_INIT;

2. Setup the key derivation from the WPA3-SAE password, password_key, with network SSID ssid:

psa_key_derivation_setup(&h2e_kdf, PSA_ALG_WPA3_SAE_H2E(PSA_ALG_SHA 384));
psa_key_derivation_input_bytes(&h2e_kdf, PSA_KEY_DERIVATION_INPUT_SALT, ssid, ssid_len);
psa_key_derivation_input_key(&h2e_kdf, PSA_KEY_DERIVATION_INPUT_PASSWORD, password_key);

3. Allocate and initialize a key attributes object:

psa_key_attributes_t pt_att = PSA_KEY_ATTRIBUTES_INIT;

4. Set the key type, size, and policy:

psa_set_key_ type(&pt_att,
PSA_KEY_TYPE_WPA3_SAE_ECC(PSA_ECC_FAMILY_SECP_R1));

psa_set_key bits(&pt_att, 384);

psa_set_key_usage_flags(&pt_att, PSA_KEY_USAGE_DERIVE);

psa_set_key_algorithm(&pt_att, PSA_ALG_WPA3_SAE_GDH(PSA_ALG_SHA_384));

5. Derive the password token key:

psa_key_id_t pt_key;
psa_key_derivation_output_key(&pt_att, &h2e_kdf, &pt_key);
psa_key_derivation_abort(&h2e_kdf);

See WPA3-SAE password tokens on page /2 for details of the key types and key derivation.

WPA3-SAE operation
The WPA3-SAE authentication operation follows the protocol shown in Figure 7 on page 385.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 384
1.4.0 Non-confidentia

STA-A STA-B

[l [l
| |

Shared information: cipher suite, STA-A-MAC, STA-B-MAC
If generating PWE by looping: password
If generating PWE by hash-to-element: PT

Provide either password or PT to ' psa_pake_set_user(STA-A-MAC)

psa_pake_setup() depending . psa_pake_set_peer(STA-B-MAC)
on PWE generation method

I psa_pake_setup()

Generate rand, mask; compute
commit-scalar, COMMIT-ELEMENT

ﬁ ' psa_pake_output () for commit-scalar || COMMIT-ELEMENT

P

SAE Commit frame (commit-scalar, COMMIT-ELEMENT)

SAE Commit frame (peer-commit-scalar, PEER-COMMIT-ELEMENT)

[Validate inputs; compute k %

psa_pake_input () for peer-commit-scalar || PEER-COMMIT-ELEMENT

-

| .
sa_pake_input() for salt
[Compute SAE-KCK, PMK%; psa_pake_input ()
<
loop / [Until SAE Confirm frame is successfully delivered to STA-B]
‘ |

I psa_pake_input() for send-confirm counter

[Compute confirm

% | psa_pake_output() for send-confirm || confirm
<

|
' SAE Confirm frame (send-confirm, confirm)

SAE Confirm frame (peer-send-confirm, peer-confirm)

Compute and validate
peer-verify = peer-confirm

ﬁ psa_pake_input() for peer-send-confirm || peer-confirm

: psa_pake_output() for PMKID
|

: psa_pake_get_shared_key() to extract PMK

|
|
|
|
|
|
1
|
opt |
|
|
|
|
|
|
|
|
|
|

Figure 7 The WPAS3-SAE authentication and key confirmation protocol

The variable names commit-scalar, COMMIT-ELEMENT, peer-commit-scalar, and so on, are taken from the description of WPA3-SAE

Setup

in [IEEE-802.11] §12.4.5.

The type of keys used to set up a PAKE multi-part operation for WPA3-SAE depends on the variant of

WPA3B-SAE that is required:

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 385
Non-confidential

e For the Looping variant, use a PSA_KEY_TYPE_PASSWORD key containing the secret password.

e For the Hash-to-element and Group-dependent-hash variants, use a PSA_KEY_TYPE_WPA3_SAE_ECC Or
PSA_KEY_TYPE_WPA3_SAE_DH key that is derived from the secret password, as described in WPA3-SAE
password processing on page 382.

WPA-SAE does not assign roles to the participants, so it is not necessary to call psa_pake_set_role().

WPA-SAE requires the MAC addresses of both participants, which are provided to the PAKE multi-part
operation as the user and peer identities.

WPA-SAE does not use a context. A call to psa_pake_set_context() for a WPA-SAE operation will fail with
PSA_ERROR_BAD_STATE.

The following steps demonstrate the application code for STA-A in Figure 7 on page 385. The flow for
STA-B is the same as for STA-A, as WPA3-SAE is a balanced PAKE.

1. To prepare a WPA3-SAE operation, initialize and set up a psa_pake_operation_t object by calling the
following functions:

psa_pake_operation_t wpa3_sae = PSA_PAKE_OPERATION_INIT;

psa_pake_setup(&wpa3_sae, pt_key, &cipher_suite);
psa_pake_set_user(&wpa3_sae, &sta_a_mac, mac_length);
psa_pake_set_peer(&wpa3_sae, &sta_b_mac, mac_length);

See WPAS3-SAE cipher suites on page 381 and WPA3-SAE password processing on page 382 for details
on the requirements for the cipher suite and key.

Commit

2. Exchange commitment values to establish shared secret and confirmation keys.

The application can either extract the commitment values first, and then provide the commitment
values that are received from the peer; or provide the peer inputs first, and then extract the outputs.

To get the commitment values to send to STA-B, call:

// Get commit-scalar || COMMIT-ELEMENT
psa_pake_output(&wpa3_sae, PSA_PAKE_STEP_COMMIT, ...);

To provide and validate the commitment values from STA-B, call:

// Set peer-commit-scalar || PEER-COMMIT-ELEMENT
psa_pake_input(&wpa3_sae, PSA_PAKE_STEP_COMMIT, ...);

3. Provide the salt used for shared secret derivation, as described in [I[EEE-802.11] §12.4.5.4. For
Hash-to-element and Group-dependent-hash variants, this is the list of rejected groups.

// Set salt
psa_pake_input(&wpa3_sae, PSA_PAKE_STEP_SALT, ...);
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 386

1.4.0 Non-confidentia

Confirm

4. Exchange and verify confirmation values.

WPA3-SAE can make multiple attempts to confirm key establishment, to mitigate frame losses that
can occur. To prevent replay of confirmation messages, each attempt generates a distinct confirmation
value by including a confirmation counter value.

The application can either extract a confirmation value first, and then provide a confirmation value
received from the peer; or provide the peer input first, and then extract the output.

To get a confirmation value to send to STA-B, the confirmation counter value send—con firm must be
updated before extracting the combined send-confirm || confirm value, as follows:

// Set send-confirm counter

psa_pake_input(&wpa3_sae, PSA_PAKE_STEP_SEND_CONFIRM, ...);
// Get combined send-confirm || confirm value
psa_pake_output(&wpa3_sae, PSA_PAKE_STEP_CONFIRM, ...);

To verify a confirmation value received from the peer, call:

// Set combined peer-send-confirm || peer-confirm value
psa_pake_input(&wpa3_sae, PSA_PAKE_STEP_CONFIRM, ...);
Note:

The application is permitted to request new confirmation values, or verify additional peer
confirmation values, even after a peer confirmation value has been successfully verified.

Extract shared secret

5. Optionally, to extract the identity of the shared secret key, PMKID, call:

// Get PMKID
psa_pake_output(&wpa3_sae, PSA_PAKE_STEP_KEY_ID, ...);

6. To use the shared secret, extract it as a key-derivation key. For example, to extract a derivation key for
HKDF-SHA-256:

// Set up the key attributes

psa_key_attributes_t att = PSA_KEY_ATTRIBUTES_INIT;
psa_set_key_type(&att, PSA_KEY_TYPE_DERIVE);
psa_set_key_usage_flags(&att, PSA_KEY_USAGE_DERIVE);
psa_set_key_algorithm(&att, PSA_ALG_HKDF(PSA_ALG_SHA 256));

// Get K_shared
psa_key_id_t shared_key;
psa_pake_get_shared_key(&spake2p_p, &att, &shared_key);

The shared secret that is produced by WPA3-SAE is pseudorandom. Although it can be used directly as an
encryption key, it is recommended to use the shared secret as an input to a key-derivation operation to
produce additional cryptographic keys.

For more information about the format of the values which are passed for each step, see PAKE step types on
page 349.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 387
1.4.0 Non-confidentia

If the validation of a commitment value fails, then the corresponding call to psa_pake_input() for the
PSA_PAKE_STEP_COMMIT step will return PSA_ERROR_INVALID_ARGUMENT. If the verification of a confirmation value
fails, then the corresponding call to psa_pake_input() for the PSA_PAKE_STEP_CONFIRM step will return
PSA_ERROR_INVALID_SIGNATURE.

10.13.13 WPA3-SAE algorithms

PSA_ALG_WPA3_SAE_FIXED (macro)
Macro to build the WPA3-SAE algorithm, with fixed-sized PMK output key.
Added in version 1.4.

#define PSA_ALG_WPA3_SAE_FIXED(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.
Returns

A WPAS3-SAE algorithm, for the Looping or Hash-to-element variants, parameterized by a specific hash.
Unspecified if hash_alg is not a supported hash algorithm.

Description

This is WPA3-SAE, as defined by IEEE 802.11-2024: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications [IEEE-802.11] §12.4, using the Looping or Hash-to-element password element
derivation procedure, with fixed-sized PMK output key.

The hash algorithm specified must match one of the supported WPA3-SAE cipher suites. See WPA3-SAE
cipher suites on page 381.

The shared secret that is produced by WPA3-SAE is pseudorandom. Although it can be used directly as an
encryption key, it is recommended to use the shared secret as an input to a key-derivation operation to
produce additional cryptographic keys.

See The WPA3-SAE protocol on page 381 for the WPA3-SAE protocol flow and how to implement it with
the Crypto APL.

Compatible key types

PSA_KEY_TYPE_PASSWORD
PSA_KEY_TYPE_WPA3_SAE_ECC
PSA_KEY_TYPE_WPA3_SAE_DH

PSA_ALG_WPA3_SAE_GDH (macro)
Macro to build the WPA3-SAE algorithm, with group-dependent size of the PMK output key.
Added in version 1.4.

#define PSA_ALG_WPA3_SAE_GDH(hash_alg) /* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 388
1.4.0 Non-confidential

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true.
Returns

A WPAS3-SAE algorithm, for the group-dependent-hash variant, parameterized by a specific hash.

Unspecified if hash_alg is not a supported hash algorithm.

Description

This is WPA3-SAE, as defined by IEEE 802.11-2024: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications [IEEE-802.11] §12.4, using the hash-to-element password element derivation
procedure, with group-dependent size for the PMK output key.

The hash algorithm specified must match one of the supported WPA3-SAE cipher suites. See WPA3-SAE
cipher suites on page 381.

The shared secret that is produced by WPAS3-SAE is pseudorandom. Although it can be used directly as an
encryption key, it is recommended to use the shared secret as an input to a key-derivation operation to
produce additional cryptographic keys.

See The WPA3-SAE protocol on page 381 for the WPA3-SAE protocol flow and how to implement it with
the Crypto APL.
Compatible key types

PSA_KEY_TYPE_WPA3_SAE_ECC
PSA_KEY_TYPE_WPA3_SAE_DH

PSA_ALG_IS_WPA3_SAE (macro)
Whether the specified algorithm is a WPA3-SAE algorithm.
Added in version 1.4.

#define PSA_ALG_IS_WPA3_SAE(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is @ WPA3-SAE algorithm, @ otherwise. This macro can return either @ or 1 if alg is not a supported
PAKE algorithm identifier.

Description

WPA3-SAE algorithms are constructed using PSA_ALG_WPA3_SAE_FIXED(hash_alg) or
PSA_ALG_WPA3_SAE_GDH(hash_alg).

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 389
1.4.0 Non-confidential

PSA_ALG_IS_WPA3_SAE_FIXED (macro)
Whether the specified algorithm is a WPA3-SAE algorithm with a fixed-sized output key.
Added in version 1.4.

#define PSA_ALG_IS_WPA3_SAE_FIXED(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a WPA3-SAE algorithm with a fixed-sized output key, @ otherwise. This macro can return either @
or 1if alg is not a supported PAKE algorithm identifier.

Description

WPA3-SAE algorithms with a fixed-sized output key, are constructed using
PSA_ALG_WPA3_SAE_FIXED(hash_alg).

PSA_ALG_IS_WPA3_SAE_GDH (macro)
Whether the specified algorithm is a WPA3-SAE algorithm with a group-dependent size for the output key.
Added in version 1.4.

#define PSA_ALG_IS_WPA3_SAE_GDH(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if alg is a WPA3-SAE algorithm with a group-dependent size for the output key, @ otherwise. This macro
can return either @ or 1 if alg is not a supported PAKE algorithm identifier.

Description

WPA3-SAE algorithms with a group-dependent size for the output key, are constructed using
PSA_ALG_WPA3_SAE_GDH(hash_alg).

PSA_ALG_WPA3_SAE_ANY (macro)
A wildcard algorithm for WPA3-SAE password keys and password token keys.
Added in version 1.4.

#define PSA_ALG_WPA3_SAE_ANY ((psa_algorithm_t)@x0a0088fT)

If a password key (key type PSA_KEY_TYPE_PASSWORD) specifies PSA_ALG_WPA3_SAE_ANY as its permitted
algorithm, then the key can be used for any WPAS3-SAE cipher suite with the PSA_ALG_WPA3_SAE_H2E
key-derivation algorithm, and with the PSA_ALG_wpA3_SAE_FIXED PAKE algorithm.

If a WPA3-SAE password token key specifies PSA_ALG_WPA3_SAE_ANY as its permitted algorithm, then the key
can be used with both the PSA_ALG_WPA3_SAE_FIXED() and PSA_ALG_WPA3_SAE_GDH() PAKE algorithms.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 390
1.4.0 Non-confidential

10.14 Other cryptographic services

10.14.1 Random number generation

psa_generate_random (function)

Generate random bytes.

psa_status_t psa_generate_random(uint8_t * output,
size_t output_size);

Parameters
output Output buffer for the generated data.
output_size Number of bytes to generate and output.

Returns: psa_status_t
PSA_SUCCESS Success. output contains output_size bytes of generated random data.

PSA_ERROR_BAD_STATE The library requires initializing by a call to psa_crypto_init().
PSA_ERROR_NOT_SUPPORTED

PSA_ERROR_INSUFFICIENT_ENTROPY

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FATILURE

PSA_ERROR_CORRUPTION_DETECTED

Description

A Warning

This function can fail! Callers MUST check the return status and MUST NOT use the content of the
output buffer if the return status is not PSA_SUCCESS.

Note:

To generate a random key, use psa_generate_key() Or psa_generate_key_custom() instead.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 391
1.4.0 Non-confidential

Appendix A: Example header file

Each implementation of the Crypto APl must provide a header file named psa/crypto.h, in which the API
elements in this specification are defined.

This appendix provides a example of the psa/crypto.h header file with all of the APl elements. This can be
used as a starting point or reference for an implementation.

Note:
Not all of the API elements are fully defined. An implementation must provide the full definition.

The header will not compile without these missing definitions, and might require reordering to satisfy
C compilation rules.

A.1 psa/crypto.h

/* This file is a reference template for implementation of the

* PSA Certified Crypto API v1.3
*/

#ifndef PSA_CRYPTO_H
#define PSA_CRYPTO_H

#include <stddef.h>
#include <stdint.h>

#include "psa/error.h"

#ifdef __cplusplus
extern "C" {
#endif

#define PSA_CRYPTO_API_VERSION_MAJOR 1
#define PSA_CRYPTO_API_VERSION_MINOR 4
psa_status_t psa_crypto_init(void);
#define PSA_ERROR_INSUFFICIENT_ENTROPY ((psa_status_t)-148)
#define PSA_ERROR_INVALID_PADDING ((psa_status_t)-150)
typedef uint32_t psa_key_id_t;
typedef /* implementation-defined type */ psa_key_attributes_t;
#define PSA_KEY_ATTRIBUTES_INIT /* implementation-defined value */
psa_key_attributes_t psa_key_attributes_init(void);
psa_status_t psa_get_key_attributes(psa_key_id_t key,
psa_key_attributes_t * attributes);
void psa_reset_key_attributes(psa_key_attributes_t * attributes);
typedef uintlé_t psa_key_type_t;
#define PSA_KEY_TYPE_NONE ((psa_key_type_t)0x0000)
#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) /* specification-defined value */
(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 392
1.4.0 Non-confidentia

(continued from previous page)

#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_KEY_PAIR(type) /* specification-defined value */
typedef uint8_t psa_ecc_family_t;
#define PSA_ECC_FAMILY_SECP_K1 (
#define PSA_ECC_FAMILY_SECP_R1
#define PSA_ECC_FAMILY_SECP_R2
#define PSA_ECC_FAMILY_SECT_K1
#define PSA_ECC_FAMILY_SECT_R1 ((psa_ecc_family_t) 0x22
#define PSA_ECC_FAMILY_SECT_R2 ((psa_ecc_family_t) @x2b
#define PSA_ECC_FAMILY_BRAINPOOL_P_R1 ((psa_ecc_family_t) ©0x30)
#define PSA_ECC_FAMILY_FRP ((psa_ecc_family_t) 0x33)
#define PSA_ECC_FAMILY_MONTGOMERY ((psa_ecc_family_t) @x41)
#define PSA_ECC_FAMILY_TWISTED_EDWARDS ((psa_ecc_family_t) 0x42)
typedef uint8_t psa_dh_family_t;
#define PSA_DH_FAMILY_RFC7919 ((psa_dh_family_t) 0x03)
#define PSA_DH_FAMILY_RFC3526 ((psa_dh_family_t) @x@5)
void psa_set_key_type(psa_key_attributes_t * attributes,
psa_key_type_t type);
psa_key_type_t psa_get_key_type(const psa_key_attributes_t * attributes);
size_t psa_get_key_bits(const psa_key_attributes_t * attributes);
void psa_set_key bits(psa_key_attributes_t * attributes,
size_t bits);

#define PSA_KEY_TYPE_RAW_DATA ((psa_key_type_t)0x1001)
#define PSA_KEY_TYPE_DERIVE ((psa_key_type_t)0x1200)
#define PSA_KEY_TYPE_PASSWORD ((psa_key_type_ t)@x1203)
#define PSA_KEY_TYPE_PASSWORD_HASH ((psa_key_type_t)@x1205)
#define PSA_KEY_TYPE_PEPPER ((psa_key_type_t)0x1206)
#define PSA_KEY_TYPE_HMAC ((psa_key_type_t)0x1100)
#define PSA_KEY_TYPE_AES ((psa_key_type_t)0x2400)
#define PSA_KEY_TYPE_ARIA ((psa_key_type_t)0x2406)
#define PSA_KEY_TYPE_DES ((psa_key_type_t)0x2301)
#define PSA_KEY_TYPE_CAMELLIA ((psa_key_type_t)@x2403)
#define PSA_KEY_TYPE_SM4 ((psa_key_type_t)0x2405)
#define PSA_KEY_TYPE_ARC4 ((psa_key_type_t)0x2002)
#define PSA_KEY_TYPE_CHACHA20 ((psa_key_type_ t)0x2004)
#define PSA_KEY_TYPE_XCHACHA20 ((psa_key_type_t)0x2007)
#define PSA_KEY_TYPE_ASCON ((psa_key_type_t)0x2008)
#define PSA_KEY_TYPE_WPA3_SAE_ECC(curve) /* specification-defined value */
#define PSA_KEY_TYPE_WPA3_SAE_DH(group) /* specification-defined value */
#define PSA_KEY_TYPE_IS_WPA3_SAE_ECC(type) /* specification-defined value */
#define PSA_KEY_TYPE_WPA3_SAE_ECC_GET_FAMILY(type) \

/* specification-defined value */
#define PSA_KEY_TYPE_IS_WPA3_SAE_DH(type) /* specification-defined value */
#define PSA_KEY_TYPE_WPA3_SAE_DH_GET_FAMILY(type) \

/* specification-defined value */
#define PSA_KEY_TYPE_RSA_KEY_PAIR ((psa_key_type_t)0x7001)
#define PSA_KEY_TYPE_RSA_PUBLIC_KEY ((psa_key_type_t)0x4001)

psa_ecc_family t) Ox17
psa_ecc_family_t) 0x12
psa_ecc_family_t) @xlb
)
)

(
(
((psa_ecc_family_t) 0x27
(

S e S S e e

)
)
)
)
)
)

(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 393
1.4.0 Non-confidentia

(continued from previous page)

#define PSA_KEY_TYPE_IS_RSA(type) /* specification-defined value */
#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) /* specification-defined value */
#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) /* specification-defined value */
#define PSA_KEY_TYPE_IS_ECC(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) /* specification-defined value */
#define PSA_KEY_TYPE_ECC_GET_FAMILY(type) /* specification-defined value */
#define PSA_KEY_TYPE_DH_KEY_PAIR(group) /* specification-defined value */
#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) /* specification-defined value */
#define PSA_KEY_TYPE_IS_DH(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS DH_KEY_PAIR(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) /* specification-defined value */
#define PSA_KEY_TYPE_DH_GET_FAMILY(type) /* specification-defined value */
#define PSA_KEY_TYPE_SPAKE2P_KEY_PAIR(curve) /* specification-defined value */
#define PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY(curve) \

/* specification-defined value */
#define PSA_KEY_TYPE_IS_SPAKE2P(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_SPAKE2P_KEY_PAIR(type) \

/* specification-defined value */
#define PSA_KEY_TYPE_IS_SPAKE2P_PUBLIC_KEY(type) \

/* specification-defined value */
#define PSA_KEY_TYPE_SPAKE2P_GET_FAMILY(type) /* specification-defined value */
#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY(type) \

/* specification-defined value */
#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \

/* specification-defined value */
typedef uint32_t psa_key_lifetime_t;
typedef uint8_t psa_key_persistence_t;
typedef uint32_t psa_key_location_t;
#define PSA_KEY_LIFETIME_VOLATILE ((psa_key_lifetime_t) ©0x00000000)
#define PSA_KEY_LIFETIME_PERSISTENT ((psa_key_lifetime_t) 0x00000001)
#define PSA_KEY_PERSISTENCE_VOLATILE ((psa_key_persistence_t) 0x00)
#define PSA_KEY_PERSISTENCE_DEFAULT ((psa_key_persistence_t) 0x01)
#define PSA_KEY_PERSISTENCE_READ_ONLY ((psa_key_persistence_t) Oxff)
#define PSA_KEY_LOCATION_LOCAL_STORAGE ((psa_key_location_t) 0x000000)
#define PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT ((psa_key_location_t) 0x000001)
void psa_set_key_ lifetime(psa_key_attributes_t * attributes,

psa_key_lifetime_t lifetime);

psa_key_lifetime_t psa_get_key lifetime(const psa_key_attributes_t * attributes);
#define PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) \

((psa_key_persistence_t) ((lifetime) & 0x000000ff))
#define PSA_KEY_LIFETIME_GET_LOCATION(lifetime) \

((psa_key_location_t) ((lifetime) >> 8))
#define PSA_KEY_LIFETIME_IS_VOLATILE(lifetime) \

(PSA_KEY_LIFETIME_GET_PERSISTENCE(lifetime) == PSA_KEY_PERSISTENCE_VOLATILE)
#define PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION(persistence, location) \

((location) << 8 | (persistence))
#define PSA_KEY_ID_NULL ((psa_key_id_t)0)

(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 394
1.4.0 Non-confidentia

(continued from previous page)

#define PSA_KEY_ID_USER_MIN ((psa_key_id_t)0x00000001)
#define PSA_KEY_ID_USER_MAX ((psa_key_id_t)@x3fffffff)
#define PSA_KEY_ID_VENDOR_MIN ((psa_key_id_t)0x40000000)
#define PSA_KEY_ID_VENDOR_MAX ((psa_key_id_t)ox7fffffff)
void psa_set_key_id(psa_key_attributes_t * attributes,
psa_key_id_t id);
psa_key_id_t psa_get_key_id(const psa_key_attributes_t * attributes);
typedef uint32_t psa_algorithm_t;
void psa_set_key_algorithm(psa_key_attributes_t * attributes,
psa_algorithm_t alg);
psa_algorithm_t psa_get_key_algorithm(const psa_key_ attributes_t * attributes);
typedef uint32_t psa_key_usage_t;
#define PSA_KEY_USAGE_EXPORT ((psa_key_usage_t)0x00000001)
#define PSA_KEY_USAGE_COPY ((psa_key_usage_t)0x00000002)
#define PSA_KEY_USAGE_CACHE ((psa_key_usage_t)0x00000004)
#define PSA_KEY_USAGE_ENCRYPT ((psa_key_usage_t)0x00000100)
#define PSA_KEY_USAGE_DECRYPT ((psa_key_usage_t)0x00000200)
#define PSA_KEY_USAGE_SIGN_MESSAGE ((psa_key_usage_t)0x00000400)
#define PSA_KEY_USAGE_VERIFY_MESSAGE ((psa_key_usage_t)0x00000800)
#define PSA_KEY_USAGE_SIGN_HASH ((psa_key_usage_t)0x00001000)
#define PSA_KEY_USAGE_VERIFY_HASH ((psa_key_usage_t)0x00002000)
#define PSA_KEY_USAGE_DERIVE ((psa_key_usage_t)0x00004000)
#define PSA_KEY_USAGE_VERIFY_DERIVATION ((psa_key_usage_t)0x00008000)
#define PSA_KEY_USAGE_DERIVE_PUBLIC ((psa_key_usage_t)0x00000080)
#define PSA_KEY_USAGE_WRAP ((psa_key_usage_t)0x00010000)
#define PSA_KEY_USAGE_UNWRAP ((psa_key_usage_t)0x00020000)
void psa_set_key_usage_flags(psa_key_attributes_t * attributes,
psa_key_usage_t usage_flags);
psa_key_usage_t psa_get_key_usage_flags(const psa_key_attributes_t * attributes);
psa_status_t psa_check_key_usage(psa_key_id_t key,
psa_algorithm_t alg,
psa_key_usage_t usage);
psa_status_t psa_import_key(const psa_key_attributes_t * attributes,
const uint8_t * data,
size_t data_length,
psa_key_id_t * key);
typedef struct psa_custom_key_parameters_t {
uint32_t flags;
} psa_custom_key_parameters_t;
#define PSA_CUSTOM_KEY_PARAMETERS_INIT { @ }
psa_status_t psa_generate_key(const psa_key_attributes_t * attributes,
psa_key_id_t * key);
psa_status_t psa_generate_key_custom(const psa_key_attributes_t * attributes,
const psa_custom_key_parameters_t * custom,
const uint8_t * custom_data,
size_t custom_data_length,
psa_key_id_t * key);
psa_status_t psa_copy_key(psa_key_id_t source_key,
(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 395
1.4.0 Non-confidentia

(continued from previous page)

const psa_key_attributes_t * attributes,
psa_key_id_t * target_key);

psa_status_t psa_attach_key(const psa_key_attributes_t * attributes,

const uint8_t * label,
size_t label_length,
psa_key_id_t * key);

psa_status_t psa_destroy_key(psa_key_id_t key);
psa_status_t psa_purge_key(psa_key_id_t key);
psa_status_t psa_export_key(psa_key_id_t key,

uint8_t * data,
size_t data_size,
size_t * data_length);

psa_status_t psa_export_public_key(psa_key_id_t key,

#define

uint8_t * data,

size_t data_size,

size_t * data_length);
PSA_EXPORT_KEY_OUTPUT_SIZE (key_type, key_bits) \

/* implementation-defined value */

#define

PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE (key_type, key_bits) \

/* implementation-defined value */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

IHI 0086
1.4.0

PSA_EXPORT_KEY_PAIR_MAX_SIZE /* implementation-defined value */
PSA_EXPORT_PUBLIC_KEY_MAX_SIZE /* implementation-defined value */
PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE /* implementation-defined value */
PSA_ALG_NONE ((psa_algorithm_t)0)

PSA_ALG_IS_HASH(alg) /* specification-defined value */
PSA_ALG_IS_XOF(alg) /* specification-defined value */
PSA_ALG_IS_MAC(alg) /* specification-defined value */
PSA_ALG_IS_CIPHER(alg) /* specification-defined value */
PSA_ALG_IS_AEAD(alg) /* specification-defined value */
PSA_ALG_IS_KEY_WRAP(alg) /* specification-defined value */
PSA_ALG_IS_KEY_DERIVATION(alg) /* specification-defined value */
PSA_ALG_IS_SIGN(alg) /* specification-defined value */
PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) /* specification-defined value */
PSA_ALG_IS_KEY_AGREEMENT (alg) /* specification-defined value */
PSA_ALG_IS_PAKE(alg) /* specification-defined value */
PSA_ALG_IS_KEY_ENCAPSULATION(alg) /* specification-defined value */
PSA_ALG_IS_WILDCARD(alg) /* specification-defined value */
PSA_ALG_GET_HASH(alg) /* specification-defined value */

PSA_ALG_MD2 ((psa_algorithm_t)0x02000001)

PSA_ALG_MD4 ((psa_algorithm_t)0x02000002)

PSA_ALG_MD5 ((psa_algorithm_t)0x02000003)

PSA_ALG_RIPEMD160 ((psa_algorithm_t)0x02000004)

PSA_ALG_AES_MMO_ZIGBEE ((psa_algorithm_t)0x02000007)

PSA_ALG_SHA_1 ((psa_algorithm_t)@x02000005)
PSA_ALG_SHA_224 ((psa_algorithm_t)@x02000008
PSA_ALG_SHA_256 ((psa_algorithm_t)@x02000009
PSA_ALG_SHA_384 ((psa_algorithm_t)@0x0200000a
PSA_ALG_SHA 512 ((psa_algorithm_t)0x0200000b

—_ — — —

(continues on next page)

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 396
Non-confidentia

#define
#define
#define
#define
#define
#define
#define
#define
#define

PSA_ALG_SHA_512_224 ((psa_algorithm_t)@x0200000c)
PSA_ALG_SHA_512_256 ((psa_algorithm_t)@x0200000d)
PSA_ALG_SHA3_224 ((psa_algorithm_t)0x02000010)
PSA_ALG_SHA3_256 ((psa_algorithm_t)0x02000011)
PSA_ALG_SHA3_384 ((psa_algorithm_t)0x02000012)
PSA_ALG_SHA3_512 ((psa_algorithm_t)0x02000013)
PSA_ALG_SHAKE256_512 ((psa_algorithm_t)@x02000015)
PSA_ALG_SM3 ((psa_algorithm_t)0x02000014)
PSA_ALG_ASCON_HASH256 ((psa_algorithm_t)@x02000019)

psa_status_t psa_hash_compute(psa_algorithm_t alg,

const uint8_t * input,
size_t input_length,
uint8_t * hash,

size_t hash_size,
size_t * hash_length);

psa_status_t psa_hash_compare(psa_algorithm_t alg,

typedef

#define PSA_HASH_OPERATION_INIT /* implementation-defined value

const uint8_t * input,
size_t input_length,
const uint8_t * hash,
size_t hash_length);
/* implementation-defined type */ psa_hash_operation_t;

psa_hash_operation_t psa_hash_operation_init(void);
psa_status_t psa_hash_setup(psa_hash_operation_t * operation,

psa_algorithm_t alg);

psa_status_t psa_hash_update(psa_hash_operation_t * operation,

const uint8_t * input,
size_t input_length);

psa_status_t psa_hash_finish(psa_hash_operation_t * operation,

uint8_t * hash,
size_t hash_size,
size_t * hash_length);

psa_status_t psa_hash_verify(psa_hash_operation_t * operation,

const uint8_t * hash,
size_t hash_length);

psa_status_t psa_hash_abort(psa_hash_operation_t * operation);
psa_status_t psa_hash_suspend(psa_hash_operation_t * operation,

uint8_t * hash_state,
size_t hash_state_size,
size_t * hash_state_length);

psa_status_t psa_hash_resume(psa_hash_operation_t * operation,

psa_status_t psa_hash_clone(const psa_hash_operation_t * source_operation,
psa_hash_operation_t * target_operation);
#define PSA_HASH_LENGTH(alg) /* implementation-defined value */

#define

#define PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) /* specification-defined value */

IHI 0086
1.4.0

const uint8_t * hash_state,
size_t hash_state_length);

PSA_HASH_MAX_SIZE /* implementation-defined value */

Copyright © 2018-2025 Arm Limited and/or its affiliates

Non-confidentia

(continued from previous page)

(continues on next page)

Page 397

#define PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE /* implementation-defined value */

#define PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH ((size_t)4)
#define PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) \
/* specification-defined value */
#define PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) \
/* specification-defined value */
#define PSA_HASH_BLOCK_LENGTH(alg) /* implementation-defined value */
#define PSA_ALG_SHAKE128 ((psa_algorithm_t)@x0D000100)
#define PSA_ALG_SHAKE256 ((psa_algorithm_t)@x0D000200)
#define PSA_ALG_ASCON_XOF128 ((psa_algorithm_t)@x0D000300)
#define PSA_ALG_ASCON_CXOF128 ((psa_algorithm_t)@x@D008300)
typedef /* implementation-defined type */ psa_xof_operation_t;
#define PSA_XOF_OPERATION_INIT /* implementation-defined value */
psa_xof_operation_t psa_xof_operation_init(void);
psa_status_t psa_xof_setup(psa_xof_operation_t * operation,
psa_algorithm_t alg);
psa_status_t psa_xof_set_context(psa_xof_operation_t * operation,
const uint8_t * context,
size_t context_length);
psa_status_t psa_xof_update(psa_xof_operation_t * operation,
const uint8_t * input,
size_t input_length);
psa_status_t psa_xof_output(psa_xof_operation_t * operation,
uint8_t * output,
size_t output_length);
psa_status_t psa_xof_abort(psa_xof_operation_t * operation);
#define PSA_ALG_XOF_HAS_CONTEXT(alg) /* specification-defined value */
#define PSA_ALG_HMAC(hash_alg) /* specification-defined value */
#define PSA_ALG_CBC_MAC ((psa_algorithm_t)0x03c00100)
#define PSA_ALG_CMAC ((psa_algorithm_t)@x03c00200)
#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
/* specification-defined value */

#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) /* specification-defined value */

#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
/* specification-defined value */
psa_status_t psa_mac_compute(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * mac,
size_t mac_size,
size_t * mac_length);
psa_status_t psa_mac_verify(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * mac,
size_t mac_length);

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates

1.4.0 Non-confidentia

(continued from previous page)

(continues on next page)

Page 398

(continued from previous page)
typedef /* implementation-defined type */ psa_mac_operation_t;
#define PSA_MAC_OPERATION_INIT /* implementation-defined value */
psa_mac_operation_t psa_mac_operation_init(void);
psa_status_t psa_mac_sign_setup(psa_mac_operation_t * operation,

psa_key_id_t key,
psa_algorithm_t alg);
psa_status_t psa_mac_verify_setup(psa_mac_operation_t * operation,
psa_key_id_t key,
psa_algorithm_t alg);
psa_status_t psa_mac_update(psa_mac_operation_t * operation,
const uint8_t * input,
size_t input_length);
psa_status_t psa_mac_sign_finish(psa_mac_operation_t * operation,
uint8_t * mac,
size_t mac_size,
size_t * mac_length);
psa_status_t psa_mac_verify_finish(psa_mac_operation_t * operation,
const uint8_t * mac,
size_t mac_length);
psa_status_t psa_mac_abort(psa_mac_operation_t * operation);
#define PSA_ALG_IS_HMAC(alg) /* specification-defined value */
#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) /* specification-defined value */
#define PSA_MAC_LENGTH(key_type, key_bits, alg) \
/* implementation-defined value */
#define PSA_MAC_MAX_SIZE /* implementation-defined value */
#define PSA_ALG_STREAM_CIPHER ((psa_algorithm_t)@0x04800100)
#define PSA_ALG_CTR ((psa_algorithm_t)@x04c01000)
#define PSA_ALG_CCM_STAR_NO_TAG ((psa_algorithm_t)0x04c01300)
#define PSA_ALG_CFB ((psa_algorithm_t)@x04c01100)
#define PSA_ALG_OFB ((psa_algorithm_t)@x04c01200)
#define PSA_ALG_XTS ((psa_algorithm_t)@0x0440ff00)
#define PSA_ALG_ECB_NO_PADDING ((psa_algorithm_t)@0x04404400)
#define PSA_ALG_CBC_NO_PADDING ((psa_algorithm_t)@x04404000)
#define PSA_ALG_CBC_PKCS7 ((psa_algorithm_t)0x04404100)
psa_status_t psa_cipher_encrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);
psa_status_t psa_cipher_decrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);
(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 399
1.4.0 Non-confidentia

(continued from previous page)
typedef /* implementation-defined type */ psa_cipher_operation_t;
#define PSA_CIPHER_OPERATION_INIT /* implementation-defined value */
psa_cipher_operation_t psa_cipher_operation_init(void);
psa_status_t psa_cipher_encrypt_setup(psa_cipher_operation_t * operation,
psa_key_id_t key,
psa_algorithm_t alg);
psa_status_t psa_cipher_decrypt_setup(psa_cipher_operation_t * operation,
psa_key_id_t key,
psa_algorithm_t alg);
psa_status_t psa_cipher_generate_iv(psa_cipher_operation_t * operation,
uint8_t * iv,
size_t iv_size,
size_t * iv_length);
psa_status_t psa_cipher_set_iv(psa_cipher_operation_t * operation,
const uint8_t * 1iv,
size_t iv_length);
psa_status_t psa_cipher_update(psa_cipher_operation_t * operation,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);
psa_status_t psa_cipher_finish(psa_cipher_operation_t * operation,
uint8_t * output,
size_t output_size,
size_t * output_length);
psa_status_t psa_cipher_abort(psa_cipher_operation_t * operation);
#define PSA_ALG_IS_STREAM_CIPHER(alg) /* specification-defined value */
#define PSA_ALG_CCM_STAR_ANY_TAG ((psa_algorithm_t)0x04c09300)
#define PSA_CIPHER_ENCRYPT_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */
#define PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE(input_length) \
/* implementation-defined value */
#define PSA_CIPHER_DECRYPT_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */
#define PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE(input_length) \
/* implementation-defined value */
#define PSA_CIPHER_IV_LENGTH(key_type, alg) /* implementation-defined value */
#define PSA_CIPHER_IV_MAX_SIZE /* implementation-defined value */
#define PSA_CIPHER_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */
#define PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE(input_length) \
/* implementation-defined value */
#define PSA_CIPHER_FINISH_OUTPUT_SIZE(key_type, alg) \
/* implementation-defined value */
#define PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE /* implementation-defined value */
#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) /* specification-defined value */

#define PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE /* implementation-defined value */
(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 400
1.4.0 Non-confidentia

#define PSA_ALG_CCM ((psa_algorithm_t)@x05500100)
#define PSA_ALG_GCM ((psa_algorithm_t)@x05500200)
#define PSA_ALG_CHACHA20_POLY1305 ((psa_algorithm_t)0x05100500)
#define PSA_ALG_XCHACHA20_POLY1305 ((psa_algorithm_t)0x05100600)
#define PSA_ALG_ASCON_AEAD128 ((psa_algorithm_t)@x05100700)
#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
/* specification-defined value */
#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \
/* specification-defined value */

(continued from previous page)

#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \

/* specification-defined value */
psa_status_t psa_aead_encrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * nonce,
size_t nonce_length,
const uint8_t * additional_data,
size_t additional_data_length,
const uint8_t * plaintext,
size_t plaintext_length,
uint8_t * ciphertext,
size_t ciphertext_size,
size_t * ciphertext_length);
psa_status_t psa_aead_decrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * nonce,
size_t nonce_length,
const uint8_t * additional_data,
size_t additional_data_length,
const uint8_t * ciphertext,
size_t ciphertext_length,
uint8_t * plaintext,
size_t plaintext_size,
size_t * plaintext_length);
typedef /* implementation-defined type */ psa_aead_operation_t;
#define PSA_AEAD_OPERATION_INIT /* implementation-defined value */
psa_aead_operation_t psa_aead_operation_init(void);
psa_status_t psa_aead_encrypt_setup(psa_aead_operation_t * operation,
psa_key_id_t key,
psa_algorithm_t alg);
psa_status_t psa_aead_decrypt_setup(psa_aead_operation_t * operation,
psa_key_id_t key,
psa_algorithm_t alg);
psa_status_t psa_aead_set_lengths(psa_aead_operation_t * operation,
size_t ad_length,
size_t plaintext_length);
psa_status_t psa_aead_generate_nonce(psa_aead_operation_t * operation,
uint8_t * nonce,
size_t nonce_size,

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates
1.4.0 Non-confidentia

(continues on next page)

Page 401

(continued from previous page)
size_t * nonce_length);
psa_status_t psa_aead_set_nonce(psa_aead_operation_t * operation,
const uint8_t * nonce,
size_t nonce_length);
psa_status_t psa_aead_update_ad(psa_aead_operation_t * operation,
const uint8_t * input,
size_t input_length);
psa_status_t psa_aead_update(psa_aead_operation_t * operation,
const uint8_t * input,
size_t input_length,
uint8_t * output,
size_t output_size,
size_t * output_length);
psa_status_t psa_aead_finish(psa_aead_operation_t * operation,
uint8_t * ciphertext,
size_t ciphertext_size,
size_t * ciphertext_length,
uint8_t * tag,
size_t tag_size,
size_t * tag_length);
psa_status_t psa_aead_verify(psa_aead_operation_t * operation,
uint8_t * plaintext,
size_t plaintext_size,
size_t * plaintext_length,
const uint8_t * tag,
size_t tag_length);
psa_status_t psa_aead_abort(psa_aead_operation_t * operation);
#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) /* specification-defined value */
#define PSA_AEAD_ENCRYPT_OUTPUT_SIZE(key_type, alg, plaintext_length) \
/* implementation-defined value */
#define PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE(plaintext_length) \
/* implementation-defined value */
#define PSA_AEAD_DECRYPT_OUTPUT_SIZE(key_type, alg, ciphertext_length) \
/* implementation-defined value */
#define PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE(ciphertext_length) \
/* implementation-defined value */
#define PSA_AEAD_NONCE_LENGTH(key_type, alg) /* implementation-defined value */
#define PSA_AEAD_NONCE_MAX_SIZE /* implementation-defined value */
#define PSA_AEAD_UPDATE_OUTPUT_SIZE(key_type, alg, input_length) \
/* implementation-defined value */
#define PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE(input_length) \
/* implementation-defined value */
#tdefine PSA_AEAD_FINISH_OUTPUT_SIZE(key_type, alg) \
/* implementation-defined value */
#define PSA_AEAD_FINISH_OUTPUT_MAX_SIZE /* implementation-defined value */
#define PSA_AEAD_TAG_LENGTH(key_type, key_bits, alg) \
/* implementation-defined value */

#define PSA_AEAD_TAG_MAX_SIZE /* implementation-defined value */
(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 402
1.4.0 Non-confidentia

(continued from previous page)
#define PSA_AEAD_VERIFY_OUTPUT_SIZE(key_type, alg) \
/* implementation-defined value */
#define PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE /* implementation-defined value */
#define PSA_ALG_KW ((psa_algorithm_t)@x0@B400100)
#define PSA_ALG_KWP ((psa_algorithm_t)@x0BC00200)
psa_status_t psa_unwrap_key(const psa_key attributes_t * attributes,
psa_key_id_t wrapping_key,
psa_algorithm_t alg,
const uint8_t * data,
size_t data_length,
psa_key_id_t * key);
psa_status_t psa_wrap_key(psa_key_id_t wrapping_key,
psa_algorithm_t alg,
psa_key_id_t key,
uint8_t * data,
size_t data_size,
size_t * data_length);
#define PSA_WRAP_KEY_OUTPUT_SIZE(wrap_key_type, alg, key_type, key_bits) \
/* implementation-defined value */
#define PSA_WRAP_KEY_PAIR_MAX_SIZE /* implementation-defined value */
#define PSA_ALG_HKDF(hash_alg) /* specification-defined value */
#define PSA_ALG_HKDF_EXTRACT (hash_alg) /* specification-defined value */
#define PSA_ALG_HKDF_EXPAND(hash_alg) /* specification-defined value */
#define PSA_ALG_SP800_108_COUNTER_HMAC(hash_alg) \
/* specification-defined value */
#define PSA_ALG_SP800_108_COUNTER_CMAC ((psa_algorithm_t)0x08000800)
#define PSA_ALG_TLS12_PRF(hash_alg) /* specification-defined value */
#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) /* specification-defined value */
#define PSA_ALG_TLS12_ECJPAKE_TO_PMS ((psa_algorithm_t)0x08000609)
#define PSA_ALG_WPA3_SAE_H2E(hash_alg) /* specification-defined value */
#define PSA_ALG_PBKDF2_HMAC(hash_alg) /* specification-defined value */
#define PSA_ALG_PBKDF2_AES_CMAC_PRF_128 ((psa_algorithm_t)0x08800200)
typedef uintl6_t psa_key_derivation_step_t;
#define PSA_KEY_DERIVATION_INPUT_SECRET /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_OTHER_SECRET \
/* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_PASSWORD /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_LABEL /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_CONTEXT /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_SALT /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_INFO /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_SEED /* implementation-defined value */
#define PSA_KEY_DERIVATION_INPUT_COST /* implementation-defined value */
typedef /* implementation-defined type */ psa_key_derivation_operation_t;
#define PSA_KEY_DERIVATION_OPERATION_INIT /* implementation-defined value */
psa_key_derivation_operation_t psa_key_derivation_operation_init(void);
psa_status_t psa_key_derivation_setup(psa_key_derivation_operation_t * operation,
psa_algorithm_t alg);
(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 403
1.4.0 Non-confidentia

(continued from previous page)

psa_status_t psa_key_derivation_get_capacity(const psa_key_derivation_operation_t * operation,

size_t * capacity);

psa_status_t psa_key_derivation_set_capacity(psa_key_derivation_operation_t * operation,

size_t capacity);

psa_status_t psa_key_derivation_input_bytes(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,
const uint8_t * data,
size_t data_length);

psa_status_t psa_key_derivation_input_integer(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,
uinté64_t value);

psa_status_t psa_key_derivation_input_key(psa_key_derivation_operation_t * operation,

psa_key_derivation_step_t step,
psa_key_id_t key);

psa_status_t psa_key_derivation_output_bytes(psa_key_derivation_operation_t * operation,

uint8_t * output,
size_t output_length);

psa_status_t psa_key_derivation_output_key(const psa_key_attributes_t * attributes,

psa_status_t

psa_key_derivation_operation_t * operation,
psa_key_id_t * key);

psa_key_derivation_output_key_custom(const psa_key_attributes_t * attributes,

psa_key_derivation_operation_t * operation,
const psa_custom_key_parameters_t * custom,

const uint8_t * custom_data,
size_t custom_data_length,
psa_key_id_t * key);

psa_status_t psa_key_derivation_verify_bytes(psa_key_derivation_operation_t * operation,

const uint8_t * expected_output,
size_t output_length);

psa_status_t psa_key_derivation_verify_key(psa_key_derivation_operation_t * operation,

psa_key_id_t expected);

psa_status_t psa_key_derivation_abort(psa_key_derivation_operation_t * operation);

#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \

/* specification-defined value */
#define PSA_ALG_IS_HKDF(alg) /* specification-defined value */
#define PSA_ALG_IS_HKDF_EXTRACT(alg) /* specification-defined value */
#define PSA_ALG_IS_HKDF_EXPAND(alg) /* specification-defined value */
#define PSA_ALG_IS_SP800_108_COUNTER_HMAC(alg) \

/* specification-defined value */
#define PSA_ALG_IS_TLS12_PRF(alg) /* specification-defined value */
#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) /* specification-defined value */
#define PSA_ALG_IS_PBKDF2_HMAC(alg) /* specification-defined value */
#define PSA_ALG_IS_WPA3_SAE_H2E(alg) /* specification-defined value */
#define PSA_KEY_DERIVATION_UNLIMITED_CAPACITY \

/* implementation-defined value */
#define PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE /* implementation-defined value */
#define PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE 32
#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) /* specification-defined value */

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates
1.4.0 Non-confidentia

(continues on next page)

Page 404

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

(continued from previous page)

PSA_ALG_RSA_PKCS1V15_SIGN_RAW ((psa_algorithm_t) 0x06000200)
PSA_ALG_RSA_PSS(hash_alg) /* specification-defined value */
PSA_ALG_RSA_PSS_ANY_SALT (hash_alg) /* specification-defined value */
PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) /* specification-defined value */
PSA_ALG_IS_RSA_PSS(alg) /* specification-defined value */
PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) /* specification-defined value */
PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) /* specification-defined value */
PSA_ALG_ECDSA(hash_alg) /* specification-defined value */
PSA_ALG_ECDSA_ANY ((psa_algorithm_t) 0x06000600)
PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) /* specification-defined value */
PSA_ALG_IS_ECDSA(alg) /* specification-defined value */
PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) /* specification-defined value */
PSA_ALG_IS_RANDOMIZED_ECDSA(alg) /* specification-defined value */
PSA_ALG_PURE_EDDSA ((psa_algorithm_t) 0x06000800)

PSA_ALG_EDDSA_CTX ((psa_algorithm_t) 0x06000A00)

PSA_ALG_ED25519PH ((psa_algorithm_t) @x@600090B)

PSA_ALG_ED448PH ((psa_algorithm_t) 0x06000915)
PSA_ALG_IS_HASH_EDDSA(alg) /* specification-defined value */

psa_status_t psa_sign_message(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,
size_t input_length,
uint8_t * signature,

size_t signature_size,
size_t * signature_length);

psa_status_t psa_sign_message_with_context(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,
size_t input_length,

const uint8_t * context,
size_t context_length,
uint8_t * signature,

size_t signature_size,
size_t * signature_length);

psa_status_t psa_verify_message(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * input,
size_t input_length,

const uint8_t * signature,
size_t signature_length);

psa_status_t psa_verify_message_with_context(psa_key_id_t key,

IHI 0086
1.4.0

psa_algorithm_t alg,

const uint8_t * input,
size_t input_length,

const uint8_t * context,
size_t context_length,
const uint8_t * signature,

size_t signature_length);
(continues on next page)

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 405
Non-confidentia

(continued from previous page)

psa_status_t psa_sign_hash(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * hash,
size_t hash_length,

uint8_t * signature,

size_t signature_size,
size_t * signature_length);

psa_status_t psa_sign_hash_with_context(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * hash,
size_t hash_length,

const uint8_t * context,
size_t context_length,
uint8_t * signature,

size_t signature_size,
size_t * signature_length);

psa_status_t psa_verify_hash(psa_key_id_t key,

psa_algorithm_t alg,

const uint8_t * hash,
size_t hash_length,

const uint8_t * signature,
size_t signature_length);

psa_status_t psa_verify_hash_with_context(psa_key_id_t key,

#define
#define
#define
#define
#define
#define

psa_algorithm_t alg,

const uint8_t * hash,

size_t hash_length,

const uint8_t * context,

size_t context_length,

const uint8_t * signature,

size_t signature_length);
PSA_ALG_IS_SIGN_MESSAGE(alg) /* specification-defined value */
PSA_ALG_IS_SIGN_HASH(alg) /* specification-defined value */
PSA_ALG_IS_HASH_AND_SIGN(alg) /* specification-defined value */
PSA_ALG_SIGN_SUPPORTS_CONTEXT (alg) /* implementation-defined value */
PSA_ALG_ANY_HASH ((psa_algorithm_t)0x020000ff)
PSA_SIGN_OUTPUT_SIZE(key_type, key_bits, alg) \

/* implementation-defined value */

#define
#define
#define

PSA_SIGNATURE_MAX_SIZE /* implementation-defined value */
PSA_ALG_RSA_PKCS1V15_CRYPT ((psa_algorithm_t)@x07000200)
PSA_ALG_RSA_OAEP(hash_alg) /* specification-defined value */

psa_status_t psa_asymmetric_encrypt(psa_key_id_t key,

IHI 0086
1.4.0

psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * salt,
size_t salt_length,
uint8_t * output,
size_t output_size,
(continues on next page)

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 406
Non-confidentia

(continued from previous page)
size_t * output_length);
psa_status_t psa_asymmetric_decrypt(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * input,
size_t input_length,
const uint8_t * salt,
size_t salt_length,
uint8_t * output,
size_t output_size,
size_t * output_length);
#define PSA_ALG_IS_RSA_OAEP(alg) /* specification-defined value */
#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \
/* implementation-defined value */
#define PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE \
/* implementation-defined value */
#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE(key_type, key_bits, alg) \
/* implementation-defined value */
#define PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE \
/* implementation-defined value */
#define PSA_ALG_FFDH ((psa_algorithm_t)0x09010000)
#define PSA_ALG_ECDH ((psa_algorithm_t)@x09020000)
#define PSA_ALG_KEY_AGREEMENT (ka_alg, kdf_alg) \
/* specification-defined value */
psa_status_t psa_key_agreement(psa_key_id_t private_key,
const uint8_t * peer_key,
size_t peer_key_length,
psa_algorithm_t alg,
const psa_key_attributes_t * attributes,
psa_key_id_t * key);
psa_status_t psa_raw_key_agreement(psa_algorithm_t alg,
psa_key_id_t private_key,
const uint8_t * peer_key,
size_t peer_key_length,
uint8_t * output,
size_t output_size,
size_t * output_length);
psa_status_t psa_key_derivation_key_agreement(psa_key_derivation_operation_t * operation,
psa_key_derivation_step_t step,
psa_key_id_t private_key,
const uint8_t * peer_key,
size_t peer_key_length);
#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) /* specification-defined value */
#define PSA_ALG_KEY_AGREEMENT_GET_KDF(alg) /* specification-defined value */
#define PSA_ALG_IS_STANDALONE_KEY_AGREEMENT (alg) \
/* specification-defined value */
#define PSA_ALG_IS_RAW_KEY_AGREEMENT (alg) \
PSA_ALG_IS_STANDALONE_KEY_AGREEMENT (alg)
#define PSA_ALG_IS_FFDH(alg) /* specification-defined value */
(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 407
1.4.0 Non-confidentia

(continued from previous page)

#define PSA_ALG_IS_ECDH(alg) /* specification-defined value */
#define PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE(key_type, key_bits) \
/* implementation-defined value */
#define PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE \
/* implementation-defined value */
#define PSA_ALG_ECIES_SEC1 ((psa_algorithm_t)0x0c000100)
psa_status_t psa_encapsulate(psa_key_id_t key,
psa_algorithm_t alg,
const psa_key_attributes_t * attributes,
psa_key_id_t * output_key,
uint8_t * ciphertext,
size_t ciphertext_size,
size_t * ciphertext_length);
psa_status_t psa_decapsulate(psa_key_id_t key,
psa_algorithm_t alg,
const uint8_t * ciphertext,
size_t ciphertext_length,
const psa_key_attributes_t * attributes,
psa_key_id_t * output_key);
#define PSA_ENCAPSULATE_CIPHERTEXT_SIZE(key_type, key_bits, alg) \
/* implementation-defined value */
#define PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE /* implementation-defined value */
typedef uint32_t psa_pake_primitive_t;
typedef uint8_t psa_pake_primitive_type_t;
#define PSA_PAKE_PRIMITIVE_TYPE_ECC ((psa_pake_primitive_type_t)0x@1)
#define PSA_PAKE_PRIMITIVE_TYPE_DH ((psa_pake_primitive_type_t)0x02)
typedef uint8_t psa_pake_family_t;
#define PSA_PAKE_PRIMITIVE (pake_type, pake_family, pake_bits) \
/* specification-defined value */
#define PSA_PAKE_PRIMITIVE_GET_TYPE(pake_primitive) \
/* specification-defined value */
#define PSA_PAKE_PRIMITIVE_GET_FAMILY (pake_primitive) \
/* specification-defined value */
#define PSA_PAKE_PRIMITIVE_GET_BITS(pake_primitive) \
/* specification-defined value */
typedef /* implementation-defined type */ psa_pake_cipher_suite_t;
#define PSA_PAKE_CIPHER_SUITE_INIT /* implementation-defined value */
psa_pake_cipher_suite_t psa_pake_cipher_suite_init(void);
psa_algorithm_t psa_pake_cs_get_algorithm(const psa_pake_cipher_suite_t* cipher_suite);
void psa_pake_cs_set_algorithm(psa_pake_cipher_ suite_t* cipher_suite,
psa_algorithm_t alg);
psa_pake_primitive_t psa_pake_cs_get_primitive(const psa_pake_cipher_suite_t* cipher_suite);
void psa_pake_cs_set_primitive(psa_pake_cipher_suite_t* cipher_suite,
psa_pake_primitive_t primitive);
#define PSA_PAKE_CONFIRMED_KEY @
#define PSA_PAKE_UNCONFIRMED_KEY 1
uint32_t psa_pake_cs_get_key_confirmation(const psa_pake_cipher_ suite_t* cipher_suite);
void psa_pake_cs_set_key_confirmation(psa_pake_cipher_suite_t* cipher_suite,
(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 408
1.4.0 Non-confidentia

(continued from previous page)
uint32_t key_confirmation);
typedef uint8_t psa_pake_role_t;
#define PSA_PAKE_ROLE_NONE ((psa_pake_role_t)0x00)
#define PSA_PAKE_ROLE_FIRST ((psa_pake_role_t)0x01)
#define PSA_PAKE_ROLE_SECOND ((psa_pake_role_ t)0x02)
#define PSA_PAKE_ROLE_CLIENT ((psa_pake_role_t)0x11)
#define PSA_PAKE_ROLE_SERVER ((psa_pake_role_t)0x12)
typedef uint8_t psa_pake_step_t;
#define PSA_PAKE_STEP_KEY_SHARE ((psa_pake_step_t)0x01)
#define PSA_PAKE_STEP_ZK_PUBLIC ((psa_pake_step_t)@x02)
#define PSA_PAKE_STEP_ZK_PROOF ((psa_pake_step_t)@x03)
#define PSA_PAKE_STEP_CONFIRM ((psa_pake_step_t)0x04)
#define PSA_PAKE_STEP_SALT ((psa_pake_step_t)@x05)
#define PSA_PAKE_STEP_COMMIT ((psa_pake_step_t)0x06)
#define PSA_PAKE_STEP_CONFIRM_COUNT ((psa_pake_step_t)0x07)
#define PSA_PAKE_STEP_KEY_ID ((psa_pake_step_t)0x08)
typedef /* implementation-defined type */ psa_pake_operation_t;
#define PSA_PAKE_OPERATION_INIT /* implementation-defined value */
psa_pake_operation_t psa_pake_operation_init(void);
psa_status_t psa_pake_setup(psa_pake_operation_t * operation,
psa_key_id_t password_key,
const psa_pake_cipher_suite_t * cipher_suite);
psa_status_t psa_pake_set_role(psa_pake_operation_t * operation,
psa_pake_role_t role);
psa_status_t psa_pake_set_user(psa_pake_operation_t * operation,
const uint8_t * user_id,
size_t user_id_len);
psa_status_t psa_pake_set_peer(psa_pake_operation_t * operation,
const uint8_t * peer_id,
size_t peer_id_len);
psa_status_t psa_pake_set_context(psa_pake_operation_t * operation,
const uint8_t * context,
size_t context_len);
psa_status_t psa_pake_output(psa_pake_operation_t * operation,
psa_pake_step_t step,
uint8_t * output,
size_t output_size,
size_t * output_length);
psa_status_t psa_pake_input(psa_pake_operation_t * operation,
psa_pake_step_t step,
const uint8_t * input,
size_t input_length);
psa_status_t psa_pake_get_shared_key(psa_pake_operation_t * operation,
const psa_key_attributes_t * attributes,
psa_key_id_t * key);
psa_status_t psa_pake_abort(psa_pake_operation_t * operation);
#define PSA_PAKE_OUTPUT_SIZE(alg, primitive, output_step) \
/* implementation-defined value */
(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 409
1.4.0 Non-confidentia

(continued from previous page)
#define PSA_PAKE_OUTPUT_MAX_SIZE /* implementation-defined value */
#define PSA_PAKE_INPUT_SIZE(alg, primitive, input_step) \
/* implementation-defined value */
#define PSA_PAKE_INPUT_MAX_SIZE /* implementation-defined value */
#define PSA_ALG_JPAKE(hash_alg) /* specification-defined value */
#define PSA_ALG_IS_JPAKE(alg) /* specification-defined value */
#define PSA_ALG_SPAKE2P_HMAC(hash_alg) /* specification-defined value */
#define PSA_ALG_SPAKE2P_CMAC(hash_alg) /* specification-defined value */
#define PSA_ALG_SPAKE2P_MATTER ((psa_algorithm_t)@x0A000609)
#define PSA_ALG_IS_SPAKE2P(alg) /* specification-defined value */
#define PSA_ALG_IS_SPAKE2P_HMAC(alg) /* specification-defined value */
#define PSA_ALG_IS_SPAKE2P_CMAC(alg) /* specification-defined value */
#define PSA_ALG_WPA3_SAE_FIXED(hash_alg) /* specification-defined value */
#define PSA_ALG_WPA3_SAE_GDH(hash_alg) /* specification-defined value */
#define PSA_ALG_IS_WPA3_SAE(alg) /* specification-defined value */
#define PSA_ALG_IS_WPA3_SAE_FIXED(alg) /* specification-defined value */
#define PSA_ALG_IS_WPA3_SAE_GDH(alg) /* specification-defined value */
#define PSA_ALG_WPA3_SAE_ANY ((psa_algorithm_t)@x0a0088fT)
psa_status_t psa_generate_random(uint8_t * output,
size_t output_size);

#ifdef __cplusplus

}
#endif

#endif // PSA_CRYPTO_H

Appendix B: Algorithm and key type encoding

Algorithm identifiers (psa_algorithm_t) and key types (psa_key_type_t) in the Crypto API are structured
integer values.

e Algorithm identifier encoding describes the encoding scheme for algorithm identifiers

e Key type encoding on page 421 describes the encoding scheme for key types

B.1 Algorithm identifier encoding

Algorithm identifiers are 32-bit integer values of the type psa_algorithm_t. Algorithm identifier values have
the structure shown in Figure 8 on page 411.

Table 18 on page 411 describes the meaning of the bit-fields — some of the bit-fields are used in different
ways by different algorithm categories.

Table 18 Bit fields in an algorithm identifier

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 410
1.4.0 Non-confidentia

\% CAT S|{B LEN/T2 T1 H

Figure 8 Encoding of psa_algorithm_t

Field Bits Description

V [31] Flag to indicate an implementation-defined algorithm identifier, when V=1.
Algorithm identifiers defined by this specification always have V=0.

CAT [30:24] Algorithm category. See Algorithm categories.

S [23] For a cipher algorithm, this flag indicates a stream cipher when S=1.

For a key-wrapping algorithm, this flag indicates an algorithm that accepts
non-aligned input lengths when S=1.

For a key-derivation algorithm, this flag indicates a key-stretching or
password-hashing algorithm when S=1.

B [22] Flag to indicate an algorithm built on a block cipher, when B=1.

LEN/T2 [21:16] LEN s the length of a MAC or AEAD tag, T2 is a key-agreement algorithm sub-type.
T1 [15:8] Algorithm sub-type for most algorithm categories.

H [7:0] Hash algorithm sub-type, also used in any algorithm that is parameterized by a hash.

B.1.1 Algorithm categories
The CAT field in an algorithm identifier takes the values shown in Table 19 on page 412.

Table 19 Algorithm identifier categories

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 411
1.4.0 Non-confidential

Algorithm category

None

Hash

XOF

MAC

Cipher

AEAD

Key wrapping

Key derivation

Asymmetric signature

Asymmetric encryption

Key agreement
Key encapsulation
PAKE

CAT

0x00
0x02
0x@D
0x03
0x04
0x05
0x0B
0x08
0x06
0x07
0x09
ox0C
Ox0A

Category details

See PSA_ALG_NONE

See Hash algorithm encoding

See XOF algorithm encoding on page 413

See MAC algorithm encoding on page 414

See Cipher algorithm encoding on page 415

See AEAD algorithm encoding on page 415

See Key-wrapping algorithm encoding on page 416

See Key-derivation algorithm encoding on page 417

See Asymmetric signature algorithm encoding on page 417/
See Asymmetric encryption algorithm encoding on page 418
See Key-agreement algorithm encoding on page 419

See Key-encapsulation algorithm encoding on page 419

See PAKE algorithm encoding on page 420

B.1.2 Hash algorithm encoding

The algorithm identifier for hash algorithms defined in this specification are encoded as shown in Figure 9.

31 30

0 0x02

24 23 22 21

0

16 15 8 7 0

0 0 0 HASH-TYPE

Figure 9 Hash algorithm encoding

The defined values for HASH-TYPE are shown in Table 20 on page 413.

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates

Table 20 Hash algorithm sub-type values

Page 412
Non-confidentia

Hash algorithm HASH-TYPE Algorithm identifier Algorithm value
MD2 0x01 PSA_ALG_MD2 0x02000001
MD4 0x02 PSA_ALG_MD4 0x02000002
MD5 0x03 PSA_ALG_MD5 0x02000003
RIPEMD-160 0x04 PSA_ALG_RIPEMD160 0x02000004
SHA1 0x05 PSA_ALG_SHA_1 0x02000005
AES-MMO (Zigbhee) oxo7 PSA_ALG_AES_MMO_ZIGBEE 0x02000007
SHA-224 0x08 PSA_ALG_SHA_224 0x02000008
SHA-256 0x09 PSA_ALG_SHA_256 0x02000009
SHA-384 Ox0A PSA_ALG_SHA_384 0x0200000A
SHA-512 0x0B PSA_ALG_SHA_512 0x02000008B
SHA-512/224 0x0C PSA_ALG_SHA_512_224 0x0200000C
SHA-512/256 0x@D PSA_ALG_SHA_512_256 0x0200000D
SHA3-224 0x10 PSA_ALG_SHA3_224 0x02000010
SHA3-256 0x11 PSA_ALG_SHA3_256 0x02000011
SHA3-384 0x12 PSA_ALG_SHA3_384 0x02000012
SHA3-512 0x13 PSA_ALG_SHA3_512 0x02000013
SM3 0x14 PSA_ALG_SM3 0x02000014
SHAKE256-512 0x15 PSA_ALG_SHAKE256_512 0x02000015
Ascon-Hash256 0x19 PSA_ALG_ASCON_HASH256 0x02000019
wildcard @ OxFF PSA_ALG_ANY_HASH 0x020000FF

a. The wildcard hash PSA_ALG_ANY_HASH can be used to parameterize a signature algorithm which defines a
key usage policy, permitting any hash algorithm to be specified in a signature operation using the key.

B.1.3 XOF algorithm encoding

The algorithm identifier for XOF algorithms defined in this specification are encoded as shown in Figure 10.

31 30 24 23 22 21
0 0x0D o|o0 0 C

16 15 14 8 7 0

XOF-TYPE 0

Figure 10 XOF algorithm encoding

A C value of 1 indicates that the XOF algorithm has a context parameter. The defined values for C and
XOF-TYPE are shown in Table 21 on page 414.

Table 21 XOF algorithm sub-type values

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidential

Page 413

XOF algorithm

SHAKE128
SHAKE256
Ascon-XOF128
Ascon-CXOF128

C

0
0
0
1

XOF-TYPE

ox01
0x02
0x03

0x03

Algorithm identifier Algorithm value
PSA_ALG_SHAKE128 0x0D000100
PSA_ALG_SHAKE256 0x0D000200

PSA_ALG_ASCON_XOF128 0x0D000300

PSA_ALG_ASCON_CXOF128 0@x0D008300

B.1.4 MAC algorithm encoding

The algorithm identifier for MAC algorithms defined in this specification are encoded as shown in Figure 11.

31 30

24 23 22 21

16 15 14 8 7 0

0 0x03

118B

LEN w MAC-TYPE HASH-TYPE or O

Figure 11 MAC algorithm encoding

The defined values for B and MAC-TYPE are shown in Table 22.
LEN = O specifies a default length output MAC, other values for LEN specify a truncated MAC.

W is a flag to indicate a wildcard permitted-algorithm policy:

e W = 0O indicates a specific MAC algorithm and MAC length.

e W = 1 indicates a wildcard key usage policy, which permits the MAC algorithm with a MAC length of
at least LEN to be specified in a MAC operation using the key. LEN must not be zero.

H = HASH-TYPE (see Table 20 on page 413) for hash-based MAC algorithms, otherwise H = O.

MAC algorithm B

HMAC 0
CBC-MAC ¢ 1
CMAC ¢ 1

MAC-TYPE

0x00

ox01

0x02

Table 22 MAC algorithm sub-type values

Algorithm identifier Algorithm value

PSA_ALG_HMAC (hash_alg) ©0x038000hh P
PSA_ALG_CBC_MAC 0x03c00100 °
PSA_ALG_CMAC 0x03c00200 @

a. This is the default algorithm identifier, specifying a standard length tag. PSA_ALG_TRUNCATED_MAC ()
generates identifiers with non-default LEN values. PSA_ALG_AT_LEAST_THIS_LENGTH_MAC() generates
permitted-algorithm policies with W = 1.

b. hhis the HASH-TYPE for the hash algorithm, hash_alg, used to construct the MAC algorithm.

c. Thisis a MAC constructed using an underlying block cipher. The block cipher is determined by the key
type that is provided to the MAC operation.

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 414

Non-confidentia

B.1.5 Cipher algorithm encoding

The algorithm identifier for CIPHER algorithms defined in this specification are encoded as shown in Figure

12.

8 7

31 30
0

24 23 22 21

S

B

CIPHER-TYPE

Figure 12 CIPHER algorithm encoding

The defined values for S, B, and CIPHER-TYPE are shown in Table 23.

Cipher algorithm

Stream cipher @
CTR mode °
CFB mode ?
OFB mode ?

CCM* with zero-length tag P

CCM* wildcard ©
XTS mode b

CBC mode without padding P

CBC mode with PKCS#7 padding °

ECB mode without padding P

wn

O O O O » B B KB B &

os]

I N N N = = e

CIPHER-TYPE

0x01
0x10
0x11
0x12
0x13
0x93
OxFF
0x40
0x41

Ox44

Table 23 Cipher algorithm sub-type values

Algorithm identifier

PSA_ALG_STREAM_CIPHER
PSA_ALG_CTR

PSA_ALG_CFB

PSA_ALG_OFB
PSA_ALG_CCM_STAR_NO_TAG
PSA_ALG_CCM_STAR_ANY_TAG
PSA_ALG_XTS
PSA_ALG_CBC_NO_PADDING
PSA_ALG_CBC_PKCS7

PSA_ALG_ECB_NO_PADDING

Algorithm value

0x04800100
0x04C01000
0x04C01100
0x04C01200
0x04C01300
0x04c09300
0x0440FF00
0x04404000
0x04404100

0x04404400

a. The stream cipher algorithm identifier PSA_ALG_STREAM_CIPHER is used with specific stream cipher key
types, such as PSA_KEY_TYPE_CHACHA20.

b. This is a cipher mode of an underlying block cipher. The block cipher is determined by the key type
that is provided to the cipher operation.

c. The wildcard algorithm PSA_ALG_CCM_STAR_ANY_TAG permits a key to be used with any CCM* algorithm:

unauthenticated cipher PSA_ALG_CCM_STAR_NO_TAG, and AEAD algorithm PSA_ALG_CCM.

B.1.6 AEAD algorithm encoding

The algorithm identifier for AEAD algorithms defined in this specification are encoded as shown in Figure

13.
31 30 24 23 22 21 16 15 14 8 7 0
0 0x05 0|B LEN \\% AEAD-TYPE
Figure 13 AEAD algorithm encoding
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates

1.4.0

Non-confidentia

Page 415

The defined values for B and AEAD-TYPE are shown in Table 24.
LEN = 1..31 specifies the output tag length.
W is a flag to indicate a wildcard permitted-algorithm policy:

e W = 0O indicates a specific AEAD algorithm and tag length.

e W =1 indicates a wildcard key usage policy, which permits the AEAD algorithm with a tag length of at
least LEN to be specified in an AEAD operation using the key.

Table 24 AEAD algorithm sub-type values

AEAD algorithm B AEAD-TYPE Algorithm identifier Algorithm value
CCM @ 1 oxe1 PSA_ALG_CCM 0x05500100 °
GCM @ 1 oxe2 PSA_ALG_GCM 0x05500200 °
ChaCha20-Poly1305 O oxes PSA_ALG_CHACHA20_POLY1305 0x05100500 °
XChaCha20-Poly1305 O oxe6 PSA_ALG_XCHACHA20_POLY1305 0x05100600 °
Ascon-AEAD128 0 oxe7 PSA_ALG_ASCON_AEAD128 0x05100700 °

a. This is an AEAD mode of an underlying block cipher. The block cipher is determined by the key type
that is provided to the AEAD operation.

b. This is the default algorithm identifier, specifying the default tag length for the algorithm.
PSA_ALG_AEAD_WITH_SHORTENED_TAG() generates identifiers with alternative LEN values.
PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG() generates wildcard permitted-algorithm policies with
W =1.

B.1.7 Key-wrapping algorithm encoding

The algorithm identifier for key-wrapping algorithms defined in this specification are encoded as shown in
Figure 14.

31 30 24 23 22 21 16 15 8 7 0

0 0x0B S|B 0 WRAP-TYPE 0

Figure 14 Key-wrapping algorithm encoding

The defined values for S, B, and WRAP-TYPE are shown in Table 25.

Table 25 Key-wrapping algorithm sub-type values

Key-wrapping algorithm S B WRAP-TYPE Algorithm identifier Algorithm value

AES-KW 0O 1 oxo1 PSA_ALG_KW 0x0B400100
AES-KWP 1 1 oxe2 PSA_ALG_KWP 0x0BC00200
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 416

1.4.0 Non-confidential

B.1.8 Key-derivation algorithm encoding

The algorithm identifier for key-derivation algorithms defined in this specification are encoded as shown in

Figure 15.
31 30 24 23 22 21 16 15 8 7 0
0 0x08 s|o 0 KDF-TYPE HASH-TYPE

Figure 15 Key-derivation algorithm encoding

The defined values for S and KDF-TYPE are shown in Table 26.
The permitted values of HASH-TYPE (see Table 20 on page 413) depend on the specific KDF algorithm.

Key-derivation algorithm

HKDF

TLS-1.2 PRF

TLS-1.2 PSK-to-MasterSecret
HKDF-Extract

HKDF-Expand

TLS 1.2 ECJPAKE-to-PMS

SP 800-108 Counter HMAC

SP 800-108 Counter CMAC

PBKDF2-HMAC

PBKDF2-AES-CMAC-PRF-
128

WPA3-SAE Hash-to-element

_ = O O O O O O o O

KDF-
TYPE
0x01
0x02
0x03
Ox04
0x05
0x06
0x07
0x08
0x01
0x02

0x04

Table 26 Key-derivation algorithm sub-type values

Algorithm identifier

PSA_ALG_HKDF (hash)
PSA_ALG_TLS12_PRF(hash)
PSA_ALG_TLS12_PSK_TO_MS(hash)
PSA_ALG_HKDF_EXTRACT (hash)
PSA_ALG_HKDF_EXPAND (hash)
PSA_ALG_TLS12_ECJPAKE_TO_PMS
PSA_ALG_SP800_108_COUNTER_HMAC (hash)
PSA_ALG_SP800_108_COUNTER_CMAC
PSA_ALG_PBKDF2_HMAC (hash)

PSA_ALG_PBKDF2_AES_CMAC_PRF_128

PSA_ALG_WPA3_SAE_H2E (hash)

Algorithm
value
0x080001hh °
0x080002hh °
0x080003hh °
0x080004hh °
0x080005hh °
0x08000609
0x080007hh °
008000800
0x088001hh °
0x08800200

0x088004hh @

a. hhis the HASH-TYPE for the hash algorithm, hash, used to construct the key-derivation algorithm.

B.1.9 Asymmetric signature algorithm encoding

The algorithm identifier for asymmetric signature algorithms defined in this specification are encoded as

shown in Figure 16.

31 30

24 23 22 21

16 15 8 7

0

0 0x06

0

0

0

SIGN-TYPE

HASH-TYPE or O

Figure 16 Asymmetric signature algorithm encoding

The defined values for SIGN-TYPE are shown in Table 27 on page 418.

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates

Non-confidentia

Page 417

H = HASH-TYPE (see Table 20 on page 413) for message signature algorithms that are parameterized by a

hash algorithm, otherwise H = O.

Signature algorithm

RSA PKCS#1 v1.5

RSA PKCS#1 v1.5 no hash P

RSA PSS

RSA PSS any salt length
Randomized ECDSA

Randomized ECDSA no hash b

Deterministic ECDSA
PureEdDSA without context

HashEdDSA

PureEdDSA with context

SIGN-TYPE

0x02
0x02
0x03
0x13
0x06
0x06
0x07
0x08
0x09

Ox0a

Table 27 Asymmetric signature algorithm sub-type values

Algorithm identifier

PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg)
PSA_ALG_RSA_PKCS1V15_SIGN_RAW
PSA_ALG_RSA_PSS(hash_alg)
PSA_ALG_RSA_PSS_ANY_SALT (hash_alg)
PSA_ALG_ECDSA(hash_alg)
PSA_ALG_ECDSA_ANY
PSA_ALG_DETERMINISTIC_ECDSA(hash_alg)
PSA_ALG_PURE_EDDSA

PSA_ALG_ED25519PH and PSA_ALG_ED448PH

PSA_ALG_EDDSA_CTX

Algorithm value

0x060002hh ?
0x06000200
0x060003hh °
0x060013hh ?
0x060006hh °
0x06000600
0x060007hh °
0x06000800
0x060009hh ©
0x06000a00

a. hhis the HASH-TYPE for the hash algorithm, hash_alg, used to construct the signature algorithm.

b. Asymmetric signature algorithms without hashing can only be used with psa_sign_hash() and

psa_verify_hash().

c. The HASH-TYPE for HashEdDSA is determined by the curve. SHA-512 is used for Ed25519ph, and
the first 64 bytes of output from SHAKE256 is used for Ed448ph.

B.1.10 Asymmetric encryption algorithm encoding

The algorithm identifier for asymmetric encryption algorithms defined in this specification are encoded as
shown in Figure 17.

31 30

24 23 22 21

16 15 8 7

0

0

0

0

0

ENCRYPT-TYPE

HASH-TYPE or O

Figure 17 Asymmetric encryption algorithm encoding

The defined values for ENCRYPT-TYPE are shown in Table 28.

H = HASH-TYPE (see Table 20 on page 413) for asymmetric encryption algorithms that are parameterized
by a hash algorithm, otherwise H = O.

Asymmetric encryption algorithm ENCRYPT-TYPE Algorithm identifier

RSA PKCS#1 v1.5
RSA OAEP

IHI 0086
1.4.0

0x02

0x03

Table 28 Asymmetric encryption algorithm sub-type values

Algorithm value

PSA_ALG_RSA_PKCS1V15_CRYPT 0x07000200

PSA_ALG_RSA_OAEP(hash_alg) ©x@70@@3hh °

Copyright © 2018-2025 Arm Limited and/or its affiliates

Non-confidentia

Page 418

a. hhis the HASH-TYPE for the hash algorithm, hash_alg, used to construct the encryption algorithm.

B.1.11 Key-agreement algorithm encoding

A key-agreement algorithm identifier can either be for the standalone key-agreement algorithm, or for a
combined key-agreement with key-derivation algorithm. The former can only be used with
psa_key_agreement () and psa_raw_key_agreement (), while the latter are used with
psa_key_derivation_key_agreement().

The algorithm identifier for standalone key-agreement algorithms defined in this specification are encoded
as shown in Figure 18.

31 30

24 23 22 21

16 15

0

o|0

KA-TYPE

Figure 18 Standalone key-agreement algorithm encoding
The defined values for KA-TYPE are shown in Table 29.

Table 29 Key-agreement algorithm sub-type values

Key-agreement algorithm KA-TYPE Algorithm identifier Algorithm value

FFDH
ECDH

0x01 PSA_ALG_FFDH 0x09010000

0x02 PSA_ALG_ECDH 0x09020000

A combined key agreement is constructed by a bitwise OR of the standalone key-agreement algorithm
identifier and the key-derivation algorithm identifier. This operation is provided by the
PSA_ALG_KEY_AGREEMENT () macro.

31 30 24 23 22 21 16 15 8 7 0

0 0x09 0|0 KA-TYPE KDF-TYPE HASH-TYPE

Figure 19 Combined key-agreement algorithm encoding

The underlying standalone key-agreement algorithm can be extracted from the KA-TYPE field, and the
key-derivation algorithm from the KDF-TYPE and HASH-TYPE fields.

B.1.12 Key-encapsulation algorithm encoding

The algorithm identifier for key-encapsulation algorithms defined in this specification are encoded as shown
in Figure 20 on page 420.

The defined values for ENCAPS-TYPE are shown in Table 30 on page 420.

Table 30 Encapsulation algorithm sub-type values

IHI 0086 Page 419

1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidential

16 15 8 7 0

0]0

0 ENCAPS-TYPE 0

Encapsulation algorithm ENCAPS-TYPE Algorithm identifier

ECIES (SEC1)

0x01

Figure 20 Encapsulation algorithm encoding

Algorithm value

PSA_ALG_ECIES_SEC1 0x0C000100

B.1.13 PAKE algorithm encoding

The algorithm identifier for PAKE algorithms defined in this specification are encoded as shown in Figure 21.

31 30
0 Ox0A

24 23 22 21

0|0

16 15 8 7 0

0 PAKE-TYPE HASH-TYPE

Figure 21 PAKE algorithm encoding

The defined values for PAKE-TYPE are shown in Table 31.
The permitted values of HASH-TYPE (see Table 20 on page 413) depend on the specific PAKE algorithm.

PAKE algorithm

J-PAKE

SPAKE2+ with HMAC
SPAKE2+ with CMAC
SPAKE2+ for Matter
WPAS3-SAE
WPA3-SAE (GDH)
WPA3-SAE wildcard P

PAKE-TYPE

0x01
0x04
0x05
0x06
0x08
0x09

0x88

Table 31 PAKE algorithm sub-type values

Algorithm identifier Algorithm value

PSA_ALG_JPAKE (hash) 0x0AQ00Q1hh @

PSA_ALG_SPAKE2P_HMAC (hash) 0x0A0004hh @
PSA_ALG_SPAKE2P_CMAC (hash) 0x0AQ005hh °
PSA_ALG_SPAKE2P_MATTER 0x0A000609
PSA_ALG_WPA3_SAE_FIXED(hash) ©x@A@0@8hh °
PSA_ALG_WPA3_SAE_GDH(hash) 0x0AQ009hh °

PSA_ALG_WPA3_SAE_ANY 0Ox0OADOBSFF

a. hhis the HASH-TYPE for the hash algorithm, hash, used to construct the key-derivation algorithm.

b. The wildcard algorithm PSA_ALG_WPA3_SAE_ANY permits a password key to be used for any WPA3-SAE
cipher suite with the PSA_ALG_WPA3_SAE_H2E key-derivation algorithm, and with the
PSA_ALG_WPA3_SAE_FIXED PAKE algorithm.

c. The wildcard algorithm PSA_ALG_WPA3_SAE_ANY permits a WPA3-SAE password token key to be used for
both the PSA_ALG_WPA3_SAE_FIXED and PSA_ALG_WPA3_SAE_GDH PAKE algorithms.

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates

Page 420
Non-confidentia

B.2 Key type encoding

Key types are 16-bit integer values of the type psa_key_type_t. Key type values have the structure shown in
Figure 22.

15 14 13 12 11 1 0
V|A| CAT

category-specific type

Figure 22 Encoding of psa_key_type_t

Table 32 describes the meaning of the bit-fields — some of bit-fields are used in different ways by different
key type categories.

Table 32 Bit fields in a key type

Field Bits Description

V [15] Flag to indicate an implementation-defined key type, when V=1.
Key types defined by this specification always have V=0.

A 14] Flag to indicate an asymmetric key type, when A=1.

11:1] The meaning of this field is specific to each key category.

[

CAT [13:12] Key type category. See Key type categories.
category-specific type [
[

P 0] Parity bit. Valid key type values have even parity.

B.2.1 Key type categories
The A and CAT fields in a key type take the values shown in Table 33.

Table 33 Key type categories

Key type category A CAT Category details

None 0 O See PSA_KEY_TYPE_NONE

Raw data 0 1 See Raw key encoding

Symmetric key 0 2 See Symmetric key encoding on page 422
Structured key 0O 3 See Structured key encoding on page 423
Asymmetric publickey 1 O See Asymmetric key encoding on page 424
Asymmetric key pair 1 3 See Asymmetric key encoding on page 424

B.2.2 Raw key encoding
The key type for raw keys defined in this specification are encoded as shown in Figure 23 on page 422.
The defined values for RAW-TYPE, SUB-TYPE, and P are shown in Table 34 on page 422.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 421
1.4.0 Non-confidential

15 14 13 12 11
0]0 1

8 7 1 0
SUB-TYPE

RAW-TYP

Figure 23 Raw key encoding

Table 34 Raw key sub-type values

Raw key type RAW-TYPE SUB-TYPE P Key type Key type value
Raw data 0 0 1 PSA_KEY_TYPE_RAW_DATA 0x1001
HMAC 1 0 O PSA_KEY_TYPE_HMAC 0x1100
Derivation secret 2 0 O PSA_KEY_TYPE_DERIVE 0x1200
Password 2 1 1 PSA_KEY_TYPE_PASSWORD 0x1203
Password hash 2 2 1 PSA_KEY_TYPE_PASSWORD_HASH 0x1205
Derivation pepper 2 3 O PSA_KEY_TYPE_PEPPER 0x1206

B.2.3 Symmetric key encoding

The key type for symmetric keys defined in this specification are encoded as shown in Figure 24.

15 14 13 12 11 10 8 7 1
0|0 2 0 BLK SYM-TYPE

Figure 24 Symmetric key encoding
For block-based cipher keys, the block size for the cipher algorithm is 28,

The defined values for BLK, SYM-TYPE and P are shown in Table 35.

Table 35 Symmetric key sub-type values

Symmetric key type BLK SYM-TYPE P Key type Key type value
ARC4 0 1 O PSA_KEY_TYPE_ARC4 0x2002
ChaCha20 0 2 O PSA_KEY_TYPE_CHACHA20 0x2004
XChaCha20 0 3 1 PSA_KEY_TYPE_XCHACHA20 0x2007
Ascon 0 4 O PSA_KEY_TYPE_ASCON 0x2008
DES 3 0 1 PSA_KEY_TYPE_DES 0x2301
AES 4 0 O PSA_KEY_TYPE_AES 0x2400
CAMELLIA 4 1 1 PSA_KEY_TYPE_CAMELLIA @x2403
SM4 4 2 1 PSA_KEY_TYPE_SM4 0x2405
ARIA 4 3 O PSA_KEY_TYPE_ARIA 0x2406
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 422

1.4.0 Non-confidential

B.2.4 Structured key encoding

The key type for structured keys defined in this specification are encoded as shown in Figure 25.

15 14 13 12 11 7 6 1

0]0 3 STRUCT-TYPE FAMILY

Figure 25 Encoding of structured keys

The defined values for STRUCT-TYPE are shown in Table 36.

The defined values for FAMILY depend on the STRUCT-TYPE value. See the details for each structured key
sub-type.

Table 36 Structured key sub-type values
Structured key type STRUCT-TYPE Details

WPA3-SAE password token 5, 6 See WPA3-SAE password token encoding

WPAS3-SAE password token encoding

WPAS3-SAE is defined to use either elliptic curve or finite field groups. These use distinct STRUCT-TYPE
values, and use the same FAMILY values as elliptic curve and finite field Diffie-Hellman key types.

WPAS3-SAE password tokens using elliptic curves

The key type for WPA3-SAE password tokens using elliptic curves defined in this specification are encoded
as shown in Figure 26.

15 14 13 12 11 7 6 1 0

(UM 0] 3 5 ECC-FAMILY

Figure 26 Encoding of WPA3-SAE password token using elliptic curves
The defined values for ECC-FAMILY and P are shown in Table 37.

Table 37 WPA3-SAE password token ECC family values

WPAS3-SAE suite ECC-FAMILY P ECC family? Key value
SECP R1 Ox09 O PSA_ECC_FAMILY_SECP_R1 0x3292
Brainpool-P R1 0x18 O PSA_ECC_FAMILY_BRAINPOOL_P_R1 @x32b0

a. The elliptic curve family values defined in the API also include the parity bit. The password token key
type value is constructed from the elliptic curve family using PSA_KEY_TYPE_WPA3_SAE_ECC(family).

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 423
1.4.0 Non-confidential

WPAS3-SAE password tokens using finite fields

The key type for WPAS3-SAE password tokens using finite fields defined in this specification are encoded as
shown in Figure 27.

15 14 13 12 11 7 6 1

0]0 3 6 DH-FAMILY

Figure 27 Encoding of WPA3-SAE password token using finite fields

The defined values for DH-FAMILY and P are shown in Table 38.

RFC3526 defines a set of FF groups that are recommended for use with WPA3-SAE (those with primes
>=3072 bits)

Table 38 WPA3-SAE password token finite field Diffie-Hellman family values
WPA3-SAE suite DH-FAMILY P DH family?® Key value

RFC3526 0Ox02 1 PSA_DH_FAMILY_RFC3526 ©x3305

a. The finite field Diffie Hellman family values defined in the API also include the parity bit. The
password token key type value is constructed from the finite field Diffie Hellman family using
PSA_KEY_TYPE_WPA3_SAE_DH(family).

B.2.5 Asymmetric key encoding

The key type for asymmetric keys defined in this specification are encoded as shown in Figure 28.

15 14 13 12 11 7 6 1

0]1] PAIR ASYM-TYPE FAMILY

Figure 28 Asymmetric key encoding

PAIR is either O for a public key, or 3 for a key pair.
The defined values for ASYM-TYPE are shown in Table 39.

The defined values for FAMILY depend on the ASYM-TYPE value. See the details for each asymmetric key
sub-type.

Table 39 Asymmetric key sub-type values

Asymmetric key type ASYM-TYPE Details

Non-parameterized See Non-parameterized asymmetric key encoding on page 425

0
Elliptic Curve 2 See Elliptic curve key encoding on page 425
Diffie-Hellman 4 See Finite field Diffie Hellman key encoding on page 426
8

SPAKE2+ See SPAKEZ2+ key encoding on page 427

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 424
1.4.0 Non-confidential

Non-parameterized asymmetric key encoding

The key type for non-parameterized asymmetric keys defined in this specification are encoded as shown in
Figure 29.

15 14 13 12 11 7 6 1 0

0|1] PAIR 0 NP-FAMILY

Figure 29 Non-parameterized asymmetric keys encoding

PAIR is either O for a public key, or 3 for a key pair.
The defined values for NP-FAMILY and P are shown in Table 40.

Table 40 Non-parameterized asymmetric key family values

Key family Public/pair PAIR NP-FAMILY P Key type Key value
RSA Publickey O 0 1 PSA_KEY_TYPE_RSA_PUBLIC_KEY 0x4001
Key pair 3 0 1 PSA_KEY_TYPE_RSA_KEY_PAIR 0x7001

Elliptic curve key encoding

The key type for elliptic curve keys defined in this specification are encoded as shown in Figure 30.

15 14 13 12 11 7 6 1 0

0|1] PAIR 2 ECC-FAMILY

Figure 30 Elliptic curve key encoding

PAIR is either O for a public key, or 3 for a key pair.
The defined values for ECC-FAMILY and P are shown in Table 41 on page 426.

Table 41 ECC key family values

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 425
1.4.0 Non-confidential

ECC key family ECC-FAMILY P ECC family @ Public-key value Key-pair value

SECP K1 OxOB 1 PSA_ECC_FAMILY_SECP_K1 0x4117 0x7117
SECP R1 0x09 O PSA_ECC_FAMILY_SECP_R1 0x4112 0x7112
SECP R2 0Ox0D 1 PSA_ECC_FAMILY_SECP_R2 0x411B 0x711B
SECT K1 0x13 1 PSA_ECC_FAMILY_SECT_K1 0x4127 0x7127
SECT R1 Ox11 O PSA_ECC_FAMILY_SECT_R1 0x4122 0x7122
SECT R2 Ox15 1 PSA_ECC_FAMILY_SECT_R2 0x412B 0x712B
Brainpool-P R1 0x18 O PSA_ECC_FAMILY_BRAINPOOL_P_R1 @x4130 0x7130
FRP Ox19 1 PSA_ECC_FAMILY_FRP 0x4133 0x7133
Montgomery 0x20 1 PSA_ECC_FAMILY_MONTGOMERY 0x4141 0x7141
Twisted Edwards Ox21 O PSA_ECC_FAMILY_TWISTED_EDWARDS @x4142 0x7142

a. The elliptic curve family values defined in the API also include the parity bit. The key type value is
constructed from the elliptic curve family using either PSA_KEY_TYPE_ECC_PUBLIC_KEY (family) or
PSA_KEY_TYPE_ECC_KEY_PAIR(family) as required.

Finite field Diffie Hellman key encoding

The key type for finite field Diffie Hellman keys defined in this specification are encoded as shown in Figure
31.

15 14 13 12 11 7 6 1

0|1] PAIR 4 DH-FAMILY

Figure 31 Finite field Diffie Hellman key encoding

PAIR is either O for a public key, or 3 for a key pair.
The defined values for DH-FAMILY and P are shown in Table 42.

Table 42 Finite field Diffie Hellman key group values
DH key group DH-FAMILY P DH family @ Public-key value Key-pair value

RFC7919 0Ox01 1 PSA_DH_FAMILY_RFC7919 0x4203 0x7203

a. The finite field Diffie Hellman group family values defined in the API also include the parity bit. The
key type value is constructed from the finite field Diffie Hellman family using either
PSA_KEY_TYPE_DH_PUBLIC_KEY (family) Or PSA_KEY_TYPE_DH_KEY_PAIR(family) as required.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 426
1.4.0 Non-confidential

SPAKE2+ key encoding
The key type for SPAKE2+ keys defined in this specification are encoded as shown in Figure 32.

15 14 13 12 11 7 6 1

0|1] PAIR 8 ECC-FAMILY

Figure 32 SPAKE2+ key encoding

PAIR is either O for a public key, or 3 for a key pair.
The defined values for ECC-FAMILY and P are shown in Table 43.

Table 43 SPAKE2+ key family values

SPAKE2+ group ECC-FAMILY P ECC family @ Public-key value Key-pair value
SECP R1 0x09 O PSA_ECC_FAMILY_SECP_R1 0x4412 0x7412
Twisted Edwards 0x21 O PSA_ECC_FAMILY_TWISTED_EDWARDS 0@x4442 Ox7442

a. The elliptic curve family values defined in the API also include the parity bit. The key type value is
constructed from the elliptic curve family using either PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY (family) or
PSA_KEY_TYPE_SPAKE2P_KEY_PAIR(family) as required.

Appendix C: Example macro implementations

This appendix provides example implementations of the function-like macros that have
specification-defined values.

Note:

In a future version of this specification, these example implementations will be replaced with a
pseudo-code representation of the macro’s computation in the macro description.

The examples here provide correct results for the valid inputs defined by each API, for an implementation
that supports all of the defined algorithms and key types. An implementation can provide alternative
definitions of these macros:

e [f the implementation does not support all of the algorithms or key types, it can provide a simpler
definition of applicable macros.

e |f the implementation provides vendor-specific algorithms or key types, it needs to extend the
definitions of applicable macros.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 427
1.4.0 Non-confidential

C.1 Algorithm macros

#define PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG(aead_alg) \

((((aead_alg) & ~0x003T8000) == 0x05400100) ? PSA_ALG_CCM : \
(((aead_alg) & ~0x003f8000) == 0x05400200) ? PSA_ALG_GCM : \
(((aead_alg) & ~0x003f8000) == 0x05000500) ? PSA_ALG_CHACHA20_POLY1305 : \

PSA_ALG_NONE)

#define PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG(aead_alg, min_tag_length) \
(PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, min_tag_length) | 0x00008000)

#define PSA_ALG_AEAD_WITH_SHORTENED_TAG(aead_alg, tag_length) \
((psa_algorithm_t) (((aead_alg) & ~0x003f8000) | (((tag_length) & @x3f) << 16)))

#define PSA_ALG_AT_LEAST_THIS_LENGTH_MAC(mac_alg, min_mac_length) \
(PSA_ALG_TRUNCATED_MAC(mac_alg, min_mac_length) | 0x00008000)

#define PSA_ALG_DETERMINISTIC_ECDSA(hash_alg) \
((psa_algorithm_t) (0x06000700 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_ECDSA(hash_alg) \
((psa_algorithm_t) (0x06000600 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_FULL_LENGTH_MAC(mac_alg) \
((psa_algorithm_t) ((mac_alg) & ~0x003f8000))

#define PSA_ALG_GET_HASH(alg) \
(((alg) & 0x000000ff) == 0 ? PSA_ALG_NONE : 0x02000000 | ((alg) & 0x000000ff))

#define PSA_ALG_HKDF(hash_alg) \
((psa_algorithm_t) (0x08000100 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HKDF_EXPAND(hash_alg) \
((psa_algorithm_t) (0x08000500 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HKDF_EXTRACT (hash_alg) \
((psa_algorithm_t) (0x08000400 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HMAC(hash_alg) \
((psa_algorithm_t) (@x03800000 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_IS_AEAD(alg) \
(((alg) & Ox7T000000) == 0x05000000)

#define PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER(alg) \
(((alg) & Ox7T400000) == 0x05400000)

#define PSA_ALG_IS_ASYMMETRIC_ENCRYPTION(alg) \
(((alg) & 0x7f000000) == 0x07000000)

(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates
1.4.0 Non-confidentia

Page 428

#define PSA_ALG_IS_BLOCK_CIPHER_MAC(alg) \
(((alg) & 0x7fc00000) == 0x03c00000)

#define PSA_ALG_IS_CIPHER(alg) \
(((alg) & 0x7T000000) == 0x04000000)

#define PSA_ALG_IS_DETERMINISTIC_ECDSA(alg) \
(((alg) & ~0x00000OTT) == Ox06000700)

#define PSA_ALG_IS_ECDH(alg) \
(((alg) & Ox7fff0o000) == 0x09020000)

#define PSA_ALG_IS_ECDSA(alg) \
(((alg) & ~0x0000VO1ff) == 0x06000600)

#define PSA_ALG_IS_FFDH(alg) \
(((alg) & Ox7fff0o000) == 0x09010000)

#define PSA_ALG_IS_HASH(alg) \
(((alg) & Ox7f000000) == 0x02000000)

#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
(PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg))

#define PSA_ALG_IS_HASH_EDDSA(alg) \
(((alg) & ~0x00000OTT) == Ox06000900)

#define PSA_ALG_IS_HKDF(alg) \
(((alg) & ~0x000000ff) == 0x08000100)

#define PSA_ALG_IS_HKDF_EXPAND(alg) \
(((alg) & ~0x000000TT) == Ox08000500)

#define PSA_ALG_IS_HKDF_EXTRACT (alg) \
(((alg) & ~0x00000OTT) == 0x08000400)

#define PSA_ALG_IS_HMAC(alg) \
(((alg) & Ox7fcoffoo) == 0x03800000)

#define PSA_ALG_IS_JPAKE(alg) \
(((alg) & ~0x00000OTT) == 0x0a000100)

#define PSA_ALG_IS_KEY_AGREEMENT (alg) \
(((alg) & Ox7f000000) == 0x09000000)

#define PSA_ALG_IS_KEY_DERIVATION(alg) \

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates
1.4.0 Non-confidential

(continued from previous page)

(continues on next page)

Page 429

(continued from previous page)
(((alg) & Ox7f000000) == 0x03000000)

#define PSA_ALG_IS_KEY_DERIVATION_STRETCHING(alg) \
(((alg) & Ox7T800000) == 0x08800000)

#define PSA_ALG_IS_KEY_ENCAPSULATION(alg) \
(((alg) & Ox7f000000) == 0x0C0O00000)

#define PSA_ALG_IS_KEY_WRAP(alg) \
(((alg) & Ox7T000000) == 0x0b00V00VV)

#define PSA_ALG_IS_MAC(alg) \
(((alg) & 0x7f000000) == 0x03000000)

#define PSA_ALG_IS_PAKE(alg) \
(((alg) & Ox7f000000) == 0x0a000000)

#define PSA_ALG_IS_PBKDF2_HMAC(alg) \
(((alg) & ~0x000000TT) == 0x08800100)

#define PSA_ALG_IS_RANDOMIZED_ECDSA(alg) \
(((alg) & ~0x00000OTT) == 0x06000600)

#define PSA_ALG_IS_RSA_OAEP(alg) \
(((alg) & ~0x000000Off) == 0x07000300)

#define PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) \
(((alg) & ~0x00000OTT) == 0x06000200)

#define PSA_ALG_IS_RSA_PSS(alg) \
(((alg) & ~0x000010ff) == 0x06000300)

#define PSA_ALG_IS_RSA_PSS_ANY_SALT(alg) \
(((alg) & ~0x000000TT) == Ox06001300)

#define PSA_ALG_IS_RSA_PSS_STANDARD_SALT(alg) \
(((alg) & ~0x00000OTT) == 0x06000300)

#define PSA_ALG_IS_SIGN(alg) \
(((alg) & 0x7T000000) == 0x06000000)

#define PSA_ALG_IS_SIGN_HASH(alg) \
(PSA_ALG_IS_SIGN(alg) && \
(alg) !'= PSA_ALG_PURE_EDDSA && (alg) !'= PSA_ALG_EDDSA_CTX)

#define PSA_ALG_IS_SIGN_MESSAGE(alg) \
(PSA_ALG_IS_SIGN(alg) && \
(alg) !'= PSA_ALG_ECDSA_ANY && (alg) != PSA_ALG_RSA_PKCS1V15_SIGN_RAW)
(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 430
1.4.0 Non-confidential

#define PSA_ALG_IS_SP80@_108_COUNTER_HMAC(alg) \
(((alg) & ~0x00000OTT) == 0x08000700)

#define PSA_ALG_IS_SPAKE2P(alg) \
(((alg) & ~0x000003ff) == Ox0a0EO400)

#define PSA_ALG_IS_SPAKE2P_CMAC(alg) \
(((alg) & ~0x0000EOTT) == 0x0a000500)

#define PSA_ALG_IS_SPAKE2P_HMAC(alg) \
(((alg) & ~0x000000TT) == 0x0a000400)

#define PSA_ALG_IS_STANDALONE_KEY_AGREEMENT (alg) \
(((alg) & Ox7fo0ffff) == 0x09000000)

#define PSA_ALG_IS_STREAM_CIPHER(alg) \
(((alg) & Ox7f800000) == 0x04800000)

#define PSA_ALG_IS_TLS12 PRF(alg) \
(((alg) & ~0x000000ff) == 0x08000200)

#define PSA_ALG_IS_TLS12_PSK_TO_MS(alg) \
(((alg) & ~0x00000OTT) == Ox08000300)

#define PSA_ALG_IS_WILDCARD(alg) \
(PSA_ALG_GET_HASH(alg) == PSA_ALG_ANY_HASH || \
((alg) & Ox7f008000) == 0x03008000 || \
((alg) & Ox7f008000) == 0x05008000 || \
(alg) == PSA_ALG_CCM_STAR_ANY_TAG)

#define PSA_ALG_IS_WPA3_SAE(alg) \
(((alg) & ~0x000001ff) == 0x0a000800)

#define PSA_ALG_IS_WPA3_SAE_FIXED(alg) \
(((alg) & ~0x000000ff) == 0x0a000800)

#define PSA_ALG_IS_WPA3_SAE_GDH(alg) \
(((alg) & ~0x00000OfT) == 0x0a00900)

#define PSA_ALG_IS_WPA3_SAE_H2E(alg) \
(((alg) & ~0x000000TT) == 0x08800400)

#define PSA_ALG_IS_XOF(alg) \
(((alg) & 0x7f000000) == 0x0DOVGOGO)

#define PSA_ALG_JPAKE(hash_alg) \
((psa_algorithm_t) (0x0a000100 | ((hash_alg) & 0x000000ff)))

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates
1.4.0 Non-confidential

(continued from previous page)

(continues on next page)

Page 431

(continued from previous page)

#define PSA_ALG_KEY_AGREEMENT (ka_alg, kdf_alg) \
((ka_alg) | (kdf_alg))

#define PSA_ALG_KEY_AGREEMENT_GET_BASE(alg) \
((psa_algorithm_t) ((alg) & 0xff7f0000))

#define PSA_ALG_KEY_AGREEMENT_GET_KDF (alg) \
((psa_algorithm_t) ((alg) & Oxfe80ffff))

#define PSA_ALG_PBKDF2_HMAC(hash_alg) \
((psa_algorithm_t) (0x08800100 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_RSA_OAEP(hash_alg) \
((psa_algorithm_t) (0x07000300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_RSA_PKCS1V15_SIGN(hash_alg) \
((psa_algorithm_t) (0x06000200 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_RSA_PSS(hash_alg) \
((psa_algorithm_t) (@0x06000300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_RSA_PSS_ANY_SALT (hash_alg) \
((psa_algorithm_t) (@0x06001300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_SP800_108_COUNTER_HMAC(hash_alg)
((psa_algorithm_t) (0x08000700 | ((hash_alg) & 0x000000ff)))

—

#define PSA_ALG_SPAKE2P_CMAC(hash_alg) \
((psa_algorithm_t) (@0x0a000500 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_SPAKE2P_HMAC(hash_alg) \
((psa_algorithm_t) (0x0a000400 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_TLS12_PRF(hash_alg) \
((psa_algorithm_t) (0x08000200 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_TLS12_PSK_TO_MS(hash_alg) \
((psa_algorithm_t) (0x08000300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_TRUNCATED_MAC(mac_alg, mac_length) \
((psa_algorithm_t) (((mac_alg) & ~@x003f8000) | (((mac_length) & @x3f) << 16)))

#define PSA_ALG_WPA3_SAE_FIXED(hash_alg) \
((psa_algorithm_t) (@x0a000800 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_WPA3_SAE_GDH(hash_alg) \

((psa_algorithm_t) (0x0a000900 | ((hash_alg) & 0x000000ff)))
(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 432
1.4.0 Non-confidentia

#define PSA_ALG_WPA3_SAE_H2E(hash_alg) \
((psa_algorithm_t) (0x08800400 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_XOF_HAS_CONTEXT(alg) \
(((alg) & 0x00008000) != 0)

#define PSA_PAKE_PRIMITIVE (pake_type, pake_family, pake_bits) \
((pake_bits & OxFFFF) != pake_bits) ? @ : \
((psa_pake_primitive_t) (((pake_type) << 24 | \

(pake_family) << 16) | (pake_bits)))

#define PSA_PAKE_PRIMITIVE_GET_BITS(pake_primitive) \
((size_t) (pake_primitive & OxFFFF))

#define PSA_PAKE_PRIMITIVE_GET_FAMILY (pake_primitive) \
((psa_pake_family_t) ((pake_primitive >> 16) & OxFF))

#define PSA_PAKE_PRIMITIVE_GET_TYPE(pake_primitive) \
((psa_pake_primitive_type_t) ((pake_primitive >> 24) & OxFF))

C.2 Key type macros

#define PSA_BLOCK_CIPHER_BLOCK_LENGTH(type) \
(lu << (((type) >> 8) & 7))

#define PSA_KEY_TYPE_DH_GET_FAMILY(type) \
((psa_dh_family_t) ((type) & 0x007f))

#define PSA_KEY_TYPE_DH_KEY_PAIR(group) \
((psa_key_type_t) (0x7200 | ((group) & @x007f)))

#define PSA_KEY_TYPE_DH_PUBLIC_KEY(group) \
((psa_key_type_t) (0x4200 | ((group) & @Ox007f)))

#define PSA_KEY_TYPE_ECC_GET_FAMILY (type) \
((psa_ecc_family_t) ((type) & 0x007f))

#define PSA_KEY_TYPE_ECC_KEY_PAIR(curve) \
((psa_key_type_t) (0x7100 | ((curve) & @Ox007f)))

#define PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve) \
((psa_key_type_t) (0x4100 | ((curve) & @Ox007f)))

#define PSA_KEY_TYPE_IS_ASYMMETRIC(type) \
(((type) & 0x4000) == 0x4000)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates
1.4.0 Non-confidentia

(continued from previous page)

(continues on next page)

Page 433

#define PSA_KEY_TYPE_IS DH(type) \
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & 0xff80) == 0x4200)

#define PSA_KEY_TYPE_IS_DH_KEY_PAIR(type) \
(((type) & Oxff80) == 0x7200)

#define PSA_KEY_TYPE_IS_DH_PUBLIC_KEY(type) \
(((type) & 0xff80) == 0x4200)

#define PSA_KEY_TYPE_IS_ECC(type) \
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & 0xff80) == 0x4100)

#define PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type) \
(((type) & Oxff80) == 0x7100)

#define PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(type) \
(((type) & 0xff80) == 0x4100)

#define PSA_KEY_TYPE_IS_KEY_PAIR(type) \
(((type) & 0x7000) == 0x7000)

#define PSA_KEY_TYPE_IS_PUBLIC_KEY(type) \
(((type) & 0x7000) == 0x4000)

#define PSA_KEY_TYPE_IS_RSA(type) \
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == 0x4001)

#define PSA_KEY_TYPE_IS_SPAKE2P(type) \
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & 0xff80) == 0x4400)

#define PSA_KEY_TYPE_IS_SPAKE2P_KEY_PAIR(type) \
(((type) & 0xff80) == 0x7400)

#define PSA_KEY_TYPE_IS_SPAKE2P_PUBLIC_KEY(type) \
(((type) & 0xff80) == 0x4400)

#define PSA_KEY_TYPE_IS_UNSTRUCTURED(type) \
(((type) & 0x7000) == 0x1000 || ((type) & @Ox7000) == 0x2000)

#define PSA_KEY_TYPE_IS_WPA3_SAE_DH(type) \
(((type) & 0xff80) == 0x3300)

#define PSA_KEY_TYPE_IS_WPA3_SAE_ECC(type) \
(((type) & Oxff80) == 0x3280)

#define PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY (type) \
((psa_key_type_t) ((type) | 0x3000))

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates
1.4.0 Non-confidentia

(continued from previous page)

(continues on next page)

Page 434

(continued from previous page)

#define PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) \
((psa_key_type_t) ((type) & ~0x3000))

#define PSA_KEY_TYPE_SPAKE2P_GET_FAMILY(type) \
((psa_ecc_family_t) ((type) & 0x007f))

#define PSA_KEY_TYPE_SPAKE2P_KEY_PAIR(curve) \
((psa_key_type_t) (0x7400 | ((curve) & @Ox007f)))

#define PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY(curve) \
((psa_key_type_t) (0x4400 | ((curve) & Ox007f)))

#define PSA_KEY_TYPE_WPA3_SAE_DH_GET_FAMILY (type) \
((psa_dh_family_t) ((type) & @0x007f))

#define PSA_KEY_TYPE_WPA3_SAE_DH(family) \
((psa_key_type_t) (0x3300 | ((family) & 0x007f)))

#define PSA_KEY_TYPE_WPA3_SAE_ECC_GET_FAMILY(type) \
((psa_ecc_family_t) ((type) & 0x007f))

#define PSA_KEY_TYPE_WPA3_SAE_ECC(curve) \
((psa_key_type_t) (0x3280 | ((curve) & @Ox007f)))

C.3 Hash suspend state macros

#define PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) \
((alg)==PSA_ALG_MD2 ? 64 : \

(alg)==PSA_ALG_MD4 || (alg)==PSA_ALG_MD5 ? 16 : \
(alg)==PSA_ALG_RIPEMD160 || (alg)==PSA_ALG_SHA_1 ? 20 : \
(alg)==PSA_ALG_SHA_224 || (alg)==PSA_ALG_SHA_256 ? 32 : \
(alg)==PSA_ALG_SHA_512 || (alg)==PSA_ALG_SHA_384 || \

(alg)==PSA_ALG_SHA_512_224 || (alg)==PSA_ALG_SHA_512_256 ? 64 : \
0)

#define PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) \
((alg)==PSA_ALG_MD2 ? 1 : \
(alg)==PSA_ALG_MD4 || (alg)==PSA_ALG_MD5 || (alg)==PSA_ALG_RIPEMD160 || \
(alg)==PSA_ALG_SHA_1 || (alg)==PSA_ALG_SHA_224 || (alg)==PSA_ALG_SHA_256 ? 8 : \
(alg)==PSA_ALG_SHA_512 || (alg)==PSA_ALG_SHA_384 || \
(alg)==PSA_ALG_SHA_512_224 || (alg)==PSA_ALG_SHA_512_256 ? 16 : \
0)

#define PSA_HASH_SUSPEND_OUTPUT_SIZE(alg) \
(PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH + \
(continues on next page)

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 435
1.4.0 Non-confidential

(continued from previous page)
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH(alg) + \
PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH(alg) + \
PSA_HASH_BLOCK_LENGTH(alg) - 1)

Appendix D: Security Risk Assessment

This Security Risk Assessment (SRA) analyses the security of the Crypto API itself, not of any specific
implementation of the API, or any specific use of the API. However, the security of an implementation of
the Crypto API depends on the implementation design, the capabilities of the system in which it is
deployed, and the need to address some of the threats identified in this assessment.

To enable the Crypto API to be suitable for a wider range of security use cases, this SRA considers a broad
range of adversarial models and threats to the application and the implementation, as well as to the API.

This approach allows the assessment to identify API design requirements that affect the ability for an
implementation to mitigate threats that do not directly attack the API.

The scope is described in Adversarial models on page 439.

D.1 Architecture

D.1.1 System definition
Figure 33 shows the Crypto API as the defined interface that an Application uses to interact with the

Cryptoprocessor.
o call
Application . Cryptoprocessor

Crypto API

Figure 33 Crypto API

Assumptions, constraints, and interacting entities
This SRA makes the following assumptions about the Crypto API design:
e The API does not provide arguments that identify the caller, because they can be spoofed easily, and

cannot be relied upon. It is assumed that the implementation of the API can determine the caller
identity, where this is required. See Optional isolation on page 21.

e The API does not prevent the use of mitigations that are required by an implementation of the API.
See Implementation remediations on page 447.

e The API follows best-practices for C interface design, reducing the risk of exploitable errors in the
application and implementation code. See Ease of use on page 22.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 436
1.4.0 Non-confidential

Trust boundaries and information flow

The Crypto APl is the interface available to the programmer, and is the main attack surface that is analyzed
here. However, to ensure that the APl enables the mitigation of other threats to an implementation, we also
consider the system context in which the Crypto APl is used.

Figure 34 shows the data flow for a typical application usage of the Crypto API, for example, to exchange

ciphertext with an external system, or for at rest protection in system non-volatile storage. The Application
uses the Crypto API to interact with the Cryptoprocessor. The Cryptoprocessor stores persistent keys in a
Key Store.

| «System boundary»

Crypto API call store key
External system Application Cryptoprocessor
~—_response <loadkey -

Figure 34 Crypto API dataflow diagram for an implementation with no isolation

For some adversarial models, Cryptoprocessor isolation or Caller isolation is required in the implementation to
achieve the security goals. See Security goals on page 439, and remediations R.1 and R.2 in Implementation
remediations on page 447.

The Cryptoprocessor can optionally include a trust boundary within its implementation of the API. The trust
boundary shown in Figure 35 on page 438 corresponds to Cryptoprocessor isolation. The Cryptoprocessor
boundary protects the confidentiality and integrity of the Cryptoprocessor and Key Store state from system
components that are outside of the boundary.

If the implementation supports multiple, independent client Applications within the system, each
Application has its own view of the Cryptoprocessor and key store. The additional trust boundaries required
for a caller isolated implementation are shown in Figure 36 on page 438. The Application boundary restricts
the capabilities of the Application, and protects the confidentiality and integrity of system state from the
Application.

D.1.2 Assets and stakeholders

1. Cryptographic keys and key-related assets. This includes the key properties, such as the key type,
identity and policies.

Stakeholders can include the SiP, the OEM, the system or application owner. Owners of a key need to
be able to use the key for cryptographic operations, such as encryption or signature, and where
permitted, delete, copy or extract the key.

Disclosure of the cryptographic key material to an attacker defeats the protection that the use of
cryptography provides. Modification of cryptographic key material or key properties by an attacker has
the same end result. These allow an attacker access to the assets that are protected by the key.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 437
1.4.0 Non-confidential

«System boundary»

ciphertext

[External system Application

External system

Crypto API

response
call P

External system

Figure 36 Crypto API dataflow diagram for an implementation with caller isolation

2. Other cryptographic assets, for example, intermediate calculation values and RNG state.
Disclosure or modification of these assets can enable recovery of cryptographic keys, and loss of

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 438
1.4.0 Non-confidential

cryptographic protection.

3. Application input/output data and cryptographic operation state.
Application data is only provided to the Cryptoprocessor for cryptographic operations, and its
stakeholder is the application owner.

Disclosure of this data — whether it is plaintext, or other data or state — to an attacker defeats the
protection that the use of cryptography provides. Modification of this data can have the same effect.

D.1.3 Security goals

Cryptography is used as a mitigation to the risk of disclosure or tampering with data assets that require
protection, where isolation of the attacker from the data asset is unavailable or inadequate. Using
cryptography introduces new threats related to the incorrect use of cryptography and mismanagement of
cryptographic keys. Table 44 lists the security goals for the Crypto APl to address these threats.

Table 44 Security goals
Id Description
G.1 An attacker shall not be able to disclose the plaintext corresponding to a ciphertext for which
they do not own the correct key.
G.2 An attacker shall not be able to generate authenticated material for which they do not own
the correct key.
G.3 An attacker shall not be able to exfiltrate keys or other private information stored by the
Crypto API.
G4 An attacker shall not be able to alter any state held by the implementation of the Crypto API,

such as internal keys or other private information (for example, certificates, signatures, etc.).

D.2 Threat Model

D.2.1 Adversarial models

The APl itself has limited ability to mitigate threats. However, mitigation of some of the threats within the
cryptoprocessor can place requirements on the APl design. This analysis considers a broad attack surface, to
also identify requirements that enable the mitigation of specific threats within a cryptoprocessor
implementation.

Table 45 on page 440 describes the adversarial models that are considered in this assessment.

A specific implementation of the Crypto API might not include all of these adversarial models within its own
threat model. In this case, the related threats, risks, and mitigations might not be required for that
implementation.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 439
1.4.0 Non-confidential

Table 45 Adversarial models
Id Description

M.O The Adversary is capable of accessing data that is outside the Security Perimeter of the
system and on commonly accessible channels, such as messages in transit or data in storage.

This includes, but is not limited to:

Read any input and output.

Provide, forge, replay or modify input.
Attempt to gain read/write access to external storage devices.

Perform timings on the operations being done by the target machine, either in normal
operation or as a response to crafted inputs. For example, timing attacks on web servers.

Once access to data is obtained, we do not make a further case distinction of the Adversarial
Model depending on other capabilities. For example, the ability to perform cryptanalysis on
intercepted ciphertext.

M.1 The Adversary is capable of mounting attacks from software.
This includes, but is not limited to:

e Software exploitation.

e Side channel analysis that that relies on software-exposed, built-in hardware features to
perform physical unit and time measurements.

e Attacks that exploit access to any memory mapped configuration, monitoring, debug
register.

e Software-induced glitching of resources, for example Row hammer, or crashing the CPU
by running intensive tasks.

M.2 The Adversary is capable of mounting simple, passive hardware attacks. This Adversary has
physical access to the hardware.

This includes, but is not limited to:

e Side channel analyses that require external measurement devices. For example, this can
utilize leakage sources such as EM emissions, power consumption, photonic emission, or
acoustic channels.

e Plugging malicious hardware into an unmodified system.
e Passive SoC or memory interposition.

Adversarial models that are outside the scope of this assessment are shown in Table 46 on page 441.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 440
1.4.0 Non-confidential

Table 46 Adversarial models that are outside the scope of this SRA

Id Description

M.3 The Adversary is capable of mounting sophisticated and active physical attacks.
This includes, but is not limited to:

e Interposing memory and blocking, replaying, and injecting transactions, this requires a
much more precise timing than passive eavesdropping.

e Replacing or adding chips on the motherboard.

M.4 The Adversary is capable of performing invasive silicon microsurgery.

D.2.2 Threats and attacks

Table 47 describes threats to the Security Goals, and provides examples of corresponding attacks. This table
identifies which Security goals are affected by the attacks, and which Adversarial model or models are
required to execute the attack.

See Risk assessment on page 443 for an evaluation of the risks posed by these threats, Mitigations on
page 444 for mitigation requirements in the API design, and Implementation remediations on page 447 for
mitigation recommendations in the cryptoprocessor implementation.

Table 47 Threats and attacks

Threat Attack (Examples)

Id Description Goals Mod- Id: Description
els

T1 Use of insecure or G.1 M.O A.C1: Using a cryptographic algorithm that is not

incorrectly G.2 adequately secure for the application use case can permit
implemented an attacker to recover the application plaintext from
cryptography attacker-accessible data.

A.C2: Using a cryptographic algorithm that is not
adequately secure for the application use case can permit
an attacker to inject forged authenticated material into
application data in transit or in storage.

A.C3: Using an insecure cryptographic algorithm, or one
that is incorrectly implemented can permit an attacker to
recover the cryptographic key. Key recovery enables the
attacker to reveal encrypted plaintexts, and inject forged
authenticated data.

T.2 Misuse of G.1 M.O A.C4: Reusing a cryptographic key with different
cryptographic G.2 algorithms can result in cryptanalysis attacks on the
algorithms ciphertexts or signatures which enable an attacker to

recover the plaintext, or the key itself.

continues on next page

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 441
1.4.0 Non-confidential

Threat
Id

1.3

1.4

1.5

1.6

1.7

IHI 0086
1.4.0

Table 47 - continued from previous page

Attack (Examples)

Description Goals Mod- Id: Description
els
Recover G.3 M.1 A.C5: The attacker uses an indirect mechanism provided
non-extractable by the API to extract a key that is not intended to be
key through the extractable.
API A.Cé6: The attacker uses a mechanism provided by the API

to enable brute-force recovery of a non-extractable key.
For example, On the Security of PKCS #11 [CLULOW]|
describes various flaws in the design of the PKCS #11
interface standard that enable an attacker to recover
secret and non-extractable keys.

lllegal inputs to G.3 M.1 A.60: Using a pointer to memory that does not belong to

the API G4 the application, in an attempt to make the
cryptoprocessor read or write memory that is inaccessible
to the application.

A.70: Passing out-of-range values, or incorrectly
formatted data, to provoke incorrect behavior in the
cryptoprocessor.

A.61: Providing invalid buffer lengths to cause
out-of-bounds read or write access within the
cryptoprocessor.

A.62: Call API functions in an invalid sequence to provoke
incorrect operation of the cryptoprocessor.

Direct access to G.3 M.1 A.C7: Without a cryptoprocessor boundary, an attacker
cryptoprocessor G4 can directly access the cryptoprocessor state from an
state application. See Figure 34 on page 437.

A.C8: A misconfigured cryptoprocessor boundary can
allow an attacker to directly access the cryptoprocessor
state from an Application.

Access and use G.1 M.1 A.C9: Without application boundaries, the
another G.2 cryptoprocessor provides a unified view of the
application’s assets application assets. All keys are accessible to all callers of
the Crypto API. See Figure 36 on page 438.
A.C10: The attacker can spoof the application identity

within a caller-isolated implementation to gain access to
another application’s assets.

Data-dependent G.1 M.1 A.C11 Measuring the time for operations in the

timing G.3 cryptoprocessor or the application, and using the
differential in results to assist in recovery of the key or
plaintext.

continues on next page

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 442
Non-confidential

Threat

Id Description

T.8 Memory
manipulation

T.9 Side channels

D.2.3 Risk assessment

Table 47 - continued from previous page

Goals

G4

G.1
G.3

Mod-
els

M.2

M.1

M.2

M.1

Attack (Examples)

Id: Description

A.19: Corrupt application or cryptoprocessor state via a
fault, causing incorrect operation of the cryptoprocessor.

A.59: Modifying function parameters in memory, while
the cryptoprocessor is accessing the parameter memory,
to cause incorrect operation of the cryptoprocessor.

A.C12 Taking measurements from physical side-channels
during cryptoprocessor operation, and using this data to
recover keys or plaintext. For example, using power or
EM measurements.

A.C13 Taking measurements from shared-resource
side-channels during cryptoprocessor operation, and
using this data to recover keys or plaintext. For example,
attacks using a shared cache.

The risk ratings in Table 48 follow a version of the risk assessment scheme in NIST Special Publication
800-30 Revision 1: Guide for Conducting Risk Assessments [SP800-30]. Likelihood of an attack and its impact
are evaluated independently, and then they are combined to obtain the overall risk of the attack.

The risk assessment is used to prioritize the threats that require mitigation. This helps to identify the
mitigations that have the highest priority for implementation. Mitigations are described in Mitigations on
page 444 and Implementation remediations on page 447.

It is recommended that this assessment is repeated for a specific implementation or product, taking into
consideration the Adversarial models that are within scope, and re-evaluating the impact based on the

assets at risk. Table 48 repeats the association in Table 47 on page 441 between an Adversarial model and
the Threats that it enables. This aids filtering of the assessment based on the models that are in scope for a

specific implementation.

Table 48 Risk assessment

Adversarial Model Threat/Attack Likelihood Impact @ Risk

M.O T.1 High Medium Medium

M.O 1.2 High Medium Medium

M.1 T.3 Medium High Medium

M.1 T4 High Medium Medium

M.1 T.5 High Very high Very high

continues on next page
IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 443

1.4.0 Non-confidential

Table 48 - continued from previous page

Adversarial Model Threat/Attack Likelihood
M.1 T.6 High

M.1 1.7 Medium
M.1 T.8/A.59 Medium
M.2 T.8/A.19 Low

M.2 T.9/A.C12 Low

M.1 T.9/A.C13 Medium

Impact @ Risk
High High
Medium Medium
Medium Medium
Medium Low
High Medium
High Medium

a. The impact of an attack is dependent on the impact of the disclosure or modification of the

application data that is cryptographically protected. This is ultimately determined by the requirements
and risk assessment for the product which is using the Crypto API. Table 48 on page 443 allocates the
impact as follows:

e ‘Medium’ if unspecified cryptoprocessor state or application data assets are affected.
e ‘High' if an application’s cryptographic assets are affected.

e Very High' if all cryptoprocessor assets are affected.

D.3 Mitigations
D.3.1 Objectives

The objectives in Table 49 are a high-level description of what the design must achieve in order to mitigate
the threats. Detailed requirements that describe how the APl or cryptoprocessor implementation can deliver
the objectives are provided in Requirements on page 445 and Implementation remediations on page 447.

0.1

0.2

0.3

IHI 0086

1.4.0

Description

Hide keys from the application

Keys are never directly manipulated by application
software. Instead keys are referred to by handle,
removing the need to deal with sensitive key material
inside applications. This form of APl is also suitable for
secure elements, based on tamper-resistant hardware,
that never reveal cryptographic keys.

Limit key usage

Associate each key with a policy that limits the use of
the key. The policy is defined by the application when
the key is created, after which it is immutable.

Best-practice cryptography

Table 49 Mitigation objectives

Threats addressed

T.1 T.2 T.3 — see A keystore interface
on page 21.

T.5 T.6 — to mitigate T.5 and T.6, the
implementation must provide some
form of isolation. See Optional isolation
on page 21.

T.2 T.3 — see Key policies on page 100.

continues on next page

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 444

Non-confidential

0.4

Table 49 - continued from previous page

Description

An application developer-oriented API to achieve
practical cryptography: the Crypto API offers services

Threats addressed

that are oriented towards the application of
cryptographic methods like encrypt, sign, verify. This
enables the implementation to focus on best-practice
implementation of the cryptographic primitive, and the
application developer on correct selection and use of

those primitives.

Algorithm agility

Cryptographic functions are not tied to a specific
cryptographic algorithm. Primitives are designated at

run-time. This simplifies updating an application to use
a more secure algorithm, and makes it easier to
implement dynamic selection of cryptographic

algorithms within an application.

D.3.2 Requirements

The design of the API can mitigate, or enable a cryptoprocessor to mitigate, some of the identified attacks.
Table 50 describes these mitigations. Mitigations that are delegated to the cryptoprocessor or application
are described in Implementation remediations on page 447.

SR.1
(©.1)

SR.2
(0.2)

SR.3
(0.2)

IHI 0086

1.4.0

Description

Key values are not exposed by
the API, except when
importing or exporting a key.

The policy for a key must be
set when the key is created,
and be immutable afterward.

The key policy must control
the algorithms that the key
can be used with, and the
functions of the API that the
key can be used with.

Copyright © 2018-2025 Arm Limited and/or its affiliates

APl impact

The full key policy must be
provided at the time a key is
created. See Key management
on page 24.

The full key policy must be
provided at the time a key is
created. See
psa_key_attributes_t.

The key policy must include
usage permissions, and
permitted-algorithm
attributes. See Key policies on
page 100.

Non-confidential

T1T.2T.7T.8 — see Ease of use on
page 22.

T.1 — see Choice of algorithms on
page 22.

Table 50 Security requirements
Threats/attacks addressed

T.3/A.C5 — key values are
hidden by the API.

T.3/A.C5 — once created, the
key usage permissions cannot
be changed to permit export.

T.2/A.C4— once created, a key
cannot be repurposed by
changing its policy.

T.2/A.C4 — a key cannot be
reused with different
algorithms.

continues on next page

Page 445

SR.4
(©.1)

SR.5
(0.1)

SR.6
(0.3)

SR.7
(©.4)

SR.8
(©.1)

SR.9
(0.3)

SR.10
(0.3)

IHI 0086
1.4.0

Table 50 - continued from previous page

Description

Key export must be controlled
by the key policy.

The policy of a copied key
must not provide rights that
are not permitted by the
original key policy.

Unless explicitly required by
the use case, the APl must not
define cryptographic
algorithms with known
security weaknesses. If
possible, deprecated
algorithms should not be
included.

The API design must make it
easy to change to a different
algorithm of the same type.

Key-derivation functions that
expose part of the key value,
or make part of the key value
easily recoverable, must not
be provided in the API.

Constant values defined by
the API must be designed to
resist bit faults.

The API design must permit
the implementation of
operations with
data-independent timing.

Copyright © 2018-2025 Arm Limited and/or its affiliates

APl impact

See PSA_KEY_USAGE_EXPORT.

See psa_copy_key ().

Algorithm inclusion is based
on use cases. Warnings are
provided for algorithms and
operations with known
security weaknesses, and
recommendations made to
use alternative algorithms.

Cryptographic operation
functions select the specific
algorithm based on
parameters passed at runtime.
See Key types on page 53 and
Algorithms on page 130.

Key type values explicitly
consider single-bit faults, see
Key type encoding on

page 421.°

Success and error status
codes differ by multiple bits,
see Status codes on page 45.°

Provision of comparison
functions for MAC, hash and
key-derivation operations.

Non-confidential

Threats/attacks addressed

T.3/A.C5 — a key can only be
extracted from the
cryptoprocessor if explicitly
permitted by the key creator.

T.3/A.C5 — a copy of a key
cannot be exported if the
original could not be exported.

T.3/A.C4 — a copy of a key
cannot be used in different
algorithm to the original.

T.1/A.C1 AC2 ACS3

T.1/A.C1 AC2 ACS

T.3/A.C6

T.8/A.19 — enablement only,
mitigation is delegated to the
implementation.

T.7/A.C11 — enablement only,
mitigation is delegated to the
implementation.

continues on next page

Page 446

Table 50 - continued from previous page

Id Description APl impact Threats/attacks addressed
SR.11 Specify behavior for memory Standardize the result when T.8/A.59 — enablement only,
(0.3) shared between the parameters overlap, see mitigation is delegated to the
application and Overlap between parameters on implementation.
cryptoprocessor, including page 37.
where multiple parameters
overlap.
SR.12 The API must permit the No use of shared memory T.5/A.C7 — enablement only,
(0.1) implementation to isolate the between application and mitigation is delegated to the
(0.2) cryptoprocessor, to prevent cryptoprocessor, except as implementation.
access to keys without using function parameters.
the API.
SR.13 The API design must permit Operations that use random T.9 — enablement only,
(0.3) the implementation of blinding to resist side-channel mitigation is delegated to the

operations using mitigation
techniques that resist
side-channel attacks.

attacks, can return
RNG-specific error codes.

See also SR.12, which enables
the cryptoprocessor to be
fully isolated, and
implemented within a
separate security processor.

implementation.

a. Limited resistance to bit faults is still valuable in systems where memory may be susceptible to

single-bit flip attacks, for example, Rowhammer on some types of DRAM.

b. Unlike key type values, algorithm identifiers used in cryptographic operations are verified against a the
permitted-algorithm in the key policy. This provides a mitigation for a bit fault in an algorithm identifier
value, without requiring error detection within the algorithm identifier itself.

D.4 Remediation & residual risk

D.4.1 Implementation remediations

Table 51 on page 448 includes all recommended remediations for an implementation, assuming the full
adversarial model described in Adversarial models on page 439. When an implementation has a subset of
the adversarial models, then individual remediations can be excluded from an implementation, if the
associated threat is not relevant for that implementation.

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidential

Page 447

R.1
(0.1)
(0.3)

R.2
(0.1)
(0.3)

R.3
(0.3)

R.4
(0.3)

R.5
(0.3)

R.6
(©.1)
(0.3)

R.8
(0.3)

R.9
(0.3)

R.10
(0.3)

R.11
(0.3)

R.12
(0.3)

IHI 0086

1.4.0

Identified gap

T.5 — direct access to
cryptoprocessor state.

T.6 — access and use another
application’s assets.

T.4/A.60 A.61 — using illegal
memory inputs.

T.4/A.70 — providing invalid
formatted data.

T.4/A.62 — call the APl'in an
invalid operation sequence.

T.3/A.C5 A.C6 — indirect key
disclosure via the API.

T.8/A.59 — concurrent
modification of parameter
memory.

T.2/A.C4 — incorrect
cryptographic parameters.

T.1/AC1AC2AC3 —
insecure cryptographic
algorithms.

T7/AC11 —
data-independent timing.

T.9 — side-channels.

Copyright © 2018-2025 Arm Limited and/or its affiliates

Table 51 Implementation remediations

Suggested remediation

The cryptoprocessor implementation provides cryptoprocessor
isolation or caller isolation, to isolate the application from the
cryptoprocessor state, and from volatile and persistent key
material.

The cryptoprocessor implementation provides caller isolation,
and maintains separate cryptoprocessor state for each
application. Each application must only be able to access its
own keys and ongoing operations.

Caller isolation requires that the implementation can securely
identify the caller of the Crypto API.

The cryptoprocessor implementation validates that memory
buffers provided by the application are accessible by the
application.

The cryptoprocessor implementation checks that imported key
data is valid before use.

The cryptoprocessor implementation enforces the correct
sequencing of calls in multi-part operations. See Multi-part
operations on page 27/.

Cryptoprocessor implementation-specific extensions to the API
must avoid providing mechanisms that can extract or recover
key values, such as trivial key-derivation algorithms.

The cryptoprocessor implementation treats application memory
as untrusted and volatile, typically by not reading the same
memory location twice. See Stability of parameters on page 37.

The cryptoprocessor implementation validates the key
attributes and other parameters used for a cryptographic
operation, to ensure these conform to the API specification and
to the specification of the algorithm itself.

The cryptoprocessor does not support deprecated
cryptographic algorithms, unless justified by specific use case
requirements.

The cryptoprocessor implements cryptographic operations with
data-independent timing.

The cryptoprocessor implements resistance to side-channels.

Page 448
Non-confidential

D.4.2 Residual risk

Threats T.2-T.4, and T.7-T.9 are fully mitigated in the API design, as described in Mitigations on page 444, or
the cryptoprocessor implementation, as described in Implementation remediations on page 447/.

Table 52 describes the remaining risks related to T.1, T.5, and T.6 that cannot be mitigated fully by the API
or cryptoprocessor implementation. Responsibility for managing these risks lies with the application
developers and system integrators.

Table 52 Residual risk

Id Threat/attack Suggested remediations
RR1 T1 Selection of appropriately secure protocols, algorithms and key
sizes is the responsibility of the application developer.

RR2 T5 Correct isolation of the cryptoprocessor is the responsibility of
the cryptoprocessor and system implementation.

RR3 T6 Correct identification of the application client is the
responsibility of the cryptoprocessor and system
implementation.

Appendix E: Changes to the API

E.1 Document change history

This section provides the detailed changes made between published version of the document.

E.1.1 Changes between 1.3.2 and 1.4.0
Changes to the API

e Added psa_attach_key() to register existing key material as a volatile key within the implementation.
e Added psa_check_key_usage() to query a key's capabilities.

e Add support for extendable-output functions (XOF). See Extendable-output functions (XOF) on
page 157.

e Added support for key wrapping using key-wrapping algorithms. See Key wrapping on page 237.
e Added support for context parameters in signature algorithms:

— psa_sign_message_with_context()
— psa_verify_message_with_context()
— psa_sign_hash_with_context()

— psa_verify_hash_with_context()
See Asymmetric signature on page 278.

e Added PureEdDSA algorithms with non-zero context. See EdDSA signature algorithms on page 289 and
PSA_ALG_EDDSA_CTX.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 449
1.4.0 Non-confidential

e Added support for the WPA3-SAE PAKE:

— Add PSA_KEY_TYPE_WPA3_SAE_ECC and PSA_KEY_TYPE_WPA3_SAE_DH key types for WPA3-SAE
password tokens.

— Added the psa_ALG_wPA3_SAE_H2E () KDF for generating a WPA3-SAE password token from a
password.

— Added WPA3-SAE PAKE algorithms, PSA_ALG_WPA3_SAE_FIXED() and PSA_ALG_WPA3_SAE_GDH().

— Added finite field Diffie-Hellman family PSA_DH_FAMILY_RFC3526, which provides cyclic groups
used for WPA3-SAE.

— Added wildcard key policy PSA_ALG_WPA3_SAE_ANY to permit password and password token keys to
be used in any WPA3-SAE cipher suite.

See The WPA3-SAE protocol on page 381.
e Add support for the Ascon family of light-weight algorithms:

— PSA_ALG_ASCON_AEAD128
— PSA_ALG_ASCON_HASH256
— PSA_ALG_ASCON_XOF128

— PSA_ALG_ASCON_CXOF128

Relaxations

e Relaxed the permitted-key policy requirements for ECDSA verification, to be consistent with those for
ML-DSA and SLH-DSA. When verifying a signature, the PSA_ALG_ECDSA and
PSA_ALG_DETERMINISTIC_ECDSA are considered equivalent when checking the key's permitted-algorithm

policy.

Clarifications and fixes

e Corrected the example implementation of PSA_ALG_IS_SIGN_HASH() in Example macro implementations
on page 427/, to exclude PureEdDSA.

e Clarified the use of hash algorithms with PSA_ALG_HMAC.

Other changes
e Reorganised the chapter on key types. See Key types on page 53.

E.1.2 Changes between 1.3.1 and 1.3.2
Other changes

e Updated introduction to reflect GlobalPlatform assuming the governance of the PSA Certified
evaluation scheme.

E.1.3 Changes between 1.3.0 and 1.3.1

Clarifications and fixes

e Clarify the way a ‘volatile key’ is designated, based on a persistence level of
PSA_KEY_PERSISTENCE_VOLATILE, to ensure that this is consistent throughout the specification. See Key
lifetimes on page 0.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 450
1.4.0 Non-confidential

e Corrected the type of the key id parameter to psa_generate_key_custom() and
psa_key_derivation_output_key_custom().

e Added missing ‘Added in version’ information to key derivation macros.

E.1.4 Changes between 1.2.1 and 1.3.0
Changes to the API

e Added PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE to evaluate the export buffer size for any asymmetric key
pair or public key.

e Add extended key-generation and key-derivation functions, psa_generate_key_custom() and
psa_key_derivation_output_key_custom(), that accept additional parameters to control the key creation
process.

e Define a key production parameter to select a non-default exponent for RSA key generation.

e Reworked the allocation of bits in the encoding of asymmetric keys, to increase the scope for
additional asymmetric key types:

— Bit 7 was previously an unused indicator for IMPLEMENTATION DEFINED family values, and is now
allocated to the ASYM-TYPE.

— ASYM-TYPE O is now a category for non-parameterized asymmetric keys, of which RSA is one
specific type.

This has no effect on any currently allocated key type values, but affects the correct implementation
of macros used to manipulate asymmetric key types.

See Asymmetric key encoding on page 424 and Key type macros on page 433.
e Added key-encapsulation functions, psa_encapsulate() and psa_decapsulate().

— Added PSA_ALG_ECIES_SEC1 as a key-encapsulation algorithm that implements the key agreement
steps of ECIES.

Clarifications and fixes
e Clarified the documentation of key attributes in key creation functions.

e Clarified the constraint on psa_key_derivation_output_key () for algorithms that have a
PSA_KEY_DERIVATION_INPUT_PASSWORD input step.

e Removed the redundant key input constraints on psa_key_derivation_verify_bytes() and
psa_key_derivation_verify_key (). These match the policy already checked in
psa_key_derivation_input_key ().

e Documented the use of context parameters in J-PAKE and SPAKE2+ PAKE operations. See J-PAKE
operation on page 366 and SPAKE2+ operation on page 374.

e Clarified asymmetric signature support by categorizing the different types of signature algorithm.

Other changes
e Integrated the PAKE Extension with the main specification for the Crypto API.

e Moved the documentation of key formats and key-derivation procedures to sub-sections within each
key type.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 451
1.4.0 Non-confidential

e Clarified the flexibility for an implementation to return either PSA_ERROR_NOT_SUPPORTED Or

PSA_ERROR_INVALID_ARGUMENT when provided with unsupported algorithm identifier or key parameters.

e Added API version information to APIs that have been added or changed since version 1.0 of the

Crypto API.

E.1.5 Changes between 1.2.0 and 1.2.1

Clarifications and fixes

e Fix the example implementation of PSA_ALG_KEY_AGREEMENT_GET_BASE () and

PSA_ALG_KEY_AGREEMENT_GET_KDF () in Example macro implementations on page 427, to give correct
results for key agreements combined with PBKDF2.

e Remove the dependency on the underlying hash algorithm in definition of HMAC keys, and their

behavior on import and export. Transferred the responsibility for truncating over-sized HMAC keys to
the application. See PSA_KEY_TYPE_HMAC.

Rewrite the description of PSA_ALG_CTR, to clarify how to use the API to set the appropriate IV for
different application use cases.

E.1.6 Changes between 1.1.2 and 1.2.0
Changes to the API

Added psa_key_agreement () for standalone key agreement that outputs to a new key object. Also
added PSA_ALG_IS_STANDALONE_KEY_AGREEMENT () as a synonym for PSA_ALG_IS_RAW_KEY_AGREEMENT().

Added support for the XChaCha20 cipher and XChaCha20-Poly1305 AEAD algorithms. See
PSA_KEY_TYPE_XCHACHA20 and PSA_ALG_XCHACHA20_POLY1305.

Added support for zighee Specification [ZIGBEE] cryptographic algorithms. See PSA_ALG_AES_MMO_ZIGBEE
and PSA_ALG_CCM_STAR_NO_TAG.

Defined key-derivation algorithms based on the Counter mode recommendations in NIST Special
Publication 800-108r1: Recommendation for Key Derivation Using Pseudorandom Functions [SP800-108].
See PSA_ALG_SP800_108_COUNTER_HMAC () and PSA_ALG_SP800_108_COUNTER_CMAC.

Added support for TLS 1.2 ECJPAKE-to-PMS key-derivation. See PSA_ALG_TLS12_ECJPAKE_TO_PMS.

Changed the policy for psa_key_derivation_verify_bytes() and psa_key_derivation_verify_key(), SO
that these functions are also permitted when an input key has the PSA_KEY_USAGE_DERIVE usage flag.

Removed the special treatment of PSA_ERROR_INVALID_SIGNATURE for key-derivation operations. A
verification failure in psa_key_derivation_verify_bytes() and psa_key_derivation_verify_key() Now
puts the operation into an error state.

Clarifications and fixes

Clarified the behavior of a key-derivation operation when there is insufficient capacity for a call to
psa_key_derivation_output_bytes(), psa_key_derivation_output_key(),
psa_key_derivation_verify_bytes(), Or psa_key_derivation_verify_key().

Reserved the value @ for most enum-like integral types.

Changed terminology for clarification: a ‘raw key agreement’ algorithm is now a ‘standalone key
agreement’, and a ‘full key agreement’ is a ‘combined key agreement’.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 452

1.4.0

Non-confidential

E.1.7 Changes between 1.1.1 and 1.1.2

Clarifications and fixes

e Clarified the requirements on the hash parameter in the psa_sign_hash() and psa_verify_hash()
functions.

e Explicitly described the handling of input and output in psa_cipher_update(), consistent with the
documentation of psa_aead_update().

e Clarified the behavior of operation objects following a call to a setup function. Provided a diagram to
illustrate multi-part operation states.

e Clarified the key policy requirement for PSA_ALG_ECDSA_ANY.

e Clarified PSA_KEY_USAGE_EXPORT: “it permits moving a key outside of its current security boundary”. This
improves understanding of why it is not only required for psa_export_key (), but can also be required
for psa_copy_key() in some situations.

Other changes

e Moved the documentation of supported key import/export formats to a separate section of the
specification.

E.1.8 Changes between 1.1.0 and 1.1.1
Changes to the API

e Extended PSA_ALG_TLS12_PSK_TO_MS to support TLS cipher suites that mix a key exchange with a
pre-shared key.

e Added a new key-derivation input step PSA_KEY_DERIVATION_INPUT_OTHER_SECRET.

e Added new algorithm families PSA_ALG_HKDF_EXTRACT and PSA_ALG_HKDF_EXPAND for protocols that
require the two parts of HKDF separately.

Other changes

e Relicensed the document under Attribution-ShareAlike 4.0 International with a patent license derived
from Apache License 2.0. See License on page X.

e Adopted a standard set of Adversarial models for the Security Risk Assessment. See Adversarial models
on page 439.

E.1.9 Changes between 1.0.1 and 1.1.0
Changes to the API

e Relaxation when a raw key agreement is used as a key’s permitted-algorithm policy. This now also
permits the key agreement to be combined with any key-derivation algorithm. See PSA_ALG_FFDH and
PSA_ALG_ECDH.

e Provide wildcard permitted-algorithm polices for MAC and AEAD that can specify a minimum MAC or
tag length. The following elements are added to the API:

— PSA_ALG_AT_LEAST_THIS_LENGTH_MAC()

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 453
1.4.0 Non-confidential

— PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG()
Added support for password-hashing and key-stretching algorithms, as key-derivation operations.
— Added key types PSA_KEY_TYPE_PASSWORD, PSA_KEY_TYPE_PASSWORD_HASH and PSA_KEY_TYPE_PEPPER, to

support use of these new types of algorithm.

— Add key-derivation input steps PSA_KEY_DERIVATION_INPUT_PASSWORD and
PSA_KEY_DERIVATION_INPUT_COST.

— Added psa_key_derivation_input_integer() to support numerical inputs to a key-derivation
operation.

— Added functions psa_key_derivation_verify bytes() and psa_key_derivation_verify key() to
compare derivation output data within the cryptoprocessor.

— Added usage flag PSA_KEY_USAGE_VERIFY_DERIVATION for using keys with the new verification
functions.

— Modified the description of existing key-derivation APIs to enable the use of key-derivation
functionality.

Added algorithms PSA_ALG_PBKDF2_HMAC() and PSA_ALG_PBKDF2_AES_CMAC_PRF_128 to implement the
PBKDF2 password-hashing algorithm.

Add support for twisted Edwards Elliptic curve keys, and the associated EdDSA signature algorithms.
The following elements are added to the API:

— PSA_ECC_FAMILY_TWISTED_EDWARDS

— PSA_ALG_PURE_EDDSA

— PSA_ALG_ED25519PH

— PSA_ALG_ED448PH

— PSA_ALG_SHAKE256_512

— PSA_ALG_IS_HASH_EDDSA()

Added an identifier for PSA_KEY_TYPE_ARIA.

Added PSA_ALG_RSA_PSS_ANY_SALT (), which creates the same signatures as PSA_ALG_RSA_PSS(), but
permits any salt length when verifying a signature. Also added the helper macros
PSA_ALG_IS_RSA_PSS_ANY_SALT() and PSA_ALG_IS_RSA_PSS_STANDARD_SALT(), and extended
PSA_ALG_IS_RSA_PSS() to detect both variants of the RSA-PSS algorithm.

Clarifications and fixes

Described the use of header files and the general APl conventions. See Library conventions on page 32.
Added details for SHA-512/224 to the hash suspend state. See Hash suspend state on page 155.

Removed ambiguities from support macros that provide buffer sizes, and improved consistency of
parameter domain definition.

Clarified the length of salt used for creating PSA_ALG_RSA_PSS() signatures, and that verification
requires the same length of salt in the signature.

Documented the use of PSA_ERROR_INVALID_ARGUMENT when the input data to an operation exceeds the
limit specified by the algorithm.

Clarified how the PSA_ALG_RSA_OAEP () algorithm uses the hash algorithm parameter.

Fixed error in psa_key_derivation_setup() documentation: combined key-agreement and
key-derivation algorithms are valid for the Crypto API.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 454

1.4.0

Non-confidential

e Added and clarified documentation for error conditions across the API.
e Clarified the distinction between PSA_ALG_IS_HASH_AND_SIGN() and PSA_ALG_IS_SIGN_HASH().
e Clarified the behavior of PSA_ALG_IS_HASH_AND_SIGN() with a wildcard algorithm policy parameter.

e Documented the use of PSA_ALG_RSA_PKCS1V15_SIGN_RAW with the
PSA_ALG_RSA_PKCS1V15_SIGN(PSA_ALG_ANY_HASH) wildcard policy.

e Clarified the way that PSA_ALG_ccm determines the value of the CCM configuration parameter L.
Clarified that nonces generated by psa_aead_generate_nonce() can be shorter than the default nonce
length provided by PSA_AEAD_NONCE_LENGTH().

Other changes

e Add new appendix describing the encoding of algorithm identifiers and key types. See Algorithm and
key type encoding on page 410.

e Migrated cryptographic operation summaries to the start of the appropriate operation section, and
out of the Functionality overview on page 24.

e Included a Security Risk Assessment for the Crypto API.

E.1.10 Changes between 1.0.0 and 1.0.1
Changes to the API

e Added subtypes psa_key_persistence_t and psa_key_location_t for key lifetimes, and defined standard
values for these attributes.

e Added identifiers for PSA_ALG_SM3 and PSA_KEY_TYPE_SM4.

Clarifications and fixes
e Provided citation references for all cryptographic algorithms in the specification.
e Provided precise key size information for all key types.
e Permitted implementations to store and export long HMAC keys in hashed form.
e Provided details for initialization vectors in all unauthenticated cipher algorithms.
e Provided details for nonces in all AEAD algorithms.
e Clarified the input steps for HKDF.

e Provided details of signature algorithms, include requirements when using with psa_sign_hash() and
psa_verify_hash().

e Provided details of key-agreement algorithms, and how to use them.

e Aligned terminology relating to key policies, to clarify the combination of the usage flags and
permitted algorithm in the policy.

e Clarified the use of the individual key attributes for all of the key creation functions.

e Restructured the description for psa_key_derivation_output_key (), to clarify the handling of the
excess bits in ECC key generation when needing a string of bits whose length is not a multiple of 8.

e Referenced the correct buffer size macros for psa_export_key().

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 455
1.4.0 Non-confidential

Removed the use of the PSA_ERROR_DOES_NOT_EXIST error.

Clarified concurrency rules.

Document that psa_key_derivation_output_key() does not return PSA_ERROR_NOT_PERMITTED if the

secret input is the result of a key agreement. This matches what was already documented for

PSA_KEY_DERIVATION_INPUT_SECRET.

Relax the requirement to use the defined key-derivation methods in psa_key_derivation_output_key():
implementation-specific KDF algorithms can use implementation-defined methods to derive the key
material.

Clarify the requirements for implementations that support concurrent execution of API calls.

Other changes

e Provided a glossary of terms.

e Provided a table of references.

e Restructured the Key management reference on page 49 chapter.

— Moved individual attribute types, values and accessor functions into their own sections.
— Placed permitted algorithms and usage flags into Key policies on page 100.

— Moved most introductory material from the Functionality overview on page 24 into the relevant

API sections.

E.1.11 Changes between 1.0 beta 3 and 1.0.0
Changes to the API

e Added PSA_CRYPTO_API_VERSION_MAJOR and PSA_CRYPTO_API_VERSION_MINOR to report the Crypto API
version.

e Removed PSA_ALG_GMAC algorithm identifier.

e Removed internal implementation macros from the API specification:

IHI 0086

1.4.0

PSA_AEAD_TAG_LENGTH_OFFSET
PSA_ALG_AEAD_FROM_BLOCK_FLAG
PSA_ALG_AEAD_TAG_LENGTH_MASK
PSA__ALG_AEAD_WITH_DEFAULT_TAG_LENGTH__CASE
PSA_ALG_CATEGORY_AEAD
PSA_ALG_CATEGORY_ASYMMETRIC_ENCRYPTION
PSA_ALG_CATEGORY_CIPHER
PSA_ALG_CATEGORY_HASH
PSA_ALG_CATEGORY_KEY_AGREEMENT
PSA_ALG_CATEGORY_KEY_DERIVATION
PSA_ALG_CATEGORY_MAC
PSA_ALG_CATEGORY_MASK
PSA_ALG_CATEGORY_SIGN
PSA_ALG_CIPHER_FROM_BLOCK_FLAG
PSA_ALG_CIPHER_MAC_BASE

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidentia

Page 456

IHI 0086
1.4.0

PSA_ALG_CIPHER_STREAM_FLAG
PSA_ALG_DETERMINISTIC_ECDSA_BASE
PSA_ALG_ECDSA_BASE
PSA_ALG_ECDSA_IS_DETERMINISTIC
PSA_ALG_HASH_MASK

PSA_ALG_HKDF_BASE

PSA_ALG_HMAC_BASE
PSA_ALG_IS_KEY_DERIVATION_OR_AGREEMENT
PSA_ALG_IS_VENDOR_DEFINED
PSA_ALG_KEY_AGREEMENT_MASK
PSA_ALG_KEY_DERIVATION_MASK
PSA_ALG_MAC_SUBCATEGORY_MASK
PSA_ALG_MAC_TRUNCATION_MASK
PSA_ALG_RSA_OAEP_BASE
PSA_ALG_RSA_PKCS1V15_SIGN_BASE
PSA_ALG_RSA_PSS_BASE
PSA_ALG_TLS12_PRF_BASE
PSA_ALG_TLS12_PSK_TO_MS_BASE
PSA_ALG_VENDOR_FLAG
PSA_BITS_TO_BYTES

PSA_BYTES_TO_BITS
PSA_ECDSA_SIGNATURE_SIZE
PSA_HMAC_MAX_HASH_BLOCK_SIZE
PSA_KEY_EXPORT_ASN1_INTEGER_MAX_SIZE
PSA_KEY_EXPORT_DSA_KEY_PAIR_MAX_SIZE
PSA_KEY_EXPORT_DSA_PUBLIC_KEY_MAX_SIZE
PSA_KEY_EXPORT_ECC_KEY_PAIR_MAX_SIZE
PSA_KEY_EXPORT_ECC_PUBLIC_KEY_MAX_SIZE
PSA_KEY_EXPORT_RSA_KEY_PAIR_MAX_SIZE
PSA_KEY_EXPORT_RSA_PUBLIC_KEY_MAX_SIZE
PSA_KEY_TYPE_CATEGORY_FLAG_PAIR
PSA_KEY_TYPE_CATEGORY_KEY_PAIR
PSA_KEY_TYPE_CATEGORY_MASK
PSA_KEY_TYPE_CATEGORY_PUBLIC_KEY
PSA_KEY_TYPE_CATEGORY_RAW
PSA_KEY_TYPE_CATEGORY_SYMMETRIC
PSA_KEY_TYPE_DH_GROUP_MASK
PSA_KEY_TYPE_DH_KEY_PAIR_BASE
PSA_KEY_TYPE_DH_PUBLIC_KEY_BASE
PSA_KEY_TYPE_ECC_CURVE_MASK
PSA_KEY_TYPE_ECC_KEY_PAIR_BASE
PSA_KEY_TYPE_ECC_PUBLIC_KEY_BASE
PSA_KEY_TYPE_IS_VENDOR_DEFINED

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidentia

Page 457

— PSA_KEY_TYPE_VENDOR_FLAG

— PSA_MAC_TRUNCATED_LENGTH

— PSA_MAC_TRUNCATION_OFFSET

— PSA_ROUND_UP_TO_MULTIPLE

— PSA_RSA_MINIMUM_PADDING_SIZE
— PSA_VENDOR_ECC_MAX_CURVE_BITS
— PSA_VENDOR_RSA_MAX_KEY_BITS

e Remove the definition of implementation-defined macros from the specification, and clarified the
implementation requirements for these macros in Implementation-specific macros on page 40.

— Macros with implementation-defined values are indicated by /* implementation-defined value
*/ in the API prototype. The implementation must provide the implementation.

— Macros for algorithm and key type construction and inspection have specification-defined
values. This is indicated by /* specification-defined value */ in the API prototype. Example
definitions of these macros is provided in Example macro implementations on page 427.

e Changed the semantics of multi-part operations.

— Formalize the standard pattern for multi-part operations.

— Require all errors to result in an error state, requiring a call to psa_xxx_abort () to reset the object.

— Define behavior in illegal and impossible operation states, and for copying and reusing operation
objects.

Although the API signatures have not changed, this change requires modifications to application flows
that handle error conditions in multi-part operations.

e Merge the key identifier and key handle concepts in the API.

— Replaced all references to key handles with key identifiers, or something similar.

— Replaced all uses of psa_key_handle_t with psa_key_id_t in the API, and removes the
psa_key_handle_t type.

— Removed psa_open_key and psa_close_key.

— Added pPsA_KeY_1D_NULL for the never valid zero key identifier.

— Document rules related to destroying keys whilst in use.

— Added the PSA_KEY_USAGE_CACHE usage flag and the related psa_purge_key () API.

— Added clarification about caching keys to non-volatile memory.

e Renamed PSA_ALG_TLS12_PSK_TO_MS_MAX_PSK_LEN tO PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE.
e Relax definition of implementation-defined types.

— This is indicated in the specification by /* implementation-defined type */ in the type definition.
— The specification only defines the name of implementation-defined types, and does not require
that the implementation is a C struct.
e Zero-length keys are not permitted. Attempting to create one will now result in an error.

e Relax the constraints on inputs to key derivation:

— psa_key_derivation_input_bytes() can be used for secret input steps. This is necessary if a
zero-length input is required by the application.
— psa_key_derivation_input_key () can be used for non-secret input steps.

Multi-part cipher operations now require that the IV is passed using psa_cipher_set_iv (), the option
to provide this as part of the input to psa_cipher_update() has been removed.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 458
1.4.0 Non-confidential

The format of the output from psa_cipher_encrypt(), and input to psa_cipher_decrypt(), is
documented.

e Support macros to calculate the size of output buffers, IVs and nonces.
— Macros to calculate a key and/or algorithm specific result are provided for all output buffers. The
new macros are:
o PSA_AEAD_NONCE_LENGTH()
o PSA_CIPHER_ENCRYPT_OUTPUT_SIZE()

o PSA_CIPHER_DECRYPT_OUTPUT_SIZE()
PSA_CIPHER_UPDATE_OUTPUT_SIZE()
PSA_CIPHER_FINISH_OUTPUT_SIZE()

PSA_CIPHER_IV_LENGTH()

PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE()

0 PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE()

— Macros that evaluate to a maximum type-independent buffer size are provided. The new macros
are:

O O O O

PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE()
PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE()
PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE()
PSA_AEAD_FINISH_OUTPUT_MAX_SIZE
PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE
PSA_AEAD_NONCE_MAX_SIZE
PSA_AEAD_TAG_MAX_SIZE
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE
PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE()
PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE()
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE()
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE
PSA_CIPHER_IV_MAX_SIZE
PSA_EXPORT_KEY_PAIR_MAX_SIZE
PSA_EXPORT_PUBLIC_KEY_MAX_SIZE

o PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE

0O O O O O O o o©o

e}

O O O O O O O

— AEAD output buffer size macros are now parameterized on the key type as well as the algorithm:
PSA_AEAD_ENCRYPT_OUTPUT_SIZE()

PSA_AEAD_DECRYPT_OUTPUT_SIZE()

PSA_AEAD_UPDATE_OUTPUT_SIZE()

PSA_AEAD_FINISH_OUTPUT_SIZE()

PSA_AEAD_TAG_LENGTH()

PSA_AEAD_VERIFY_OUTPUT_SIZE()

— Some existing macros have been renamed to ensure that the name of the support macros are
consistent. The following macros have been renamed:

o PSA_ALG_AEAD_WITH_DEFAULT_TAG_LENGTH() — PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG()
o PSA_ALG_AEAD_WITH_TAG_LENGTH() — PSA_ALG_AEAD_WITH_SHORTENED_TAG()

O O O O O O

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 459
1.4.0 Non-confidential

PSA_KEY_EXPORT_MAX_SIZE() — PSA_EXPORT_KEY_OUTPUT_SIZE()
PSA_HASH_SIZE() — PSA_HASH_LENGTH()

PSA_MAC_FINAL_SIZE() — PSA_MAC_LENGTH()
PSA_BLOCK_CIPHER_BLOCK_SIZE() — PSA_BLOCK_CIPHER_BLOCK_LENGTH()
PSA_MAX_BLOCK_CIPHER_BLOCK_SIZE — PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE

— Documentation of the macros and of related APIs has been updated to reference the related API
elements.

O O O O O

e Provide hash-and-sign operations as well as sign-the-hash operations. The API for asymmetric
signature has been changed to clarify the use of the new functions.

— The existing asymmetric signature APl has been renamed to clarify that this is for signing a hash
that is already computed:
0 PSA_KEY_USAGE_SIGN — PSA_KEY_USAGE_SIGN_HASH
o PSA_KEY_USAGE_VERIFY — PSA_KEY_USAGE_VERIFY_HASH
O psa_asymmetric_sign() — psa_sign_hash()
O psa_asymmetric_verify() — psa_verify_hash()
— New APIs added to provide the complete message signing operation:
0 PSA_KEY_USAGE_SIGN_MESSAGE
o PSA_KEY_USAGE_VERIFY_MESSAGE
O psa_sign_message()
o psa_verify_message()
— New Support macros to identify which algorithms can be used in which signing API:
0 PSA_ALG_TS_STGN_HASH()
o PSA_ALG_IS_STGN_MESSAGE ()
— Renamed support macros that apply to both signing APlIs:
o PSA_ASYMMETRIC_SIGN_OUTPUT_SIZE() — PSA_SIGN_OUTPUT_SIZE()
o PSA_ASYMMETRIC_SIGNATURE_MAX_SIZE — PSA_SIGNATURE_MAX_SIZE
— The usage flag values have been changed, including for PSA_KEY_USAGE_DERTVE.
e Restructure psa_key_type_t and reassign all key type values.
— psa_key_type_t changes from 32-bit to 16-bit integer.
— Reassigned the key type categories.

— Add a parity bit to the key type to ensure that valid key type values differ by at least 2 bits.

— 16-bit elliptic curve ids (psa_ecc_curve_t) replaced by 8-bit ECC curve family ids
(psa_ecc_family_t). 16-bit Diffie-Hellman group ids (psa_dh_group_t) replaced by 8-bit DH group
family ids (psa_dh_family_t).

o These ids are no longer related to the IANA Group Registry specification.
o The new key type values do not encode the key size for ECC curves or DH groups. The key
bit size from the key attributes identify a specific ECC curve or DH group within the family.

— The following macros have been removed:

PSA_DH_GROUP_FFDHE2048

PSA_DH_GROUP_FFDHE3072

PSA_DH_GROUP_FFDHE4096

PSA_DH_GROUP_FFDHE6144

PSA_DH_GROUP_FFDHES192

O O O O O

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 460
1.4.0 Non-confidential

PSA_ECC_CURVE_BITS
PSA_ECC_CURVE_BRAINPOOL_P256R1
PSA_ECC_CURVE_BRAINPOOL_P384R1
PSA_ECC_CURVE_BRAINPOOL_P512R1
PSA_ECC_CURVE_CURVE25519
PSA_ECC_CURVE_CURVE448
PSA_ECC_CURVE_SECP160K1
PSA_ECC_CURVE_SECP160R1
PSA_ECC_CURVE_SECP160R2
PSA_ECC_CURVE_SECP192K1
PSA_ECC_CURVE_SECP192R1
PSA_ECC_CURVE_SECP224K1
PSA_ECC_CURVE_SECP224R1
PSA_ECC_CURVE_SECP256K1
PSA_ECC_CURVE_SECP256R1
PSA_ECC_CURVE_SECP384R1
PSA_ECC_CURVE_SECP521R1
PSA_ECC_CURVE_SECT163K1
PSA_ECC_CURVE_SECT163R1
PSA_ECC_CURVE_SECT163R2
PSA_ECC_CURVE_SECT193R1
PSA_ECC_CURVE_SECT193R2
PSA_ECC_CURVE_SECT233K1
PSA_ECC_CURVE_SECT233R1
PSA_ECC_CURVE_SECT239K1
PSA_ECC_CURVE_SECT283K1
PSA_ECC_CURVE_SECT283R1
PSA_ECC_CURVE_SECT40Q9K1
PSA_ECC_CURVE_SECT4Q9R1

o PSA_ECC_CURVE_SECT571K1

o PSA_ECC_CURVE_SECT571R1

o PSA_KEY_TYPE_GET_CURVE

o PSA_KEY_TYPE_GET_GROUP
— The following macros have been added:

O O O O O O O

o O

o O O O O O o o o

o O

o 0O O O O O o o

e}

o PSA_DH_FAMILY_RFC7919

o PSA_ECC_FAMILY_BRAINPOOL_P_R1
o PSA_ECC_FAMILY_SECP_K1
PSA_ECC_FAMILY_SECP_R1
PSA_ECC_FAMILY_SECP_R2
PSA_ECC_FAMILY_SECT_K1
PSA_ECC_FAMILY_SECT_R1
PSA_ECC_FAMILY_SECT_R2
PSA_ECC_FAMILY_MONTGOMERY

e}

o O O O O

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 461
1.4.0 Non-confidential

(e]

(e]

PSA_KEY_TYPE_DH_GET_FAMILY
PSA_KEY_TYPE_ECC_GET_FAMILY

— The following macros have new values:

(e]

(e]

e}

O O O O O O

(e]

PSA_KEY_TYPE_AES
PSA_KEY_TYPE_ARC4
PSA_KEY_TYPE_CAMELLIA
PSA_KEY_TYPE_CHACHA20
PSA_KEY_TYPE_DERIVE
PSA_KEY_TYPE_DES
PSA_KEY_TYPE_HMAC
PSA_KEY_TYPE_NONE
PSA_KEY_TYPE_RAW_DATA
PSA_KEY_TYPE_RSA_KEY_PAIR
PSA_KEY_TYPE_RSA_PUBLIC_KEY

— The following macros with specification-defined values have new example implementations:

O O O O O O O

o O

o}

O O O O O O O

(@]

PSA_BLOCK_CIPHER_BLOCK_LENGTH
PSA_KEY_TYPE_DH_KEY_PAIR
PSA_KEY_TYPE_DH_PUBLIC_KEY
PSA_KEY_TYPE_ECC_KEY_PAIR
PSA_KEY_TYPE_ECC_PUBLIC_KEY
PSA_KEY_TYPE_IS_ASYMMETRIC
PSA_KEY_TYPE_IS_DH
PSA_KEY_TYPE_IS_DH_KEY_PAIR
PSA_KEY_TYPE_IS_DH_PUBLIC_KEY
PSA_KEY_TYPE_IS_ECC
PSA_KEY_TYPE_IS_ECC_KEY_PAIR
PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY
PSA_KEY_TYPE_IS_KEY_PAIR
PSA_KEY_TYPE_IS_PUBLIC_KEY
PSA_KEY_TYPE_IS_RSA
PSA_KEY_TYPE_IS_UNSTRUCTURED
PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY
PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR

e Add ECC family PSA_ECC_FAMILY_FRP for the FRP256v1 curve.

e Restructure psa_algorithm_t encoding, to increase consistency across algorithm categories.

IHI 0086
1.4.0

— Algorithms that include a hash operation all use the same structure to encode the hash

algorithm. The following PSA_ALG_XXXX_GET_HASH() macros have all been replaced by a single
Macro PSA_ALG_GET_HASH():

(e]

O O O o

PSA_ALG_HKDF_GET_HASH()
PSA_ALG_HMAC_GET_HASH()
PSA_ALG_RSA_OAEP_GET_HASH()
PSA_ALG_SIGN_GET_HASH()
PSA_ALG_TLS12_PRF_GET_HASH()

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidential

Page 462

(e]

PSA_ALG_TLS12_PSK_TO_MS_GET_HASH()

— Stream cipher algorithm macros have been removed; the key type indicates which cipher to use.

Instead of PSA_ALG_ARC4 and PSA_ALG_CHACHA20, USe PSA_ALG_STREAM_CIPHER.

All of the other PSA_ALG_xxx macros have updated values or updated example implementations.

IHI 0086
1.4.0

— The following macros have new values:

(¢]

(¢]

(e]

(e]

o o0 o o o 0o o o 0o 0o 0o 0o O O O O o o o o

e}

e}

O O O o

(¢]

PSA_ALG_ANY_HASH
PSA_ALG_CBC_MAC
PSA_ALG_CBC_NO_PADDING
PSA_ALG_CBC_PKCS7
PSA_ALG_CCM
PSA_ALG_CFB
PSA_ALG_CHACHA20_POLY1305
PSA_ALG_CMAC
PSA_ALG_CTR
PSA_ALG_ECDH
PSA_ALG_ECDSA_ANY
PSA_ALG_FFDH
PSA_ALG_GCM
PSA_ALG_MD2
PSA_ALG_MD4
PSA_ALG_MD5
PSA_ALG_OFB
PSA_ALG_RIPEMD160
PSA_ALG_RSA_PKCS1V15_CRYPT
PSA_ALG_RSA_PKCS1V15_SIGN_RAW
PSA_ALG_SHA_1
PSA_ALG_SHA_224
PSA_ALG_SHA_256
PSA_ALG_SHA_384
PSA_ALG_SHA_512
PSA_ALG_SHA_512_224
PSA_ALG_SHA_512_256
PSA_ALG_SHA3_224
PSA_ALG_SHA3_256
PSA_ALG_SHA3_384
PSA_ALG_SHA3_512
PSA_ALG_XTS

— The following macros with specification-defined values have new example implementations:

(@]

O O O o

PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG()
PSA_ALG_AEAD_WITH_SHORTENED_TAG()
PSA_ALG_DETERMINISTIC_ECDSA()
PSA_ALG_ECDSA()
PSA_ALG_FULL_LENGTH_MAC()

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidential

Page 463

e Added ECB block cipher mode, with no padding, as PSA_ALG_ECB_NO_PADDING.

e Add functions to suspend and resume hash operations:

IHI 0086
1.4.0

o o o o 0o o o o o o 0o 0o o o o o o o

e}

o o0 o o O O O O o o o

o O O O O O o o©O

PSA_ALG_HKDF ()
PSA_ALG_HMAC ()

PSA_ALG_IS_AEAD()
PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER()

PSA_ALG_IS_ASYMMETRIC_ENCRYPTION()

PSA_ALG_IS_BLOCK_CIPHER_MAC()
PSA_ALG_IS_CIPHER()
PSA_ALG_IS_DETERMINISTIC_ECDSA()
PSA_ALG_IS_ECDH()
PSA_ALG_IS_ECDSA()
PSA_ALG_IS_FFDH()
PSA_ALG_IS_HASH()
PSA_ALG_IS_HASH_AND_SIGN()
PSA_ALG_IS_HKDF ()
PSA_ALG_IS_HMAC()
PSA_ALG_IS_KEY_AGREEMENT ()
PSA_ALG_IS_KEY_DERIVATION()
PSA_ALG_IS_MAC()
PSA_ALG_IS_RANDOMIZED_ECDSA()
PSA_ALG_IS_RAW_KEY_AGREEMENT ()
PSA_ALG_IS_RSA_OAEP()
PSA_ALG_IS_RSA_PKCS1V15_SIGN()
PSA_ALG_IS_RSA_PSS()
PSA_ALG_IS_SIGN()
PSA_ALG_IS_SIGN_MESSAGE ()
PSA_ALG_IS_STREAM_CIPHER()
PSA_ALG_IS_TLS12_PRF()
PSA_ALG_IS_TLS12_PSK_TO_MS()
PSA_ALG_IS_WILDCARD()
PSA_ALG_KEY_AGREEMENT ()
PSA_ALG_KEY_AGREEMENT_GET_BASE()
PSA_ALG_KEY_AGREEMENT_GET_KDF ()
PSA_ALG_RSA_OAEP()
PSA_ALG_RSA_PKCS1V15_SIGN()
PSA_ALG_RSA_PSS()
PSA_ALG_TLS12_PRF ()
PSA_ALG_TLS12_PSK_TO_MS()
PSA_ALG_TRUNCATED_MAC ()

— psa_hash_suspend() halts the current operation and outputs a hash suspend state.
— psa_hash_resume() continues a previously suspended hash operation.

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidential

Page 464

The format of the hash suspend state is documented in Hash suspend state on page 155, and
supporting macros are provided for using the Crypto API:

PSA_HASH_SUSPEND_OUTPUT_SIZE()
PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE
PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH()
PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH()
PSA_HASH_BLOCK_LENGTH()

e Complement PSA_ERROR_STORAGE_FAILURE with new error codes PSA_ERROR_DATA_CORRUPT and
PSA_ERROR_DATA_INVALID. These permit an implementation to distinguish different causes of failure
when reading from key storage.

e Added input step PSA_KEY_DERIVATION_INPUT_CONTEXT for key derivation, supporting obvious mapping
from the step identifiers to common KDF constructions.

Clarifications

e Clarified rules regarding modification of parameters in concurrent environments.

e Guarantee that psa_destroy_key (PSA_KEY_ID_NULL) always returns PSA_SUCCESS.
e Clarified the TLS PSK to MS key-agreement algorithm.

e Document the key policy requirements for all APIs that accept a key parameter.

Document more of the error codes for each function.

Other changes

Require C99 for this specification instead of C89.

Removed references to non-standard mbed-crypto header files. The only header file that applications

need to include is psa/crypto.h.

Reorganized the API reference, grouping the elements in a more natural way.

Improved the cross referencing between all of the document sections, and from code snippets to API

element descriptions.

E.1.12 Changes between 1.0 beta 2 and 1.0 beta 3
Changes to the API

e Change the value of error codes, and some names, to align with other PSA Certified APIs. The name
changes are:

PSA_ERROR_UNKNOWN_ERROR — PSA_ERROR_GENERIC_ERROR
PSA_ERROR_OCCUPIED_SLOT — PSA_ERROR_ALREADY_EXISTS
PSA_ERROR_EMPTY_SLOT — PSA_ERROR_DOES_NOT_EXIST
PSA_ERROR_INSUFFICIENT_CAPACITY — PSA_ERROR_INSUFFICIENT_DATA
PSA_ERROR_TAMPERING_DETECTED — PSA_ERROR_CORRUPTION_DETECTED

e Change the way keys are created to avoid “half-filled” handles that contained key metadata, but no
key material. Now, to create a key, first fill in a data structure containing its attributes, then pass this

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 465
Non-confidentia

structure to a function that both allocates resources for the key and fills in the key material. This
affects the following functions:

psa_import_key (), psa_generate_key(), psa_generator_import_key() and psa_copy_key () now take
an attribute structure, as a pointer to psa_key_attributes_t, to specify key metadata. This
replaces the previous method of passing arguments to psa_create_key () or to the key material
creation function or calling psa_set_key_policy().

psa_key_policy_t and functions operating on that type no longer exist. A key’s policy is now
accessible as part of its attributes.

psa_get_key_information() is also replaced by accessing the key’s attributes, retrieved with
psa_get_key_attributes().

psa_create_key() No longer exists. Instead, set the key id attribute and the lifetime attribute
before creating the key material.

e Allow psa_aead_update() to buffer data.

e New buffer size calculation macros.

e Key identifiers are no longer specific to a given lifetime value. psa_open_key () no longer takes a
lifetime parameter.

e Define a range of key identifiers for use by applications and a separate range for use by
implementations.

e Avoid the unusual terminology “generator”: call them “key-derivation operations” instead. Rename a
number of functions and other identifiers related to for clarity and consistency:

psa_crypto_generator_t — psa_key_derivation_operation_t
PSA_CRYPTO_GENERATOR_INIT — PSA_KEY_DERIVATION_OPERATION_INIT
psa_crypto_generator_init() — psa_key_derivation_operation_init()
PSA_GENERATOR_UNBRIDLED_CAPACITY — PSA_KEY_DERIVATION_UNLIMITED_CAPACITY
psa_set_generator_capacity() — psa_key_derivation_set_capacity()
psa_get_generator_capacity() — psa_key_derivation_get_capacity()
psa_key_agreement() — psa_key_derivation_key_agreement()
psa_generator_read() — psa_key_derivation_output_bytes()
psa_generate_derived_key() — psa_key_derivation_output_key()
psa_generator_abort() — psa_key_derivation_abort()
psa_key_agreement_raw_shared_secret() — psa_raw_key_agreement()
PSA_KDF_STEP_xxx — PSA_KEY_DERIVATION_INPUT_xxx

PSA_xxx_KEYPAIR — PSA_xxx_KEY_PAIR

e Convert TLS1.2 KDF descriptions to multi-part key derivation.

Clarifications

e Specify psa_generator_import_key() for most key types.

e Clarify the behavior in various corner cases.

e Document more error conditions.

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates Page 466
Non-confidential

E.1.13 Changes between 1.0 beta 1 and 1.0 beta 2
Changes to the API

e Remove obsolete definition PSA_ALG_IS_KEY_SELECTION.

® PSA_AEAD_FINISH_OUTPUT_SIZE: remove spurious parameter plaintext_length.

Clarifications

e psa_key_agreement(): document alg parameter.

Other changes

e Document formatting improvements.

E.2 Planned changes for version 1.4.x

Future versions of this specification that use a 1.4.x version will describe the same API as this specification.
Any changes will not affect application compatibility and will not introduce major features. These updates
are intended to add minor requirements on implementations, introduce optional definitions, make
corrections, clarify potential or actual ambiguities, or improve the documentation.

These are the changes that might be included in a version 1.2.x:

Declare identifiers for additional cryptographic algorithms.

Mandate certain checks when importing some types of asymmetric keys.

Specify the computation of algorithm and key type values.

Further clarifications on APl usage and implementation.

E.3 Future additions

Major additions to the APl will be defined in future drafts and editions of a 1.x or 2.x version of this
specification. Features that are being considered include:

e Integration of the PQC extension.

e Further PQC algorithms as they are standardized.

e Interruptible (incremental) operations for long-running computation in a constrained execution
context.

e Import and export of additional key formats and wrapped key structures.
e Key discovery mechanisms. This would enable an application to locate a key by its name or attributes.

e Implementation capability description. This would enable an application to determine the algorithms,
key types and storage lifetimes that the implementation provides.

e An ownership and access control mechanism allowing a multi-client implementation to have privileged
clients that are able to manage keys of other clients.

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 467
1.4.0 Non-confidential

Index of API elements

PSA_A

PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE, 233
PSA_AEAD_DECRYPT_OUTPUT_SIZE, 232
PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE, 232
PSA_AEAD_ENCRYPT_OUTPUT_SIZE, 231
PSA_AEAD_FINISH_OUTPUT_MAX_SIZE, 235
PSA_AEAD_FINISH_OUTPUT_SIZE, 235
PSA_AEAD_NONCE_LENGTH, 233
PSA_AEAD_NONCE_MAX_SIZE, 234
PSA_AEAD_OPERATION_INIT, 217
PSA_AEAD_TAG_LENGTH, 235
PSA_AEAD_TAG_MAX_SIZE, 236
PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE, 234
PSA_AEAD_UPDATE_OUTPUT_SIZE, 234
PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE, 237/
PSA_AEAD_VERIFY_OUTPUT_SIZE, 236
PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG, 212
PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG, 212
PSA_ALG_AEAD_WITH_SHORTENED_TAG, 211
PSA_ALG_AES_MMO_ZIGBEE, 139
PSA_ALG_ANY_HASH, 309
PSA_ALG_ASCON_AEAD128, 210
PSA_ALG_ASCON_CXOF128, 159
PSA_ALG_ASCON_HASH256, 142
PSA_ALG_ASCON_XOF128, 159
PSA_ALG_AT_LEAST_THIS_LENGTH_MAC, 169
PSA_ALG_CBC_MAC, 167/
PSA_ALG_CBC_NO_PADDING, 188
PSA_ALG_CBC_PKCS7, 189

PSA_ALG_CcM, 208
PSA_ALG_CCM_STAR_ANY_TAG, 202
PSA_ALG_CCM_STAR_NO_TAG, 185
PSA_ALG_CFB, 186
PSA_ALG_CHACHA2@_POLY1305, 210
PSA_ALG_CMAC, 167

PSA_ALG_CTR, 183
PSA_ALG_DETERMINISTIC_ECDSA, 287
PSA_ALG_ECB_NO_PADDING, 187
PSA_ALG_ECDH, 318

PSA_ALG_ECDSA, 285

PSA_ALG_ECDSA_ANY, 286

IHI 0086

Copyright © 2018-2025 Arm Limited and/or its affiliates

PSA_ALG_ECIES_SEC1, 330
PSA_ALG_ED25519PH, 292
PSA_ALG_ED448PH, 293
PSA_ALG_EDDSA_CTX, 291
PSA_ALG_FFDH, 317
PSA_ALG_FULL_LENGTH_MAC, 168
PSA_ALG_GCM, 209
PSA_ALG_GET_HASH, 136
PSA_ALG_HKDF, 245
PSA_ALG_HKDF_EXPAND, 247
PSA_ALG_HKDF_EXTRACT, 246
PSA_ALG_HMAC, 165
PSA_ALG_IS_AEAD, 133
PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER, 231
PSA_ALG_IS_ASYMMETRIC_ENCRYPTION, 134
PSA_ALG_IS_BLOCK_CIPHER_MAC, 180
PSA_ALG_IS_CIPHER, 133
PSA_ALG_IS_DETERMINISTIC_ECDSA, 289
PSA_ALG_IS_ECDH, 327/
PSA_ALG_IS_ECDSA, 288
PSA_ALG_IS_FFDH, 327
PSA_ALG_IS_HASH, 132
PSA_ALG_IS_HASH_AND_SIGN, 308
PSA_ALG_IS_HASH_EDDSA, 294
PSA_ALG_IS_HKDF, 275
PSA_ALG_IS_HKDF_EXPAND, 275
PSA_ALG_IS_HKDF_EXTRACT, 275
PSA_ALG_IS_HMAC, 180
PSA_ALG_IS_JPAKE, 371
PSA_ALG_IS_KEY_AGREEMENT, 135
PSA_ALG_IS_KEY_DERIVATION, 134
PSA_ALG_IS_KEY_DERIVATION_STRETCHING, 274
PSA_ALG_IS_KEY_ENCAPSULATION, 135
PSA_ALG_IS_KEY_WRAP, 133
PSA_ALG_IS_MAC, 132
PSA_ALG_IS_PAKE, 135
PSA_ALG_IS_PBKDF2_HMAC, 27/7
PSA_ALG_IS_RANDOMIZED_ECDSA, 289
PSA_ALG_IS_RAW_KEY_AGREEMENT, 327/
PSA_ALG_IS_RSA_OAEP, 315
PSA_ALG_IS_RSA_PKCS1V15_SIGN, 283
PSA_ALG_IS_RSA_PSS, 284

Page 468

1.4.0 Non-confidential

PSA_ALG_IS_RSA_PSS_ANY_SALT, 284

PSA_ALG_IS_RSA_PSS_STANDARD_SALT, 285

PSA_ALG_IS_SIGN, 134
PSA_ALG_IS SIGN_HASH, 308
PSA_ALG_IS_SIGN_MESSAGE, 307/

PSA_ALG_IS_SP800_108_COUNTER_HMAC, 276

PSA_ALG_IS_SPAKE2P, 380
PSA_ALG_IS_SPAKE2P_CMAC, 381
PSA_ALG_IS SPAKE2P_HMAC, 380

PSA_ALG_IS STANDALONE_KEY_AGREEMENT, 326

PSA_ALG_IS_STREAM_CIPHER, 202
PSA_ALG_IS_TLS12_PRF, 276
PSA_ALG_IS_TLS12_PSK_TO_MS, 276
PSA_ALG_IS_WILDCARD, 136
PSA_ALG_IS_WPA3_SAE, 389
PSA_ALG_IS WPA3_SAE_FIXED, 390
PSA_ALG_IS_WPA3_SAE_GDH, 390
PSA_ALG_IS_WPA3_SAE_H2E, 27/7
PSA_ALG_IS_XOF, 132

PSA_ALG_JPAKE, 370
PSA_ALG_KEY_AGREEMENT, 319
PSA_ALG_KEY_AGREEMENT_GET_BASE, 326
PSA_ALG_KEY_AGREEMENT_GET_KDF, 326
PSA_ALG_Kw, 237

PSA_ALG_KwP, 238

PSA_ALG_MD2, 138

PSA_ALG_MD4, 138

PSA_ALG_MD5, 138

PSA_ALG_NONE, 131

PSA_ALG_OFB, 186
PSA_ALG_PBKDF2_AES_CMAC_PRF_128, 255
PSA_ALG_PBKDF2_HMAC, 254
PSA_ALG_PURE_EDDSA, 290
PSA_ALG_RIPEMD160, 139
PSA_ALG_RSA_OAEP, 311
PSA_ALG_RSA_PKCS1V15_CRYPT, 311
PSA_ALG_RSA_PKCS1V15_SIGN, 280
PSA_ALG_RSA_PKCS1V15_SIGN_RAW, 281
PSA_ALG_RSA_PSS, 281
PSA_ALG_RSA_PSS_ANY_SALT, 282
PSA_ALG_SHA3_224, 140
PSA_ALG_SHA3_256, 141
PSA_ALG_SHA3_384, 141
PSA_ALG_SHA3_512, 141
PSA_ALG_SHAKE128, 158
PSA_ALG_SHAKE256, 158
PSA_ALG_SHAKE256_512, 141
PSA_ALG_SHA_1, 139
PSA_ALG_SHA_224, 139
PSA_ALG_SHA 256, 140

PSA_ALG_SHA 384, 140
PSA_ALG_SHA_512, 140
PSA_ALG_SHA_512_224, 140
PSA_ALG_SHA_512_256, 140
PSA_ALG_SIGN_SUPPORTS_CONTEXT, 309
PSA_ALG_SM3, 141
PSA_ALG_SP800_108_COUNTER_CMAC, 249
PSA_ALG_SP800_108_COUNTER_HMAC, 248
PSA_ALG_SPAKE2P_CMAC, 378
PSA_ALG_SPAKE2P_HMAC, 378
PSA_ALG_SPAKE2P_MATTER, 379
PSA_ALG_STREAM_CIPHER, 182
PSA_ALG_TLS12_ECJPAKE_TO_PMS, 252
PSA_ALG_TLS12_PRF, 250
PSA_ALG_TLS12_PSK_TO_MS, 251
PSA_ALG_TRUNCATED_MAC, 167/
PSA_ALG_WPA3_SAE_ANY, 390
PSA_ALG_WPA3_SAE_FIXED, 388
PSA_ALG_WPA3_SAE_GDH, 388
PSA_ALG_WPA3_SAE_H2E, 253
PSA_ALG_XCHACHA20_POLY1305, 210
PSA_ALG_XOF_HAS_CONTEXT, 164
PSA_ALG_XTS, 187
PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE, 317
PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE, 316
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE, 316
PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE, 315
psa_aead_abort, 231
psa_aead_decrypt, 215
psa_aead_decrypt_setup, 219
psa_aead_encrypt, 213
psa_aead_encrypt_setup, 218
psa_aead_finish, 227/
psa_aead_generate_nonce, 222
psa_aead_operation_init, 218
psa_aead_operation_t, 217
psa_aead_set_lengths, 2271
psa_aead_set_nonce, 223
psa_aead_update, 225
psa_aead_update_ad, 224
psa_aead_verify, 229
psa_algorithm_t, 131
psa_asymmetric_decrypt, 313
psa_asymmetric_encrypt, 312
psa_attach_key, 120

PSA_B

PSA_BLOCK_CIPHER_BLOCK_LENGTH, 206
PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE, 207

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates Page 469

1.4.0

Non-confidential

PSA_C

PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE, 204
PSA_CIPHER_DECRYPT_OUTPUT_SIZE, 203
PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE, 203
PSA_CIPHER_ENCRYPT_OUTPUT_SIZE, 202
PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE, 206
PSA_CIPHER_FINISH_OUTPUT_SIZE, 206
PSA_CIPHER_IV_LENGTH, 204
PSA_CIPHER_IV_MAX_SIZE, 205
PSA_CIPHER_OPERATION_INIT, 193
PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE, 205
PSA_CIPHER_UPDATE_OUTPUT_SIZE, 205
PSA_CRYPTO_API_VERSION_MAJOR, 47/
PSA_CRYPTO_API_VERSION_MINOR, 48
PSA_CUSTOM_KEY_PARAMETERS_INIT, 114
psa_check_key_usage, 109
psa_cipher_abort, 201
psa_cipher_decrypt, 191
psa_cipher_decrypt_setup, 195
psa_cipher_encrypt, 189
psa_cipher_encrypt_setup, 193
psa_cipher_finish, 200
psa_cipher_generate_iv, 196
psa_cipher_operation_init, 193
psa_cipher_operation_t, 192
psa_cipher_set_iv, 197/
psa_cipher_update, 198

psa_copy_key, 118

psa_crypto_init, 48
psa_custom_key_parameters_t, 113

PSA_D

PSA_DH_FAMILY_RFC3526, 60
PSA_DH_FAMILY_RFC7919, 60
psa_decapsulate, 333
psa_destroy_key, 123
psa_dh_family_t, 59

PSA_E

PSA_ECC_FAMILY_BRAINPOOL_P_R1, 58
PSA_ECC_FAMILY_FRP, 58
PSA_ECC_FAMILY_MONTGOMERY, 59
PSA_ECC_FAMILY_SECP_K1, 56
PSA_ECC_FAMILY_SECP_R1, 56
PSA_ECC_FAMILY_SECP_R2, 56
PSA_ECC_FAMILY_SECT_K1, 57
PSA_ECC_FAMILY_SECT_R1, 57/
PSA_ECC_FAMILY_SECT_R2, 58
PSA_ECC_FAMILY_TWISTED_EDWARDS, 59

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidential

1.4.0

PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE, 337
PSA_ENCAPSULATE_CIPHERTEXT_SIZE, 337/
PSA_ERROR_INSUFFICIENT_ENTROPY, 47/
PSA_ERROR_INVALID_PADDING, 47/
PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE, 130
PSA_EXPORT_KEY_OUTPUT_SIZE, 128
PSA_EXPORT_KEY_PAIR_MAX_SIZE, 129
PSA_EXPORT_PUBLIC_KEY_MAX_SIZE, 130
PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE, 128
psa_ecc_family_t, 55

psa_encapsulate, 331

psa_export_key, 125
psa_export_public_key, 126

PSA_G

psa_generate_key, 114
psa_generate_key_custom, 116
psa_generate_random, 391
psa_get_key_algorithm, 102
psa_get_key_attributes, 52
psa_get_key_bits, 61
psa_get_key_id, 100
psa_get_key_lifetime, 96
psa_get_key_type, 61
psa_get_key_usage_flags, 108

PSA_H

PSA_HASH_BLOCK_LENGTH, 155

PSA_HASH_LENGTH, 152

PSA_HASH_MAX_SIZE, 153
PSA_HASH_OPERATION_INIT, 144
PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH, 154
PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH, 154
PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH, 154
PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE, 154
PSA_HASH_SUSPEND_OUTPUT_SIZE, 153
psa_hash_abort, 148

psa_hash_clone, 152

psa_hash_compare, 143

psa_hash_compute, 142

psa_hash_finish, 147/
psa_hash_operation_init, 145
psa_hash_operation_t, 144

psa_hash_resume, 151

psa_hash_setup, 145

psa_hash_suspend, 149

psa_hash_update, 146

psa_hash_verify, 148

Page 470

PSA_I
psa_import_key, 1171

PSA_K

PSA_KEY_ATTRIBUTES_INIT, 51
PSA_KEY_DERIVATION_INPUT_CONTEXT, 256
PSA_KEY_DERIVATION_INPUT_COST, 257
PSA_KEY_DERIVATION_INPUT_INFO, 257
PSA_KEY_DERIVATION_INPUT_LABEL, 256
PSA_KEY_DERIVATION_INPUT_OTHER_SECRET, 256
PSA_KEY_DERIVATION_INPUT_PASSWORD, 256
PSA_KEY_DERIVATION_INPUT_SALT, 256
PSA_KEY_DERIVATION_INPUT_SECRET, 255
PSA_KEY_DERIVATION_INPUT_SEED, 257
PSA_KEY_DERIVATION_OPERATION_INIT, 258
PSA_KEY_DERIVATION_UNLIMITED_CAPACITY, 277/
PSA_KEY_ID_NULL, 99
PSA_KEY_ID_USER_MAX, 99
PSA_KEY_ID_USER_MIN, 99
PSA_KEY_ID_VENDOR_MAX, 99
PSA_KEY_ID_VENDOR_MIN, 99
PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION, 98
PSA_KEY_LIFETIME_GET_LOCATION, 97
PSA_KEY_LIFETIME_GET_PERSISTENCE, 97/
PSA_KEY_LIFETIME_IS_VOLATILE, 97/
PSA_KEY_LIFETIME_PERSISTENT, 94
PSA_KEY_LIFETIME_VOLATILE, 94
PSA_KEY_LOCATION_LOCAL_STORAGE, 95
PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT, 95
PSA_KEY_PERSISTENCE_DEFAULT, 95
PSA_KEY_PERSISTENCE_READ_ONLY, 95
PSA_KEY_PERSISTENCE_VOLATILE, 95
PSA_KEY_TYPE_AES, 66

PSA_KEY_TYPE_ARC4, 70
PSA_KEY_TYPE_ARIA, 67/
PSA_KEY_TYPE_ASCON, /2
PSA_KEY_TYPE_CAMELLIA, 69
PSA_KEY_TYPE_CHACHA20, /1
PSA_KEY_TYPE_DERIVE, 63
PSA_KEY_TYPE_DES, 68
PSA_KEY_TYPE_DH_GET_FAMILY, 86
PSA_KEY_TYPE_DH_KEY_PAIR, 84
PSA_KEY_TYPE_DH_PUBLIC_KEY, 85
PSA_KEY_TYPE_ECC_GET_FAMILY, 84
PSA_KEY_TYPE_ECC_KEY_PAIR, /9
PSA_KEY_TYPE_ECC_PUBLIC_KEY, 81
PSA_KEY_TYPE_HMAC, 65
PSA_KEY_TYPE_IS_ASYMMETRIC, 54
PSA_KEY_TYPE_IS_DH, 85

IHI 0086
1.4.0

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidential

PSA_KEY_TYPE_IS_DH_KEY_PAIR, 85
PSA_KEY_TYPE_IS_DH_PUBLIC_KEY, 85
PSA_KEY_TYPE_IS_ECC, 83
PSA_KEY_TYPE_IS_ECC_KEY_PAIR, 83
PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY, 83
PSA_KEY_TYPE_IS_KEY_PAIR, 55
PSA_KEY_TYPE_IS_PUBLIC_KEY, 55
PSA_KEY_TYPE_IS_RSA, /8
PSA_KEY_TYPE_IS_SPAKE2P, 88
PSA_KEY_TYPE_IS_SPAKE2P_KEY_PAIR, 88
PSA_KEY_TYPE_IS_SPAKE2P_PUBLIC_KEY, 89
PSA_KEY_TYPE_IS_UNSTRUCTURED, 54
PSA_KEY_TYPE_IS_WPA3_SAE_DH, /5
PSA_KEY_TYPE_IS_WPA3_SAE_ECC, /5
PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY, 89
PSA_KEY_TYPE_NONE, 54
PSA_KEY_TYPE_PASSWORD, 64
PSA_KEY_TYPE_PASSWORD_HASH, 64
PSA_KEY_TYPE_PEPPER, 65
PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR, 90
PSA_KEY_TYPE_RAW_DATA, 62
PSA_KEY_TYPE_RSA_KEY_PAIR, /6
PSA_KEY_TYPE_RSA_PUBLIC_KEY, /8
PSA_KEY_TYPE_SM4, 70
PSA_KEY_TYPE_SPAKE2P_GET_FAMILY, 89
PSA_KEY_TYPE_SPAKE2P_KEY_PAIR, 86
PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY, 87/
PSA_KEY_TYPE_WPA3_SAE_DH, /4
PSA_KEY_TYPE_WPA3_SAE_DH_GET_FAMILY, /5
PSA_KEY_TYPE_WPA3_SAE_ECC, /3
PSA_KEY_TYPE_WPA3_SAE_ECC_GET_FAMILY, /5
PSA_KEY_TYPE_XCHACHA20, /1
PSA_KEY_USAGE_CACHE, 104
PSA_KEY_USAGE_COPY, 104
PSA_KEY_USAGE_DECRYPT, 105
PSA_KEY_USAGE_DERIVE, 106
PSA_KEY_USAGE_DERIVE_PUBLIC, 107
PSA_KEY_USAGE_ENCRYPT, 104
PSA_KEY_USAGE_EXPORT, 103
PSA_KEY_USAGE_SIGN_HASH, 106
PSA_KEY_USAGE_SIGN_MESSAGE, 105
PSA_KEY_USAGE_UNWRAP, 108
PSA_KEY_USAGE_VERIFY_DERIVATION, 107
PSA_KEY_USAGE_VERIFY_HASH, 106
PSA_KEY_USAGE_VERIFY_MESSAGE, 105
PSA_KEY_USAGE_WRAP, 107
psa_key_agreement, 320
psa_key_attributes_init, 52
psa_key_attributes_t, 49
psa_key_derivation_abort, 2/4

Page 471

psa_key_derivation_get_capacity, 259
psa_key_derivation_input_bytes, 261
psa_key_derivation_input_integer, 262
psa_key_derivation_input_key, 263
psa_key_derivation_key_agreement, 324
psa_key_derivation_operation_init, 258
psa_key_derivation_operation_t, 257/
psa_key_derivation_output_bytes, 265
psa_key_derivation_output_key, 266
psa_key_derivation_output_key_custom, 268
psa_key_derivation_set_capacity, 260
psa_key_derivation_setup, 258
psa_key_derivation_step_t, 255
psa_key_derivation_verify_bytes, 271
psa_key_derivation_verify_key, 272
psa_key_id_t, 98

psa_key_lifetime_t, 91
psa_key_location_t, 93
psa_key_persistence_t, 92
psa_key_type_t, 53

psa_key_usage_t, 103

PSA_M

PSA_MAC_LENGTH, 180
PSA_MAC_MAX_SIZE, 181
PSA_MAC_OPERATION_INIT, 173
psa_mac_abort, 179
psa_mac_compute, 170
psa_mac_operation_init, 173
psa_mac_operation_t, 1/2
psa_mac_sign_finish, 177
psa_mac_sign_setup, 173
psa_mac_update, 176
psa_mac_verify, 171
psa_mac_verify_finish, 1/8
psa_mac_verify_setup, 175

PSA_P

PSA_PAKE_CIPHER_SUITE_INIT, 343
PSA_PAKE_CONFIRMED_KEY, 346
PSA_PAKE_INPUT_MAX_SIZE, 365
PSA_PAKE_INPUT_SIZE, 365
PSA_PAKE_OPERATION_INIT, 352
PSA_PAKE_OUTPUT_MAX_SIZE, 365
PSA_PAKE_OUTPUT_SIZE, 364
PSA_PAKE_PRIMITIVE, 340
PSA_PAKE_PRIMITIVE_GET_BITS, 341
PSA_PAKE_PRIMITIVE_GET_FAMILY, 341
PSA_PAKE_PRIMITIVE_GET_TYPE, 341
PSA_PAKE_PRIMITIVE_TYPE_DH, 340

IHI 0086
1.4.0

PSA_PAKE_PRIMITIVE_TYPE_ECC, 339
PSA_PAKE_ROLE_CLIENT, 348
PSA_PAKE_ROLE_FIRST, 348
PSA_PAKE_ROLE_NONE, 348
PSA_PAKE_ROLE_SECOND, 348
PSA_PAKE_ROLE_SERVER, 349
PSA_PAKE_STEP_COMMIT, 351
PSA_PAKE_STEP_CONFIRM, 350
PSA_PAKE_STEP_CONFIRM_COUNT, 351
PSA_PAKE_STEP_KEY_ID, 351
PSA_PAKE_STEP_KEY_SHARE, 349
PSA_PAKE_STEP_SALT, 350
PSA_PAKE_STEP_ZK_PROOF, 350
PSA_PAKE_STEP_ZK_PUBLIC, 349
PSA_PAKE_UNCONFIRMED_KEY, 346
psa_pake_abort, 363
psa_pake_cipher_suite_init, 344
psa_pake_cipher_suite_t, 342
psa_pake_cs_get_algorithm, 344
psa_pake_cs_get_key_confirmation, 346
psa_pake_cs_get_primitive, 345
psa_pake_cs_set_algorithm, 344
psa_pake_cs_set_key_confirmation, 347/
psa_pake_cs_set_primitive, 345
psa_pake_family_t, 340
psa_pake_get_shared_key, 361
psa_pake_input, 359
psa_pake_operation_init, 352
psa_pake_operation_t, 352
psa_pake_output, 358
psa_pake_primitive_t, 338
psa_pake_primitive_type_t, 339
psa_pake_role_t, 348
psa_pake_set_context, 357
psa_pake_set_peer, 356
psa_pake_set_role, 355
psa_pake_set_user, 355
psa_pake_setup, 353
psa_pake_step_t, 349
psa_purge_key, 124

PSA_R

PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE, 328
PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE, 328
psa_raw_key_agreement, 322
psa_reset_key_attributes, 53

PSA_S

PSA_SIGNATURE_MAX_SIZE, 310
PSA_SIGN_OUTPUT_SIZE, 310

Copyright © 2018-2025 Arm Limited and/or its affiliates
Non-confidential

Page 472

psa_set_key_algorithm, 102
psa_set_key_bits, 62
psa_set_key_id, 99
psa_set_key_lifetime, 96
psa_set_key_type, 61
psa_set_key_usage_flags, 108
psa_sign_hash, 301
psa_sign_hash_with_context, 302
psa_sign_message, 294
psa_sign_message_with_context, 296

PSA_T

PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE, 27/8
PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE, 27/7

PSA_U
psa_unwrap_key, 238

PSA_V

psa_verify_hash, 304
psa_verify_hash_with_context, 306
psa_verify_message, 298
psa_verify_message_with_context, 299

PSA_W

PSA_WRAP_KEY_OUTPUT_SIZE, 243
PSA_WRAP_KEY_PAIR_MAX_SIZE, 244
psa_wrap_key, 2471

PSA_X

PSA_XOF_OPERATION_INIT, 160
psa_xof_abort, 164
psa_xof_operation_init, 160
psa_xof_operation_t, 159
psa_xof_output, 163
psa_xof_set_context, 161
psa_xof_setup, 160
psa_xof_update, 162

IHI 0086 Copyright © 2018-2025 Arm Limited and/or its affiliates

1.4.0

Non-confidential

Page 473

	About this document
	Release information
	License
	References
	Terms and abbreviations
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Feedback

	1 Introduction
	1.1 About Platform Security Architecture
	1.2 About the Crypto API

	2 Design goals
	2.1 Suitable for constrained devices
	2.2 A keystore interface
	2.3 Optional isolation
	2.4 Choice of algorithms
	2.5 Ease of use
	2.6 Example use cases
	2.6.1 Network Security (TLS)
	2.6.2 Secure Storage
	2.6.3 Network Credentials
	2.6.4 Device Pairing
	2.6.5 Secure Boot
	2.6.6 Attestation
	2.6.7 Factory Provisioning

	3 Functionality overview
	3.1 Library management
	3.2 Key management
	3.2.1 Key types
	3.2.2 Key identifiers
	3.2.3 Key lifetimes
	3.2.4 Key policies
	3.2.5 Recommendations of minimum standards for key management

	3.3 Cryptographic operations
	3.3.1 Single-part Functions
	3.3.2 Multi-part operations
	3.3.3 Symmetric cryptography
	Example of the symmetric cryptography API

	3.3.4 Asymmetric cryptography

	3.4 Randomness and key generation

	4 Sample architectures
	4.1 Single-partition architecture
	4.2 Cryptographic token and single-application processor
	4.3 Cryptoprocessor with no key storage
	4.4 Multi-client cryptoprocessor
	4.5 Multi-cryptoprocessor architecture

	5 Library conventions
	5.1 Header files
	5.2 API conventions
	5.2.1 Identifier names
	5.2.2 Basic types
	5.2.3 Data types
	5.2.4 Constants
	5.2.5 Function-like macros
	5.2.6 Functions

	5.3 Error handling
	5.3.1 Return status
	5.3.2 Behavior on error

	5.4 Parameter conventions
	5.4.1 Pointer conventions
	5.4.2 Input buffer sizes
	5.4.3 Output buffer sizes
	5.4.4 Overlap between parameters
	5.4.5 Stability of parameters

	5.5 Key types and algorithms
	5.5.1 Structure of key types and algorithms

	5.6 Concurrent calls

	6 Implementation considerations
	6.1 Implementation-specific aspects of the interface
	6.1.1 Implementation profile
	6.1.2 Implementation-specific types
	6.1.3 Implementation-specific macros

	6.2 Porting to a platform
	6.2.1 Platform assumptions
	6.2.2 Platform-specific types
	6.2.3 Cryptographic hardware support

	6.3 Security requirements and recommendations
	6.3.1 Error detection
	6.3.2 Indirect object references
	6.3.3 Memory cleanup
	6.3.4 Managing key material
	6.3.5 Safe outputs on error
	6.3.6 Attack resistance

	6.4 Other implementation considerations
	6.4.1 Philosophy of resource management

	7 Usage considerations
	7.1 Security recommendations
	7.1.1 Always check for errors
	7.1.2 Shared memory and concurrency
	7.1.3 Cleaning up after use

	8 Library management reference
	8.1 Status codes
	8.1.1 Common error codes
	8.1.2 Error codes specific to the Crypto API
	PSA_ERROR_INSUFFICIENT_ENTROPY (macro)
	PSA_ERROR_INVALID_PADDING (macro)

	8.2 Crypto API library
	8.2.1 API version
	PSA_CRYPTO_API_VERSION_MAJOR (macro)
	PSA_CRYPTO_API_VERSION_MINOR (macro)

	8.2.2 Library initialization
	psa_crypto_init (function)

	9 Key management reference
	9.1 Key attributes
	9.1.1 Managing key attributes
	psa_key_attributes_t (typedef)
	PSA_KEY_ATTRIBUTES_INIT (macro)
	psa_key_attributes_init (function)
	psa_get_key_attributes (function)
	psa_reset_key_attributes (function)

	9.2 Key types
	9.2.1 Key type encoding
	psa_key_type_t (typedef)
	PSA_KEY_TYPE_NONE (macro)

	9.2.2 Key categories
	PSA_KEY_TYPE_IS_UNSTRUCTURED (macro)
	PSA_KEY_TYPE_IS_ASYMMETRIC (macro)
	PSA_KEY_TYPE_IS_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_KEY_PAIR (macro)

	9.2.3 Elliptic curve families
	psa_ecc_family_t (typedef)
	PSA_ECC_FAMILY_SECP_K1 (macro)
	PSA_ECC_FAMILY_SECP_R1 (macro)
	PSA_ECC_FAMILY_SECP_R2 (macro)
	PSA_ECC_FAMILY_SECT_K1 (macro)
	PSA_ECC_FAMILY_SECT_R1 (macro)
	PSA_ECC_FAMILY_SECT_R2 (macro)
	PSA_ECC_FAMILY_BRAINPOOL_P_R1 (macro)
	PSA_ECC_FAMILY_FRP (macro)
	PSA_ECC_FAMILY_MONTGOMERY (macro)
	PSA_ECC_FAMILY_TWISTED_EDWARDS (macro)

	9.2.4 Finite field Diffie-Hellman families
	psa_dh_family_t (typedef)
	PSA_DH_FAMILY_RFC7919 (macro)
	PSA_DH_FAMILY_RFC3526 (macro)

	9.2.5 Attribute accessors
	psa_set_key_type (function)
	psa_get_key_type (function)
	psa_get_key_bits (function)
	psa_set_key_bits (function)

	9.3 Unstructured key types
	9.3.1 Non-key data
	PSA_KEY_TYPE_RAW_DATA (macro)
	PSA_KEY_TYPE_DERIVE (macro)
	PSA_KEY_TYPE_PASSWORD (macro)
	PSA_KEY_TYPE_PASSWORD_HASH (macro)
	PSA_KEY_TYPE_PEPPER (macro)

	9.3.2 Symmetric cryptographic keys
	PSA_KEY_TYPE_HMAC (macro)
	PSA_KEY_TYPE_AES (macro)
	PSA_KEY_TYPE_ARIA (macro)
	PSA_KEY_TYPE_DES (macro)
	PSA_KEY_TYPE_CAMELLIA (macro)
	PSA_KEY_TYPE_SM4 (macro)
	PSA_KEY_TYPE_ARC4 (macro)
	PSA_KEY_TYPE_CHACHA20 (macro)
	PSA_KEY_TYPE_XCHACHA20 (macro)
	PSA_KEY_TYPE_ASCON (macro)

	9.4 Structured key types
	9.4.1 WPA3-SAE password tokens
	PSA_KEY_TYPE_WPA3_SAE_ECC (macro)
	PSA_KEY_TYPE_WPA3_SAE_DH (macro)
	PSA_KEY_TYPE_IS_WPA3_SAE_ECC (macro)
	PSA_KEY_TYPE_WPA3_SAE_ECC_GET_FAMILY (macro)
	PSA_KEY_TYPE_IS_WPA3_SAE_DH (macro)
	PSA_KEY_TYPE_WPA3_SAE_DH_GET_FAMILY (macro)

	9.5 Asymmetric key types
	9.5.1 RSA keys
	PSA_KEY_TYPE_RSA_KEY_PAIR (macro)
	PSA_KEY_TYPE_RSA_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_RSA (macro)

	9.5.2 Elliptic Curve keys
	PSA_KEY_TYPE_ECC_KEY_PAIR (macro)
	PSA_KEY_TYPE_ECC_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_ECC (macro)
	PSA_KEY_TYPE_IS_ECC_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_ECC_GET_FAMILY (macro)

	9.5.3 Diffie Hellman keys
	PSA_KEY_TYPE_DH_KEY_PAIR (macro)
	PSA_KEY_TYPE_DH_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_DH (macro)
	PSA_KEY_TYPE_IS_DH_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_DH_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_DH_GET_FAMILY (macro)

	9.5.4 SPAKE2+ keys
	PSA_KEY_TYPE_SPAKE2P_KEY_PAIR (macro)
	PSA_KEY_TYPE_SPAKE2P_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_SPAKE2P (macro)
	PSA_KEY_TYPE_IS_SPAKE2P_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_SPAKE2P_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_SPAKE2P_GET_FAMILY (macro)

	9.5.5 Support macros
	PSA_KEY_TYPE_KEY_PAIR_OF_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR (macro)

	9.6 Key lifetimes
	9.6.1 Volatile keys
	9.6.2 Persistent keys
	9.6.3 Key lifetime encoding
	psa_key_lifetime_t (typedef)
	psa_key_persistence_t (typedef)
	psa_key_location_t (typedef)

	9.6.4 Lifetime values
	PSA_KEY_LIFETIME_VOLATILE (macro)
	PSA_KEY_LIFETIME_PERSISTENT (macro)
	PSA_KEY_PERSISTENCE_VOLATILE (macro)
	PSA_KEY_PERSISTENCE_DEFAULT (macro)
	PSA_KEY_PERSISTENCE_READ_ONLY (macro)
	PSA_KEY_LOCATION_LOCAL_STORAGE (macro)
	PSA_KEY_LOCATION_PRIMARY_SECURE_ELEMENT (macro)

	9.6.5 Attribute accessors
	psa_set_key_lifetime (function)
	psa_get_key_lifetime (function)

	9.6.6 Support macros
	PSA_KEY_LIFETIME_GET_PERSISTENCE (macro)
	PSA_KEY_LIFETIME_GET_LOCATION (macro)
	PSA_KEY_LIFETIME_IS_VOLATILE (macro)
	PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION (macro)

	9.7 Key identifiers
	9.7.1 Key identifier type
	psa_key_id_t (typedef)
	PSA_KEY_ID_NULL (macro)
	PSA_KEY_ID_USER_MIN (macro)
	PSA_KEY_ID_USER_MAX (macro)
	PSA_KEY_ID_VENDOR_MIN (macro)
	PSA_KEY_ID_VENDOR_MAX (macro)

	9.7.2 Attribute accessors
	psa_set_key_id (function)
	psa_get_key_id (function)

	9.8 Key policies
	9.8.1 Permitted algorithms
	psa_set_key_algorithm (function)
	psa_get_key_algorithm (function)

	9.8.2 Key usage flags
	psa_key_usage_t (typedef)
	PSA_KEY_USAGE_EXPORT (macro)
	PSA_KEY_USAGE_COPY (macro)
	PSA_KEY_USAGE_CACHE (macro)
	PSA_KEY_USAGE_ENCRYPT (macro)
	PSA_KEY_USAGE_DECRYPT (macro)
	PSA_KEY_USAGE_SIGN_MESSAGE (macro)
	PSA_KEY_USAGE_VERIFY_MESSAGE (macro)
	PSA_KEY_USAGE_SIGN_HASH (macro)
	PSA_KEY_USAGE_VERIFY_HASH (macro)
	PSA_KEY_USAGE_DERIVE (macro)
	PSA_KEY_USAGE_VERIFY_DERIVATION (macro)
	PSA_KEY_USAGE_DERIVE_PUBLIC (macro)
	PSA_KEY_USAGE_WRAP (macro)
	PSA_KEY_USAGE_UNWRAP (macro)
	psa_set_key_usage_flags (function)
	psa_get_key_usage_flags (function)
	psa_check_key_usage (function)

	9.9 Key management functions
	9.9.1 Key creation
	psa_import_key (function)
	psa_custom_key_parameters_t (struct)
	PSA_CUSTOM_KEY_PARAMETERS_INIT (macro)
	psa_generate_key (function)
	psa_generate_key_custom (function)
	psa_copy_key (function)
	psa_attach_key (function)

	9.9.2 Key destruction
	psa_destroy_key (function)
	psa_purge_key (function)

	9.9.3 Key export
	psa_export_key (function)
	psa_export_public_key (function)
	PSA_EXPORT_KEY_OUTPUT_SIZE (macro)
	PSA_EXPORT_PUBLIC_KEY_OUTPUT_SIZE (macro)
	PSA_EXPORT_KEY_PAIR_MAX_SIZE (macro)
	PSA_EXPORT_PUBLIC_KEY_MAX_SIZE (macro)
	PSA_EXPORT_ASYMMETRIC_KEY_MAX_SIZE (macro)

	10 Cryptographic operation reference
	10.1 Algorithms
	10.1.1 Algorithm encoding
	psa_algorithm_t (typedef)
	PSA_ALG_NONE (macro)

	10.1.2 Algorithm categories
	PSA_ALG_IS_HASH (macro)
	PSA_ALG_IS_XOF (macro)
	PSA_ALG_IS_MAC (macro)
	PSA_ALG_IS_CIPHER (macro)
	PSA_ALG_IS_AEAD (macro)
	PSA_ALG_IS_KEY_WRAP (macro)
	PSA_ALG_IS_KEY_DERIVATION (macro)
	PSA_ALG_IS_SIGN (macro)
	PSA_ALG_IS_ASYMMETRIC_ENCRYPTION (macro)
	PSA_ALG_IS_KEY_AGREEMENT (macro)
	PSA_ALG_IS_PAKE (macro)
	PSA_ALG_IS_KEY_ENCAPSULATION (macro)

	10.1.3 Support macros
	PSA_ALG_IS_WILDCARD (macro)
	PSA_ALG_GET_HASH (macro)

	10.2 Message digests (Hashes)
	10.2.1 Hash algorithms
	PSA_ALG_MD2 (macro)
	PSA_ALG_MD4 (macro)
	PSA_ALG_MD5 (macro)
	PSA_ALG_RIPEMD160 (macro)
	PSA_ALG_AES_MMO_ZIGBEE (macro)
	PSA_ALG_SHA_1 (macro)
	PSA_ALG_SHA_224 (macro)
	PSA_ALG_SHA_256 (macro)
	PSA_ALG_SHA_384 (macro)
	PSA_ALG_SHA_512 (macro)
	PSA_ALG_SHA_512_224 (macro)
	PSA_ALG_SHA_512_256 (macro)
	PSA_ALG_SHA3_224 (macro)
	PSA_ALG_SHA3_256 (macro)
	PSA_ALG_SHA3_384 (macro)
	PSA_ALG_SHA3_512 (macro)
	PSA_ALG_SHAKE256_512 (macro)
	PSA_ALG_SM3 (macro)
	PSA_ALG_ASCON_HASH256 (macro)

	10.2.2 Single-part hashing functions
	psa_hash_compute (function)
	psa_hash_compare (function)

	10.2.3 Multi-part hashing operations
	psa_hash_operation_t (typedef)
	PSA_HASH_OPERATION_INIT (macro)
	psa_hash_operation_init (function)
	psa_hash_setup (function)
	psa_hash_update (function)
	psa_hash_finish (function)
	psa_hash_verify (function)
	psa_hash_abort (function)
	psa_hash_suspend (function)
	psa_hash_resume (function)
	psa_hash_clone (function)

	10.2.4 Support macros
	PSA_HASH_LENGTH (macro)
	PSA_HASH_MAX_SIZE (macro)
	PSA_HASH_SUSPEND_OUTPUT_SIZE (macro)
	PSA_HASH_SUSPEND_OUTPUT_MAX_SIZE (macro)
	PSA_HASH_SUSPEND_ALGORITHM_FIELD_LENGTH (macro)
	PSA_HASH_SUSPEND_INPUT_LENGTH_FIELD_LENGTH (macro)
	PSA_HASH_SUSPEND_HASH_STATE_FIELD_LENGTH (macro)
	PSA_HASH_BLOCK_LENGTH (macro)

	10.2.5 Hash suspend state
	Hash suspend state format
	Hash suspend state field sizes

	10.3 Extendable-output functions (XOF)
	10.3.1 XOF algorithms
	PSA_ALG_SHAKE128 (macro)
	PSA_ALG_SHAKE256 (macro)
	PSA_ALG_ASCON_XOF128 (macro)
	PSA_ALG_ASCON_CXOF128 (macro)

	10.3.2 Multi-part XOF operations
	psa_xof_operation_t (typedef)
	PSA_XOF_OPERATION_INIT (macro)
	psa_xof_operation_init (function)
	psa_xof_setup (function)
	psa_xof_set_context (function)
	psa_xof_update (function)
	psa_xof_output (function)
	psa_xof_abort (function)

	10.3.3 Support macros
	PSA_ALG_XOF_HAS_CONTEXT (macro)

	10.4 Message authentication codes (MAC)
	10.4.1 MAC algorithms
	PSA_ALG_HMAC (macro)
	PSA_ALG_CBC_MAC (macro)
	PSA_ALG_CMAC (macro)
	PSA_ALG_TRUNCATED_MAC (macro)
	PSA_ALG_FULL_LENGTH_MAC (macro)
	PSA_ALG_AT_LEAST_THIS_LENGTH_MAC (macro)

	10.4.2 Single-part MAC functions
	psa_mac_compute (function)
	psa_mac_verify (function)

	10.4.3 Multi-part MAC operations
	psa_mac_operation_t (typedef)
	PSA_MAC_OPERATION_INIT (macro)
	psa_mac_operation_init (function)
	psa_mac_sign_setup (function)
	psa_mac_verify_setup (function)
	psa_mac_update (function)
	psa_mac_sign_finish (function)
	psa_mac_verify_finish (function)
	psa_mac_abort (function)

	10.4.4 Support macros
	PSA_ALG_IS_HMAC (macro)
	PSA_ALG_IS_BLOCK_CIPHER_MAC (macro)
	PSA_MAC_LENGTH (macro)
	PSA_MAC_MAX_SIZE (macro)

	10.5 Unauthenticated ciphers
	10.5.1 Cipher algorithms
	PSA_ALG_STREAM_CIPHER (macro)
	PSA_ALG_CTR (macro)
	PSA_ALG_CCM_STAR_NO_TAG (macro)
	PSA_ALG_CFB (macro)
	PSA_ALG_OFB (macro)
	PSA_ALG_XTS (macro)
	PSA_ALG_ECB_NO_PADDING (macro)
	PSA_ALG_CBC_NO_PADDING (macro)
	PSA_ALG_CBC_PKCS7 (macro)

	10.5.2 Single-part cipher functions
	psa_cipher_encrypt (function)
	psa_cipher_decrypt (function)

	10.5.3 Multi-part cipher operations
	psa_cipher_operation_t (typedef)
	PSA_CIPHER_OPERATION_INIT (macro)
	psa_cipher_operation_init (function)
	psa_cipher_encrypt_setup (function)
	psa_cipher_decrypt_setup (function)
	psa_cipher_generate_iv (function)
	psa_cipher_set_iv (function)
	psa_cipher_update (function)
	psa_cipher_finish (function)
	psa_cipher_abort (function)

	10.5.4 Support macros
	PSA_ALG_IS_STREAM_CIPHER (macro)
	PSA_ALG_CCM_STAR_ANY_TAG (macro)
	PSA_CIPHER_ENCRYPT_OUTPUT_SIZE (macro)
	PSA_CIPHER_ENCRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_CIPHER_DECRYPT_OUTPUT_SIZE (macro)
	PSA_CIPHER_DECRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_CIPHER_IV_LENGTH (macro)
	PSA_CIPHER_IV_MAX_SIZE (macro)
	PSA_CIPHER_UPDATE_OUTPUT_SIZE (macro)
	PSA_CIPHER_UPDATE_OUTPUT_MAX_SIZE (macro)
	PSA_CIPHER_FINISH_OUTPUT_SIZE (macro)
	PSA_CIPHER_FINISH_OUTPUT_MAX_SIZE (macro)
	PSA_BLOCK_CIPHER_BLOCK_LENGTH (macro)
	PSA_BLOCK_CIPHER_BLOCK_MAX_SIZE (macro)

	10.6 Authenticated encryption with associated data (AEAD)
	10.6.1 AEAD algorithms
	PSA_ALG_CCM (macro)
	PSA_ALG_GCM (macro)
	PSA_ALG_CHACHA20_POLY1305 (macro)
	PSA_ALG_XCHACHA20_POLY1305 (macro)
	PSA_ALG_ASCON_AEAD128 (macro)
	PSA_ALG_AEAD_WITH_SHORTENED_TAG (macro)
	PSA_ALG_AEAD_WITH_DEFAULT_LENGTH_TAG (macro)
	PSA_ALG_AEAD_WITH_AT_LEAST_THIS_LENGTH_TAG (macro)

	10.6.2 Single-part AEAD functions
	psa_aead_encrypt (function)
	psa_aead_decrypt (function)

	10.6.3 Multi-part AEAD operations
	psa_aead_operation_t (typedef)
	PSA_AEAD_OPERATION_INIT (macro)
	psa_aead_operation_init (function)
	psa_aead_encrypt_setup (function)
	psa_aead_decrypt_setup (function)
	psa_aead_set_lengths (function)
	psa_aead_generate_nonce (function)
	psa_aead_set_nonce (function)
	psa_aead_update_ad (function)
	psa_aead_update (function)
	psa_aead_finish (function)
	psa_aead_verify (function)
	psa_aead_abort (function)

	10.6.4 Support macros
	PSA_ALG_IS_AEAD_ON_BLOCK_CIPHER (macro)
	PSA_AEAD_ENCRYPT_OUTPUT_SIZE (macro)
	PSA_AEAD_ENCRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_DECRYPT_OUTPUT_SIZE (macro)
	PSA_AEAD_DECRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_NONCE_LENGTH (macro)
	PSA_AEAD_NONCE_MAX_SIZE (macro)
	PSA_AEAD_UPDATE_OUTPUT_SIZE (macro)
	PSA_AEAD_UPDATE_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_FINISH_OUTPUT_SIZE (macro)
	PSA_AEAD_FINISH_OUTPUT_MAX_SIZE (macro)
	PSA_AEAD_TAG_LENGTH (macro)
	PSA_AEAD_TAG_MAX_SIZE (macro)
	PSA_AEAD_VERIFY_OUTPUT_SIZE (macro)
	PSA_AEAD_VERIFY_OUTPUT_MAX_SIZE (macro)

	10.7 Key wrapping
	10.7.1 Key-wrapping algorithms
	PSA_ALG_KW (macro)
	PSA_ALG_KWP (macro)

	10.7.2 Key wrapping functions
	psa_unwrap_key (function)
	psa_wrap_key (function)

	10.7.3 Support macros
	PSA_WRAP_KEY_OUTPUT_SIZE (macro)
	PSA_WRAP_KEY_PAIR_MAX_SIZE (macro)

	10.8 Key derivation
	10.8.1 Key-derivation algorithms
	PSA_ALG_HKDF (macro)
	PSA_ALG_HKDF_EXTRACT (macro)
	PSA_ALG_HKDF_EXPAND (macro)
	PSA_ALG_SP800_108_COUNTER_HMAC (macro)
	PSA_ALG_SP800_108_COUNTER_CMAC (macro)
	PSA_ALG_TLS12_PRF (macro)
	PSA_ALG_TLS12_PSK_TO_MS (macro)
	PSA_ALG_TLS12_ECJPAKE_TO_PMS (macro)
	PSA_ALG_WPA3_SAE_H2E (macro)
	PSA_ALG_PBKDF2_HMAC (macro)
	PSA_ALG_PBKDF2_AES_CMAC_PRF_128 (macro)

	10.8.2 Input step types
	psa_key_derivation_step_t (typedef)
	PSA_KEY_DERIVATION_INPUT_SECRET (macro)
	PSA_KEY_DERIVATION_INPUT_OTHER_SECRET (macro)
	PSA_KEY_DERIVATION_INPUT_PASSWORD (macro)
	PSA_KEY_DERIVATION_INPUT_LABEL (macro)
	PSA_KEY_DERIVATION_INPUT_CONTEXT (macro)
	PSA_KEY_DERIVATION_INPUT_SALT (macro)
	PSA_KEY_DERIVATION_INPUT_INFO (macro)
	PSA_KEY_DERIVATION_INPUT_SEED (macro)
	PSA_KEY_DERIVATION_INPUT_COST (macro)

	10.8.3 Key-derivation functions
	psa_key_derivation_operation_t (typedef)
	PSA_KEY_DERIVATION_OPERATION_INIT (macro)
	psa_key_derivation_operation_init (function)
	psa_key_derivation_setup (function)
	psa_key_derivation_get_capacity (function)
	psa_key_derivation_set_capacity (function)
	psa_key_derivation_input_bytes (function)
	psa_key_derivation_input_integer (function)
	psa_key_derivation_input_key (function)
	psa_key_derivation_output_bytes (function)
	psa_key_derivation_output_key (function)
	psa_key_derivation_output_key_custom (function)
	psa_key_derivation_verify_bytes (function)
	psa_key_derivation_verify_key (function)
	psa_key_derivation_abort (function)

	10.8.4 Support macros
	PSA_ALG_IS_KEY_DERIVATION_STRETCHING (macro)
	PSA_ALG_IS_HKDF (macro)
	PSA_ALG_IS_HKDF_EXTRACT (macro)
	PSA_ALG_IS_HKDF_EXPAND (macro)
	PSA_ALG_IS_SP800_108_COUNTER_HMAC (macro)
	PSA_ALG_IS_TLS12_PRF (macro)
	PSA_ALG_IS_TLS12_PSK_TO_MS (macro)
	PSA_ALG_IS_PBKDF2_HMAC (macro)
	PSA_ALG_IS_WPA3_SAE_H2E (macro)
	PSA_KEY_DERIVATION_UNLIMITED_CAPACITY (macro)
	PSA_TLS12_PSK_TO_MS_PSK_MAX_SIZE (macro)
	PSA_TLS12_ECJPAKE_TO_PMS_OUTPUT_SIZE (macro)

	10.9 Asymmetric signature
	10.9.1 RSA signature algorithms
	PSA_ALG_RSA_PKCS1V15_SIGN (macro)
	PSA_ALG_RSA_PKCS1V15_SIGN_RAW (macro)
	PSA_ALG_RSA_PSS (macro)
	PSA_ALG_RSA_PSS_ANY_SALT (macro)
	PSA_ALG_IS_RSA_PKCS1V15_SIGN (macro)
	PSA_ALG_IS_RSA_PSS (macro)
	PSA_ALG_IS_RSA_PSS_ANY_SALT (macro)
	PSA_ALG_IS_RSA_PSS_STANDARD_SALT (macro)

	10.9.2 ECDSA signature algorithms
	PSA_ALG_ECDSA (macro)
	PSA_ALG_ECDSA_ANY (macro)
	PSA_ALG_DETERMINISTIC_ECDSA (macro)
	PSA_ALG_IS_ECDSA (macro)
	PSA_ALG_IS_DETERMINISTIC_ECDSA (macro)
	PSA_ALG_IS_RANDOMIZED_ECDSA (macro)

	10.9.3 EdDSA signature algorithms
	PSA_ALG_PURE_EDDSA (macro)
	PSA_ALG_EDDSA_CTX (macro)
	PSA_ALG_ED25519PH (macro)
	PSA_ALG_ED448PH (macro)
	PSA_ALG_IS_HASH_EDDSA (macro)

	10.9.4 Asymmetric signature functions
	psa_sign_message (function)
	psa_sign_message_with_context (function)
	psa_verify_message (function)
	psa_verify_message_with_context (function)
	psa_sign_hash (function)
	psa_sign_hash_with_context (function)
	psa_verify_hash (function)
	psa_verify_hash_with_context (function)

	10.9.5 Support macros
	PSA_ALG_IS_SIGN_MESSAGE (macro)
	PSA_ALG_IS_SIGN_HASH (macro)
	PSA_ALG_IS_HASH_AND_SIGN (macro)
	PSA_ALG_SIGN_SUPPORTS_CONTEXT (macro)
	PSA_ALG_ANY_HASH (macro)
	PSA_SIGN_OUTPUT_SIZE (macro)
	PSA_SIGNATURE_MAX_SIZE (macro)

	10.10 Asymmetric encryption
	10.10.1 Asymmetric encryption algorithms
	PSA_ALG_RSA_PKCS1V15_CRYPT (macro)
	PSA_ALG_RSA_OAEP (macro)

	10.10.2 Asymmetric encryption functions
	psa_asymmetric_encrypt (function)
	psa_asymmetric_decrypt (function)

	10.10.3 Support macros
	PSA_ALG_IS_RSA_OAEP (macro)
	PSA_ASYMMETRIC_ENCRYPT_OUTPUT_SIZE (macro)
	PSA_ASYMMETRIC_ENCRYPT_OUTPUT_MAX_SIZE (macro)
	PSA_ASYMMETRIC_DECRYPT_OUTPUT_SIZE (macro)
	PSA_ASYMMETRIC_DECRYPT_OUTPUT_MAX_SIZE (macro)

	10.11 Key agreement
	10.11.1 Key-agreement algorithms
	PSA_ALG_FFDH (macro)
	PSA_ALG_ECDH (macro)
	PSA_ALG_KEY_AGREEMENT (macro)

	10.11.2 Standalone key agreement
	psa_key_agreement (function)
	psa_raw_key_agreement (function)

	10.11.3 Combining key agreement and key derivation
	psa_key_derivation_key_agreement (function)

	10.11.4 Support macros
	PSA_ALG_KEY_AGREEMENT_GET_BASE (macro)
	PSA_ALG_KEY_AGREEMENT_GET_KDF (macro)
	PSA_ALG_IS_STANDALONE_KEY_AGREEMENT (macro)
	PSA_ALG_IS_RAW_KEY_AGREEMENT (macro)
	PSA_ALG_IS_FFDH (macro)
	PSA_ALG_IS_ECDH (macro)
	PSA_RAW_KEY_AGREEMENT_OUTPUT_SIZE (macro)
	PSA_RAW_KEY_AGREEMENT_OUTPUT_MAX_SIZE (macro)

	10.12 Key encapsulation
	10.12.1 Elliptic Curve Integrated Encryption Scheme
	PSA_ALG_ECIES_SEC1 (macro)

	10.12.2 Key-encapsulation functions
	psa_encapsulate (function)
	psa_decapsulate (function)

	10.12.3 Support macros
	PSA_ENCAPSULATE_CIPHERTEXT_SIZE (macro)
	PSA_ENCAPSULATE_CIPHERTEXT_MAX_SIZE (macro)

	10.13 Password-authenticated key exchange (PAKE)
	10.13.1 Common API for PAKE
	10.13.2 PAKE primitives
	psa_pake_primitive_t (typedef)
	psa_pake_primitive_type_t (typedef)
	PSA_PAKE_PRIMITIVE_TYPE_ECC (macro)
	PSA_PAKE_PRIMITIVE_TYPE_DH (macro)
	psa_pake_family_t (typedef)
	PSA_PAKE_PRIMITIVE (macro)
	PSA_PAKE_PRIMITIVE_GET_TYPE (macro)
	PSA_PAKE_PRIMITIVE_GET_FAMILY (macro)
	PSA_PAKE_PRIMITIVE_GET_BITS (macro)

	10.13.3 PAKE cipher suites
	psa_pake_cipher_suite_t (typedef)
	PSA_PAKE_CIPHER_SUITE_INIT (macro)
	psa_pake_cipher_suite_init (function)
	psa_pake_cs_get_algorithm (function)
	psa_pake_cs_set_algorithm (function)
	psa_pake_cs_get_primitive (function)
	psa_pake_cs_set_primitive (function)
	PSA_PAKE_CONFIRMED_KEY (macro)
	PSA_PAKE_UNCONFIRMED_KEY (macro)
	psa_pake_cs_get_key_confirmation (function)
	psa_pake_cs_set_key_confirmation (function)

	10.13.4 PAKE roles
	psa_pake_role_t (typedef)
	PSA_PAKE_ROLE_NONE (macro)
	PSA_PAKE_ROLE_FIRST (macro)
	PSA_PAKE_ROLE_SECOND (macro)
	PSA_PAKE_ROLE_CLIENT (macro)
	PSA_PAKE_ROLE_SERVER (macro)

	10.13.5 PAKE step types
	psa_pake_step_t (typedef)
	PSA_PAKE_STEP_KEY_SHARE (macro)
	PSA_PAKE_STEP_ZK_PUBLIC (macro)
	PSA_PAKE_STEP_ZK_PROOF (macro)
	PSA_PAKE_STEP_CONFIRM (macro)
	PSA_PAKE_STEP_SALT (macro)
	PSA_PAKE_STEP_COMMIT (macro)
	PSA_PAKE_STEP_CONFIRM_COUNT (macro)
	PSA_PAKE_STEP_KEY_ID (macro)

	10.13.6 Multi-part PAKE operations
	psa_pake_operation_t (typedef)
	PSA_PAKE_OPERATION_INIT (macro)
	psa_pake_operation_init (function)
	psa_pake_setup (function)
	psa_pake_set_role (function)
	psa_pake_set_user (function)
	psa_pake_set_peer (function)
	psa_pake_set_context (function)
	psa_pake_output (function)
	psa_pake_input (function)
	psa_pake_get_shared_key (function)
	psa_pake_abort (function)

	10.13.7 PAKE support macros
	PSA_PAKE_OUTPUT_SIZE (macro)
	PSA_PAKE_OUTPUT_MAX_SIZE (macro)
	PSA_PAKE_INPUT_SIZE (macro)
	PSA_PAKE_INPUT_MAX_SIZE (macro)

	10.13.8 The J-PAKE protocol
	J-PAKE cipher suites
	J-PAKE password processing
	J-PAKE operation

	10.13.9 J-PAKE algorithms
	PSA_ALG_JPAKE (macro)
	PSA_ALG_IS_JPAKE (macro)

	10.13.10 The SPAKE2+ protocol
	SPAKE2+ cipher suites
	SPAKE2+ registration
	SPAKE2+ operation

	10.13.11 SPAKE2+ algorithms
	PSA_ALG_SPAKE2P_HMAC (macro)
	PSA_ALG_SPAKE2P_CMAC (macro)
	PSA_ALG_SPAKE2P_MATTER (macro)
	PSA_ALG_IS_SPAKE2P (macro)
	PSA_ALG_IS_SPAKE2P_HMAC (macro)
	PSA_ALG_IS_SPAKE2P_CMAC (macro)

	10.13.12 The WPA3-SAE protocol
	WPA3-SAE cipher suites
	WPA3-SAE password processing
	WPA3-SAE operation

	10.13.13 WPA3-SAE algorithms
	PSA_ALG_WPA3_SAE_FIXED (macro)
	PSA_ALG_WPA3_SAE_GDH (macro)
	PSA_ALG_IS_WPA3_SAE (macro)
	PSA_ALG_IS_WPA3_SAE_FIXED (macro)
	PSA_ALG_IS_WPA3_SAE_GDH (macro)
	PSA_ALG_WPA3_SAE_ANY (macro)

	10.14 Other cryptographic services
	10.14.1 Random number generation
	psa_generate_random (function)

	A Example header file
	A.1 psa/crypto.h

	B Algorithm and key type encoding
	B.1 Algorithm identifier encoding
	B.1.1 Algorithm categories
	B.1.2 Hash algorithm encoding
	B.1.3 XOF algorithm encoding
	B.1.4 MAC algorithm encoding
	B.1.5 Cipher algorithm encoding
	B.1.6 AEAD algorithm encoding
	B.1.7 Key-wrapping algorithm encoding
	B.1.8 Key-derivation algorithm encoding
	B.1.9 Asymmetric signature algorithm encoding
	B.1.10 Asymmetric encryption algorithm encoding
	B.1.11 Key-agreement algorithm encoding
	B.1.12 Key-encapsulation algorithm encoding
	B.1.13 PAKE algorithm encoding

	B.2 Key type encoding
	B.2.1 Key type categories
	B.2.2 Raw key encoding
	B.2.3 Symmetric key encoding
	B.2.4 Structured key encoding
	WPA3-SAE password token encoding

	B.2.5 Asymmetric key encoding
	Non-parameterized asymmetric key encoding
	Elliptic curve key encoding
	Finite field Diffie Hellman key encoding
	SPAKE2+ key encoding

	C Example macro implementations
	C.1 Algorithm macros
	C.2 Key type macros
	C.3 Hash suspend state macros

	D Security Risk Assessment
	D.1 Architecture
	D.1.1 System definition
	Assumptions, constraints, and interacting entities
	Trust boundaries and information flow

	D.1.2 Assets and stakeholders
	D.1.3 Security goals

	D.2 Threat Model
	D.2.1 Adversarial models
	D.2.2 Threats and attacks
	D.2.3 Risk assessment

	D.3 Mitigations
	D.3.1 Objectives
	D.3.2 Requirements

	D.4 Remediation & residual risk
	D.4.1 Implementation remediations
	D.4.2 Residual risk

	E Changes to the API
	E.1 Document change history
	E.1.1 Changes between 1.3.2 and 1.4.0
	Changes to the API
	Relaxations
	Clarifications and fixes
	Other changes

	E.1.2 Changes between 1.3.1 and 1.3.2
	Other changes

	E.1.3 Changes between 1.3.0 and 1.3.1
	Clarifications and fixes

	E.1.4 Changes between 1.2.1 and 1.3.0
	Changes to the API
	Clarifications and fixes
	Other changes

	E.1.5 Changes between 1.2.0 and 1.2.1
	Clarifications and fixes

	E.1.6 Changes between 1.1.2 and 1.2.0
	Changes to the API
	Clarifications and fixes

	E.1.7 Changes between 1.1.1 and 1.1.2
	Clarifications and fixes
	Other changes

	E.1.8 Changes between 1.1.0 and 1.1.1
	Changes to the API
	Other changes

	E.1.9 Changes between 1.0.1 and 1.1.0
	Changes to the API
	Clarifications and fixes
	Other changes

	E.1.10 Changes between 1.0.0 and 1.0.1
	Changes to the API
	Clarifications and fixes
	Other changes

	E.1.11 Changes between 1.0 beta 3 and 1.0.0
	Changes to the API
	Clarifications
	Other changes

	E.1.12 Changes between 1.0 beta 2 and 1.0 beta 3
	Changes to the API
	Clarifications

	E.1.13 Changes between 1.0 beta 1 and 1.0 beta 2
	Changes to the API
	Clarifications
	Other changes

	E.2 Planned changes for version 1.4.x
	E.3 Future additions

	Index of API elements

