
PSA Certified
Crypto API 1.4 PQC Extension

Document number: AES 0119
Release Quality: Final
Issue Number: 0
Confidentiality: Non-confidential
Date of Issue: 17/11/2025

Copyright © 2024-2025 Arm Limited and/or its affiliates

FINAL RELEASE
This is an extension to the PSA Certified Crypto API [PSA-CRYPT] specification.
This is a FINAL release: the proposed changes and interfaces are complete and finalized, and suitable forproduct development.
Abstract
This document is part of the PSA Certified API specifications. It defines an extension to the Crypto API, tointroduce support for Post-Quantum Cryptography (PQC) algorithms.

Contents

About this document iii
Release information iii
License iv
References v
Terms and abbreviations vi
Potential for change viii
Conventions viii
Typographical conventions viiiNumbers viii
Current status and anticipated changes ix
Feedback ix

1 Introduction 10
1.1 About Platform Security Architecture 10
1.2 About the Crypto API PQC Extension 10
1.3 Objectives for the PQC Extension 10

1.3.1 Background 101.3.2 Selection of algorithms 11
2 API Reference 13
2.1 Additional Hash algorithms 13

2.1.1 SHA-256-based hash algorithms 132.1.2 SHAKE-based hash algorithms 13
2.2 Module Lattice-based key encapsulation 14

2.2.1 Module Lattice-based key-encapsulation keys 142.2.2 Module Lattice-based key-encapsulation algorithm 16
2.3 Module Lattice-based signatures 17

2.3.1 Module Lattice-based signature keys 172.3.2 Module Lattice-based signature algorithms 20

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page i

2.4 Stateless Hash-based signatures 27
2.4.1 Stateless Hash-based signature keys 272.4.2 Stateless Hash-based signature algorithms 32

2.5 Leighton-Micali Signatures 39
2.5.1 Leighton-Micali Signature keys 392.5.2 Leighton-Micali Signature algorithms 40

2.6 eXtended Merkle Signature Scheme 41
2.6.1 XMSS and XMSSMT keys 422.6.2 XMSS and XMSSMT algorithms 43

A Example header file 45
A.1 psa/crypto.h 45
B Algorithm and key type encoding 47
B.1 Algorithm encoding 47

B.1.1 Hash algorithm encoding 47B.1.2 Asymmetric signature algorithm encoding 47B.1.3 Key-encapsulation algorithm encoding 48
B.2 Key encoding 48

B.2.1 Non-parameterized asymmetric key encoding 49B.2.2 SLH-DSA key encoding 49
C Example macro implementations 50
C.1 Algorithm macros 50

C.1.1 Updated macros 50C.1.2 New macros 50
C.2 Key type macros 51
D Document change history 53
D.1 Changes between Beta 3 and Final 0 53
D.2 Changes between Beta 2 and Beta 3 53
D.3 Changes between Beta 1 and Beta 2 53
D.4 Changes between Beta 0 and Beta 1 53
D.5 Beta release 53

Index of API elements 55

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page ii

About this document
Release information
The change history table lists the changes that have been made to this document.

Table 1 Document revision history
Date Version Confidentiality Change

March 2025 Beta 0 Non-confidential Initial release of the 1.3 PQC Extensionspecification
June 2025 Beta 1 Non-confidential Added clarifications
July 2025 Beta 2 Non-confidential Fixes and clarifications
September 2025 Beta 3 Non-confidential GlobalPlatform governance of PSA Certifiedevaluation scheme
November 2025 Final 0 Non-confidential Finalize key formats

The detailed changes in each release are described in Document change history on page 53.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page iii

PSA Certified Crypto API
Copyright © 2024-2025 Arm Limited and/or its affiliates. The copyright statement reflects the fact thatsome draft issues of this document have been released, to a limited circulation.

License
Text and illustrations
Text and illustrations in this work are licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy of thelicense, visit creativecommons.org/licenses/by-sa/4.0.
Grant of patent license. Subject to the terms and conditions of this license (both the CC BY-SA 4.0 Public License and this PatentLicense), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except asstated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Licensed Material,where such license applies only to those patent claims licensable by such Licensor that are necessarily infringed by theircontribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such contribution(s) wassubmitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that theLicensed Material or a contribution incorporated within the Licensed Material constitutes direct or contributory patent infringement,then any licenses granted to You under this license for that Licensed Material shall terminate as of the date such litigation is filed.
The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/orelsewhere. All rights reserved. Please visit arm.com/company/policies/trademarks for more information about Arm’s trademarks.
About the license
The language in the additional patent license is largely identical to that in section 3 of the Apache License, Version 2.0 (Apache 2.0),with two exceptions:

1. Changes are made related to the defined terms, to align those defined terms with the terminology in CC BY-SA 4.0 ratherthan Apache 2.0 (for example, changing “Work” to “Licensed Material”).
2. The scope of the defensive termination clause is changed from “any patent licenses granted to You” to “any licenses grantedto You”. This change is intended to help maintain a healthy ecosystem by providing additional protection to the communityagainst patent litigation claims.

To view the full text of the Apache 2.0 license, visit apache.org/licenses/LICENSE-2.0.
Source code
Source code samples in this work are licensed under the Apache License, Version 2.0 (the “License”); you may not use such samplesexcept in compliance with the License. You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS,WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page iv

https://creativecommons.org/licenses/by-sa/4.0
https://arm.com/company/policies/trademarks
https://apache.org/licenses/LICENSE-2.0
https://apache.org/licenses/LICENSE-2.0

References
This document refers to the following documents.

Table 2 Documents referenced by this document
Ref Document Number Title

[PSA-CRYPT] IHI 0086 PSA Certified Crypto API. arm-software.github.io/psa-api/crypto
[FIPS180-4] NIST, FIPS Publication 180-4: Secure Hash Standard (SHS), August2015. doi.org/10.6028/NIST.FIPS.180-4
[FIPS202] NIST, FIPS Publication 202: SHA-3 Standard: Permutation-BasedHash and Extendable-Output Functions, August 2015.doi.org/10.6028/NIST.FIPS.202
[FIPS203] NIST, FIPS Publication 203: Module-Lattice-BasedKey-Encapsulation Mechanism Standard, August 2024.doi.org/10.6028/NIST.FIPS.203
[FIPS204] NIST, FIPS Publication 204: Module-Lattice-Based Digital SignatureStandard, August 2024. doi.org/10.6028/NIST.FIPS.204
[FIPS205] NIST, FIPS Publication 205: Stateless Hash-Based Digital SignatureStandard, August 2024. doi.org/10.6028/NIST.FIPS.205
[LAMPS-MLKEM] IETF, Internet X.509 Public Key Infrastructure - Algorithm Identifiersfor Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM),July 2025 (Draft 11). datatracker.ietf.org/doc/html/draft-ietf-lamps-kyber-certificates-11
[LAMPS-MLDSA] IETF, Internet X.509 Public Key Infrastructure - Algorithm Identifiersfor the Module-Lattice-Based Digital Signature Algorithm (ML-DSA),September 2025 (Draft 13). datatracker.ietf.org/doc/html/draft-ietf-lamps-dilithium-certificates-13
[LAMPS-SLHDSA] IETF, Internet X.509 Public Key Infrastructure: Algorithm Identifiersfor SLH-DSA, June 2025 (Draft 09).datatracker.ietf.org/doc/html/draft-ietf-lamps-x509-slhdsa-09
[NIST-PQC] NIST, Post-Quantum Cryptography, PQC Project page.nist.gov/pqcrypto
[SP800-208] NIST, NIST Special Publication 800-208: Recommendation forStateful Hash-Based Signature Schemes, October 2020.doi.org/10.6028/NIST.SP.800-208
[RFC8391] IRTF, XMSS: eXtended Merkle Signature Scheme, May 2018.tools.ietf.org/html/rfc8391
[RFC8554] IRTF, Leighton-Micali Hash-Based Signatures, April 2019.tools.ietf.org/html/rfc8554
[RFC9858] IRTF, Additional Parameter sets for HSS/LMS Hash-BasedSignatures, October 2025. tools.ietf.org/html/rfc9858

continues on next page

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page v

https://arm-software.github.io/psa-api/crypto
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.205
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-kyber-certificates-11
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-kyber-certificates-11
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-dilithium-certificates-13
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-dilithium-certificates-13
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-x509-slhdsa-09
https://nist.gov/pqcrypto
https://doi.org/10.6028/NIST.SP.800-208
https://tools.ietf.org/html/rfc8391
https://tools.ietf.org/html/rfc8554
https://tools.ietf.org/html/rfc9858

Table 2 – continued from previous page

Ref Document Number Title

[RFC9802] IETF, Use of the HSS and XMSS Hash-Based Signature Algorithmsin Internet X.509 Public Key Infrastructure, June 2025.tools.ietf.org/html/rfc9802

Terms and abbreviations
This document uses the following terms and abbreviations.

Table 3 Terms and abbreviations
Term Meaning

AEAD See Authenticated Encryption with Associated Data.
Algorithm A finite sequence of steps to perform a particular operation.

In this specification, an algorithm is a cipher or a related function. Other textscall this a cryptographic mechanism.
API Application Programming Interface.
Asymmetric See Public-key cryptography.
AuthenticatedEncryption withAssociated Data (AEAD)

A type of encryption that provides confidentiality and authenticity of datausing symmetric keys.
Byte In this specification, a unit of storage comprising eight bits, also called an octet.
Cipher An algorithm used for encryption or decryption with a symmetric key.
Cryptoprocessor The component that performs cryptographic operations. A cryptoprocessormight contain a keystore and countermeasures against a range of physical andtiming attacks.
Hash A cryptographic hash function, or the value returned by such a function.
HMAC A type of MAC that uses a cryptographic key with a hash function.
IMPLEMENTATION DEFINED Behavior that is not defined by the architecture, but is defined anddocumented by individual implementations.
Initialization vector (IV) An additional input that is not part of the message. It is used to prevent anattacker from making any correlation between cipher text and plain text.

This specification uses the term for such initial inputs in all contexts. Forexample, the initial counter in CTR mode is called the IV.
IV See Initialization vector.
KDF See Key Derivation Function.
Key agreement An algorithm for two or more parties to establish a common secret key.

continues on next page

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page vi

https://tools.ietf.org/html/rfc9802

Table 3 – continued from previous page

Term Meaning

Key Derivation Function(KDF) Key Derivation Function. An algorithm for deriving keys from secret material.
Key identifier A reference to a cryptographic key. Key identifiers in the Crypto API are 32-bitintegers.
Key policy Key metadata that describes and restricts what a key can be used for.
Key size The size of a key as defined by common conventions for each key type. Forkeys that are built from several numbers of strings, this is the size of aparticular one of these numbers or strings.

This specification expresses key sizes in bits.
Key type Key metadata that describes the structure and content of a key.
Keystore A hardware or software component that protects, stores, and managescryptographic keys.
Lifetime Key metadata that describes when a key is destroyed.
MAC See Message Authentication Code.
Message AuthenticationCode (MAC) A short piece of information used to authenticate a message. It is created andverified using a symmetric key.
Message digest A hash of a message. Used to determine if a message has been tampered.
Multi-part operation An API which splits a single cryptographic operation into a sequence ofseparate steps.
Non-extractable key A key with a key policy that prevents it from being read by ordinary means.
Nonce Used as an input for certain AEAD algorithms. Nonces must not be reusedwith the same key because this can break a cryptographic protocol.
Persistent key A key that is stored in protected non-volatile memory.
Post-QuantumCryptography (PQC) A cryptographic scheme that relies on mathematical problems that do nothave efficient algorithms for either classical or quantum computing.
PQC See Post-Quantum Cryptography.
PSA Platform Security Architecture
Public-key cryptography A type of cryptographic system that uses key pairs. A keypair consists of a(secret) private key and a public key (not secret). A public-key cryptographicalgorithm can be used for key distribution and for digital signatures.
Salt Used as an input for certain algorithms, such as key derivations.
Signature The output of a digital signature scheme that uses an asymmetric keypair.Used to establish who produced a message.
Single-part function An API that implements the cryptographic operation in a single function call.
SPECIFICATION DEFINED Behavior that is defined by this specification.

continues on next page

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page vii

Table 3 – continued from previous page

Term Meaning

Symmetric A type of cryptographic algorithm that uses a single key. A symmetric key canbe used with a block cipher or a stream cipher.
Volatile key A key that has a short lifespan and is guaranteed not to exist after a restart ofan application instance.

Potential for change
The contents of this specification are stable for version 1.4 PQC Extension.
The following may change in updates to the version 1.4 PQC Extension specification:

∙ Small optional feature additions.
∙ Clarifications.

Significant additions, or any changes that affect the compatibility of the interfaces defined in thisspecification will only be included in a new major or minor version of the specification.

Conventions
Typographical conventions
The typographical conventions are:
italic Introduces special terminology, and denotes citations.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other itemsappearing in assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALSUsed for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Termsand abbreviations.
Red text Indicates an open issue.
Blue text Indicates a link. This can be

∙ A cross-reference to another location within the document
∙ A URL, for example example.com

Numbers
Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by
0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.To improve readability, long numbers can be written with an underscore separator between every four
AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page viii

https://example.com

characters, for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of anumber.

Current status and anticipated changes
This document is at Release/Final quality status.

Feedback
We welcome feedback on the PSA Certified API documentation.
If you have comments on the content of this book, visit github.com/arm-software/psa-api/issues to create anew issue at the PSA Certified API GitHub project. Give:

∙ The title (Crypto API).
∙ The number and issue (AES 0119 1.4 PQC Extension.0).
∙ The location in the document to which your comments apply.
∙ A concise explanation of your comments.

We also welcome general suggestions for additions and improvements.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page ix

https://github.com/arm-software/psa-api/issues

1 Introduction
1.1 About Platform Security Architecture
This document is one of a set of resources provided by Arm that can help organizations develop productsthat meet the security requirements of GlobalPlatform’s PSA Certified evaluation scheme on Arm-basedplatforms. The PSA Certified scheme provides a framework and methodology that helps siliconmanufacturers, system software providers and OEMs to develop more secure products. Arm resources thatsupport PSA Certified range from threat models, standard architectures that simplify development andincrease portability, and open-source partnerships that provide ready-to-use software. You can read moreabout PSA Certified here at www.psacertified.org and find more Arm resources here atdeveloper.arm.com/platform-security-resources and www.trustedfirmware.org.

1.2 About the Crypto API PQC Extension
This document defines an extension to the PSA Certified Crypto API [PSA-CRYPT] specification, to providesupport for Post-Quantum Cryptography (PQC) algorithms. Specifically, for the NIST-approved schemes forLMS, HSS, XMSS, XMSSMT, ML-DSA, SLH-DSA, and ML-KEM.
This extension is now classed as Final, and it will be integrated into a future version of [PSA-CRYPT].
This specification must be read and implemented in conjunction with [PSA-CRYPT]. All of the conventions,design considerations, and implementation considerations that are described in [PSA-CRYPT] apply to thisspecification.

1.3 Objectives for the PQC Extension
1.3.1 Background
The justification for developing new public-key cryptography algorithms due to the risks posed by quantumcomputing are described by NIST in Post-Quantum Cryptography [NIST-PQC].

Extract from Post-Quantum Cryptography:
In recent years, there has been a substantial amount of research on quantum computers — machines thatexploit quantum mechanical phenomena to solve mathematical problems that are difficult or intractable forconventional computers. If large-scale quantum computers are ever built, they will be able to break many ofthe public-key cryptosystems currently in use. This would seriously compromise the confidentiality andintegrity of digital communications on the Internet and elsewhere. The goal of post-quantum cryptography(also called quantum-resistant cryptography) is to develop cryptographic systems that are secure againstboth quantum and classical computers, and can interoperate with existing communications protocols andnetworks.
The question of when a large-scale quantum computer will be built is a complicated one. While in the past itwas less clear that large quantum computers are a physical possibility, many scientists now believe it to be

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 10

https://www.psacertified.org
https://developer.arm.com/platform-security-resources
https://www.trustedfirmware.org

merely a significant engineering challenge. Some engineers even predict that within the next twenty or soyears sufficiently large quantum computers will be built to break essentially all public key schemes currentlyin use. Historically, it has taken almost two decades to deploy our modern public key cryptographyinfrastructure. Therefore, regardless of whether we can estimate the exact time of the arrival of thequantum computing era, we must begin now to prepare our information security systems to be able to resistquantum computing.
NIST is hosting a project to collaboratively develop, analyze, refine, and select cryptographic schemes thatare resistant to attack by both classical and quantum computing.

1.3.2 Selection of algorithms
NIST PQC project finalists
PQC algorithms that have been standardized are obvious candidates for inclusion in the Crypto API. Thecurrent set of standards is the following:

∙ FIPS Publication 203: Module-Lattice-Based Key-Encapsulation Mechanism Standard [FIPS203]
∙ FIPS Publication 204: Module-Lattice-Based Digital Signature Standard [FIPS204]
∙ FIPS Publication 205: Stateless Hash-Based Digital Signature Standard [FIPS205]

Although the NIST standards for these algorithms are now finalized, the definition of keys in the Crypto APIdepends on import and export formats. To maximize key exchange interoperability with other specifications,the default export format in the Crypto API should be compatible with the definitions selected for X.509public-key infrastructure. The IETF process for defining the X.509 key formats is nearing completion, anddecisions have be made regarding the key formats in the Crypto API.
Note:
Although PQC algorithms that are draft standards could be considered, any definitions for thesealgorithms would be have to be considered experimental. Significant aspects of the algorithm, such asapproved parameter sets, can change before publication of a final standard, potentially requiring arevision of any proposed interface for the Crypto API.

Other NIST-approved schemes
In NIST Special Publication 800-208: Recommendation for Stateful Hash-Based Signature Schemes[SP800-208], NIST approved use of the following stateful hash-based signature (HBS) schemes:

∙ The Leighton-Micali Signature (LMS) system, and its multi-tree variant, the Hierarchical SignatureSystem (HSS/LMS). These are defined in Leighton-Micali Hash-Based Signatures [RFC8554].
∙ The eXtended Merkle Signature Scheme (XMSS), and its multi-tree variant XMSSMT. These are definedin XMSS: eXtended Merkle Signature Scheme [RFC8391].

HBS schemes have additional challenges with regards to deploying secure and resilient systems for signingoperations. These challenges, outlined in [SP800-208] sections §1.2 and §8.1, result in a recommendationto use these schemes in a limited set of use cases, for example, authentication of firmware in constraineddevices.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 11

At present, it is not expected that the Crypto API will be used to create HBS private keys, or to carry outsigning operations. However, there is a use case with the Crypto API for verification of HBS signatures.Therefore, for these HBS schemes, the Crypto API only provides support for public keys and signatureverification algorithms.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 12

2 API Reference

Note:
The API defined in this specification will be integrated into a future version of [PSA-CRYPT].

This chapter is divided into sections for each of the PQC algorithms in the Crypto API:

2.1 Additional Hash algorithms
These algorithms extend those defined in PSA Certified Crypto API [PSA-CRYPT] §10.2 Message digests. Theyare used with the hash functions and multi-part operations, or combined with composite algorithms that areparameterized by a hash algorithm.

2.1.1 SHA-256-based hash algorithms
PSA_ALG_SHA_256_192 (macro)
The SHA-256/192 message digest algorithm.
Added in version 1.3.
#define PSA_ALG_SHA_256_192 ((psa_algorithm_t)0x0200000E)

SHA-256/192 is the first 192 bits (24 bytes) of the SHA-256 output. SHA-256 is defined in [FIPS180-4].

2.1.2 SHAKE-based hash algorithms
PSA_ALG_SHAKE128_256 (macro)
The SHAKE128/256 message digest algorithm.
Added in version 1.3.
#define PSA_ALG_SHAKE128_256 ((psa_algorithm_t)0x02000016)

SHAKE128/256 is the first 256 bits (32 bytes) of the SHAKE128 output. SHAKE128 is defined in[FIPS202].
This can be used as pre-hashing for SLH-DSA (see PSA_ALG_HASH_SLH_DSA()).

Note:
For other scenarios where a hash function based on SHA3 or SHAKE is required, SHA3-256 isrecommended. SHA3-256 has the same output size, and a theoretically higher security strength.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 13

PSA_ALG_SHAKE256_192 (macro)
The SHAKE256/192 message digest algorithm.
Added in version 1.3.
#define PSA_ALG_SHAKE256_192 ((psa_algorithm_t)0x02000017)

SHAKE256/192 is the first 192 bits (24 bytes) of the SHAKE256 output. SHAKE256 is defined in[FIPS202].
PSA_ALG_SHAKE256_256 (macro)
The SHAKE256/256 message digest algorithm.
Added in version 1.3.
#define PSA_ALG_SHAKE256_256 ((psa_algorithm_t)0x02000018)

SHAKE256/256 is the first 256 bits (32 bytes) of the SHAKE256 output. SHAKE256 is defined in[FIPS202].

2.2 Module Lattice-based key encapsulation
2.2.1 Module Lattice-based key-encapsulation keys
The Crypto API supports Module Lattice-based key encapsulation (ML-KEM) as defined in FIPS Publication203: Module-Lattice-Based Key-Encapsulation Mechanism Standard [FIPS203].
PSA_KEY_TYPE_ML_KEM_KEY_PAIR (macro)
ML-KEM key pair: both the decapsulation and encapsulation key.
Added in version 1.3.
#define PSA_KEY_TYPE_ML_KEM_KEY_PAIR ((psa_key_type_t)0x7004)

The Crypto API treats decapsulation keys as private keys and encapsulation keys as public keys.
The bit size used in the attributes of an ML-KEM key is specified by the numeric part of the parameter-setidentifier defined in [FIPS203]. The parameter-set identifier refers to the key strength, and not to the actualsize of the key. The following values for the key_bits key attribute are used to select a specific ML-KEMparameter set:

∙ ML-KEM-512 : key_bits = 512

∙ ML-KEM-768 : key_bits = 768

∙ ML-KEM-1024 : key_bits = 1024

See also §8 in [FIPS203].

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 14

Compatible algorithms
∙ PSA_ALG_ML_KEM

Key format
An ML-KEM key pair is the (𝑒𝑘, 𝑑𝑘) pair of encapsulation key and decapsulation key, which are generatedfrom two secret 32-byte seeds, 𝑑 and 𝑧. See [FIPS203] §7.1.
In calls to psa_import_key() and psa_export_key(), the key-pair data format is the concatenation of the twoseed values: 𝑑 || 𝑧.
Rationale
The formats for X.509 handling of ML-KEM keys are specified in Internet X.509 Public Key Infrastructure -Algorithm Identifiers for Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) [LAMPS-MLKEM].This permits a choice of three formats for the decapsulation key material, incorporating one, or both, ofthe seed values 𝑑 || 𝑧 and the expanded decapsulation key 𝑑𝑘.
The Crypto API only supports the recommended format from [LAMPS-MLKEM], which is theconcatenated bytes of the seed values 𝑑 || 𝑧, but without the ASN.1 encoding prefix. This suits theconstrained nature of Crypto API implementations, where interoperation with expandeddecapsulation-key formats is not required.

See PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().

Implementation note
An implementation can optionally compute and store the 𝑑𝑘 value, which also contains theencapsulation key 𝑒𝑘, to accelerate operations that use the key. It is recommended that animplementation retains the seed pair (𝑑, 𝑧) with the decapsulation key, in order to export the key, orcopy the key to a different location.

Key derivation
A call to psa_key_derivation_output_key() will construct an ML-KEM key pair using the following process:

1. Draw 32 bytes of output as the seed value 𝑑.
2. Draw 32 bytes of output as the seed value 𝑧.

The key pair (𝑒𝑘, 𝑑𝑘) is generated from the seed as defined by ML-KEM.KeyGen_internal() in [FIPS203] §6.1.
Implementation note
It is an implementation choice whether the seed-pair (𝑑, 𝑧) is expanded to (𝑒𝑘, 𝑑𝑘) at the point ofderivation, or only just before the key is used.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 15

PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY (macro)
ML-KEM public (encapsulation) key.
Added in version 1.3.
#define PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY ((psa_key_type_t)0x4004)

The bit size used in the attributes of an ML-KEM public key is the same as the corresponding private key.See PSA_KEY_TYPE_ML_KEM_KEY_PAIR.
Compatible algorithms

∙ PSA_ALG_ML_KEM (encapsulation only)
Key format
An ML-KEM public key is the 𝑒𝑘 output of ML-KEM.KeyGen(), defined in [FIPS203] §7.1.
In calls to psa_import_key(), psa_export_key(), and psa_export_public_key(), the public-key data format is 𝑒𝑘.
Rationale
This format is the same as that specified for X.509 in Internet X.509 Public Key Infrastructure - AlgorithmIdentifiers for Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) [LAMPS-MLKEM].

The size of the public key depends on the ML-KEM parameter set as follows:

Parameter set Public-key size in bytes

ML-KEM-512 800
ML-KEM-768 1184
ML-KEM-1024 1568

PSA_KEY_TYPE_IS_ML_KEM (macro)
Whether a key type is an ML-DSA key, either a key pair or a public key.
Added in version 1.3.
#define PSA_KEY_TYPE_IS_ML_KEM(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

2.2.2 Module Lattice-based key-encapsulation algorithm
These algorithms extend those defined in PSA Certified Crypto API [PSA-CRYPT] §10.10 Key encapsulation,for use with the key-encapsulation functions.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 16

Note:
The key-encapsulation functions, psa_encapsulate() and psa_decapsulate(), were introduced inversion 1.3 of the Crypto API.

ML-KEM is defined in FIPS Publication 203: Module-Lattice-Based Key-Encapsulation Mechanism Standard[FIPS203]. ML-KEM has three parameter sets which provide differing security strengths.
The generation of an ML-KEM key depends on the full parameter specification. The encoding of eachparameter set into the key attributes is described in Module Lattice-based key-encapsulation keys on page 14.
See [FIPS203] §8 for details on the parameter sets.
PSA_ALG_ML_KEM (macro)
Module Lattice-based key-encapsulation mechanism (ML-KEM).
Added in version 1.3.
#define PSA_ALG_ML_KEM ((psa_algorithm_t)0x0c000200)

This is the ML-KEM key-encapsulation algorithm, defined by [FIPS203]. ML-KEM requires an ML-KEM key,which determines the ML-KEM parameter set for the operation.
When using ML-KEM, the size of the encapsulation data returned by a call to psa_encapsulate() is asfollows:

Parameter set Encapsulation data size in bytes

ML-KEM-512 768
ML-KEM-768 1088
ML-KEM-1024 1568

The 32-byte shared output key that is produced by ML-KEM is pseudorandom. Although it can be useddirectly as an encryption key, it is recommended to use the output key as an input to a key-derivationoperation to produce additional cryptographic keys.
Compatible key types
PSA_KEY_TYPE_ML_KEM_KEY_PAIR

PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY (encapsulation only)

2.3 Module Lattice-based signatures
2.3.1 Module Lattice-based signature keys
The Crypto API supports Module Lattice-based digital signatures (ML-DSA), as defined in FIPS Publication204: Module-Lattice-Based Digital Signature Standard [FIPS204].

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 17

PSA_KEY_TYPE_ML_DSA_KEY_PAIR (macro)
ML-DSA key pair: both the private and public key.
Added in version 1.3.
#define PSA_KEY_TYPE_ML_DSA_KEY_PAIR ((psa_key_type_t)0x7002)

The bit size used in the attributes of an ML-DSA key is a measure of the security strength of the ML-DSAparameter set in [FIPS204]:
∙ ML-DSA-44 : key_bits = 128

∙ ML-DSA-65 : key_bits = 192

∙ ML-DSA-87 : key_bits = 256

See also §4 in [FIPS204].
Compatible algorithms

∙ PSA_ALG_ML_DSA
∙ PSA_ALG_HASH_ML_DSA
∙ PSA_ALG_DETERMINISTIC_ML_DSA
∙ PSA_ALG_DETERMINISTIC_HASH_ML_DSA

Key format
An ML-DSA key pair is the (𝑝𝑘, 𝑠𝑘) pair of public key and secret key, which are generated from a secret32-byte seed, 𝜉. See [FIPS204] §5.1.
In calls to psa_import_key() and psa_export_key(), the key-pair data format is the 32-byte seed 𝜉.
Rationale
The formats for X.509 handling of ML-DSA keys are specified in Internet X.509 Public Key Infrastructure -Algorithm Identifiers for the Module-Lattice-Based Digital Signature Algorithm (ML-DSA) [LAMPS-MLDSA].This permits a choice of three formats for the decapsulation key material, incorporating one, or both, ofthe seed value 𝜉 and the expanded secret key 𝑠𝑘.
The Crypto API only supports the recommended format from [LAMPS-MLDSA], which is the bytes ofthe seed 𝜉, but without the ASN.1 encoding prefix. This suits the constrained nature of Crypto APIimplementations, where interoperation with expanded secret-key formats is not required.

See PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().

Implementation note
An implementation can optionally compute and store the (𝑝𝑘, 𝑠𝑘) values, to accelerate operationsthat use the key. It is recommended that an implementation retains the seed 𝜉 with the key pair, inorder to export the key, or copy the key to a different location.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 18

Key derivation
A call to psa_key_derivation_output_key() will draw 32 bytes of output and use these as the 32-byteML-DSA key-pair seed, 𝜉. The key pair (𝑝𝑘, 𝑠𝑘) is generated from the seed as defined by
ML-DSA.KeyGen_internal() in [FIPS204] §6.1.

Implementation note
It is :an implementation choice whether the seed 𝜉 is expanded to (𝑝𝑘, 𝑠𝑘) at the point of derivation,or only just before the key is used.

PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (macro)
ML-DSA public key.
Added in version 1.3.
#define PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY ((psa_key_type_t)0x4002)

The bit size used in the attributes of an ML-DSA public key is the same as the corresponding private key.See PSA_KEY_TYPE_ML_DSA_KEY_PAIR.
Compatible algorithms

∙ PSA_ALG_ML_DSA
∙ PSA_ALG_HASH_ML_DSA
∙ PSA_ALG_DETERMINISTIC_ML_DSA
∙ PSA_ALG_DETERMINISTIC_HASH_ML_DSA

Key format
An ML-DSA public key is the 𝑝𝑘 output of ML-DSA.KeyGen(), defined in [FIPS204] §5.1.
In calls to psa_import_key(), psa_export_key(), and psa_export_public_key(), the public-key data format is 𝑝𝑘.
Rationale
This format is the same as that specified for X.509 in Internet X.509 Public Key Infrastructure - AlgorithmIdentifiers for the Module-Lattice-Based Digital Signature Algorithm (ML-DSA) [LAMPS-MLDSA].

The size of the public key depends on the ML-DSA parameter set as follows:

Parameter set Public-key size in bytes

ML-DSA-44 1312
ML-DSA-65 1952
ML-DSA-87 2592

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 19

PSA_KEY_TYPE_IS_ML_DSA (macro)
Whether a key type is an ML-DSA key, either a key pair or a public key.
Added in version 1.3.
#define PSA_KEY_TYPE_IS_ML_DSA(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

2.3.2 Module Lattice-based signature algorithms
These algorithms extend those defined in PSA Certified Crypto API [PSA-CRYPT] §10.7 Asymmetric signature,for use with the signature functions.
The ML-DSA signature and verification scheme is defined in FIPS Publication 204: Module-Lattice-BasedDigital Signature Standard [FIPS204]. ML-DSA has three parameter sets which provide differing securitystrengths.
ML-DSA keys are large: 1.2–2.5kB for the public key, and triple that for the key pair. ML-DSA signatures aremuch larger than those for RSA and Elliptic curve schemes, between 2.4kB and 4.6kB, depending on theselected parameter set.
See [FIPS204] §4 for details on the parameter sets, and the key and generated signature sizes.
The generation of an ML-DSA key depends on the full parameter specification. The encoding of eachparameter set into the key attributes is described in Module Lattice-based signature keys on page 17.
[FIPS204] defines pure and pre-hashed variants of the signature scheme, which can either be hedged(randomized) or deterministic. Four algorithms are defined to support these variants: PSA_ALG_ML_DSA,
PSA_ALG_DETERMINISTIC_ML_DSA, PSA_ALG_HASH_ML_DSA(), and PSA_ALG_DETERMINISTIC_HASH_ML_DSA().
Hedged and deterministic signatures
Hedging incorporates fresh randomness in the signature computation, resulting in distinct signatures onevery signing operation when given identical inputs. Deterministic signatures do not require additionalrandom data, and result in an identical signature for the same inputs.
Signature verification does not distinguish between a hedged and a deterministic signature. Either hedgedor deterministic algorithms can be used when verifying a signature.
When computing a signature, the key’s permitted-algorithm policy must match the requested algorithm,treating hedged and deterministic versions as distinct. When verifying a signature, the hedged anddeterministic versions of each algorithm are considered equivalent when checking the key’spermitted-algorithm policy.

Note:
The hedged version provides message secrecy and some protection against side-channels. [FIPS204]recommends that users should use the hedged version if either of these issues are a concern. Thedeterministic variant should only be used if the implementation does not include any source ofrandomness.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 20

Implementation note
[FIPS204] recommends that implementations use an approved random number generator to providethe random value in the hedged version. However, it notes that use of the hedged variant with aweak RNG is generally preferable to the deterministic variant.

Rationale
The use of fresh randomness, or not, when computing a signature seems like an implementation decisionbased on the capability of the system, and its vulnerability to specific threats, following therecommendations in [FIPS204].
However, the Crypto API gives distinct algorithm identifiers for the hedged and deterministic variants, toenable an application use case to require a specific variant.

Pure and pre-hashed algorithms
The pre-hashed signature computation HashML-DSA generates distinct signatures to a pure signatureML-DSA, with the same key and message hashing algorithm.
An ML-DSA signature can only be verified with an ML-DSA algorithm. A HashML-DSA signature can only beverified with a HashML-DSA algorithm.
Contexts
All ML-DSA algorithms can be used with contexts, which enables domain-separation when signatures aremade of different message structures with the same key. Context values are arbitrary strings between zeroand 255 bytes in length.

∙ The signature functions without a context parameter provide a zero-length context when computingor verifying ML-DSA signatures.
∙ To provide a context, use the psa_xxxx_with_context() signature functions with a context parameter,such as psa_sign_message_with_context().

PSA_ALG_ML_DSA (macro)
Module lattice-based digital signature algorithm without pre-hashing (ML-DSA).
Added in version 1.3.
#define PSA_ALG_ML_DSA ((psa_algorithm_t) 0x06004400)

This algorithm can only be used with the message signature and verify functions. For example,
psa_sign_message() or psa_verify_message_with_context().
This is the pure ML-DSA digital signature algorithm, defined by FIPS Publication 204: Module-Lattice-BasedDigital Signature Standard [FIPS204], using hedging. ML-DSA requires an ML-DSA key, which determines theML-DSA parameter set for the operation.
This algorithm is randomized: each invocation returns a different, equally valid signature. See the notes onhedged signatures.
This algorithm has a context parameter. See the notes on ML-DSA contexts.
AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 21

When PSA_ALG_ML_DSA is used as a permitted algorithm in a key policy, this permits:
∙ PSA_ALG_ML_DSA as the algorithm in a call to psa_sign_message() or psa_sign_message_with_context().
∙ PSA_ALG_ML_DSA or PSA_ALG_DETERMINISTIC_ML_DSA as the algorithm in a call to psa_verify_message() or

psa_verify_message_with_context().
Note:
To sign or verify the pre-computed hash of a message using ML-DSA, the HashML-DSA algorithms(PSA_ALG_HASH_ML_DSA() and PSA_ALG_DETERMINISTIC_HASH_ML_DSA()) can also be used with
psa_sign_hash() and psa_verify_hash().
The signature produced by HashML-DSA is distinct from that produced by ML-DSA.

Compatible key types
PSA_KEY_TYPE_ML_DSA_KEY_PAIR

PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (signature verification only)

PSA_ALG_DETERMINISTIC_ML_DSA (macro)
Deterministic module lattice-based digital signature algorithm without pre-hashing (ML-DSA).
Added in version 1.3.
#define PSA_ALG_DETERMINISTIC_ML_DSA ((psa_algorithm_t) 0x06004500)

This algorithm can only be used with the message signature and verify functions. For example,
psa_sign_message() or psa_verify_message_with_context().
This is the pure ML-DSA digital signature algorithm, defined by FIPS Publication 204: Module-Lattice-BasedDigital Signature Standard [FIPS204], without hedging. ML-DSA requires an ML-DSA key, which determinesthe ML-DSA parameter set for the operation.
This algorithm is deterministic: each invocation with the same inputs returns an identical signature.
. Warning

It is recommended to use the hedged PSA_ALG_ML_DSA algorithm instead, when supported by theimplementation. See the notes on deterministic signatures.
This algorithm has a context parameter. See the notes on ML-DSA contexts.
When PSA_ALG_DETERMINISTIC_ML_DSA is used as a permitted algorithm in a key policy, this permits:

∙ PSA_ALG_DETERMINISTIC_ML_DSA as the algorithm in a call to psa_sign_message() or
psa_sign_message_with_context().

∙ PSA_ALG_ML_DSA or PSA_ALG_DETERMINISTIC_ML_DSA as the algorithm in a call to psa_verify_message() or
psa_verify_message_with_context().
Note:

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 22

To sign or verify the pre-computed hash of a message using ML-DSA, the HashML-DSA algorithms(PSA_ALG_HASH_ML_DSA() and PSA_ALG_DETERMINISTIC_HASH_ML_DSA()) can also be used with
psa_sign_hash() and psa_verify_hash().
The signature produced by HashML-DSA is distinct from that produced by ML-DSA.

Compatible key types
PSA_KEY_TYPE_ML_DSA_KEY_PAIR

PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (signature verification only)

PSA_ALG_HASH_ML_DSA (macro)
Module lattice-based digital signature algorithm with pre-hashing (HashML-DSA).
Added in version 1.3.
#define PSA_ALG_HASH_ML_DSA(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.
Returns
The corresponding HashML-DSA signature algorithm, using hash_alg to pre-hash the message.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This algorithm can be used with both the message and hash signature functions.
This is the pre-hashed ML-DSA digital signature algorithm, defined by FIPS Publication 204:Module-Lattice-Based Digital Signature Standard [FIPS204], using hedging. ML-DSA requires an ML-DSA key,which determines the ML-DSA parameter set for the operation.

Note:
For the pre-hashing, [FIPS204] §5.4 recommends the use of an approved hash function with anequivalent, or better, security strength than the chosen ML-DSA parameter set.

This algorithm is randomized: each invocation returns a different, equally valid signature. See the notes onhedged signatures.
This algorithm has a context parameter. See the notes on ML-DSA contexts.
When PSA_ALG_HASH_ML_DSA() is used as a permitted algorithm in a key policy, this permits:

∙ PSA_ALG_HASH_ML_DSA() as the algorithm in a call to a message or hash signing function, such as
psa_sign_message() or psa_sign_hash_with_context().

∙ PSA_ALG_HASH_ML_DSA() or PSA_ALG_DETERMINISTIC_HASH_ML_DSA() as the algorithm in a call to a signatureverification function, such as psa_verify_message() or psa_verify_hash()_with_context().
AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 23

Note:
The signature produced by HashML-DSA is distinct from that produced by ML-DSA.

Usage
This is a hash-and-sign algorithm. To calculate a signature, use one of the following approaches:

∙ Call psa_sign_message() or psa_sign_message_with_context() with the message.
∙ Calculate the hash of the message with psa_hash_compute(), or with a multi-part hash operation, usingthe hash_alg hash algorithm. Note that hash_alg can be extracted from the signature algorithm using

PSA_ALG_GET_HASH(sig_alg). Then sign the calculated hash either with psa_sign_hash() or, if theprotocol requires the use of a non-zero-length context, with psa_sign_hash_with_context().
Verifying a signature is similar, using psa_verify_message() or psa_verify_hash() instead of the signaturefunction, or psa_verify_message_with_context() or psa_verify_hash_with_context() if a non-zero-=lengthcontext has been used.
Compatible key types
PSA_KEY_TYPE_ML_DSA_KEY_PAIR

PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (signature verification only)

PSA_ALG_DETERMINISTIC_HASH_ML_DSA (macro)
Deterministic module lattice-based digital signature algorithm with pre-hashing (HashML-DSA).
Added in version 1.3.
#define PSA_ALG_DETERMINISTIC_HASH_ML_DSA(hash_alg) \

/* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.
Returns
The corresponding deterministic HashML-DSA signature algorithm, using hash_alg to pre-hash the message.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This algorithm can be used with both the message and hash signature functions.
This is the pre-hashed ML-DSA digital signature algorithm, defined by FIPS Publication 204:Module-Lattice-Based Digital Signature Standard [FIPS204], without hedging. ML-DSA requires an ML-DSAkey, which determines the ML-DSA parameter set for the operation.

Note:

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 24

For the pre-hashing, [FIPS204] §5.4 recommends the use of an approved hash function with anequivalent, or better, security strength than the chosen ML-DSA parameter set.
This algorithm is deterministic: each invocation with the same inputs returns an identical signature.
. Warning

It is recommended to use the hedged PSA_ALG_HASH_ML_DSA() algorithm instead, when supported by theimplementation. See the notes on deterministic signatures.
This algorithm has a context parameter. See the notes on ML-DSA contexts.
When PSA_ALG_DETERMINISTIC_HASH_ML_DSA() is used as a permitted algorithm in a key policy, this permits:

∙ PSA_ALG_DETERMINISTIC_HASH_ML_DSA() as the algorithm in a call to a message or hash signing function,such as psa_sign_message() or psa_sign_hash_with_context().
∙ PSA_ALG_HASH_ML_DSA() or PSA_ALG_DETERMINISTIC_HASH_ML_DSA() as the algorithm in a call to a signatureverification function, such as psa_verify_message() or psa_verify_hash()_with_context().

Note:
The signature produced by HashML-DSA is distinct from that produced by ML-DSA.

Usage
See PSA_ALG_HASH_ML_DSA() for example usage.
Compatible key types
PSA_KEY_TYPE_ML_DSA_KEY_PAIR

PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (signature verification only)

PSA_ALG_IS_ML_DSA (macro)
Whether the specified algorithm is ML-DSA, without pre-hashing.
Added in version 1.3.
#define PSA_ALG_IS_ML_DSA(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a pure ML-DSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 25

Description

Note:
Use PSA_ALG_IS_HASH_ML_DSA() to determine if an algorithm identifier is a HashML-DSA algorithm.

PSA_ALG_IS_HASH_ML_DSA (macro)
Whether the specified algorithm is HashML-DSA.
Added in version 1.3.
#define PSA_ALG_IS_HASH_ML_DSA(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a HashML-DSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description

Note:
Use PSA_ALG_IS_ML_DSA() to determine if an algorithm identifier is a pre-hashed ML-DSA algorithm.

PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA (macro)
Whether the specified algorithm is deterministic HashML-DSA.
Added in version 1.3.
#define PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA(alg) \

/* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a deterministic HashML-DSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description
See also PSA_ALG_IS_HASH_ML_DSA() and PSA_ALG_IS_HEDGED_HASH_ML_DSA().

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 26

PSA_ALG_IS_HEDGED_HASH_ML_DSA (macro)
Whether the specified algorithm is hedged HashML-DSA.
Added in version 1.3.
#define PSA_ALG_IS_HEDGED_HASH_ML_DSA(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a hedged HashML-DSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description
See also PSA_ALG_IS_HASH_ML_DSA() and PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA().

2.4 Stateless Hash-based signatures
2.4.1 Stateless Hash-based signature keys
The Crypto API supports Stateless Hash-based digital signatures (SLH-DSA), as defined in FIPS Publication205: Stateless Hash-Based Digital Signature Standard [FIPS205].
psa_slh_dsa_family_t (typedef)
The type of identifiers of a Stateless hash-based DSA parameter set.
Added in version 1.3.
typedef uint8_t psa_slh_dsa_family_t;

The parameter-set identifier is required to create an SLH-DSA key using the
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR() or PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY() macros.
The specific SLH-DSA parameter set within a family is identified by the key_bits attribute of the key.
The range of SLH-DSA family identifier values is divided as follows:

0x00 Reserved. Not allocated to an SLH-DSA parameter-set family.
0x01 - 0x7f SLH-DSA parameter-set family identifiers defined by this standard. Unallocated values in thisrange are reserved for future use.
0x80 - 0xff Invalid. Values in this range must not be used.

The least significant bit of an SLH-DSA family identifier is a parity bit for the whole key type. See SLH-DSAkey encoding on page 49 for details of the encoding of asymmetric key types.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 27

PSA_KEY_TYPE_SLH_DSA_KEY_PAIR (macro)
SLH-DSA key pair: both the private key and public key.
Added in version 1.3.
#define PSA_KEY_TYPE_SLH_DSA_KEY_PAIR(set) /* specification-defined value */

Parameters
set A value of type psa_slh_dsa_family_t that identifies the SLH-DSAparameter-set family to be used.

Description
The bit size used in the attributes of an SLH-DSA key pair is the bit-size of each component in theSLH-DSA keys defined in [FIPS205]. That is, for a parameter set with security parameter 𝑛, the bit-size inthe key attributes is 8𝑛. See the documentation of each SLH-DSA parameter-set family for details.
Compatible algorithms

∙ PSA_ALG_SLH_DSA
∙ PSA_ALG_HASH_SLH_DSA
∙ PSA_ALG_DETERMINISTIC_SLH_DSA
∙ PSA_ALG_DETERMINISTIC_HASH_SLH_DSA

Key format
A SLH-DSA key pair is defined in [FIPS205] §9.1 as the four 𝑛-byte values, 𝑆𝐾 .seed, 𝑆𝐾 .prf, 𝑃𝐾 .seed, and
𝑃𝐾 .root, where 𝑛 is the security parameter.
In calls to psa_import_key() and psa_export_key(), the key-pair data format is the concatenation of the fouroctet strings:

𝑆𝐾 .seed || 𝑆𝐾 .prf || 𝑃𝐾 .seed || 𝑃𝐾 .root

Rationale
This format is the same as that specified for X.509 in Internet X.509 Public Key Infrastructure: AlgorithmIdentifiers for SLH-DSA [LAMPS-SLHDSA].

See PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().
Key derivation
A call to psa_key_derivation_output_key() will draw output bytes as follows:

∙ 𝑛 bytes are drawn as 𝑆𝐾 .seed.
∙ 𝑛 bytes are drawn as 𝑆𝐾 .prf.
∙ 𝑛 bytes are drawn as 𝑃𝐾 .seed.

Here, 𝑛 is the security parameter for the selected SLH-DSA parameter set.
The private key (𝑆𝐾 .seed, 𝑆𝐾 .prf, 𝑃𝐾 .seed, 𝑃𝐾 .root) is generated from these values as defined by
slh_keygen_internal() in [FIPS205] §9.1.
AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 28

PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY (macro)
SLH-DSA public key.
Added in version 1.3.
#define PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY(set) /* specification-defined value */

Parameters
set A value of type psa_slh_dsa_family_t that identifies the SLH-DSAparameter-set family to be used.

Description
The bit size used in the attributes of an SLH-DSA public key is the same as the corresponding private key.See PSA_KEY_TYPE_SLH_DSA_KEY_PAIR() and the documentation of each SLH-DSA parameter-set family fordetails.
Compatible algorithms

∙ PSA_ALG_SLH_DSA
∙ PSA_ALG_HASH_SLH_DSA
∙ PSA_ALG_DETERMINISTIC_SLH_DSA
∙ PSA_ALG_DETERMINISTIC_HASH_SLH_DSA

Key format
A SLH-DSA public key is defined in [FIPS205] §9.1 as two 𝑛-byte values, 𝑃𝐾 .seed and 𝑃𝐾 .root, where 𝑛 isthe security parameter.
In calls to psa_import_key(), psa_export_key(), and psa_export_public_key(), the public-key data format isthe concatenation of the two octet strings:

𝑃𝐾 .seed || 𝑃𝐾 .root

Rationale
This format is the same as that specified for X.509 in Internet X.509 Public Key Infrastructure: AlgorithmIdentifiers for SLH-DSA [LAMPS-SLHDSA].

PSA_SLH_DSA_FAMILY_SHA2_S (macro)
SLH-DSA family for the SLH-DSA-SHA2-NNNs parameter sets.
Added in version 1.3.
#define PSA_SLH_DSA_FAMILY_SHA2_S ((psa_slh_dsa_family_t) 0x02)

This family comprises the following parameter sets:
∙ SLH-DSA-SHA2-128s : key_bits = 128

∙ SLH-DSA-SHA2-192s : key_bits = 192

∙ SLH-DSA-SHA2-256s : key_bits = 256

They are defined in [FIPS205].
AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 29

PSA_SLH_DSA_FAMILY_SHA2_F (macro)
SLH-DSA family for the SLH-DSA-SHA2-NNNf parameter sets.
Added in version 1.3.
#define PSA_SLH_DSA_FAMILY_SHA2_F ((psa_slh_dsa_family_t) 0x04)

This family comprises the following parameter sets:
∙ SLH-DSA-SHA2-128f : key_bits = 128

∙ SLH-DSA-SHA2-192f : key_bits = 192

∙ SLH-DSA-SHA2-256f : key_bits = 256

They are defined in [FIPS205].
PSA_SLH_DSA_FAMILY_SHAKE_S (macro)
SLH-DSA family for the SLH-DSA-SHAKE-NNNs parameter sets.
Added in version 1.3.
#define PSA_SLH_DSA_FAMILY_SHAKE_S ((psa_slh_dsa_family_t) 0x0b)

This family comprises the following parameter sets:
∙ SLH-DSA-SHAKE-128s : key_bits = 128

∙ SLH-DSA-SHAKE-192s : key_bits = 192

∙ SLH-DSA-SHAKE-256s : key_bits = 256

They are defined in [FIPS205].
PSA_SLH_DSA_FAMILY_SHAKE_F (macro)
SLH-DSA family for the SLH-DSA-SHAKE-NNNf parameter sets.
Added in version 1.3.
#define PSA_SLH_DSA_FAMILY_SHAKE_F ((psa_slh_dsa_family_t) 0x0d)

This family comprises the following parameter sets:
∙ SLH-DSA-SHAKE-128f : key_bits = 128

∙ SLH-DSA-SHAKE-192f : key_bits = 192

∙ SLH-DSA-SHAKE-256f : key_bits = 256

They are defined in [FIPS205].
PSA_KEY_TYPE_IS_SLH_DSA (macro)
Whether a key type is an SLH-DSA key, either a key pair or a public key.
Added in version 1.3.
AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 30

#define PSA_KEY_TYPE_IS_SLH_DSA(type) /* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR (macro)
Whether a key type is an SLH-DSA key pair.
Added in version 1.3.
#define PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR(type) \

/* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY (macro)
Whether a key type is an SLH-DSA public key.
Added in version 1.3.
#define PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY(type) \

/* specification-defined value */

Parameters
type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_SLH_DSA_GET_FAMILY (macro)
Extract the parameter-set family from an SLH-DSA key type.
Added in version 1.3.
#define PSA_KEY_TYPE_SLH_DSA_GET_FAMILY(type) /* specification-defined value */

Parameters
type An SLH-DSA key type: a value of type psa_key_type_t such that

PSA_KEY_TYPE_IS_SLH_DSA(type) is true.
Returns: psa_dh_family_t
The SLH-DSA parameter-set family id, if type is a supported SLH-DSA key. Unspecified if type is not asupported SLH-DSA key.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 31

2.4.2 Stateless Hash-based signature algorithms
These algorithms extend those defined in PSA Certified Crypto API [PSA-CRYPT] §10.7 Asymmetric signature,for use with the signature functions.
The SLH-DSA signature and verification scheme is defined in FIPS Publication 205: Stateless Hash-BasedDigital Signature Standard [FIPS205]. SLH-DSA has twelve parameter sets which provide differing securitystrengths, trade-off between signature size and computation cost, and selection between SHA2 andSHAKE-based hashing.
SLH-DSA keys are fairly compact, 32, 48, or 64 bytes for the public key, and double that for the key pair.SLH-DSA signatures are much larger than those for RSA and Elliptic curve schemes, between 7.8kB and49kB depending on the selected parameter set. An SLH-DSA signature has the structure described in[FIPS205] §9.2, Figure 17.
See [FIPS205] §11 for details on the parameter sets, and the public key and generated signature sizes.
The generation of an SLH-DSA key depends on the full parameter specification. The encoding of eachparameter set into the key attributes is described in Stateless Hash-based signature keys on page 27.
[FIPS205] defines pure and pre-hashed variants of the signature scheme, which can either be hedged(randomized) or deterministic. Four algorithms are defined to support these variants: PSA_ALG_SLH_DSA,
PSA_ALG_DETERMINISTIC_SLH_DSA, PSA_ALG_HASH_SLH_DSA(), and PSA_ALG_DETERMINISTIC_HASH_SLH_DSA().
Hedged and deterministic signatures
Hedging incorporates fresh randomness in the signature computation, resulting in distinct signatures onevery signing operation when given identical inputs. Deterministic signatures do not require additionalrandom data, and result in an identical signature for the same inputs.
Signature verification does not distinguish between a hedged and a deterministic signature. Either hedgedor deterministic algorithms can be used when verifying a signature.
When computing a signature, the key’s permitted-algorithm policy must match the requested algorithm,treating hedged and deterministic versions as distinct. When verifying a signature, the hedged anddeterministic versions of each algorithm are considered equivalent when checking the key’spermitted-algorithm policy.

Note:
The hedged version provides message secrecy and some protection against side-channels. [FIPS205]recommends that users should use the hedged version if either of these issues are a concern. Thedeterministic variant should only be used if the implementation does not include any source ofrandomness.

Implementation note
[FIPS205] recommends that implementations use an approved random number generator to providethe random value in the hedged version. However, it notes that use of the hedged variant with aweak RNG is generally preferable to the deterministic variant.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 32

Rationale
The use of fresh randomness, or not, when computing a signature seems like an implementation decisionbased on the capability of the system, and its vulnerability to specific threats, following therecommendations in [FIPS205].
However, the Crypto API gives distinct algorithm identifiers for the hedged and deterministic variants forthe following reasons:

∙ [FIPS205] §9.1 recommends that SLH-DSA signing keys are only used to compute eitherdeterministic, or hedged, signatures, but not both. Supporting this recommendation requiresseparate algorithm identifiers, and requiring an exact policy match for signature computation.
∙ Enable an application use case to require a specific variant.

Pure and pre-hashed algorithms
The pre-hashed signature computation HashSLH-DSA generates distinct signatures to a pure signatureSLH-DSA, with the same key and message hashing algorithm.
An SLH-DSA signature can only be verified with an SLH-DSA algorithm. A HashSLH-DSA signature canonly be verified with a HashSLH-DSA algorithm.
Contexts
All SLH-DSA algorithms can be used with contexts, which enables domain-separation when signatures aremade of different message structures with the same key. Context values are arbitrary strings between zeroand 255 bytes in length.

∙ The signature functions without a context parameter provide a zero-length context when computingor verifying SLH-DSA signatures.
∙ To provide a context, use the psa_xxxx_with_context() signature functions with a context parameter,such as psa_sign_message_with_context().

PSA_ALG_SLH_DSA (macro)
Stateless hash-based digital signature algorithm without pre-hashing (SLH-DSA).
Added in version 1.3.
#define PSA_ALG_SLH_DSA ((psa_algorithm_t) 0x06004000)

This algorithm can only be used with the message signature functions. For example, psa_sign_message() or
psa_verify_message_with_context().
This is the pure SLH-DSA digital signature algorithm, defined by FIPS Publication 205: Stateless Hash-BasedDigital Signature Standard [FIPS205], using hedging. SLH-DSA requires an SLH-DSA key, which determinesthe SLH-DSA parameter set for the operation.
This algorithm is randomized: each invocation returns a different, equally valid signature. See the notes onhedged signatures.
This algorithm has a context parameter. See the notes on SLH-DSA contexts.
When PSA_ALG_SLH_DSA is used as a permitted algorithm in a key policy, this permits:

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 33

∙ PSA_ALG_SLH_DSA as the algorithm in a call to psa_sign_message() or psa_sign_message_with_context().
∙ PSA_ALG_SLH_DSA or PSA_ALG_DETERMINISTIC_SLH_DSA as the algorithm in a call to psa_verify_message()or psa_verify_message_with_context().

Note:
To sign or verify the pre-computed hash of a message using SLH-DSA, the HashSLH-DSA algorithms(PSA_ALG_HASH_SLH_DSA() and PSA_ALG_DETERMINISTIC_HASH_SLH_DSA()) can also be used with
psa_sign_hash() and psa_verify_hash().
The signature produced by HashSLH-DSA is distinct from that produced by SLH-DSA.

Compatible key types
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR()

PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY() (signature verification only)

PSA_ALG_DETERMINISTIC_SLH_DSA (macro)
Deterministic stateless hash-based digital signature algorithm without pre-hashing (SLH-DSA).
Added in version 1.3.
#define PSA_ALG_DETERMINISTIC_SLH_DSA ((psa_algorithm_t) 0x06004100)

This algorithm can only be used with the message signature functions. For example, psa_sign_message() or
psa_verify_message_with_context().
This is the pure SLH-DSA digital signature algorithm, defined by [FIPS205], without hedging. SLH-DSArequires an SLH-DSA key, which determines the SLH-DSA parameter set for the operation.
This algorithm is deterministic: each invocation with the same inputs returns an identical signature.
. Warning

It is recommended to use the hedged PSA_ALG_SLH_DSA algorithm instead, when supported by theimplementation. See the notes on deterministic signatures.
This algorithm has a context parameter. See the notes on SLH-DSA contexts.
When PSA_ALG_DETERMINISTIC_SLH_DSA is used as a permitted algorithm in a key policy, this permits:

∙ PSA_ALG_DETERMINISTIC_SLH_DSA as the algorithm in a call to psa_sign_message() or
psa_sign_message_with_context().

∙ PSA_ALG_SLH_DSA or PSA_ALG_DETERMINISTIC_SLH_DSA as the algorithm in a call to psa_verify_message()or psa_verify_message_with_context().
Note:
To sign or verify the pre-computed hash of a message using SLH-DSA, the HashSLH-DSA algorithms(PSA_ALG_HASH_SLH_DSA() and PSA_ALG_DETERMINISTIC_HASH_SLH_DSA()) can also be used with
psa_sign_hash() and psa_verify_hash().

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 34

The signature produced by HashSLH-DSA is distinct from that produced by SLH-DSA.
Compatible key types
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR()

PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY() (signature verification only)

PSA_ALG_HASH_SLH_DSA (macro)
Stateless hash-based digital signature algorithm with pre-hashing (HashSLH-DSA).
Added in version 1.3.
#define PSA_ALG_HASH_SLH_DSA(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.
Returns
The corresponding HashSLH-DSA signature algorithm, using hash_alg to pre-hash the message.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This algorithm can be used with both the message and hash signature functions.
This is the pre-hashed SLH-DSA digital signature algorithm, defined by [FIPS205], using hedging. SLH-DSArequires an SLH-DSA key, which determines the SLH-DSA parameter set for the operation.

Note:
For the pre-hashing, [FIPS205] §10.2 recommends the use of an approved hash function with anequivalent, or better, security strength than the chosen SLH-DSA parameter set.

This algorithm is randomized: each invocation returns a different, equally valid signature. See the notes onhedged signatures.
This algorithm has a context parameter. See the notes on SLH-DSA contexts.
When PSA_ALG_HASH_SLH_DSA() is used as a permitted algorithm in a key policy, this permits:

∙ PSA_ALG_HASH_SLH_DSA() as the algorithm in a call to a message or hash signing function, such as
psa_sign_message() or psa_sign_hash_with_context().

∙ PSA_ALG_HASH_SLH_DSA() or PSA_ALG_DETERMINISTIC_HASH_SLH_DSA() as the algorithm in a call to asignature verification function, such as psa_verify_message() or psa_verify_hash()_with_context().
Note:
The signature produced by HashSLH-DSA is distinct from that produced by SLH-DSA.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 35

Usage
This is a hash-and-sign algorithm. To calculate a signature, use one of the following approaches:

∙ Call psa_sign_message() or psa_sign_message_with_context() with the message.
∙ Calculate the hash of the message with psa_hash_compute(), or with a multi-part hash operation, usingthe hash_alg hash algorithm. Note that hash_alg can be extracted from the signature algorithm using

PSA_ALG_GET_HASH(sig_alg). Then sign the calculated hash either with psa_sign_hash() or, if theprotocol requires the use of a non-zero-length context, with psa_sign_hash_with_context().
Verifying a signature is similar, using psa_verify_message() or psa_verify_hash() instead of the signaturefunction, or psa_verify_message_with_context() or psa_verify_hash_with_context() if a non-zero-=lengthcontext has been used.
Compatible key types
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR()

PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY() (signature verification only)

PSA_ALG_DETERMINISTIC_HASH_SLH_DSA (macro)
Deterministic stateless hash-based digital signature algorithm with pre-hashing (HashSLH-DSA).
Added in version 1.3.
#define PSA_ALG_DETERMINISTIC_HASH_SLH_DSA(hash_alg) \

/* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that

PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASHwhen specifying the algorithm in a key policy.
Returns
The corresponding deterministic HashSLH-DSA signature algorithm, using hash_alg to pre-hash themessage.
Unspecified if hash_alg is not a supported hash algorithm.
Description
This algorithm can be used with both the message and hash signature functions.
This is the pre-hashed SLH-DSA digital signature algorithm, defined by [FIPS205], without hedging.SLH-DSA requires an SLH-DSA key, which determines the SLH-DSA parameter set for the operation.

Note:
For the pre-hashing, [FIPS205] §10.2 recommends the use of an approved hash function with anequivalent, or better, security strength than the chosen SLH-DSA parameter set.

This algorithm is deterministic: each invocation with the same inputs returns an identical signature.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 36

. Warning

It is recommended to use the hedged PSA_ALG_HASH_SLH_DSA() algorithm instead, when supported by theimplementation. See the notes on deterministic signatures.
This algorithm has a context parameter. See the notes on SLH-DSA contexts.
When PSA_ALG_DETERMINISTIC_HASH_SLH_DSA() is used as a permitted algorithm in a key policy, this permits:

∙ PSA_ALG_DETERMINISTIC_HASH_SLH_DSA() as the algorithm in a call to psa_sign_message() and
psa_sign_hash().

∙ PSA_ALG_HASH_SLH_DSA() or PSA_ALG_DETERMINISTIC_HASH_SLH_DSA() as the algorithm in a call to
psa_verify_message() and psa_verify_hash().
Note:
The signature produced by HashSLH-DSA is distinct from that produced by SLH-DSA.

Usage
See PSA_ALG_HASH_SLH_DSA() for example usage.
Compatible key types
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR()

PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY() (signature verification only)

PSA_ALG_IS_SLH_DSA (macro)
Whether the specified algorithm is SLH-DSA.
Added in version 1.3.
#define PSA_ALG_IS_SLH_DSA(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is an SLH-DSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
PSA_ALG_IS_HASH_SLH_DSA (macro)
Whether the specified algorithm is HashSLH-DSA.
Added in version 1.3.
#define PSA_ALG_IS_HASH_SLH_DSA(alg) /* specification-defined value */

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 37

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a HashSLH-DSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA (macro)
Whether the specified algorithm is deterministic HashSLH-DSA.
Added in version 1.3.
#define PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA(alg) \

/* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a deterministic HashSLH-DSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description
See also PSA_ALG_IS_HASH_SLH_DSA() and PSA_ALG_IS_HEDGED_HASH_SLH_DSA().
PSA_ALG_IS_HEDGED_HASH_SLH_DSA (macro)
Whether the specified algorithm is hedged HashSLH-DSA.
Added in version 1.3.
#define PSA_ALG_IS_HEDGED_HASH_SLH_DSA(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1 if alg is a hedged HashSLH-DSA algorithm, 0 otherwise.
This macro can return either 0 or 1 if alg is not a supported algorithm identifier.
Description
See also PSA_ALG_IS_HASH_SLH_DSA() and PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA().

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 38

2.5 Leighton-Micali Signatures
The Crypto API supports Leighton-Micali Signatures (LMS), and the multi-level Hierarchical SignatureScheme (HSS). These schemes are defined in Leighton-Micali Hash-Based Signatures [RFC8554].
For the Crypto API to support signature verification, it is only necessary to define a public keys for theseschemes, and the default public key formats for import and export.
Rationale
At present, it is not expected that the Crypto API will be used to generate LMS or HSS private keys, or tocarry out signing operations. However, there is value in supporting verification of LMS and HSSsignatures. Therefore, the Crypto API does not support LMS or HSS key pairs, or the associated signingoperations.

Note:
A full set of NIST-approved parameter sets for LMS and HSS is defined in NIST Special Publication800-208: Recommendation for Stateful Hash-Based Signature Schemes [SP800-208] §4, with theadditional IANA identifiers defined in Additional Parameter sets for HSS/LMS Hash-Based Signatures[RFC9858].

2.5.1 Leighton-Micali Signature keys
PSA_KEY_TYPE_LMS_PUBLIC_KEY (macro)
Leighton-Micali Signatures (LMS) public key.
Added in version 1.3.
#define PSA_KEY_TYPE_LMS_PUBLIC_KEY ((psa_key_type_t)0x4007)

The parameterization of an LMS key is fully encoded in the key data.
The bit size used in the attributes of an LMS public key is output length, in bits, of the hash functionidentified by the LMS parameter set.

∙ SHA-256/192, SHAKE256/192 : key_bits = 192

∙ SHA-256, SHAKE256/256 : key_bits = 256

Compatible algorithms
∙ PSA_ALG_LMS

Key format
In calls to psa_import_key(), psa_export_key(), and psa_export_public_key(), the public-key data format isthe encoded lms_public_key structure, defined in [RFC8554] §3.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 39

https://datatracker.ietf.org/doc/html/rfc8554.html#section-3

PSA_KEY_TYPE_HSS_PUBLIC_KEY (macro)
Hierarchical Signature Scheme (HSS) public key.
Added in version 1.3.
#define PSA_KEY_TYPE_HSS_PUBLIC_KEY ((psa_key_type_t)0x4008)

The parameterization of an HSS key is fully encoded in the key data.
The bit size used in the attributes of an HSS public key is output length, in bits, of the hash functionidentified by the HSS parameter set.

∙ SHA-256/192, SHAKE256/192 : key_bits = 192

∙ SHA-256, SHAKE256/256 : key_bits = 256

Compatible algorithms
∙ PSA_ALG_HSS

Key format
In calls to psa_import_key(), psa_export_key(), and psa_export_public_key(), the public-key data format isthe encoded hss_public_key structure, defined in [RFC8554] §3.
Rationale
This format is the same as that specified for X.509 in Use of the HSS and XMSS Hash-Based SignatureAlgorithms in Internet X.509 Public Key Infrastructure [RFC9802].

2.5.2 Leighton-Micali Signature algorithms
These algorithms extend those defined in PSA Certified Crypto API [PSA-CRYPT] §10.7 Asymmetric signature,for use with the signature functions.
PSA_ALG_LMS (macro)
Leighton-Micali Signatures (LMS) signature algorithm.
Added in version 1.3.
#define PSA_ALG_LMS ((psa_algorithm_t) 0x06004800)

This message-signature algorithm can only be used with the psa_verify_message() function. LMS does nothave a context parameter. However, psa_verify_message_with_context() can be used with a zero-lengthcontext.
This is the LMS stateful hash-based signature algorithm, defined by Leighton-Micali Hash-Based Signatures[RFC8554]. LMS requires an LMS key. The key and the signature must both encode the same LMSparameter set, which is used for the verification procedure.

Note:
LMS signature calculation is not supported.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 40

https://datatracker.ietf.org/doc/html/rfc8554.html#section-3

Compatible key types
PSA_KEY_TYPE_LMS_PUBLIC_KEY (signature verification only)

PSA_ALG_HSS (macro)
Hierarchical Signature Scheme (HSS) signature algorithm.
Added in version 1.3.
#define PSA_ALG_HSS ((psa_algorithm_t) 0x06004900)

This message-signature algorithm can only be used with the psa_verify_message() function. HSS does nothave a context parameter. However, psa_verify_message_with_context() can be used with a zero-lengthcontext.
This is the HSS stateful hash-based signature algorithm, defined by Leighton-Micali Hash-Based Signatures[RFC8554]. HSS requires an HSS key. The key and the signature must both encode the same HSSparameter set, which is used for the verification procedure.

Note:
HSS signature calculation is not supported.

Compatible key types
PSA_KEY_TYPE_HSS_PUBLIC_KEY (signature verification only)

2.6 eXtended Merkle Signature Scheme
The Crypto API supports eXtended Merkle Signature Scheme (XMSS), and the multi-tree variant XMSSMT.These schemes are defined in XMSS: eXtended Merkle Signature Scheme [RFC8391].
For the Crypto API to support signature verification, it is only necessary to define public keys for theseschemes, and the default public key formats for import and export.
Rationale
At present, it is not expected that the Crypto API will be used to generate XMSS or XMSSMT privatekeys, or to carry out signing operations. However, there is value in supporting verification of XMSS andXMSSMT signatures. Therefore, the Crypto API does not support XMSS or XMSSMT key pairs, or theassociated signing operations.

Note:
A full set of NIST-approved parameter sets for XMSS or XMSSMT is defined in NIST Special Publication800-208: Recommendation for Stateful Hash-Based Signature Schemes [SP800-208] §5.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 41

2.6.1 XMSS and XMSSMT keys
PSA_KEY_TYPE_XMSS_PUBLIC_KEY (macro)
eXtended Merkle Signature Scheme (XMSS) public key.
Added in version 1.3.
#define PSA_KEY_TYPE_XMSS_PUBLIC_KEY ((psa_key_type_t)0x400B)

The parameterization of an XMSS key is fully encoded in the key data.
The bit size used in the attributes of an XMSS public key is output length, in bits, of the hash functionidentified by the XMSS parameter set.

∙ SHA-256/192, SHAKE256/192 : key_bits = 192

∙ SHA-256, SHAKE256/256 : key_bits = 256

Note:
For a multi-tree XMSS key, see PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY.

Compatible algorithms
∙ PSA_ALG_XMSS

Key format
In calls to psa_import_key(), psa_export_key(), and psa_export_public_key(), the public-key data format isthe encoded xmss_public_key structure, defined in [RFC8391] Appendix B.3.
Rationale
This format is the same as that specified for X.509 in Use of the HSS and XMSS Hash-Based SignatureAlgorithms in Internet X.509 Public Key Infrastructure [RFC9802].

PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY (macro)
Multi-tree eXtended Merkle Signature Scheme (XMSSMT) public key.
Added in version 1.3.
#define PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY ((psa_key_type_t)0x400D)

The parameterization of an XMSSMT key is fully encoded in the key data.
The bit size used in the attributes of an XMSSMT public key is output length, in bits, of the hash functionidentified by the XMSSMT parameter set.

∙ SHA-256/192, SHAKE256/192 : key_bits = 192

∙ SHA-256, SHAKE256/256 : key_bits = 256

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 42

https://datatracker.ietf.org/doc/html/rfc8391.html#appendix-B.3

Compatible algorithms
∙ PSA_ALG_XMSS_MT

Key format
In calls to psa_import_key(), psa_export_key(), and psa_export_public_key(), the public-key data format isthe encoded xmssmt_public_key structure, defined in [RFC8391] Appendix C.3.
Rationale
This format is the same as that specified for X.509 in Use of the HSS and XMSS Hash-Based SignatureAlgorithms in Internet X.509 Public Key Infrastructure [RFC9802].

2.6.2 XMSS and XMSSMT algorithms
These algorithms extend those defined in PSA Certified Crypto API [PSA-CRYPT] §10.7 Asymmetric signature,for use with the signature functions.
PSA_ALG_XMSS (macro)
eXtended Merkle Signature Scheme (XMSS) signature algorithm.
Added in version 1.3.
#define PSA_ALG_XMSS ((psa_algorithm_t) 0x06004A00)

This message-signature algorithm can only be used with the psa_verify_message() function. XMSS does nothave a context parameter. However, psa_verify_message_with_context() can be used with a zero-lengthcontext.
This is the XMSS stateful hash-based signature algorithm, defined by XMSS: eXtended Merkle SignatureScheme [RFC8391]. XMSS requires an XMSS key. The key and the signature must both encode the sameXMSS parameter set, which is used for the verification procedure.

Note:
XMSS signature calculation is not supported.

Compatible key types
PSA_KEY_TYPE_XMSS_PUBLIC_KEY (signature verification only)

PSA_ALG_XMSS_MT (macro)
Multi-tree eXtended Merkle Signature Scheme (XMSSMT) signature algorithm.
Added in version 1.3.
#define PSA_ALG_XMSS_MT ((psa_algorithm_t) 0x06004B00)

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 43

https://datatracker.ietf.org/doc/html/rfc8391.html#appendix-C.3

This message-signature algorithm can only be used with the psa_verify_message() function. XMSSMT doesnot have a context parameter. However, psa_verify_message_with_context() can be used with a zero-lengthcontext.
This is the XMSSMT stateful hash-based signature algorithm, defined by XMSS: eXtended Merkle SignatureScheme [RFC8391]. XMSSMT requires an XMSSMT key. The key and the signature must both encode thesame XMSSMT parameter set, which is used for the verification procedure.

Note:
XMSSMT signature calculation is not supported.

Compatible key types
PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY (signature verification only)

See Algorithm and key type encoding on page 47 for the encoding of the key types and algorithm identifiersadded by this extension.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 44

Appendix A: Example header file
The API elements in this specification, once finalized, will be defined in psa/crypto.h.
This is an example of the header file definition of the PQC API elements. This can be used as a startingpoint or reference for an implementation.

Note:
Not all of the API elements are fully defined. An implementation must provide the full definition.
The header will not compile without these missing definitions, and might require reordering to satisfyC compilation rules.

A.1 psa/crypto.h
/* This file contains reference definitions for implementation of the
* PSA Certified Crypto API v1.3 PQC Extension
*
* These definitions must be embedded in, or included by, psa/crypto.h
*/

#define PSA_ALG_SHA_256_192 ((psa_algorithm_t)0x0200000E)
#define PSA_ALG_SHAKE128_256 ((psa_algorithm_t)0x02000016)
#define PSA_ALG_SHAKE256_192 ((psa_algorithm_t)0x02000017)
#define PSA_ALG_SHAKE256_256 ((psa_algorithm_t)0x02000018)
#define PSA_KEY_TYPE_ML_KEM_KEY_PAIR ((psa_key_type_t)0x7004)
#define PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY ((psa_key_type_t)0x4004)
#define PSA_KEY_TYPE_IS_ML_KEM(type) /* specification-defined value */
#define PSA_ALG_ML_KEM ((psa_algorithm_t)0x0c000200)
#define PSA_KEY_TYPE_ML_DSA_KEY_PAIR ((psa_key_type_t)0x7002)
#define PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY ((psa_key_type_t)0x4002)
#define PSA_KEY_TYPE_IS_ML_DSA(type) /* specification-defined value */
#define PSA_ALG_ML_DSA ((psa_algorithm_t) 0x06004400)
#define PSA_ALG_DETERMINISTIC_ML_DSA ((psa_algorithm_t) 0x06004500)
#define PSA_ALG_HASH_ML_DSA(hash_alg) /* specification-defined value */
#define PSA_ALG_DETERMINISTIC_HASH_ML_DSA(hash_alg) \

/* specification-defined value */
#define PSA_ALG_IS_ML_DSA(alg) /* specification-defined value */
#define PSA_ALG_IS_HASH_ML_DSA(alg) /* specification-defined value */
#define PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA(alg) \

/* specification-defined value */
#define PSA_ALG_IS_HEDGED_HASH_ML_DSA(alg) /* specification-defined value */

(continues on next page)

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 45

(continued from previous page)
typedef uint8_t psa_slh_dsa_family_t;
#define PSA_KEY_TYPE_SLH_DSA_KEY_PAIR(set) /* specification-defined value */
#define PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY(set) /* specification-defined value */
#define PSA_SLH_DSA_FAMILY_SHA2_S ((psa_slh_dsa_family_t) 0x02)
#define PSA_SLH_DSA_FAMILY_SHA2_F ((psa_slh_dsa_family_t) 0x04)
#define PSA_SLH_DSA_FAMILY_SHAKE_S ((psa_slh_dsa_family_t) 0x0b)
#define PSA_SLH_DSA_FAMILY_SHAKE_F ((psa_slh_dsa_family_t) 0x0d)
#define PSA_KEY_TYPE_IS_SLH_DSA(type) /* specification-defined value */
#define PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR(type) \

/* specification-defined value */
#define PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY(type) \

/* specification-defined value */
#define PSA_KEY_TYPE_SLH_DSA_GET_FAMILY(type) /* specification-defined value */
#define PSA_ALG_SLH_DSA ((psa_algorithm_t) 0x06004000)
#define PSA_ALG_DETERMINISTIC_SLH_DSA ((psa_algorithm_t) 0x06004100)
#define PSA_ALG_HASH_SLH_DSA(hash_alg) /* specification-defined value */
#define PSA_ALG_DETERMINISTIC_HASH_SLH_DSA(hash_alg) \

/* specification-defined value */
#define PSA_ALG_IS_SLH_DSA(alg) /* specification-defined value */
#define PSA_ALG_IS_HASH_SLH_DSA(alg) /* specification-defined value */
#define PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA(alg) \

/* specification-defined value */
#define PSA_ALG_IS_HEDGED_HASH_SLH_DSA(alg) /* specification-defined value */
#define PSA_KEY_TYPE_LMS_PUBLIC_KEY ((psa_key_type_t)0x4007)
#define PSA_KEY_TYPE_HSS_PUBLIC_KEY ((psa_key_type_t)0x4008)
#define PSA_ALG_LMS ((psa_algorithm_t) 0x06004800)
#define PSA_ALG_HSS ((psa_algorithm_t) 0x06004900)
#define PSA_KEY_TYPE_XMSS_PUBLIC_KEY ((psa_key_type_t)0x400B)
#define PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY ((psa_key_type_t)0x400D)
#define PSA_ALG_XMSS ((psa_algorithm_t) 0x06004A00)
#define PSA_ALG_XMSS_MT ((psa_algorithm_t) 0x06004B00)

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 46

Appendix B: Algorithm and key type encoding
These are encodings for PQC algorithms and keys defined in this extension. This information should be readin conjunction with [PSA-CRYPT] Appendix B.

Note:
These encodings will be integrated into a future version of [PSA-CRYPT].

B.1 Algorithm encoding
B.1.1 Hash algorithm encoding
Additional hash algorithms defined by this extension are shown in Table 4. See also Hash algorithm encodingin [PSA-CRYPT] Appendix B.

Table 4 Hash algorithm sub-type values
Hash algorithm HASH-TYPE Algorithm identifier Algorithm value

SHA-256/192 0x0E PSA_ALG_SHA_256_192 0x0200000E

SHAKE128/256 0x16 PSA_ALG_SHAKE128_256 0x02000016

SHAKE256/192 0x17 PSA_ALG_SHAKE256_192 0x02000017

SHAKE256/256 0x18 PSA_ALG_SHAKE256_256 0x02000018

B.1.2 Asymmetric signature algorithm encoding
Additional signature algorithms defined by this extension are shown in Table 5 on page 48. See alsoAsymmetric signature algorithm encoding in [PSA-CRYPT] Appendix B.

Table 5 Asymmetric signature algorithm sub-type values

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 47

Signature algorithm SIGN-TYPE Algorithm identifier Algorithm value

Hedged SLH-DSA 0x40 PSA_ALG_SLH_DSA 0x06004000

Deterministic SLH-DSA 0x41 PSA_ALG_DETERMINISTIC_SLH_DSA 0x06004100

Hedged HashSLH-DSA 0x42 PSA_ALG_HASH_SLH_DSA(hash) 0x060042hh a
Deterministic HashSLH-DSA 0x43 PSA_ALG_DETERMINISTIC_HASH_SLH_DSA(hash) 0x060043hh a
Hedged ML-DSA 0x44 PSA_ALG_ML_DSA 0x06004400

Deterministic ML-DSA 0x45 PSA_ALG_DETERMINISTIC_ML_DSA 0x06004500

Hedged HashML-DSA 0x46 PSA_ALG_HASH_ML_DSA(hash) 0x060046hh a
Deterministic HashML-DSA 0x47 PSA_ALG_DETERMINISTIC_HASH_ML_DSA(hash) 0x060047hh a
LMS 0x48 PSA_ALG_LMS 0x06004800

HSS 0x49 PSA_ALG_HSS 0x06004900

XMSS 0x4A PSA_ALG_XMSS 0x06004A00

XMSSMT 0x4B PSA_ALG_XMSS_MT 0x06004B00

a. hh is the HASH-TYPE for the hash algorithm, hash, used to construct the signature algorithm.

B.1.3 Key-encapsulation algorithm encoding
Additional key-encapsulation algorithms defined by this extension are shown in Table 6.

Table 6 Encapsulation algorithm sub-type values
Encapsulation algorithm ENCAPS-TYPE Algorithm identifier Algorithm value

ML-KEM 0x02 PSA_ALG_ML_KEM 0x0C000200

B.2 Key encoding
Additional asymmetric key types defined by this extension are shown in Table 7. See also Asymmetric keyencoding in [PSA-CRYPT] Appendix B.

Table 7 Asymmetric key sub-type values
Asymmetric key type ASYM-TYPE Details

SLH-DSA 3 See SLH-DSA key encoding on page 49

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 48

B.2.1 Non-parameterized asymmetric key encoding
Additional non-parameterized asymmetric key types defined by this extension are shown in Table 8. Seealso Non-parameterized asymmetric key encoding in [PSA-CRYPT] Appendix B.

Table 8 Non-parameterized asymmetric key family values
Key family Public/pair PAIR NP-FAMILY P Key type Key value

ML-DSA Public key 0 1 0 PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY 0x4002

Key pair 3 1 0 PSA_KEY_TYPE_ML_DSA_KEY_PAIR 0x7002

ML-KEM Public key 0 2 0 PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY 0x4004

Key pair 3 2 0 PSA_KEY_TYPE_ML_KEM_KEY_PAIR 0x7004

LMS Public key 0 3 1 PSA_KEY_TYPE_LMS_PUBLIC_KEY 0x4007

HSS Public key 0 4 0 PSA_KEY_TYPE_HSS_PUBLIC_KEY 0x4008

XMSS Public key 0 5 1 PSA_KEY_TYPE_XMSS_PUBLIC_KEY 0x400B

XMSSMT Public key 0 6 1 PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY 0x400D

B.2.2 SLH-DSA key encoding
The key type for SLH-DSA keys defined in this specification are encoded as shown in Figure 1.

01671112131415

PFAMILY3PAIR10

Figure 1 SLH-DSA key encoding
PAIR is either 0 for a public key, or 3 for a key pair.
The defined values for FAMILY and P are shown in Table 9.

Table 9 SLH-DSA key family values
SLH-DSA key family FAMILY P SLH-DSA family a Public-key value Key-pair value

SLH-DSA-SHA2-Ns 0x01 0 PSA_SLH_DSA_FAMILY_SHA2_S 0x4182 0x7182

SLH-DSA-SHA2-Nf 0x02 0 PSA_SLH_DSA_FAMILY_SHA2_F 0x4184 0x7184

SLH-DSA-SHAKE-Ns 0x05 1 PSA_SLH_DSA_FAMILY_SHAKE_S 0x418B 0x718B

SLH-DSA-SHAKE-Nf 0x06 1 PSA_SLH_DSA_FAMILY_SHAKE_F 0x418D 0x718D

a. The SLH-DSA family values defined in the API also include the parity bit. The key type value isconstructed from the SLH-DSA family using either PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY(family) or
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR(family) as required.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 49

Appendix C: Example macro implementations
This section provides example implementations of the function-like macros that have specification-definedvalues.

Note:
In a future version of this specification, these example implementations will be replaced with apseudo-code representation of the macro’s computation in the macro description.

The examples here provide correct results for the valid inputs defined by each API, for an implementationthat supports all of the defined algorithms and key types. An implementation can provide alternativedefinitions of these macros:

C.1 Algorithm macros
C.1.1 Updated macros
#define PSA_ALG_IS_HASH_AND_SIGN(alg) \

(PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
PSA_ALG_IS_HASH_ML_DSA(alg) || PSA_ALG_IS_HASH_SLH_DSA(alg))

#define PSA_ALG_IS_SIGN_HASH(alg) \
(PSA_ALG_IS_HASH_AND_SIGN(alg) ||
(alg) == PSA_ALG_RSA_PKCS1V15_SIGN_RAW ||
(alg) == PSA_ALG_ECDSA_ANY
)

C.1.2 New macros
#define PSA_ALG_DETERMINISTIC_HASH_ML_DSA(hash_alg) \

((psa_algorithm_t) (0x06004700 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_DETERMINISTIC_HASH_SLH_DSA(hash_alg) \
((psa_algorithm_t) (0x06004300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HASH_ML_DSA(hash_alg) \
((psa_algorithm_t) (0x06004600 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HASH_SLH_DSA(hash_alg) \
((psa_algorithm_t) (0x06004200 | ((hash_alg) & 0x000000ff)))

(continues on next page)

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 50

(continued from previous page)
#define PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA(alg) \

(((alg) & ~0x000000ff) == 0x06004700)

#define PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA(alg) \
(((alg) & ~0x000000ff) == 0x06004300)

#define PSA_ALG_IS_HASH_ML_DSA(alg) \
(((alg) & ~0x000001ff) == 0x06004600)

#define PSA_ALG_IS_HASH_SLH_DSA(alg) \
(((alg) & ~0x000001ff) == 0x06004200)

#define PSA_ALG_IS_HEDGED_HASH_ML_DSA(alg) \
(((alg) & ~0x000000ff) == 0x06004600)

#define PSA_ALG_IS_HEDGED_HASH_SLH_DSA(alg) \
(((alg) & ~0x000000ff) == 0x06004200)

#define PSA_ALG_IS_ML_DSA(alg) \
(((alg) & ~0x00000100) == 0x06004400)

#define PSA_ALG_IS_SLH_DSA(alg) \
(((alg) & ~0x00000100) == 0x06004000)

C.2 Key type macros
#define PSA_KEY_TYPE_IS_ML_DSA(type) \

(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == 0x4002)

#define PSA_KEY_TYPE_IS_ML_KEM(type) \
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == 0x4004)

#define PSA_KEY_TYPE_IS_SLH_DSA(type) \
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & 0xff80) == 0x4180)

#define PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR(type) \
(((type) & 0xff80) == 0x7180)

#define PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY(type) \
(((type) & 0xff80) == 0x4180)

#define PSA_KEY_TYPE_SLH_DSA_GET_FAMILY(type) \
((psa_slh_dsa_family_t) ((type) & 0x007f))

#define PSA_KEY_TYPE_SLH_DSA_KEY_PAIR(set) \
(continues on next page)

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 51

(continued from previous page)
((psa_key_type_t) (0x7180 | ((set) & 0x007f)))

#define PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY(set) \
((psa_key_type_t) (0x4180 | ((set) & 0x007f)))

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 52

Appendix D: Document change history
D.1 Changes between Beta 3 and Final 0
Clarifications and fixes

∙ Finalized the key format specification for SLH-DSA, ML-KEM, and ML-DSA keys. The formats areunchanged from the Beta version of this specification. See Stateless Hash-based signatures on page 27,Module Lattice-based signatures on page 17, and Module Lattice-based key encapsulation on page 14.

D.2 Changes between Beta 2 and Beta 3
Other changes

∙ Updated introduction to reflect GlobalPlatform assuming the governance of the PSA Certifiedevaluation scheme.

D.3 Changes between Beta 1 and Beta 2
Clarifications and fixes

∙ Fixed the derivation of SLH-DSA key pairs to extract the correct number of bytes from the keyderivation operation. See PSA_KEY_TYPE_SLH_DSA_KEY_PAIR.
∙ Clarified that the standard key formats are used in the psa_import_key() and psa_export_key()functions.

D.4 Changes between Beta 0 and Beta 1
Clarifications and fixes

∙ Added references from each section to the relevant APIs in PSA Certified Crypto API [PSA-CRYPT].

D.5 Beta release
First release of the PQC Extension.

∙ Added support for FIPS 203 ML-KEM key-encapsulation algorithm and keys. See Module Lattice-basedkey encapsulation on page 14.
∙ Added support for FIPS 204 ML-DSA signature algorithm and keys. See Module Lattice-basedsignatures on page 17.
∙ Added support for FIPS 205 SLH-DSA signature algorithm and keys. See Stateless Hash-basedsignatures on page 27.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 53

∙ Added support for LMS and HSS stateful hash-based signature verification and public keys. SeeLeighton-Micali Signatures on page 39.
∙ Added support for XMSS and XMSSMT stateful hash-based signature verification and public keys. SeeeXtended Merkle Signature Scheme on page 41.

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 54

Index of API elements

PSA_ALG_D
PSA_ALG_DETERMINISTIC_HASH_ML_DSA, 24
PSA_ALG_DETERMINISTIC_HASH_SLH_DSA, 36
PSA_ALG_DETERMINISTIC_ML_DSA, 22
PSA_ALG_DETERMINISTIC_SLH_DSA, 34
PSA_ALG_H
PSA_ALG_HASH_ML_DSA, 23
PSA_ALG_HASH_SLH_DSA, 35
PSA_ALG_HSS, 41
PSA_ALG_I
PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA, 26
PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA, 38
PSA_ALG_IS_HASH_ML_DSA, 26
PSA_ALG_IS_HASH_SLH_DSA, 37
PSA_ALG_IS_HEDGED_HASH_ML_DSA, 27
PSA_ALG_IS_HEDGED_HASH_SLH_DSA, 38
PSA_ALG_IS_ML_DSA, 25
PSA_ALG_IS_SLH_DSA, 37
PSA_ALG_L
PSA_ALG_LMS, 40
PSA_ALG_M
PSA_ALG_ML_DSA, 21
PSA_ALG_ML_KEM, 17
PSA_ALG_S
PSA_ALG_SHAKE128_256, 13
PSA_ALG_SHAKE256_192, 14
PSA_ALG_SHAKE256_256, 14
PSA_ALG_SHA_256_192, 13
PSA_ALG_SLH_DSA, 33
PSA_ALG_X
PSA_ALG_XMSS, 43
PSA_ALG_XMSS_MT, 43
PSA_K
PSA_KEY_TYPE_HSS_PUBLIC_KEY, 40

PSA_KEY_TYPE_IS_ML_DSA, 20
PSA_KEY_TYPE_IS_ML_KEM, 16
PSA_KEY_TYPE_IS_SLH_DSA, 30
PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR, 31
PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY, 31
PSA_KEY_TYPE_LMS_PUBLIC_KEY, 39
PSA_KEY_TYPE_ML_DSA_KEY_PAIR, 18
PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY, 19
PSA_KEY_TYPE_ML_KEM_KEY_PAIR, 14
PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY, 16
PSA_KEY_TYPE_SLH_DSA_GET_FAMILY, 31
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR, 28
PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY, 29
PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY, 42
PSA_KEY_TYPE_XMSS_PUBLIC_KEY, 42
PSA_S
PSA_SLH_DSA_FAMILY_SHA2_F, 30
PSA_SLH_DSA_FAMILY_SHA2_S, 29
PSA_SLH_DSA_FAMILY_SHAKE_F, 30
PSA_SLH_DSA_FAMILY_SHAKE_S, 30
psa_slh_dsa_family_t, 27

AES 01191.4 PQC Extension.0 Copyright © 2024-2025 Arm Limited and/or its affiliatesNon-confidential Page 55

	About this document
	Release information
	License
	References
	Terms and abbreviations
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Current status and anticipated changes
	Feedback

	1 Introduction
	1.1 About Platform Security Architecture
	1.2 About the Crypto API PQC Extension
	1.3 Objectives for the PQC Extension
	1.3.1 Background
	1.3.2 Selection of algorithms
	NIST PQC project finalists
	Other NIST-approved schemes

	2 API Reference
	2.1 Additional Hash algorithms
	2.1.1 SHA-256-based hash algorithms
	PSA_ALG_SHA_256_192 (macro)

	2.1.2 SHAKE-based hash algorithms
	PSA_ALG_SHAKE128_256 (macro)
	PSA_ALG_SHAKE256_192 (macro)
	PSA_ALG_SHAKE256_256 (macro)

	2.2 Module Lattice-based key encapsulation
	2.2.1 Module Lattice-based key-encapsulation keys
	PSA_KEY_TYPE_ML_KEM_KEY_PAIR (macro)
	PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_ML_KEM (macro)

	2.2.2 Module Lattice-based key-encapsulation algorithm
	PSA_ALG_ML_KEM (macro)

	2.3 Module Lattice-based signatures
	2.3.1 Module Lattice-based signature keys
	PSA_KEY_TYPE_ML_DSA_KEY_PAIR (macro)
	PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_ML_DSA (macro)

	2.3.2 Module Lattice-based signature algorithms
	PSA_ALG_ML_DSA (macro)
	PSA_ALG_DETERMINISTIC_ML_DSA (macro)
	PSA_ALG_HASH_ML_DSA (macro)
	PSA_ALG_DETERMINISTIC_HASH_ML_DSA (macro)
	PSA_ALG_IS_ML_DSA (macro)
	PSA_ALG_IS_HASH_ML_DSA (macro)
	PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA (macro)
	PSA_ALG_IS_HEDGED_HASH_ML_DSA (macro)

	2.4 Stateless Hash-based signatures
	2.4.1 Stateless Hash-based signature keys
	psa_slh_dsa_family_t (typedef)
	PSA_KEY_TYPE_SLH_DSA_KEY_PAIR (macro)
	PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY (macro)
	PSA_SLH_DSA_FAMILY_SHA2_S (macro)
	PSA_SLH_DSA_FAMILY_SHA2_F (macro)
	PSA_SLH_DSA_FAMILY_SHAKE_S (macro)
	PSA_SLH_DSA_FAMILY_SHAKE_F (macro)
	PSA_KEY_TYPE_IS_SLH_DSA (macro)
	PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_SLH_DSA_GET_FAMILY (macro)

	2.4.2 Stateless Hash-based signature algorithms
	PSA_ALG_SLH_DSA (macro)
	PSA_ALG_DETERMINISTIC_SLH_DSA (macro)
	PSA_ALG_HASH_SLH_DSA (macro)
	PSA_ALG_DETERMINISTIC_HASH_SLH_DSA (macro)
	PSA_ALG_IS_SLH_DSA (macro)
	PSA_ALG_IS_HASH_SLH_DSA (macro)
	PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA (macro)
	PSA_ALG_IS_HEDGED_HASH_SLH_DSA (macro)

	2.5 Leighton-Micali Signatures
	2.5.1 Leighton-Micali Signature keys
	PSA_KEY_TYPE_LMS_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_HSS_PUBLIC_KEY (macro)

	2.5.2 Leighton-Micali Signature algorithms
	PSA_ALG_LMS (macro)
	PSA_ALG_HSS (macro)

	2.6 eXtended Merkle Signature Scheme
	2.6.1 XMSS and XMSSMT keys
	PSA_KEY_TYPE_XMSS_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY (macro)

	2.6.2 XMSS and XMSSMT algorithms
	PSA_ALG_XMSS (macro)
	PSA_ALG_XMSS_MT (macro)

	A Example header file
	A.1 psa/crypto.h

	B Algorithm and key type encoding
	B.1 Algorithm encoding
	B.1.1 Hash algorithm encoding
	B.1.2 Asymmetric signature algorithm encoding
	B.1.3 Key-encapsulation algorithm encoding

	B.2 Key encoding
	B.2.1 Non-parameterized asymmetric key encoding
	B.2.2 SLH-DSA key encoding

	C Example macro implementations
	C.1 Algorithm macros
	C.1.1 Updated macros
	C.1.2 New macros

	C.2 Key type macros

	D Document change history
	D.1 Changes between Beta 3 and Final 0
	D.2 Changes between Beta 2 and Beta 3
	D.3 Changes between Beta 1 and Beta 2
	D.4 Changes between Beta 0 and Beta 1
	D.5 Beta release

	Index of API elements

