PSA Certified
Crypto API 1.4 PQC Extension

Document number: AES 0119

Release Quality: Final

Issue Number: 1
Confidentiality: Non-confidential
Date of Issue: 28/01/2026

Copyright © 2024-2025 Arm Limited and/or its affiliates

FINAL RELEASE
This is an extension to the PSA Certified Crypto APl [PSA-CRYPT] specification.

This is a FINAL release: the proposed changes and interfaces are complete and finalized, and suitable for
product development.

Abstract

This document is part of the PSA Certified API specifications. It defines an extension to the Crypto API, to
introduce support for Post-Quantum Cryptography (PQC) algorithms.

Contents

About this document

Release information
License

References

Terms and abbreviations
Potential for change

Conventions
Typographical conventions
Numbers

Current status and anticipated changes

Feedback

1 Introduction

11
1.2

1.3
1.3.1
132

About Platform Security Architecture
About the Crypto API PQC Extension

Objectives for the PQC Extension
Background
Selection of algorithms

2 APl Reference

2.1

211
2.1.2

2.2
22.1
222

2.3
23.1
23.2

AES 0119
1.4 PQC Extension.1

Additional Hash algorithms
SHA-256-based hash algorithms
SHAKE-based hash algorithms

Module Lattice-based key encapsulation

Module Lattice-based key-encapsulation keys
Module Lattice-based key-encapsulation algorithm

Module Lattice-based signatures
Module Lattice-based signature keys
Module Lattice-based signature algorithms

Copyright © 2024-2025 Arm Limited and/or its affiliates
Non-confidential

11
11
11

11
11
12

14

14
14
14

15
15
17

18
18
21

Page i

24 Stateless Hash-based signatures 29

2.4.1 Stateless Hash-based signature keys 29
2.4.2 Stateless Hash-based signature algorithms 34
2.5 Leighton-Micali Signatures 42
2.51 Leighton-Micali Signature keys 42
2.5.2 lLeighton-Micali Signature algorithms 43
2.6 eXtended Merkle Signature Scheme 44
2.6.1 XMSS and XMSSMT keys 45
2.6.2 XMSS and XMSSMT algorithms 46
A Example header file 48
A1l psa/crypto.h 48
B Algorithm and key type encoding 50
B.1 Algorithm encoding 50
B.1.1 Hash algorithm encoding 50
B.1.2 Asymmetric signature algorithm encoding 50
B.1.3 Key-encapsulation algorithm encoding 51
B.2 Key encoding 51
B.2.1 Non-parameterized asymmetric key encoding 52
B.2.2 SLH-DSA key encoding 52
C Example macro implementations 53
Ci1 Algorithm macros 53
C.1.1 Updated macros 53
C.1.2 New macros 53
C2 Key type macros 54
D Document change history 56
D.1 Changes between Final 0 and Final 1 56
D.2 Changes between Beta 3 and Final O 56
D.3 Changes between Beta 2 and Beta 3 56
D.4 Changes between Beta 1 and Beta 2 56
D.5 Changes between Beta 0 and Beta 1 56
D.6 Beta release 57
AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page ii

1.4 PQC Extension.1 Non-confidential

Index of API elements 58

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page iii
1.4 PQC Extension.1 Non-confidential

About this document

Release information

The change history table lists the changes that have been made to this document.

Date
March 2025
June 2025

July 2025
September 2025

November 2025
January 2026

Version

Beta O

Beta 1

Beta 2
Beta 3

Final O
Final 1

Confidentiality
Non-confidential
Non-confidential

Non-confidential

Non-confidential

Non-confidential

Non-confidential

Table 1 Document revision history
Change
Initial release of the 1.3 PQC Extension
specification
Added clarifications
Fixes and clarifications

GlobalPlatform governance of PSA Certified
evaluation scheme

Finalize key formats

Fixes and clarifications

The detailed changes in each release are described in Document change history on page 56.

AES 0119
1.4 PQC Extension.1

Copyright © 2024-2025 Arm Limited and/or its affiliates Page iv
Non-confidential

PSA Certified Crypto API

Copyright © 2024-2025 Arm Limited and/or its affiliates. The copyright statement reflects the fact that
some draft issues of this document have been released, to a limited circulation.

License

Text and illustrations

Text and illustrations in this work are licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy of the
license, visit creativecommons.org/licenses/by-sa/4.0.

Grant of patent license. Subject to the terms and conditions of this license (both the CC BY-SA 4.0 Public License and this Patent
License), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as
stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Licensed Material,
where such license applies only to those patent claims licensable by such Licensor that are necessarily infringed by their
contribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such contribution(s) was
submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the
Licensed Material or a contribution incorporated within the Licensed Material constitutes direct or contributory patent infringement,
then any licenses granted to You under this license for that Licensed Material shall terminate as of the date such litigation is filed.

The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or
elsewhere. All rights reserved. Please visit arm.com/company/policies/trademarks for more information about Arm’s trademarks.

About the license

The language in the additional patent license is largely identical to that in section 3 of the Apache License, Version 2.0 (Apache 2.0),
with two exceptions:

1. Changes are made related to the defined terms, to align those defined terms with the terminology in CC BY-SA 4.0 rather
than Apache 2.0 (for example, changing “Work” to “Licensed Material”).

2. The scope of the defensive termination clause is changed from “any patent licenses granted to You” to “any licenses granted
to You”. This change is intended to help maintain a healthy ecosystem by providing additional protection to the community
against patent litigation claims.

To view the full text of the Apache 2.0 license, visit apache.org/licenses/LICENSE-2.0.
Source code

Source code samples in this work are licensed under the Apache License, Version 2.0 (the “License”); you may not use such samples
except in compliance with the License. You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS I1S” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under the License.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page v
1.4 PQC Extension.1 Non-confidential

https://creativecommons.org/licenses/by-sa/4.0
https://arm.com/company/policies/trademarks
https://apache.org/licenses/LICENSE-2.0
https://apache.org/licenses/LICENSE-2.0

References

This document refers to the following documents.

Table 2 Documents referenced by this document

Ref Document Number Title

[PSA-CRYPT] IHI 0086 PSA Certified Crypto API. arm-software.github.io/psa-api/crypto

[FIPS180-4] NIST, FIPS Publication 180-4: Secure Hash Standard (SHS), August
2015. doi.org/10.6028/NIST.FIPS.180-4

[FIPS202] NIST, FIPS Publication 202: SHA-3 Standard: Permutation-Based

Hash and Extendable-Output Functions, August 2015.
doi.org/10.6028/NIST.FIPS.202

[FIPS203] NIST, FIPS Publication 203: Module-Lattice-Based
Key-Encapsulation Mechanism Standard, August 2024.
doi.org/10.6028/NIST.FIPS.203

[FIPS204] NIST, FIPS Publication 204: Module-Lattice-Based Digital Signature
Standard, August 2024. doi.org/10.6028/NIST.FIPS.204

[FIPS205] NIST, FIPS Publication 205: Stateless Hash-Based Digital Signature
Standard, August 2024. doi.org/10.6028/NIST.FIPS.205

[LAMPS-MLKEM] IETF, Internet X.509 Public Key Infrastructure - Algorithm Identifiers

for Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM),
July 2025 (Draft 11). datatracker.ietf.org/doc/html/draft-ietf-
lamps-kyber-certificates-11

[RFC9881] I[ETF, Internet X.509 Public Key Infrastructure — Algorithm
Identifiers for the Module-Lattice-Based Digital Signature Algorithm
(ML-DSA), October 2025. tools.ietf.org/html/rfc9881

[RFC9909] IETF, Internet X.509 Public Key Infrastructure — Algorithm
Identifiers for the Stateless Hash-Based Digital Signature Algorithm
(SLH-DSA), December 2025. tools.ietf.org/html/rfc2909

[NIST-PQC] NIST, Post-Quantum Cryptography, PQC Project page.
nist.gov/pqcrypto
[SP800-208] NIST, NIST Special Publication 800-208: Recommendation for

Stateful Hash-Based Signature Schemes, October 2020.
doi.org/10.6028/NIST.SP.800-208

[RFC8391] IRTF, XMSS: eXtended Merkle Signature Scheme, May 2018.
tools.ietf.org/html/rfc8391

[RFC8554] IRTF, Leighton-Micali Hash-Based Signatures, April 2019.
tools.ietf.org/html/rfc8554

[RFC9858] IRTF, Additional Parameter sets for HSS/LMS Hash-Based

Signatures, October 2025. tools.ietf.org/html/rfc2858

continues on next page

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page vi
1.4 PQC Extension.1 Non-confidential

https://arm-software.github.io/psa-api/crypto
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.205
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-kyber-certificates-11
https://datatracker.ietf.org/doc/html/draft-ietf-lamps-kyber-certificates-11
https://tools.ietf.org/html/rfc9881
https://tools.ietf.org/html/rfc9909
https://nist.gov/pqcrypto
https://doi.org/10.6028/NIST.SP.800-208
https://tools.ietf.org/html/rfc8391
https://tools.ietf.org/html/rfc8554
https://tools.ietf.org/html/rfc9858

Ref

[RFC9802]

[SM3-draft]

[RFC9688]

[RFC8017]

[RFC8702]

Document Number

Table 2 - continued from previous page

Title

IETF, Use of the HSS and XMSS Hash-Based Signature Algorithms
in Internet X.509 Public Key Infrastructure, June 2025.
tools.ietf.org/html/rfc2802

Sean Shen, XiaoDong Lee, Ronald Henry Tse, Wong Wai Kit,
Paul Yang, The SM3 Cryptographic Hash Function (Draft 02), July
2018. datatracker.ietf.org/doc/html/draft-sca-cfrg-sm3-02

IETF, Use of the SHA3 One-Way Hash Functions in the
Cryptographic Message Syntax (CMS), November 2024.
tools.ietf.org/html/rfc?688.html

IETF, PKCS #1: RSA Cryptography Specifications Version 2.2,
November 2016. tools.ietf.org/html/rfc8017.html

IETF, Use of the SHAKE One-Way Hash Functions in the
Cryptographic Message Syntax (CMS), January 2020.
tools.ietf.org/html/rfc8702.html

Terms and abbreviations

This document uses the following terms and abbreviations.

Term

AEAD
Algorithm

API
Asymmetric

Authenticated
Encryption with
Associated Data (AEAD)

Byte
Cipher

Cryptoprocessor

Hash

AES 0119
1.4 PQC Extension.1

Table 3 Terms and abbreviations
Meaning

See Authenticated Encryption with Associated Data.

A finite sequence of steps to perform a particular operation.

In this specification, an algorithm is a cipher or a related function. Other texts
call this a cryptographic mechanism.

Application Programming Interface.
See Public-key cryptography.

A type of encryption that provides confidentiality and authenticity of data
using symmetric keys.

In this specification, a unit of storage comprising eight bits, also called an octet.
An algorithm used for encryption or decryption with a symmetric key.

The component that performs cryptographic operations. A cryptoprocessor
might contain a keystore and countermeasures against a range of physical and
timing attacks.

A cryptographic hash function, or the value returned by such a function.

continues on next page

Copyright © 2024-2025 Arm Limited and/or its affiliates
Non-confidential

Page vii

https://tools.ietf.org/html/rfc9802
https://datatracker.ietf.org/doc/html/draft-sca-cfrg-sm3-02
https://tools.ietf.org/html/rfc9688.html
https://tools.ietf.org/html/rfc8017.html
https://tools.ietf.org/html/rfc8702.html

Term

HMAC

IMPLEMENTATION DEFINED

Initialization vector (IV)

v
KDF
Key agreement

Key Derivation Function
(KDF)

Key identifier

Key policy

Key size

Key type

Keystore

Lifetime
MAC

Message Authentication
Code (MAC)

Message digest

Multi-part operation

Non-extractable key

Nonce

Persistent key

Post-Quantum
Cryptography (PQC)

PQC

AES 0119
1.4 PQC Extension.1

Table 3 - continued from previous page

Meaning

A type of MAC that uses a cryptographic key with a hash function.

Behavior that is not defined by the architecture, but is defined and
documented by individual implementations.

An additional input that is not part of the message. It is used to prevent an
attacker from making any correlation between cipher text and plain text.

This specification uses the term for such initial inputs in all contexts. For
example, the initial counter in CTR mode is called the IV.

See Initialization vector.
See Key Derivation Function.
An algorithm for two or more parties to establish a common secret key.

Key Derivation Function. An algorithm for deriving keys from secret material.

A reference to a cryptographic key. Key identifiers in the Crypto API are 32-bit
integers.

Key metadata that describes and restricts what a key can be used for.

The size of a key as defined by common conventions for each key type. For
keys that are built from several numbers of strings, this is the size of a
particular one of these numbers or strings.

This specification expresses key sizes in bits.
Key metadata that describes the structure and content of a key.

A hardware or software component that protects, stores, and manages
cryptographic keys.

Key metadata that describes when a key is destroyed.
See Message Authentication Code.

A short piece of information used to authenticate a message. It is created and
verified using a symmetric key.

A hash of a message. Used to determine if a message has been tampered.

An APl which splits a single cryptographic operation into a sequence of
separate steps.

A key with a key policy that prevents it from being read by ordinary means.

Used as an input for certain AEAD algorithms. Nonces must not be reused
with the same key because this can break a cryptographic protocol.

A key that is stored in protected non-volatile memory.

A cryptographic scheme that relies on mathematical problems that do not
have efficient algorithms for either classical or quantum computing.

See Post-Quantum Cryptography.

continues on next page

Copyright © 2024-2025 Arm Limited and/or its affiliates
Non-confidential

Page viii

Table 3 - continued from previous page

Term Meaning

PSA Platform Security Architecture

Public-key cryptography A type of cryptographic system that uses key pairs. A keypair consists of a
(secret) private key and a public key (not secret). A public-key cryptographic
algorithm can be used for key distribution and for digital signatures.

Salt Used as an input for certain algorithms, such as key derivations.

Signature The output of a digital signature scheme that uses an asymmetric keypair.
Used to establish who produced a message.

Single-part function An APl that implements the cryptographic operation in a single function call.

SPECIFICATION DEFINED Behavior that is defined by this specification.

Symmetric A type of cryptographic algorithm that uses a single key. A symmetric key can

be used with a block cipher or a stream cipher.

Volatile key A key that has a short lifespan and is guaranteed not to exist after a restart of
an application instance.

Potential for change
The contents of this specification are stable for version 1.4 PQC Extension.

The following may change in updates to the version 1.4 PQC Extension specification:

e Small optional feature additions.

e Clarifications.

Significant additions, or any changes that affect the compatibility of the interfaces defined in this
specification will only be included in a new major or minor version of the specification.

Conventions

Typographical conventions

The typographical conventions are:

italic Introduces special terminology, and denotes citations.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.
Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALS
Used for some common terms such as IMPLEMENTATION DEFINED.
Used for a few terms that have specific technical meanings, and are included in the Terms
and abbreviations.

Red text Indicates an open issue.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page ix
1.4 PQC Extension.1 Non-confidential

Blue text Indicates a link. This can be

e A cross-reference to another location within the document
e A URL, for example example.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by Ob, and hexadecimal numbers by
0x.

In both cases, the prefix and the associated value are written in a monospace font, for example oxFFFFo000.
To improve readability, long numbers can be written with an underscore separator between every four
characters, for example oxFFFF_o000_0000_0000. Ignore any underscores when interpreting the value of a
number.

Current status and anticipated changes

This document is at Release/Final quality status.

Feedback
We welcome feedback on the PSA Certified APl documentation.

If you have comments on the content of this book, visit github.com/arm-software/psa-api/issues to create a
new issue at the PSA Certified APl GitHub project. Give:

e The title (Crypto API).
The number and issue (AES 0119 1.4 PQC Extension.1).

The location in the document to which your comments apply.

A concise explanation of your comments.

We also welcome general suggestions for additions and improvements.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page x
1.4 PQC Extension.1 Non-confidential

https://example.com
https://github.com/arm-software/psa-api/issues

1 Introduction

1.1 About Platform Security Architecture

This document is one of a set of resources provided by Arm that can help organizations develop products
that meet the security requirements of GlobalPlatform’s PSA Certified evaluation scheme on Arm-based
platforms. The PSA Certified scheme provides a framework and methodology that helps silicon
manufacturers, system software providers and OEMs to develop more secure products. Arm resources that
support PSA Certified range from threat models, standard architectures that simplify development and
increase portability, and open-source partnerships that provide ready-to-use software. You can read more
about PSA Certified here at www.psacertified.org and find more Arm resources here at
developer.arm.com/platform-security-resources and www.trustedfirmware.org.

1.2 About the Crypto APl PQC Extension

This document defines an extension to the PSA Certified Crypto APl [PSA-CRYPT] specification, to provide
support for Post-Quantum Cryptography (PQC) algorithms. Specifically, for the NIST-approved schemes for
LMS, HSS, XMSS, XMSSMT ML-DSA, SLH-DSA, and ML-KEM.

This extension is now classed as Final, and it will be integrated into a future version of [PSA-CRYPT].

This specification must be read and implemented in conjunction with [PSA-CRYPT]. All of the conventions,
design considerations, and implementation considerations that are described in [PSA-CRYPT] apply to this
specification.

1.3 Objectives for the PQC Extension

1.3.1 Background

The justification for developing new public-key cryptography algorithms due to the risks posed by quantum
computing are described by NIST in Post-Quantum Cryptography [NIST-PQC].

Extract from Post-Quantum Cryptography:

In recent years, there has been a substantial amount of research on quantum computers — machines that
exploit quantum mechanical phenomena to solve mathematical problems that are difficult or intractable for
conventional computers. If large-scale quantum computers are ever built, they will be able to break many of
the public-key cryptosystems currently in use. This would seriously compromise the confidentiality and
integrity of digital communications on the Internet and elsewhere. The goal of post-quantum cryptography
(also called quantum-resistant cryptography) is to develop cryptographic systems that are secure against
both quantum and classical computers, and can interoperate with existing communications protocols and
networks.

The question of when a large-scale quantum computer will be built is a complicated one. While in the past it
was less clear that large quantum computers are a physical possibility, many scientists now believe it to be

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 11
1.4 PQC Extension.1 Non-confidential

https://www.psacertified.org
https://developer.arm.com/platform-security-resources
https://www.trustedfirmware.org

merely a significant engineering challenge. Some engineers even predict that within the next twenty or so
years sufficiently large quantum computers will be built to break essentially all public key schemes currently
in use. Historically, it has taken almost two decades to deploy our modern public key cryptography
infrastructure. Therefore, regardless of whether we can estimate the exact time of the arrival of the
quantum computing era, we must begin now to prepare our information security systems to be able to resist
quantum computing.

NIST is hosting a project to collaboratively develop, analyze, refine, and select cryptographic schemes that
are resistant to attack by both classical and quantum computing.

1.3.2 Selection of algorithms
NIST PQC project finalists

PQC algorithms that have been standardized are obvious candidates for inclusion in the Crypto API. The
current set of standards is the following:

e [IPS Publication 203: Module-Lattice-Based Key-Encapsulation Mechanism Standard [FIPS203]
e [IPS Publication 204: Module-Lattice-Based Digital Signature Standard [FIPS204]
e FIPS Publication 205: Stateless Hash-Based Digital Signature Standard [FIPS205]

Although the NIST standards for these algorithms are now finalized, the definition of keys in the Crypto API
depends on import and export formats. To maximize key exchange interoperability with other specifications,
the default export format in the Crypto API should be compatible with the definitions selected for X.509
public-key infrastructure. The IETF process for defining the X.509 key formats is nearing completion, and
decisions have be made regarding the key formats in the Crypto API.

Note:

Although PQC algorithms that are draft standards could be considered, any definitions for these
algorithms would be have to be considered experimental. Significant aspects of the algorithm, such as
approved parameter sets, can change before publication of a final standard, potentially requiring a
revision of any proposed interface for the Crypto API.

Other NIST-approved schemes

In NIST Special Publication 800-208: Recommendation for Stateful Hash-Based Signature Schemes
[SPB0O0-208], NIST approved use of the following stateful hash-based signature (HBS) schemes:

e The Leighton-Micali Signature (LMS) system, and its multi-tree variant, the Hierarchical Signature
System (HSS/LMS). These are defined in Leighton-Micali Hash-Based Signatures [RFC8554].

e The eXtended Merkle Signature Scheme (XMSS), and its multi-tree variant XMSSMT. These are defined
in XMSS: eXtended Merkle Signature Scheme [RFC8391].

HBS schemes have additional challenges with regards to deploying secure and resilient systems for signing
operations. These challenges, outlined in [SP800-208] sections §1.2 and §8.1, result in a recommendation
to use these schemes in a limited set of use cases, for example, authentication of firmware in constrained
devices.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 12
1.4 PQC Extension.1 Non-confidential

At present, it is not expected that the Crypto APl will be used to create HBS private keys, or to carry out
signing operations. However, there is a use case with the Crypto API for verification of HBS signatures.
Therefore, for these HBS schemes, the Crypto API only provides support for public keys and signature
verification algorithms.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 13
1.4 PQC Extension.1 Non-confidential

2 API Reference

Note:
The API defined in this specification will be integrated into a future version of [PSA-CRYPT].

This chapter is divided into sections for each of the PQC algorithms in the Crypto API:

2.1 Additional Hash algorithms

These algorithms extend those defined in PSA Certified Crypto APl [PSA-CRYPT] §10.2 Message digests. They
are used with the hash functions and multi-part operations, or combined with composite algorithms that are
parameterized by a hash algorithm.

2.1.1 SHA-256-based hash algorithms

PSA_ALG_SHA_256_192 (macro)
The SHA-256/192 message digest algorithm.
Added in version 1.3.

#define PSA_ALG_SHA_256_192 ((psa_algorithm_t)0x0200000E)

SHA-256/192 is the first 192 bits (24 bytes) of the SHA-256 output. SHA-256 is defined in [FIPS180-4].

2.1.2 SHAKE-based hash algorithms

PSA_ALG_SHAKE128_256 (macro)
The SHAKE128/256 message digest algorithm.
Added in version 1.3.

#define PSA_ALG_SHAKE128_256 ((psa_algorithm_t)0x02000016)
SHAKE128/256 is the first 256 bits (32 bytes) of the SHAKE128 output. SHAKE128 is defined in
[FIPS202].

This can be used as pre-hashing for SLH-DSA (see PSA_ALG_HASH_SLH_DSA()).

Note:

For other scenarios where a hash function based on SHA3 or SHAKE is required, SHA3-256 is
recommended. SHA3-256 has the same output size, and a theoretically higher security strength.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 14
1.4 PQC Extension.1 Non-confidential

PSA_ALG_SHAKE256_192 (macro)
The SHAKE256/192 message digest algorithm.
Added in version 1.3.

#define PSA_ALG_SHAKE256_192 ((psa_algorithm_t)0x02000017)

SHAKE256/192 is the first 192 bits (24 bytes) of the SHAKE256 output. SHAKE256 is defined in
[FIPS202].

PSA_ALG_SHAKE256_256 (macro)
The SHAKE256/256 message digest algorithm.
Added in version 1.3.

#define PSA_ALG_SHAKE256_256 ((psa_algorithm_t)0x02000018)

SHAKE256/256 is the first 256 bits (32 bytes) of the SHAKE256 output. SHAKE256 is defined in
[FIPS202].

2.2 Module Lattice-based key encapsulation

2.2.1 Module Lattice-based key-encapsulation keys

The Crypto API supports Module Lattice-based key encapsulation (ML-KEM) as defined in FIPS Publication
203: Module-Lattice-Based Key-Encapsulation Mechanism Standard [FIPS203].

PSA_KEY_TYPE_ML_KEM_KEY_PAIR (macro)
ML-KEM key pair: both the decapsulation and encapsulation key.
Added in version 1.3.

#define PSA_KEY_TYPE_ML_KEM_KEY_PAIR ((psa_key_type_t)0x7004)

The Crypto API treats decapsulation keys as private keys and encapsulation keys as public keys.

The bit size used in the attributes of an ML-KEM key is specified by the numeric part of the parameter-set
identifier defined in [FIPS203]. The parameter-set identifier refers to the key strength, and not to the actual
size of the key. The following values for the key_bits key attribute are used to select a specific ML-KEM
parameter set:

o ML-KEM-512 : key_bits = 512
e ML-KEM-768 : key_bits
e ML-KEM-1024 : key_bits = 1024

768

See also §8 in [FIPS203].

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 15
1.4 PQC Extension.1 Non-confidential

Compatible algorithms
® PSA_ALG_ML_KEM

Key format

An ML-KEM key pair is the (ek, dk) pair of encapsulation key and decapsulation key, which are generated
from two secret 32-byte seeds, d and z. See [FIPS203] §7.1.

In calls to psa_import_key () and psa_export_key (), the key-pair data format is the concatenation of the two
seed values: d || z.

Rationale

The formats for X.509 handling of ML-KEM keys are specified in Internet X.509 Public Key Infrastructure -
Algorithm Identifiers for Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) [LAMPS-MLKEM].
This permits a choice of three formats for the decapsulation key material, incorporating one, or both, of
the seed values d || z and the expanded decapsulation key dk.

The Crypto APl only supports the recommended format from [LAMPS-MLKEM], which is the
concatenated bytes of the seed values d || z, but without the ASN.1 encoding prefix. This suits the
constrained nature of Crypto APl implementations, where interoperation with expanded
decapsulation-key formats is not required.

See PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().

Implementation note

An implementation can optionally compute and store the dk value, which also contains the
encapsulation key ek, to accelerate operations that use the key. It is recommended that an
implementation retains the seed pair (d, z) with the decapsulation key, in order to export the key, or
copy the key to a different location.

Key derivation

A call to psa_key_derivation_output_key () will construct an ML-KEM key pair using the following process:

1. Draw 32 bytes of output as the seed value d.

2. Draw 32 bytes of output as the seed value z.

The key pair (ek, dk) is generated from the seed as defined by ML-KEM.KeyGen_internal() in [FIPS203] §6.1.

Implementation note

It is an implementation choice whether the seed-pair (d, z) is expanded to (ek, dk) at the point of
derivation, or only just before the key is used.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 16
1.4 PQC Extension.1 Non-confidential

PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY (macro)
ML-KEM public (encapsulation) key.
Added in version 1.3.

#define PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY ((psa_key_type_t)0x4004)

The bit size used in the attributes of an ML-KEM public key is the same as the corresponding private key.
See PSA_KEY_TYPE_ML_KEM_KEY_PAIR.

Compatible algorithms
e PSA_ALG_ML_KEM (encapsulation only)

Key format
An ML-KEM public key is the ek output of ML-KEM.KeyGen(), defined in [FIPS203] §7.1.

In calls to psa_import_key (), psa_export_key(), and psa_export_public_key(), the public-key data format is ek.

Rationale

This format is the same as that specified for X.509 in Internet X.509 Public Key Infrastructure - Algorithm
[dentifiers for Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) [LAMPS-MLKEM].

The size of the public key depends on the ML-KEM parameter set as follows:

Parameter set Public-key size in bytes

ML-KEM-512 800
ML-KEM-768 1184
ML-KEM-1024 1568

PSA_KEY_TYPE_IS_ML_KEM (macro)
Whether a key type is an ML-DSA key, either a key pair or a public key.
Added in version 1.3.

#define PSA_KEY_TYPE_IS_ML_KEM(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

2.2.2 Module Lattice-based key-encapsulation algorithm

These algorithms extend those defined in PSA Certified Crypto APl [PSA-CRYPT] §10.10 Key encapsulation,
for use with the key-encapsulation functions.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 17
1.4 PQC Extension.1 Non-confidential

Note:

The key-encapsulation functions, psa_encapsulate() and psa_decapsulate(), were introduced in
version 1.3 of the Crypto API.

ML-KEM is defined in FIPS Publication 203: Module-Lattice-Based Key-Encapsulation Mechanism Standard
[FIPS203]. ML-KEM has three parameter sets which provide differing security strengths.

The generation of an ML-KEM key depends on the full parameter specification. The encoding of each
parameter set into the key attributes is described in Module Lattice-based key-encapsulation keys on page 15.

See [FIPS203] §8 for details on the parameter sets.

PSA_ALG_ML_KEM (macro)
Module Lattice-based key-encapsulation mechanism (ML-KEM).
Added in version 1.3.

#define PSA_ALG_ML_KEM ((psa_algorithm_t)0x0c000200)
This is the ML-KEM key-encapsulation algorithm, defined by [FIPS203]. ML-KEM requires an ML-KEM key,
which determines the ML-KEM parameter set for the operation.

When using ML-KEM, the size of the encapsulation data returned by a call to psa_encapsulate() is as
follows:

Parameter set Encapsulation data size in bytes

ML-KEM-512 768
ML-KEM-768 1088
ML-KEM-1024 1568

The 32-byte shared output key that is produced by ML-KEM is pseudorandom. Although it can be used
directly as an encryption key, it is recommended to use the output key as an input to a key-derivation
operation to produce additional cryptographic keys.

Compatible key types

PSA_KEY_TYPE_ML_KEM_KEY_PAIR
PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY (encapsulation only)

2.3 Module Lattice-based signatures

2.3.1 Module Lattice-based signature keys

The Crypto API supports Module Lattice-based digital signatures (ML-DSA), as defined in FIPS Publication
204: Module-Lattice-Based Digital Signature Standard [FIPS204].

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 18
1.4 PQC Extension.1 Non-confidential

PSA_KEY_TYPE_ML_DSA_KEY_PAIR (macro)
ML-DSA key pair: both the private and public key.
Added in version 1.3.

#define PSA_KEY_TYPE_ML_DSA_KEY_PAIR ((psa_key_type_t)@x7002)

The bit size used in the attributes of an ML-DSA key is a measure of the security strength of the ML-DSA
parameter set in [FIPS204]:

e ML-DSA-44 : key_bits = 128
e ML-DSA-65 : key_bits
e ML-DSA-87 : key_bits = 256

192

See also §4 in [FIPS204].

Compatible algorithms

PSA_ALG_ML_DSA
PSA_ALG_HASH_ML_DSA
PSA_ALG_DETERMINISTIC_ML_DSA
PSA_ALG_DETERMINISTIC_HASH_ML_DSA

Key format

An ML-DSA key pair is the (pk, sk) pair of public key and secret key, which are generated from a secret
32-byte seed, &. See [FIPS204] §5.1.

In calls to psa_import_key () and psa_export_key (), the key-pair data format is the 32-byte seed €.

Rationale

The formats for X.509 handling of ML-DSA keys are specified in Internet X.509 Public Key Infrastructure
--- Algorithm Identifiers for the Module-Lattice-Based Digital Signature Algorithm (ML-DSA) [RFC2881]. This
permits a choice of three formats for the decapsulation key material, incorporating one, or both, of the
seed value £ and the expanded secret key sk.

The Crypto API only supports the recommended format from [RFC9881], which is the bytes of the seed
&, but without the ASN.1 encoding prefix. This suits the constrained nature of Crypto API
implementations, where interoperation with expanded secret-key formats is not required.

See PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().

Implementation note

An implementation can optionally compute and store the (pk, sk) values, to accelerate operations
that use the key. It is recommended that an implementation retains the seed & with the key pair, in
order to export the key, or copy the key to a different location.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 19
1.4 PQC Extension.1 Non-confidential

Key derivation

A call to psa_key_derivation_output_key () will draw 32 bytes of output and use these as the 32-byte
ML-DSA key-pair seed, £. The key pair (pk, sk) is generated from the seed as defined by
ML-DSA.KeyGen_internal() in [FIPS204] §6.1.

Implementation note

It is :an implementation choice whether the seed £ is expanded to (pk, sk) at the point of derivation,
or only just before the key is used.

PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (macro)
ML-DSA public key.
Added in version 1.3.

#define PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY ((psa_key_type_t)0x4002)

The bit size used in the attributes of an ML-DSA public key is the same as the corresponding private key.
See PSA_KEY_TYPE_ML_DSA_KEY_PAIR.

Compatible algorithms

PSA_ALG_ML_DSA
PSA_ALG_HASH_ML_DSA
PSA_ALG_DETERMINISTIC_ML_DSA
PSA_ALG_DETERMINISTIC_HASH_ML_DSA

Key format
An ML-DSA public key is the pk output of ML-DSA.KeyGen(), defined in [FIPS204] §5.1.

In calls to psa_import_key (), psa_export_key(), and psa_export_public_key(), the public-key data format is pk.

Rationale

This format is the same as that specified for X.509 in Internet X.509 Public Key Infrastructure --- Algorithm
Identifiers for the Module-Lattice-Based Digital Signature Algorithm (ML-DSA) [RFC9881].

The size of the public key depends on the ML-DSA parameter set as follows:

Parameter set Public-key size in bytes

ML-DSA-44 1312
ML-DSA-65 1952
ML-DSA-87 2592

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 20
1.4 PQC Extension.1 Non-confidential

PSA_KEY_TYPE_IS_ML_DSA (macro)
Whether a key type is an ML-DSA key, either a key pair or a public key.
Added in version 1.3.

#define PSA_KEY_TYPE_IS_ML_DSA(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

2.3.2 Module Lattice-based signature algorithms

These algorithms extend those defined in PSA Certified Crypto APl [PSA-CRYPT] §10.7 Asymmetric signature,
for use with the signature functions.

The ML-DSA signature and verification scheme is defined in FIPS Publication 204: Module-Lattice-Based
Digital Signature Standard [FIPS204]. ML-DSA has three parameter sets which provide differing security
strengths.

ML-DSA keys are large: 1.2-2.5kB for the public key, and triple that for the key pair. ML-DSA signatures are
much larger than those for RSA and Elliptic curve schemes, between 2.4kB and 4.6kB, depending on the
selected parameter set.

See [FIPS204] 84 for details on the parameter sets, and the key and generated signature sizes.

The generation of an ML-DSA key depends on the full parameter specification. The encoding of each
parameter set into the key attributes is described in Module Lattice-based signature keys on page 18.

[FIPS204] defines pure and pre-hashed variants of the signature scheme, which can either be hedged
(randomized) or deterministic. Four algorithms are defined to support these variants: PSA_ALG_ML_DSA,
PSA_ALG_DETERMINISTIC_ML_DSA, PSA_ALG_HASH_ML_DSA(), and PSA_ALG_DETERMINISTIC_HASH_ML_DSA().

Hedged and deterministic signatures

Hedging incorporates fresh randomness in the signature computation, resulting in distinct signatures on
every signing operation when given identical inputs. Deterministic signatures do not require additional
random data, and result in an identical signature for the same inputs.

Signature verification does not distinguish between a hedged and a deterministic signature. Either hedged
or deterministic algorithms can be used when verifying a signature.

When computing a signature, the key’s permitted-algorithm policy must match the requested algorithm,
treating hedged and deterministic versions as distinct. When verifying a signature, the hedged and
deterministic versions of each algorithm are considered equivalent when checking the key's
permitted-algorithm policy.

Note:

The hedged version provides message secrecy and some protection against side-channels. [FIPS204]
recommends that users should use the hedged version if either of these issues are a concern. The
deterministic variant should only be used if the implementation does not include any source of
randomness.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 21
1.4 PQC Extension.1 Non-confidential

Implementation note

[FIPS204] recommends that implementations use an approved random number generator to provide
the random value in the hedged version. However, it notes that use of the hedged variant with a
weak RNG is generally preferable to the deterministic variant.

Rationale

The use of fresh randomness, or not, when computing a signature seems like an implementation decision
based on the capability of the system, and its vulnerability to specific threats, following the
recommendations in [FIPS204].

However, the Crypto API gives distinct algorithm identifiers for the hedged and deterministic variants, to
enable an application use case to require a specific variant.

Pure and pre-hashed algorithms

The pre-hashed signature computation HashML-DSA generates distinct signatures to a pure signature
ML-DSA, with the same key and message hashing algorithm.

An ML-DSA signature can only be verified with an ML-DSA algorithm. A HashML-DSA signature can only be
verified with a HashML-DSA algorithm.

Table 4 lists the hash algorithm OIDs to use with the HashML-DSA algorithm. Note that for HashML-DSA

the DER-encoded OID includes the tag and length.

Hash algorithm

PSA_ALG_SHA_256

PSA_ALG_SHA_512_256
PSA_ALG_SHA 384
PSA_ALG_SHA_512
PSA_ALG_SHA3_256

PSA_ALG_SHA3_384
PSA_ALG_SHA3_512

AES 0119
1.4 PQC Extension.1

OID (dot notation)

2.16.840.1.101.3.4.2.1

2.16.840.1.101.3.4.2.6
2.16.840.1.101.3.4.2.2
2.16.840.1.101.3.4.2.3
2.16.840.1.101.3.4.2.8

2.16.840.1.101.3.4.2.9

2.16.840.1.101.3.4.2.10
PSA_ALG_SHAKE128 256 2.16.840.1.101.3.4.2.11

Copyright © 2024-2025 Arm Limited and/or its affiliates

Table 4 Hash algorithm OID to use in HashML-DSA

OID (ASN.1 hex)

0609608648016503040201

0609608648016503040206
0609608648016503040202
0609608648016503040203
0609608648016503040208

0609608648016503040209
060960864801650304020a
060960864801650304020b

Non-confidential

Reference

PKCS #1: RSA Cryptography
Specifications Version 2.2
[RFC8017] Appendix B.1

[RFC8017] Appendix B.1
[RFC8017] Appendix B.1
[RFC8017] Appendix B.1

Use of the SHA3 One-Way
Hash Functions in the
Cryptographic Message
Syntax (CMS) [RFC9688] §2

[RFC?688] §2
[RFC?2688] §2

Use of the SHAKE One-Way
Hash Functions in the
Cryptographic Message
Syntax (CMS) [RFC8702] §2

continues on next page

Page 22

https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc9688.html#section-2
https://datatracker.ietf.org/doc/html/rfc9688.html#section-2
https://datatracker.ietf.org/doc/html/rfc9688.html#section-2
https://datatracker.ietf.org/doc/html/rfc8702.html#section-2

Table 4 - continued from previous page

Hash algorithm OID (dot notation) OID (ASN.1 hex) Reference

PSA_ALG_SHAKE256 512 2.16.840.1.101.3.4.2.12 060960864801650304020c [RFC8702] §2

PSA_ALG_SM3 1.2.156.10197.1.504 06082a811ccf55018378 The SM3 Cryptographic Hash
Function (Draft 02)
[SM3-draft] §8.1.3

Contexts

All ML-DSA algorithms can be used with contexts, which enables domain-separation when signatures are
made of different message structures with the same key. Context values are arbitrary strings between zero
and 255 bytes in length.

e The signature functions without a context parameter provide a zero-length context when computing
or verifying ML-DSA signatures.

e To provide a context, use the psa_xxxx_with_context() signature functions with a context parameter,
such as psa_sign_message_with_context().

PSA_ALG_ML_DSA (macro)
Module lattice-based digital signature algorithm without pre-hashing (ML-DSA).
Added in version 1.3.

#define PSA_ALG_ML_DSA ((psa_algorithm_t) 0x06004400)

This algorithm can only be used with the message signature and verify functions. For example,
psa_sign_message() Or psa_verify_message_with_context().

This is the pure ML-DSA digital signature algorithm, defined by FIPS Publication 204: Module-Lattice-Based
Digital Signature Standard [FIPS204], using hedging. ML-DSA requires an ML-DSA key, which determines the
ML-DSA parameter set for the operation.

This algorithm is randomized: each invocation returns a different, equally valid signature. See the notes on
hedged signatures.

This algorithm has a context parameter. See the notes on ML-DSA contexts.

When PSA_ALG_ML_DSA is used as a permitted algorithm in a key policy, this permits:

e PSA_ALG_ML_DSA as the algorithm in a call to psa_sign_message() Or psa_sign_message_with_context().

e PSA_ALG_ML_DSA Or PSA_ALG_DETERMINISTIC_ML_DSA as the algorithm in a call to psa_verify_message() or
psa_verify_message_with_context().

Note:

To sign or verify the pre-computed hash of a message using ML-DSA, the HashML-DSA algorithms
(PSA_ALG_HASH_ML_DSA() and PSA_ALG_DETERMINISTIC_HASH_ML_DSA()) can also be used with
psa_sign_hash() and psa_verify_hash().

The signature produced by HashML-DSA is distinct from that produced by ML-DSA.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 23
1.4 PQC Extension.1 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8702.html#section-2

Compatible key types

PSA_KEY_TYPE_ML_DSA_KEY_PAIR
PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (signature verification only)

PSA_ALG_DETERMINISTIC_ML_DSA (macro)
Deterministic module lattice-based digital signature algorithm without pre-hashing (ML-DSA).
Added in version 1.3.

#define PSA_ALG_DETERMINISTIC ML_DSA ((psa_algorithm_t) 0x06004500)

This algorithm can only be used with the message signature and verify functions. For example,
psa_sign_message() Or psa_verify_message_with_context().

This is the pure ML-DSA digital signature algorithm, defined by FIPS Publication 204: Module-Lattice-Based
Digital Signature Standard [FIPS204], without hedging. ML-DSA requires an ML-DSA key, which determines
the ML-DSA parameter set for the operation.

This algorithm is deterministic: each invocation with the same inputs returns an identical signature.

A Warning

It is recommended to use the hedged PSA_ALG_ML_DSA algorithm instead, when supported by the
implementation. See the notes on deterministic signatures.

This algorithm has a context parameter. See the notes on ML-DSA contexts.
When PSA_ALG_DETERMINISTIC_ML_DSA is used as a permitted algorithm in a key policy, this permits:
e PSA_ALG_DETERMINISTIC_ML_DSA as the algorithm in a call to psa_sign_message() or
psa_sign_message_with_context().

® PSA_ALG_ML_DSA Or PSA_ALG_DETERMINISTIC_ML_DSA as the algorithm in a call to psa_verify_message() or
psa_verify_message_with_context().

Note:

To sign or verify the pre-computed hash of a message using ML-DSA, the HashML-DSA algorithms
(PSA_ALG_HASH_ML_DSA() and PSA_ALG_DETERMINISTIC_HASH_ML_DSA()) can also be used with
psa_sign_hash() and psa_verify_hash().

The signature produced by HashML-DSA is distinct from that produced by ML-DSA.

Compatible key types

PSA_KEY_TYPE_ML_DSA_KEY_PAIR
PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (signature verification only)

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 24
1.4 PQC Extension.1 Non-confidential

PSA_ALG_HASH_ML_DSA (macro)
Module lattice-based digital signature algorithm with pre-hashing (HashML-DSA).
Added in version 1.3.

#define PSA_ALG_HASH_ML_DSA(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding HashML-DSA signature algorithm, using hash_alg to pre-hash the message.
Unspecified if hash_alg is not a supported hash algorithm.

Description
This algorithm can be used with both the message and hash signature functions.

This is the pre-hashed ML-DSA digital signature algorithm, defined by FIPS Publication 204:
Module-Lattice-Based Digital Signature Standard [FIPS204], using hedging. ML-DSA requires an ML-DSA key,
which determines the ML-DSA parameter set for the operation.

Note:

For the pre-hashing, [FIPS204] §5.4 recommends the use of an approved hash function with an
equivalent, or better, security strength than the chosen ML-DSA parameter set.

Table 4 on page 22 lists the hash algorithm OID values to use when implementing HashML-DSA.

This algorithm is randomized: each invocation returns a different, equally valid signature. See the notes on
hedged signatures.

This algorithm has a context parameter. See the notes on ML-DSA contexts.

When PSA_ALG_HASH_ML_DSA() is used as a permitted algorithm in a key policy, this permits:

e PSA_ALG_HASH_ML_DSA() as the algorithm in a call to a message or hash signing function, such as
psa_sign_message() Or psa_sign_hash_with_context().

e PSA_ALG_HASH_ML_DSA() Or PSA_ALG_DETERMINISTIC_HASH_ML_DSA() as the algorithm in a call to a signature
verification function, such as psa_verify_message() Or psa_verify_hash()_with_context().

Note:
The signature produced by HashML-DSA is distinct from that produced by ML-DSA.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 25
1.4 PQC Extension.1 Non-confidential

Usage
This is a hash-and-sign algorithm. To calculate a signature, use one of the following approaches:

e Call psa_sign_message() Or psa_sign_message_with_context() with the message.

e Calculate the hash of the message with psa_hash_compute(), or with a multi-part hash operation, using
the hash_alg hash algorithm. Note that hash_alg can be extracted from the signature algorithm using
PSA_ALG_GET_HASH(sig_alg). Then sign the calculated hash either with psa_sign_hash() or, if the
protocol requires the use of a non-zero-length context, with psa_sign_hash_with_context().

Verifying a signature is similar, using psa_verify_message() or psa_verify_hash() instead of the signature
function, or psa_verify_message_with_context() Of psa_verify_hash_with_context() if a non-zero-=length
context has been used.

Compatible key types

PSA_KEY_TYPE_ML_DSA_KEY_PAIR
PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (signature verification only)

PSA_ALG_DETERMINISTIC_HASH_ML_DSA (macro)
Deterministic module lattice-based digital signature algorithm with pre-hashing (HashML-DSA).
Added in version 1.3.

#define PSA_ALG_DETERMINISTIC_HASH_ML_DSA(hash_alg) \
/* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding deterministic HashML-DSA signature algorithm, using hash_alg to pre-hash the message.
Unspecified if hash_alg is not a supported hash algorithm.

Description

This algorithm can be used with both the message and hash signature functions.

This is the pre-hashed ML-DSA digital signature algorithm, defined by FIPS Publication 204:
Module-Lattice-Based Digital Signature Standard [FIPS204], without hedging. ML-DSA requires an ML-DSA
key, which determines the ML-DSA parameter set for the operation.

Note:

For the pre-hashing, [FIPS204] §5.4 recommends the use of an approved hash function with an
equivalent, or better, security strength than the chosen ML-DSA parameter set.

Table 4 on page 22 lists the hash algorithm OID values to use when implementing HashML-DSA.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 26
1.4 PQC Extension.1 Non-confidential

This algorithm is deterministic: each invocation with the same inputs returns an identical signature.

A Warning

It is recommended to use the hedged PSA_ALG_HASH_ML_DSA() algorithm instead, when supported by the
implementation. See the notes on deterministic signatures.

This algorithm has a context parameter. See the notes on ML-DSA contexts.

When PSA_ALG_DETERMINISTIC_HASH_ML_DSA() is used as a permitted algorithm in a key policy, this permits:

e PSA_ALG_DETERMINISTIC_HASH_ML_DSA() as the algorithm in a call to a message or hash signing function,
such as psa_sign_message() Or psa_sign_hash_with_context().

® PSA_ALG_HASH_ML_DSA() Or PSA_ALG_DETERMINISTIC_HASH_ML_DSA() as the algorithm in a call to a signature
verification function, such as psa_verify_message() Or psa_verify_hash()_with_context().

Note:
The signature produced by HashML-DSA is distinct from that produced by ML-DSA.

Usage
See PSA_ALG_HASH_ML_DSA() for example usage.

Compatible key types

PSA_KEY_TYPE_ML_DSA_KEY_PAIR
PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (signature verification only)

PSA_ALG_IS_ML_DSA (macro)
Whether the specified algorithm is ML-DSA, without pre-hashing.
Added in version 1.3.

#define PSA_ALG_IS_ML_DSA(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns

1if algis a pure ML-DSA algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

Description

Note:

Use PSA_ALG_IS_HASH_ML_DSA() to determine if an algorithm identifier is a HashML-DSA algorithm.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 27
1.4 PQC Extension.1 Non-confidential

PSA_ALG_IS_HASH_ML_DSA (macro)
Whether the specified algorithm is HashML-DSA.
Added in version 1.3.

#define PSA_ALG_IS_HASH_ML_DSA(alg) /* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns
1if alg is a HashML-DSA algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

Description

Note:

Use PSA_ALG_IS_ML_DSA() to determine if an algorithm identifier is a pre-hashed ML-DSA algorithm.

PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA (macro)

Whether the specified algorithm is deterministic HashML-DSA.
Added in version 1.3.

#define PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA(alg) \

/* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1if alg is a deterministic HashML-DSA algorithm, @ otherwise.
This macro can return either @ or 1 if alg is not a supported algorithm identifier.

Description

See also PSA_ALG_IS_HASH_ML_DSA() and PSA_ALG_IS_HEDGED_HASH_ML_DSA().

PSA_ALG_IS_HEDGED_HASH_ML_DSA (macro)
Whether the specified algorithm is hedged HashML-DSA.
Added in version 1.3.

#define PSA_ALG_IS_HEDGED_HASH_ML_DSA(alg) /* specification-defined value */

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 28
1.4 PQC Extension.1 Non-confidential

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1if alg is a hedged HashML-DSA algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

Description
See also PSA_ALG_IS_HASH_ML_DSA() and PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA().

2.4 Stateless Hash-based signatures

2.4.1 Stateless Hash-based signature keys

The Crypto API supports Stateless Hash-based digital signatures (SLH-DSA), as defined in FIPS Publication
205: Stateless Hash-Based Digital Signature Standard [FIPS205].

psa_slh_dsa_family_t (typedef)
The type of identifiers of a Stateless hash-based DSA parameter set.
Added in version 1.3.

typedef uint8_t psa_slh_dsa_family_t;

The parameter-set identifier is required to create an SLH-DSA key using the
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR() O PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY() macros.

The specific SLH-DSA parameter set within a family is identified by the key_bits attribute of the key.
The range of SLH-DSA family identifier values is divided as follows:

0x00 Reserved. Not allocated to an SLH-DSA parameter-set family.

0x01 - ox7f
SLH-DSA parameter-set family identifiers defined by this standard. Unallocated values in this
range are reserved for future use.

0x80 - Oxff
Invalid. Values in this range must not be used.

The least significant bit of an SLH-DSA family identifier is a parity bit for the whole key type. See SLH-DSA
key encoding on page 52 for details of the encoding of asymmetric key types.

PSA_KEY_TYPE_SLH_DSA_KEY_PAIR (macro)
SLH-DSA key pair: both the private key and public key.
Added in version 1.3.

#define PSA_KEY_TYPE_SLH_DSA KEY_PAIR(set) /* specification-defined value */

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 29
1.4 PQC Extension.1 Non-confidential

Parameters

set A value of type psa_slh_dsa_family_t that identifies the SLH-DSA
parameter-set family to be used.

Description

The bit size used in the attributes of an SLH-DSA key pair is the bit-size of each component in the
SLH-DSA keys defined in [FIPS205]. That is, for a parameter set with security parameter n, the bit-size in
the key attributes is 8n. See the documentation of each SLH-DSA parameter-set family for details.

Compatible algorithms

PSA_ALG_SLH_DSA
PSA_ALG_HASH_SLH_DSA
PSA_ALG_DETERMINISTIC_SLH_DSA
PSA_ALG_DETERMINISTIC_HASH_SLH_DSA

Key format

A SLH-DSA key pair is defined in [FIPS205] §9.1 as the four n-byte values, SK .seed, SK .prf, PK .seed, and
PK root, where n is the security parameter.

In calls to psa_import_key () and psa_export_key (), the key-pair data format is the concatenation of the four
octet strings:

SK.seed || SK.prf || PK.seed || PK.root

Rationale

This format is the same as that specified for X.509 in Internet X.509 Public Key Infrastructure --- Algorithm
Identifiers for the Stateless Hash-Based Digital Signature Algorithm (SLH-DSA) [RFC2909].

See PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY for the data format used when exporting the public key with
psa_export_public_key().

Key derivation

A call to psa_key_derivation_output_key () will draw output bytes as follows:
e n bytes are drawn as SK .seed.
e n bytes are drawn as SK .prf.

e n bytes are drawn as PK .seed.

Here, n is the security parameter for the selected SLH-DSA parameter set.

The private key (SK.seed, SK .prf, PK .seed, PK .root) is generated from these values as defined by
slh_keygen_internal() in [FIPS205] §9.1.

PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY (macro)
SLH-DSA public key.
Added in version 1.3.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 30
1.4 PQC Extension.1 Non-confidential

#define PSA_KEY_TYPE_SLH_DSA PUBLIC_KEY(set) /* specification-defined value */

Parameters
set A value of type psa_slh_dsa_family_t that identifies the SLH-DSA
parameter-set family to be used.
Description

The bit size used in the attributes of an SLH-DSA public key is the same as the corresponding private key.
See PSA_KEY_TYPE_SLH_DSA_KEY_PAIR() and the documentation of each SLH-DSA parameter-set family for
details.

Compatible algorithms

PSA_ALG_SLH_DSA
PSA_ALG_HASH_SLH_DSA
PSA_ALG_DETERMINISTIC_SLH_DSA
PSA_ALG_DETERMINISTIC_HASH_SLH_DSA

Key format

A SLH-DSA public key is defined in [FIPS205] §9.1 as two n-byte values, PK .seed and PK .root, where n is
the security parameter.

In calls to psa_import_key (), psa_export_key(), and psa_export_public_key (), the public-key data format is
the concatenation of the two octet strings:

PK seed || PK.root

Rationale

This format is the same as that specified for X.509 in Internet X.509 Public Key Infrastructure --- Algorithm
Identifiers for the Stateless Hash-Based Digital Signature Algorithm (SLH-DSA) [RFC2909].

PSA_SLH_DSA_FAMILY_SHA2_S (macro)
SLH-DSA family for the SLH-DSA-SHA2-NNNs parameter sets.
Added in version 1.3.

#define PSA_SLH_DSA_FAMILY_SHA2_S ((psa_slh_dsa_family_t) ©0x@2)

This family comprises the following parameter sets:

e SLH-DSA-SHA2-128s : key_bits = 128

o SLH-DSA-SHA2-192s : key_bits = 192

o SILH-DSA-SHA2-256s : key_bits = 256
They are defined in [FIPS205].
AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 31

1.4 PQC Extension.1 Non-confidential

PSA_SLH_DSA_FAMILY_SHA2_F (macro)
SLH-DSA family for the SLH-DSA-SHA2-NNNf parameter sets.
Added in version 1.3.

#define PSA_SLH_DSA_FAMILY_SHA2_F ((psa_slh_dsa_family_t) 0x04)

This family comprises the following parameter sets:
e SLH-DSA-SHA2-128f : key_bits = 128
e SLH-DSA-SHA2-192f : key_bits
e SLH-DSA-SHA2-256f : key_bits = 256

192

They are defined in [FIPS205].

PSA_SLH_DSA_FAMILY_SHAKE_S (macro)
SLH-DSA family for the SLH-DSA-SHAKE-NNNs parameter sets.
Added in version 1.3.

#define PSA_SLH_DSA_FAMILY_SHAKE_S ((psa_slh_dsa_family_t) @x@b)

This family comprises the following parameter sets:

o SILH-DSA-SHAKE-128s : key_bits = 128
o SLH-DSA-SHAKE-192s : key_bits = 192
o SIH-DSA-SHAKE-256s : key_bits

256

They are defined in [FIPS205].

PSA_SLH_DSA_FAMILY_SHAKE_F (macro)
SLH-DSA family for the SLH-DSA-SHAKE-NNNf parameter sets.
Added in version 1.3.

#define PSA_SLH_DSA_FAMILY_SHAKE_F ((psa_slh_dsa_family_t) @xed)

This family comprises the following parameter sets:

o SLH-DSA-SHAKE-128f : key_bits
e SLH-DSA-SHAKE-192f : key_bits = 192
o SLH-DSA-SHAKE-256f : key_bits = 256

128

They are defined in [FIPS205].

PSA_KEY_TYPE_IS_SLH_DSA (macro)
Whether a key type is an SLH-DSA key, either a key pair or a public key.
Added in version 1.3.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates
1.4 PQC Extension.1 Non-confidential

Page 32

#define PSA_KEY_TYPE_IS_SLH _DSA(type) /* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR (macro)
Whether a key type is an SLH-DSA key pair.
Added in version 1.3.

#define PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR(type) \
/* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY (macro)
Whether a key type is an SLH-DSA public key.
Added in version 1.3.

#define PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY(type) \
/* specification-defined value */

Parameters

type A key type: a value of type psa_key_type_t.

PSA_KEY_TYPE_SLH_DSA_GET_FAMILY (macro)
Extract the parameter-set family from an SLH-DSA key type.
Added in version 1.3.

#define PSA_KEY_TYPE_SLH_DSA_GET_FAMILY(type) /* specification-defined value */

Parameters

type An SLH-DSA key type: a value of type psa_key_type_t such that
PSA_KEY_TYPE_IS_SLH_DSA(type) is true.

Returns: psa_dh_family_t

The SLH-DSA parameter-set family id, if type is a supported SLH-DSA key. Unspecified if type is not a
supported SLH-DSA key.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 33
1.4 PQC Extension.1 Non-confidential

2.4.2 Stateless Hash-based signature algorithms

These algorithms extend those defined in PSA Certified Crypto APl [PSA-CRYPT] §10.7 Asymmetric signhature,
for use with the signature functions.

The SLH-DSA signature and verification scheme is defined in FIPS Publication 205: Stateless Hash-Based
Digital Signature Standard [FIPS205]. SLH-DSA has twelve parameter sets which provide differing security
strengths, trade-off between signature size and computation cost, and selection between SHA2 and
SHAKE-based hashing.

SLH-DSA keys are fairly compact, 32, 48, or 64 bytes for the public key, and double that for the key pair.
SLH-DSA signatures are much larger than those for RSA and Elliptic curve schemes, between 7.8kB and
49kB depending on the selected parameter set. An SLH-DSA signature has the structure described in
[FIPS205] §9.2, Figure 17.

See [FIPS205] §11 for details on the parameter sets, and the public key and generated signature sizes.

The generation of an SLH-DSA key depends on the full parameter specification. The encoding of each
parameter set into the key attributes is described in Stateless Hash-based signature keys on page 29.

[FIPS205] defines pure and pre-hashed variants of the signature scheme, which can either be hedged
(randomized) or deterministic. Four algorithms are defined to support these variants: PSA_ALG_SLH_DSA,
PSA_ALG_DETERMINISTIC_SLH_DSA, PSA_ALG_HASH_SLH_DSA(), and PSA_ALG_DETERMINISTIC_HASH_SLH_DSA().

Hedged and deterministic signatures

Hedging incorporates fresh randomness in the signature computation, resulting in distinct signatures on
every signing operation when given identical inputs. Deterministic signatures do not require additional
random data, and result in an identical signature for the same inputs.

Signature verification does not distinguish between a hedged and a deterministic signature. Either hedged
or deterministic algorithms can be used when verifying a signature.

When computing a signature, the key’s permitted-algorithm policy must match the requested algorithm,
treating hedged and deterministic versions as distinct. When verifying a signature, the hedged and
deterministic versions of each algorithm are considered equivalent when checking the key's
permitted-algorithm policy.

Note:

The hedged version provides message secrecy and some protection against side-channels. [FIPS205]
recommends that users should use the hedged version if either of these issues are a concern. The
deterministic variant should only be used if the implementation does not include any source of
randomness.

Implementation note

[FIPS205] recommends that implementations use an approved random number generator to provide
the random value in the hedged version. However, it notes that use of the hedged variant with a
weak RNG is generally preferable to the deterministic variant.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 34
1.4 PQC Extension.1 Non-confidential

Rationale

The use of fresh randomness, or not, when computing a signature seems like an implementation decision
based on the capability of the system, and its vulnerability to specific threats, following the
recommendations in [FIPS205].

However, the Crypto API gives distinct algorithm identifiers for the hedged and deterministic variants for

the following reasons:

e [FIPS205] §9.1 recommends that SLH-DSA signing keys are only used to compute either
deterministic, or hedged, signatures, but not both. Supporting this recommendation requires
separate algorithm identifiers, and requiring an exact policy match for signature computation.

e Enable an application use case to require a specific variant.

Pure and pre-hashed algorithms

The pre-hashed signature computation HashSLH-DSA generates distinct signatures to a pure signature
SLH-DSA, with the same key and message hashing algorithm.

An SLH-DSA signature can only be verified with an SLH-DSA algorithm. A HashSLH-DSA signature can
only be verified with a HashSLH-DSA algorithm.

Table 5 lists the hash algorithm OIDs to use with the HashSLH-DSA algorithm. Note that for HashML-DSA

the DER-encoded OID includes the tag and length.

Hash algorithm

PSA_ALG_SHA_256

PSA_ALG_SHA_512_256
PSA_ALG_SHA 384
PSA_ALG_SHA_ 512

PSA_ALG_SHA3_256

PSA_ALG_SHA3_384

PSA_ALG_SHA3_512

OID (dot notation)

2.16.840.1.101.3.4.2.1

2.16.840.1.101.3.4.2.6
2.16.840.1.101.3.4.2.2
2.16.840.1.101.3.4.2.3
2.16.840.1.101.3.4.2.8

2.16.840.1.101.3.4.2.9
2.16.840.1.101.3.4.2.10

PSA_ALG_SHAKE128 256 2.16.840.1.101.3.4.2.11

PSA_ALG_SHAKE256 512 2.16.840.1.101.3.4.2.12

AES 0119
1.4 PQC Extension.1

Copyright © 2024-2025 Arm Limited and/or its affiliates

Table 5 Hash algorithm OID to use in HashSLH-DSA

OID (ASN.1 hex)

0609608648016503040201

0609608648016503040206
0609608648016503040202
0609608648016503040203
0609608648016503040208

0609608648016503040209
060960864801650304020a
060960864801650304020b

060960864801650304020cC

Non-confidential

Reference

PKCS #1: RSA Cryptography
Specifications Version 2.2
[RFC8017] Appendix B.1

[RFC8017] Appendix B.1
[RFC8017] Appendix B.1
[RFC8017] Appendix B.1

Use of the SHA3 One-Way
Hash Functions in the
Cryptographic Message
Syntax (CMS) [RFC9688] §2

[RFC?688] §2
[RFC?688] §2

Use of the SHAKE One-Way
Hash Functions in the
Cryptographic Message
Syntax (CMS) [RFEC8702] §2

[RFC8702] §2

continues on next page

Page 35

https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc8017.html#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc9688.html#section-2
https://datatracker.ietf.org/doc/html/rfc9688.html#section-2
https://datatracker.ietf.org/doc/html/rfc9688.html#section-2
https://datatracker.ietf.org/doc/html/rfc8702.html#section-2
https://datatracker.ietf.org/doc/html/rfc8702.html#section-2

Table 5 - continued from previous page

Hash algorithm OID (dot notation) OID (ASN.1 hex) Reference

PSA_ALG_SM3 1.2.156.10197.1.504 06082a811ccf55018378 The SM3 Cryptographic Hash
Function (Draft 02)
[SM3-draft] §8.1.3

Contexts

All SLH-DSA algorithms can be used with contexts, which enables domain-separation when signatures are
made of different message structures with the same key. Context values are arbitrary strings between zero
and 255 bytes in length.

e The signature functions without a context parameter provide a zero-length context when computing
or verifying SLH-DSA signatures.

e To provide a context, use the psa_xxxx_with_context() signature functions with a context parameter,
such as psa_sign_message_with_context().

PSA_ALG_SLH_DSA (macro)
Stateless hash-based digital signature algorithm without pre-hashing (SLH-DSA).
Added in version 1.3.

#define PSA_ALG_SLH_DSA ((psa_algorithm_t) 0x06004000)

This algorithm can only be used with the message signature functions. For example, psa_sign_message() or
psa_verify_message_with_context().

This is the pure SLH-DSA digital signature algorithm, defined by FIPS Publication 205: Stateless Hash-Based
Digital Signature Standard [FIPS205], using hedging. SLH-DSA requires an SLH-DSA key, which determines
the SLH-DSA parameter set for the operation.

This algorithm is randomized: each invocation returns a different, equally valid signature. See the notes on
hedged signatures.

This algorithm has a context parameter. See the notes on SLH-DSA contexts.

When PSA_ALG_SLH_DSA is used as a permitted algorithm in a key policy, this permits:

e PSA_ALG_SLH_DSA as the algorithm in a call to psa_sign_message() Or psa_sign_message_with_context().

® PSA_ALG_SLH_DSA Or PSA_ALG_DETERMINISTIC_SLH_DSA as the algorithm in a call to psa_verify_message()
Or psa_verify_message_with_context().

Note:

To sign or verify the pre-computed hash of a message using SLH-DSA, the HashSLH-DSA algorithms
(PSA_ALG_HASH_SLH_DSA() and PSA_ALG_DETERMINISTIC_HASH_SLH_DSA()) can also be used with
psa_sign_hash() and psa_verify_hash().

The signature produced by HashSLH-DSA is distinct from that produced by SLH-DSA.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 36
1.4 PQC Extension.1 Non-confidential

Compatible key types

PSA_KEY_TYPE_SLH_DSA_KEY_PAIR()
PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY () (signature verification only)

PSA_ALG_DETERMINISTIC_SLH_DSA (macro)
Deterministic stateless hash-based digital signature algorithm without pre-hashing (SLH-DSA).
Added in version 1.3.

#define PSA_ALG_DETERMINISTIC_SLH DSA ((psa_algorithm_t) 0x06004100)
This algorithm can only be used with the message signature functions. For example, psa_sign_message() or

psa_verify_message_with_context().

This is the pure SLH-DSA digital signature algorithm, defined by [FIPS205], without hedging. SLH-DSA
requires an SLH-DSA key, which determines the SLH-DSA parameter set for the operation.

This algorithm is deterministic: each invocation with the same inputs returns an identical signature.

A Warning

It is recommended to use the hedged PsA_ALG_SLH_DSA algorithm instead, when supported by the
implementation. See the notes on deterministic signatures.

This algorithm has a context parameter. See the notes on SLH-DSA contexts.
When PSA_ALG_DETERMINISTIC_SLH_DSA is used as a permitted algorithm in a key policy, this permits:
e PSA_ALG_DETERMINISTIC_SLH_DSA as the algorithm in a call to psa_sign_message() or
psa_sign_message_with_context().

e PSA_ALG_SLH_DSA Or PSA_ALG_DETERMINISTIC_SLH_DSA as the algorithm in a call to psa_verify_message()
Or psa_verify_message_with_context().

Note:

To sign or verify the pre-computed hash of a message using SLH-DSA, the HashSLH-DSA algorithms
(PSA_ALG_HASH_SLH_DSA() and PSA_ALG_DETERMINISTIC HASH_SLH_DSA()) can also be used with
psa_sign_hash() and psa_verify_hash().

The signature produced by HashSLH-DSA is distinct from that produced by SLH-DSA.

Compatible key types

PSA_KEY_TYPE_SLH_DSA_KEY_PAIR()
PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY() (signature verification only)

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 37
1.4 PQC Extension.1 Non-confidential

PSA_ALG_HASH_SLH_DSA (macro)
Stateless hash-based digital signature algorithm with pre-hashing (HashSLH-DSA).
Added in version 1.3.

#define PSA_ALG_HASH_SLH_DSA(hash_alg) /* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding HashSLH-DSA signature algorithm, using hash_alg to pre-hash the message.
Unspecified if hash_alg is not a supported hash algorithm.

Description

This algorithm can be used with both the message and hash signature functions.

This is the pre-hashed SLH-DSA digital signature algorithm, defined by [FIPS205], using hedging. SLH-DSA
requires an SLH-DSA key, which determines the SLH-DSA parameter set for the operation.

Note:

For the pre-hashing, [FIPS205] §10.2 recommends the use of an approved hash function with an
equivalent, or better, security strength than the chosen SLH-DSA parameter set.

Table 5 on page 35 lists the hash algorithm OID values to use when implementing HashSLH-DSA.

This algorithm is randomized: each invocation returns a different, equally valid signature. See the notes on
hedged signatures.

This algorithm has a context parameter. See the notes on SLH-DSA contexts.

When PSA_ALG_HASH_SLH_DSA() is used as a permitted algorithm in a key policy, this permits:

e PSA_ALG_HASH_SLH_DSA() as the algorithm in a call to a message or hash signing function, such as
psa_sign_message() Or psa_sign_hash_with_context().

e PSA_ALG_HASH_SLH_DSA() Or PSA_ALG_DETERMINISTIC_HASH_SLH_DSA() as the algorithm in a call to a
signature verification function, such as psa_verify_message() Or psa_verify_hash()_with_context().

Note:
The signature produced by HashSLH-DSA is distinct from that produced by SLH-DSA.

Usage
This is a hash-and-sign algorithm. To calculate a signature, use one of the following approaches:

e Call psa_sign_message() Or psa_sign_message_with_context() with the message.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 38
1.4 PQC Extension.1 Non-confidential

e Calculate the hash of the message with psa_hash_compute(), or with a multi-part hash operation, using
the hash_alg hash algorithm. Note that hash_alg can be extracted from the signature algorithm using
PSA_ALG_GET_HASH(sig_alg). Then sign the calculated hash either with psa_sign_hash() or, if the
protocol requires the use of a non-zero-length context, with psa_sign_hash_with_context().

Verifying a signature is similar, using psa_verify_message() Or psa_verify_hash() instead of the signature
function, or psa_verify_message_with_context() Or psa_verify_hash_with_context() if a non-zero-=length
context has been used.

Compatible key types

PSA_KEY_TYPE_SLH_DSA_KEY_PAIR()
PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY() (signature verification only)

PSA_ALG_DETERMINISTIC_HASH_SLH_DSA (macro)
Deterministic stateless hash-based digital signature algorithm with pre-hashing (HashSLH-DSA).
Added in version 1.3.

#define PSA_ALG_DETERMINISTIC_HASH_SLH_DSA(hash_alg) \
/* specification-defined value */

Parameters
hash_alg A hash algorithm: a value of type psa_algorithm_t such that
PSA_ALG_IS_HASH(hash_alg) is true. This includes PSA_ALG_ANY_HASH
when specifying the algorithm in a key policy.
Returns

The corresponding deterministic HashSLH-DSA signature algorithm, using hash_alg to pre-hash the
message.

Unspecified if hash_alg is not a supported hash algorithm.
Description
This algorithm can be used with both the message and hash signature functions.

This is the pre-hashed SLH-DSA digital signature algorithm, defined by [FIPS205], without hedging.
SLH-DSA requires an SLH-DSA key, which determines the SLH-DSA parameter set for the operation.

Note:

For the pre-hashing, [FIPS205] §10.2 recommends the use of an approved hash function with an
equivalent, or better, security strength than the chosen SLH-DSA parameter set.

Table 5 on page 35 lists the hash algorithm OID values to use when implementing HashSLH-DSA.

This algorithm is deterministic: each invocation with the same inputs returns an identical signature.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 39
1.4 PQC Extension.1 Non-confidential

A Warning

It is recommended to use the hedged PSA_ALG_HASH_SLH_DSA() algorithm instead, when supported by the
implementation. See the notes on deterministic signatures.

This algorithm has a context parameter. See the notes on SLH-DSA contexts.

When PSA_ALG_DETERMINISTIC_HASH_SLH_DSA() is used as a permitted algorithm in a key policy, this permits:

® PSA_ALG_DETERMINISTIC_HASH_SLH_DSA() as the algorithm in a call to psa_sign_message() and
psa_sign_hash().

e PSA_ALG_HASH_SLH_DSA() Or PSA_ALG_DETERMINISTIC_HASH_SLH_DSA() as the algorithm in a call to
psa_verify_message() and psa_verify_hash().

Note:
The signature produced by HashSLH-DSA is distinct from that produced by SLH-DSA.

Usage
See PSA_ALG_HASH_SLH_DSA() for example usage.

Compatible key types

PSA_KEY_TYPE_SLH_DSA_KEY_PAIR()
PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY() (signature verification only)

PSA_ALG_IS_SLH_DSA (macro)
Whether the specified algorithm is SLH-DSA.
Added in version 1.3.

#define PSA_ALG_IS_SLH _DSA(alg) /* specification-defined value */

Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1if alg is an SLH-DSA algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

PSA_ALG_IS_HASH_SLH_DSA (macro)
Whether the specified algorithm is HashSLH-DSA.
Added in version 1.3.

#define PSA_ALG_IS_HASH_SLH_DSA(alg) /* specification-defined value */

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 40
1.4 PQC Extension.1 Non-confidential

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns
1if alg is a HashSLH-DSA algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA(nnaCFO)
Whether the specified algorithm is deterministic HashSLH-DSA.
Added in version 1.3.

#define PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA(alg) \
/* specification-defined value */

Parameters

alg An algorithm identifier: a value of type psa_algorithm_t.
Returns
1if alg is a deterministic HashSLH-DSA algorithm, @ otherwise.
This macro can return either @ or 1 if alg is not a supported algorithm identifier.

Description
See also PSA_ALG_IS_HASH_SLH_DSA() and PSA_ALG_IS_HEDGED_HASH_SLH_DSA().

PSA_ALG_IS_HEDGED_HASH_SLH_DSA (macro)
Whether the specified algorithm is hedged HashSLH-DSA.
Added in version 1.3.

#define PSA_ALG_IS_HEDGED_HASH_SLH_DSA(alg) /* specification-defined value */
Parameters
alg An algorithm identifier: a value of type psa_algorithm_t.

Returns
1if alg is a hedged HashSLH-DSA algorithm, @ otherwise.

This macro can return either @ or 1 if alg is not a supported algorithm identifier.

Description
See also PSA_ALG_IS_HASH_SLH_DSA() and PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA().

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 41
1.4 PQC Extension.1 Non-confidential

2.5 Leighton-Micali Signatures

The Crypto API supports Leighton-Micali Signatures (LMS), and the multi-level Hierarchical Signature
Scheme (HSS). These schemes are defined in Leighton-Micali Hash-Based Signatures [RFC8554].

For the Crypto API to support signature verification, it is only necessary to define a public keys for these
schemes, and the default public key formats for import and export.

Rationale

At present, it is not expected that the Crypto API will be used to generate LMS or HSS private keys, or to
carry out signing operations. However, there is value in supporting verification of LMS and HSS
signatures. Therefore, the Crypto API does not support LMS or HSS key pairs, or the associated signing
operations.

Note:

A full set of NIST-approved parameter sets for LMS and HSS is defined in NIST Special Publication
800-208: Recommendation for Stateful Hash-Based Signature Schemes [SP800-208] §4, with the
additional IANA identifiers defined in Additional Parameter sets for HSS/LMS Hash-Based Signatures
[RFC9858].

2.5.1 Leighton-Micali Signature keys
PSA_KEY_TYPE_LMS_PUBLIC_KEY (macro)
Leighton-Micali Signatures (LMS) public key.
Added in version 1.3.

#define PSA_KEY_TYPE_LMS_PUBLIC_KEY ((psa_key_type_t)0x4007)

The parameterization of an LMS key is fully encoded in the key data.

The bit size used in the attributes of an LMS public key is output length, in bits, of the hash function
identified by the LMS parameter set.

e SHA-256/192, SHAKE256/192 : key_bits = 192
e SHA-256, SHAKE256/256 : key_bits = 256

Compatible algorithms
® PSA_ALG_LMS

Key format

In calls to psa_import_key (), psa_export_key(), and psa_export_public_key (), the public-key data format is
the encoded 1ms_public_key structure, defined in [RFC8554] §3.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 42
1.4 PQC Extension.1 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8554.html#section-3

PSA_KEY_TYPE_HSS_PUBLIC_KEY (macro)
Hierarchical Signature Scheme (HSS) public key.
Added in version 1.3.

#define PSA_KEY_TYPE_HSS_PUBLIC_KEY ((psa_key_type_t)0x4008)

The parameterization of an HSS key is fully encoded in the key data.

The bit size used in the attributes of an HSS public key is output length, in bits, of the hash function
identified by the HSS parameter set.

o SHA-256/192, SHAKE256/192 : key_bits = 192
e SHA-256, SHAKE256/256 : key_bits = 256

Compatible algorithms

® PSA_ALG_HSS

Key format

In calls to psa_import_key (), psa_export_key(), and psa_export_public_key (), the public-key data format is
the encoded hss_public_key structure, defined in [RFC8554] §3.

Rationale

This format is the same as that specified for X.509 in Use of the HSS and XMSS Hash-Based Signature
Algorithms in Internet X.509 Public Key Infrastructure [RFC9802].

2.5.2 Leighton-Micali Signature algorithms

These algorithms extend those defined in PSA Certified Crypto APl [PSA-CRYPT] §10.7 Asymmetric signature,
for use with the signature functions.

PSA_ALG_LMS (macro)
Leighton-Micali Signatures (LMS) signature algorithm.
Added in version 1.3.

#define PSA_ALG_LMS ((psa_algorithm_t) 0x06004800)

This message-signature algorithm can only be used with the psa_verify_message() function. LMS does not
have a context parameter. However, psa_verify_message_with_context() can be used with a zero-length
context.

This is the LMS stateful hash-based signature algorithm, defined by Leighton-Micali Hash-Based Signatures
[RFC8554]. LMS requires an LMS key. The key and the signature must both encode the same LMS
parameter set, which is used for the verification procedure.

Note:

LMS signature calculation is not supported.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 43
1.4 PQC Extension.1 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8554.html#section-3

Compatible key types
PSA_KEY_TYPE_LMS_PUBLIC_KEY (signature verification only)

PSA_ALG_HSS (macro)
Hierarchical Signature Scheme (HSS) signature algorithm.

Added in version 1.3.

#define PSA_ALG_HSS ((psa_algorithm_t) 0x06004900)

This message-signature algorithm can only be used with the psa_verify_message() function. HSS does not
have a context parameter. However, psa_verify_message_with_context() can be used with a zero-length
context.

This is the HSS stateful hash-based signature algorithm, defined by Leighton-Micali Hash-Based Signatures
[RFC8554]. HSS requires an HSS key. The key and the signature must both encode the same HSS
parameter set, which is used for the verification procedure.

Note:

HSS signature calculation is not supported.

Compatible key types
PSA_KEY_TYPE_HSS_PUBLIC_KEY (signature verification only)

2.6 eXtended Merkle Signature Scheme

The Crypto API supports eXtended Merkle Signature Scheme (XMSS), and the multi-tree variant XMSSMT.
These schemes are defined in XMSS: eXtended Merkle Signature Scheme [RFC8391].

For the Crypto API to support signature verification, it is only necessary to define public keys for these
schemes, and the default public key formats for import and export.

Rationale

At present, it is not expected that the Crypto API will be used to generate XMSS or XMSSMT private
keys, or to carry out signing operations. However, there is value in supporting verification of XMSS and
XMSSMT signatures. Therefore, the Crypto APl does not support XMSS or XMSSMT key pairs, or the
associated signing operations.

Note:

A full set of NIST-approved parameter sets for XMSS or XMSSMT is defined in NIST Special Publication
800-208: Recommendation for Stateful Hash-Based Signature Schemes [SP800-208] §5.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 44
1.4 PQC Extension.1 Non-confidential

2.6.1 XMSS and XMSSMT keys
PSA_KEY_TYPE_XMSS_PUBLIC_KEY (macro)

eXtended Merkle Signature Scheme (XMSS) public key.
Added in version 1.3.

#define PSA_KEY_TYPE_XMSS_PUBLIC_KEY ((psa_key_type_t)0x400B)

The parameterization of an XMSS key is fully encoded in the key data.

The bit size used in the attributes of an XMSS public key is output length, in bits, of the hash function
identified by the XMSS parameter set.

o SHA-256/192, SHAKE256/192 : key_bits = 192
o SHA-256, SHAKE256/256 : key_bits = 256

Note:

For a multi-tree XMSS key, see PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY.

Compatible algorithms
® PSA_ALG_XMSS

Key format

In calls to psa_import_key (), psa_export_key(), and psa_export_public_key(), the public-key data format is
the encoded xmss_public_key structure, defined in [RFC8391] Appendix B.3.

Rationale

This format is the same as that specified for X.509 in Use of the HSS and XMSS Hash-Based Signature
Algorithms in Internet X.509 Public Key Infrastructure [RFC9802].

PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY (macro)
Multi-tree eXtended Merkle Signature Scheme (XMSSMT) public key.
Added in version 1.3.

#define PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY ((psa_key_type_t)0x40@D)

The parameterization of an XMSSMT key is fully encoded in the key data.

The bit size used in the attributes of an XMSSMT public key is output length, in bits, of the hash function
identified by the XMSSMT parameter set.

e SHA-256/192, SHAKE256/192 : key_bits = 192
o SHA-256, SHAKE256/256 : key_bits = 256

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 45
1.4 PQC Extension.1 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8391.html#appendix-B.3

Compatible algorithms
® PSA_ALG_XMSS_MT

Key format

In calls to psa_import_key (), psa_export_key(), and psa_export_public_key (), the public-key data format is
the encoded xmssmt_public_key structure, defined in [RFC8391] Appendix C.3.

Rationale

This format is the same as that specified for X.509 in Use of the HSS and XMSS Hash-Based Signature
Algorithms in Internet X.509 Public Key Infrastructure [RFC9802].

2.6.2 XMSS and XMSSMT algorithms

These algorithms extend those defined in PSA Certified Crypto APl [PSA-CRYPT] §10.7 Asymmetric signature,
for use with the signature functions.

PSA_ALG_XMSS (macro)
eXtended Merkle Signature Scheme (XMSS) signature algorithm.
Added in version 1.3.

#define PSA_ALG_XMSS ((psa_algorithm_t) 0x06004A00)

This message-signature algorithm can only be used with the psa_verify_message() function. XMSS does not
have a context parameter. However, psa_verify_message_with_context() can be used with a zero-length
context.

This is the XMSS stateful hash-based signature algorithm, defined by XMSS: eXtended Merkle Signature
Scheme [RFC8391]. XMSS requires an XMSS key. The key and the signature must both encode the same
XMSS parameter set, which is used for the verification procedure.

Note:

XMSS signature calculation is not supported.

Compatible key types
PSA_KEY_TYPE_XMSS_PUBLIC_KEY (signature verification only)

PSA_ALG_XMSS_MT (macro)
Multi-tree eXtended Merkle Signature Scheme (XMSSMT) signature algorithm.
Added in version 1.3.

#define PSA_ALG_XMSS_MT ((psa_algorithm_t) 0x06004B00)

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 46
1.4 PQC Extension.1 Non-confidential

https://datatracker.ietf.org/doc/html/rfc8391.html#appendix-C.3

This message-signature algorithm can only be used with the psa_verify_message() function. XMSSMT does
not have a context parameter. However, psa_verify_message_with_context() can be used with a zero-length
context.

This is the XMSSMT stateful hash-based signature algorithm, defined by XMSS: eXtended Merkle Signature
Scheme [RFC8391]. XMSSMT requires an XMSSMT key. The key and the signature must both encode the
same XMSSMT parameter set, which is used for the verification procedure.

Note:

XMSSMT signature calculation is not supported.

Compatible key types
PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY (signature verification only)

See Algorithm and key type encoding on page 50 for the encoding of the key types and algorithm identifiers
added by this extension.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 47
1.4 PQC Extension.1 Non-confidential

Appendix A: Example header file

The API elements in this specification, once finalized, will be defined in psa/crypto.h.

This is an example of the header file definition of the PQC API elements. This can be used as a starting
point or reference for an implementation.

Note:
Not all of the APl elements are fully defined. An implementation must provide the full definition.

The header will not compile without these missing definitions, and might require reordering to satisfy
C compilation rules.

A.1 psa/crypto.h

/* This file contains reference definitions for implementation of the
* PSA Certified Crypto API v1.4 PQC Extension

*

* These definitions must be embedded in, or included by, psa/crypto.h
*/

#define PSA_ALG_SHA_256_192 ((
#define PSA_ALG_SHAKE128_ 256 ((psa_algorithm_t)0x02000016)
#define PSA_ALG_SHAKE256_192 ((psa_algorithm_t)0x02000017)
#define PSA_ALG_SHAKE256_256 ((psa_algorithm_t)0x02000018)
#define PSA_KEY_TYPE_ML_KEM_KEY_PAIR ((psa_key_type_t)0x7004)
#define PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY ((psa_key_type_t)0x4004)
#define PSA_KEY_TYPE_IS_ML_KEM(type) /* specification-defined value */
#define PSA_ALG_ML_KEM ((psa_algorithm_t)@x0c000200)
#define PSA_KEY_TYPE_ML_DSA_KEY_PAIR ((psa_key_type_t)0x7002)
#define PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY ((psa_key_type_t)0x4002)
#define PSA_KEY_TYPE_IS_ML_DSA(type) /* specification-defined value */
#define PSA_ALG_ML_DSA ((psa_algorithm_t) 0x06004400)
#define PSA_ALG_DETERMINISTIC_ML_DSA ((psa_algorithm_t) @x06004500)
#define PSA_ALG_HASH_ML_DSA(hash_alg) /* specification-defined value */
#define PSA_ALG_DETERMINISTIC_HASH_ML_DSA(hash_alg) \

/* specification-defined value */
#define PSA_ALG_IS_ML_DSA(alg) /* specification-defined value */
#define PSA_ALG_IS_HASH_ML_DSA(alg) /* specification-defined value */
#define PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA(alg) \

/* specification-defined value */
#define PSA_ALG_IS_HEDGED_HASH_ML_DSA(alg) /* specification-defined value */

psa_algorithm_t)0x0200000E)
(
(

(continues on next page)

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 48
1.4 PQC Extension.1 Non-confidential

typedef
#define
#define
#define
#define
#define
#define
#define
#define

/* s
#define

/* s
#define
#define
#define
#define
#define

/* s
#define
#define
#define

/* s
#define
#define
#define
#define
#define
#define
#define
#define
#define

AES 0119

(continued from previous page)
uint8_t psa_slh_dsa_family_t;
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR(set) /* specification-defined value */
PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY(set) /* specification-defined value */
PSA_SLH_DSA_FAMILY_SHA2_S ((psa_slh_dsa_family t) 0x02)
PSA_SLH_DSA_FAMILY_SHA2_F ((psa_slh_dsa_family t) 0x04)
PSA_SLH_DSA_FAMILY_SHAKE_S ((psa_slh_dsa_family_t) @x@b)
PSA_SLH_DSA_FAMILY_SHAKE_F ((psa_slh_dsa_family_t) @x@d)
PSA_KEY_TYPE_IS_SLH_DSA(type) /* specification-defined value */
PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR(type) \
pecification-defined value */
PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY(type) \
pecification-defined value */
PSA_KEY_TYPE_SLH_DSA_GET_FAMILY(type) /* specification-defined value */
PSA_ALG_SLH_DSA ((psa_algorithm_t) 0x06004000)
PSA_ALG_DETERMINISTIC_SLH_DSA ((psa_algorithm_t) 0x06004100)
PSA_ALG_HASH_SLH_DSA(hash_alg) /* specification-defined value */
PSA_ALG_DETERMINISTIC_HASH_SLH_DSA(hash_alg) \
pecification-defined value */
PSA_ALG_IS_SLH DSA(alg) /* specification-defined value */
PSA_ALG_IS_HASH_SLH_DSA(alg) /* specification-defined value */
PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA(alg) \
pecification-defined value */
PSA_ALG_IS_HEDGED_HASH_SLH_DSA(alg) /* specification-defined value */
PSA_KEY_TYPE_LMS_PUBLIC_KEY ((psa_key_type_t)0x4007)
PSA_KEY_TYPE_HSS_PUBLIC_KEY ((psa_key_type_t)0x4008)
PSA_ALG_LMS ((psa_algorithm_t) 0x06004800)
PSA_ALG_HSS ((psa_algorithm_t) 0x06004900)
PSA_KEY_TYPE_XMSS_PUBLIC_KEY ((psa_key_type_t)@0x400B)
PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY ((psa_key_type_t)@x400D)
PSA_ALG_XMSS ((psa_algorithm_t) 0x06004A00)
PSA_ALG_XMSS_MT ((psa_algorithm_t) @x06004B00)

Copyright © 2024-2025 Arm Limited and/or its affiliates Page 49

1.4 PQC Extension.1 Non-confidential

Appendix B: Algorithm and key type encoding

These are encodings for PQC algorithms and keys defined in this extension. This information should be read
in conjunction with [PSA-CRYPT] Appendix B.

Note:
These encodings will be integrated into a future version of [PSA-CRYPT].

B.1 Algorithm encoding
B.1.1 Hash algorithm encoding

Additional hash algorithms defined by this extension are shown in Table 6. See also Hash algorithm encoding
in [PSA-CRYPT] Appendix B.

Table 6 Hash algorithm sub-type values

Hash algorithm HASH-TYPE Algorithm identifier Algorithm value

SHA-256/192 = PSA_ALG_SHA_256_192 0x0200000F
SHAKE128/256 ox16 PSA_ALG_SHAKE128_256 0x02000016
SHAKE256/192 ox17 PSA_ALG_SHAKE256_192 ©x02000017
SHAKE256/256 ox18 PSA_ALG_SHAKE256_256 0x02000018

B.1.2 Asymmetric signature algorithm encoding

Additional signature algorithms defined by this extension are shown in Table 7 on page 51. See also
Asymmetric signature algorithm encoding in [PSA-CRYPT] Appendix B.

Table 7 Asymmetric signature algorithm sub-type values

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 50
1.4 PQC Extension.1 Non-confidential

Signature algorithm

Hedged SLH-DSA

Deterministic SLH-DSA

Hedged HashSLH-DSA
Deterministic HashSLH-DSA

Hedged ML-DSA

Deterministic ML-DSA

Hedged HashML-DSA

Deterministic HashML-DSA

LMS
HSS
XMSS
XMSSMT

SIGN-TYPE

0x40
0x41
0x42
0x43
0x44
0x45
0x46
0x47
0x48
0x49
Ox4A

0x4B

Algorithm identifier

PSA_ALG_SLH_DSA
PSA_ALG_DETERMINISTIC_SLH_DSA
PSA_ALG_HASH_SLH_DSA(hash)
PSA_ALG_DETERMINISTIC_HASH_SLH_DSA(hash)
PSA_ALG_ML_DSA
PSA_ALG_DETERMINISTIC_ML_DSA
PSA_ALG_HASH_ML_DSA (hash)
PSA_ALG_DETERMINISTIC_HASH_ML_DSA(hash)
PSA_ALG_LMS

PSA_ALG_HSS

PSA_ALG_XMSS

PSA_ALG_XMSS_MT

Algorithm value

0x06004000
0x06004100
0x060042hh @
0x060043hh °
0x06004400
0x06004500
0x060046hh °
0x060047hh °
0x06004800
0x06004900
0x06004A00

0x06004B00

a. hhis the HASH-TYPE for the hash algorithm, hash, used to construct the signature algorithm.

B.1.3 Key-encapsulation algorithm encoding

Additional key-encapsulation algorithms defined by this extension are shown in Table 8.

Table 8 Encapsulation algorithm sub-type values

Encapsulation algorithm ENCAPS-TYPE Algorithm identifier ~ Algorithm value

ML-KEM

0x02

B.2 Key encoding

Additional asymmetric key types defined by this extension are shown in Table 9. See also Asymmetric key
encoding in [PSA-CRYPT] Appendix B.

Asymmetric key type

SLH-DSA

AES 0119
1.4 PQC Extension.1

ASYM-TYPE Details

3

PSA_ALG_ML_KEM 0x0C000200

Table 9 Asymmetric key sub-type values

See SLH-DSA key encoding on page 52

Copyright © 2024-2025 Arm Limited and/or its affiliates

Non-confidentia

Page 51

B.2.1 Non-parameterized asymmetric key encoding

Additional non-parameterized asymmetric key types defined by this extension are shown in Table 10. See
also Non-parameterized asymmetric key encoding in [PSA-CRYPT] Appendix B.

Key family Public/pair

ML-DSA Public key

Key pair
ML-KEM Public key

Key pair
LMS Public key
HSS Public key

XMSS Public key
XMSSMT Public key

Table 10 Non-parameterized asymmetric key family values

PAIR NP-FAMILY P Key type Key value
0 1 O PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY 0x4002
3 1 O PSA_KEY_TYPE_ML_DSA_KEY_PAIR 0x7002
0 2 O PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY 0x4004
3 2 O PSA_KEY_TYPE_ML_KEM_KEY_PAIR 0x7004
0 3 1 PSA_KEY_TYPE_LMS_PUBLIC_KEY 0x4007
0 4 O PSA_KEY_TYPE_HSS_PUBLIC_KEY 0x4008
0 5 1 PSA_KEY_TYPE_XMSS_PUBLIC_KEY 0x4008
0 6 1 PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY @x400D

B.2.2 SLH-DSA key encoding
The key type for SLH-DSA keys defined in this specification are encoded as shown in Figure 1.

7 6 1 0

15 14 13 12 11

0]1] PAIR

3 FAMILY

Figure 1 SLH-DSA key encoding

PAIR is either O for a public key, or 3 for a key pair.
The defined values for FAMILY and P are shown in Table 11.

SLH-DSA key family

SLH-DSA-SHA2-Ns
SLH-DSA-SHAZ2-Nf
SLH-DSA-SHAKE-Ns
SLH-DSA-SHAKE-Nf

Table 11 SLH-DSA key family values

FAMILY P SLH-DSA family @ Public-key value Key-pair value
0Ox01 O PSA_SLH_DSA_FAMILY_SHA2_S 0x4182 0x7182
0Ox02 O PSA_SLH_DSA_FAMILY_SHA2 F 0x4184 0x7184
0Ox05 1 PSA_SLH DSA FAMILY SHAKE S 0x418B 0x718B
Ox06 1 PSA_SLH_DSA_FAMILY_SHAKE_F ©x418D 0x718D

a. The SLH-DSA family values defined in the API also include the parity bit. The key type value is
constructed from the SLH-DSA family using either PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY(family) or
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR(family) as required.

AES 0119
1.4 PQC Extension.1

Copyright © 2024-2025 Arm Limited and/or its affiliates Page 52

Non-confidential

Appendix C: Example macro implementations

This section provides example implementations of the function-like macros that have specification-defined
values.

Note:

In a future version of this specification, these example implementations will be replaced with a
pseudo-code representation of the macro’s computation in the macro description.

The examples here provide correct results for the valid inputs defined by each API, for an implementation
that supports all of the defined algorithms and key types. An implementation can provide alternative
definitions of these macros:

C.1 Algorithm macros
C.1.1 Updated macros

#define PSA_ALG_IS_HASH_AND_SIGN(alg) \
(PSA_ALG_IS_RSA_PSS(alg) || PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) || \
PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_HASH_EDDSA(alg) || \
PSA_ALG_IS_HASH_ML_DSA(alg) || PSA_ALG_IS_HASH_SLH_DSA(alg))

#define PSA_ALG_IS_SIGN_HASH(alg) \
(PSA_ALG_IS_HASH_AND_SIGN(alg) ||
(alg) == PSA_ALG_RSA_PKCS1V15_SIGN_RAW ||
(alg) == PSA_ALG_ECDSA_ANY
)

C.1.2 New macros

#define PSA_ALG_DETERMINISTIC_HASH_ML_DSA(hash_alg) \
((psa_algorithm_t) (0x06004700 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_DETERMINISTIC_HASH_SLH_DSA(hash_alg) \
((psa_algorithm_t) (@x06004300 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HASH_ML_DSA(hash_alg) \
((psa_algorithm_t) (0x06004600 | ((hash_alg) & 0x000000ff)))

#define PSA_ALG_HASH_SLH_DSA(hash_alg) \
((psa_algorithm_t) (0x06004200 | ((hash_alg) & 0x000000ff)))
(continues on next page)

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 53
1.4 PQC Extension.1 Non-confidential

#define PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA(alg) \
(((alg) & ~0x00000OTT) == 0x06004700)

#define PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA(alg) \
(((alg) & ~0x000000Ff) == Ox06004300)

#define PSA_ALG_IS_HASH_ML_DSA(alg) \
(((alg) & ~0x0000Q1TT) == 0x06004600)

#define PSA_ALG_IS_HASH_SLH _DSA(alg) \
(((alg) & ~0x000001ff) == 0x06004200)

#define PSA_ALG_IS_HEDGED_HASH_ML_DSA(alg) \
(((alg) & ~0x000000TT) == Ox06004600)

#define PSA_ALG_IS_HEDGED_HASH_SLH_DSA(alg) \
(((alg) & ~0x00000OTT) == 0x06004200)

#define PSA_ALG_IS_ML_DSA(alg) \
(((alg) & ~0x00000100) == 0x06004400)

#define PSA_ALG_IS_SLH_DSA(alg) \
(((alg) & ~0x00000100) == Ox06004000)

C.2 Key type macros

#define PSA_KEY_TYPE_IS_ML_DSA(type) \
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == 0x4002)

#define PSA_KEY_TYPE_IS_ML_KEM(type) \
(PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) == 0x4004)

#define PSA_KEY_TYPE_IS_SLH_DSA(type) \
((PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(type) & 0xff80) == 0x4180)

#define PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR(type) \
(((type) & 0xffB80) == 0x7180)

#define PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY(type) \
(((type) & Oxff80) == 0x4180)

#define PSA_KEY_TYPE_SLH_DSA GET_FAMILY(type) \
((psa_slh_dsa_family_t) ((type) & @0x007f))

#define PSA_KEY_TYPE_SLH_DSA KEY_PAIR(set) \

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates
1.4 PQC Extension.1 Non-confidential

(continued from previous page)

(continues on next page)

Page 54

(continued from previous page)
((psa_key_type_t) (0x7180 | ((set) & 0x007f)))

#define PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY(set) \
((psa_key_type_t) (0x4180 | ((set) & 0x007f)))

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 55
1.4 PQC Extension.1 Non-confidential

Appendix D: Document change history
D.1 Changes between Final O and Final 1

Clarifications and fixes
e Updated citations for ML-DSA and SLH-DSA key formats.

e Provided a table of hash algorithm OIDs for use with the HashML-DSA and HashSLH-DSA algorithms.
See Stateless Hash-based signatures on page 29 and Module Lattice-based signatures on page 18.

D.2 Changes between Beta 3 and Final O

Clarifications and fixes

e Finalized the key format specification for SLH-DSA, ML-KEM, and ML-DSA keys. The formats are
unchanged from the Beta version of this specification. See Stateless Hash-based signatures on page 29,
Module Lattice-based signatures on page 18, and Module Lattice-based key encapsulation on page 15.

D.3 Changes between Beta 2 and Beta 3
Other changes

e Updated introduction to reflect GlobalPlatform assuming the governance of the PSA Certified
evaluation scheme.

D.4 Changes between Beta 1 and Beta 2

Clarifications and fixes

e Fixed the derivation of SLH-DSA key pairs to extract the correct number of bytes from the key
derivation operation. See PSA_KEY_TYPE_SLH_DSA_KEY_PAIR.

e Clarified that the standard key formats are used in the psa_import_key () and psa_export_key()
functions.

D.5 Changes between Beta O and Beta 1

Clarifications and fixes
e Added references from each section to the relevant APIs in PSA Certified Crypto APl [PSA-CRYPT].

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 56
1.4 PQC Extension.1 Non-confidential

D.6 Beta release

First release of the PQC Extension.

e Added support for FIPS 203 ML-KEM key-encapsulation algorithm and keys. See Module Lattice-based
key encapsulation on page 15.

e Added support for FIPS 204 ML-DSA signature algorithm and keys. See Module Lattice-based
signatures on page 18.

e Added support for FIPS 205 SLH-DSA signature algorithm and keys. See Stateless Hash-based
signatures on page 29.

e Added support for LMS and HSS stateful hash-based signature verification and public keys. See
Leighton-Micali Signatures on page 42.

e Added support for XMSS and XMSSMT stateful hash-based signature verification and public keys. See
eXtended Merkle Signature Scheme on page 44.

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 57
1.4 PQC Extension.1 Non-confidential

Index of API elements

PSA_ALG_D

PSA_ALG_DETERMINISTIC_HASH_ML_DSA, 26
PSA_ALG_DETERMINISTIC_HASH_SLH_DSA, 39
PSA_ALG_DETERMINISTIC_ML_DSA, 24
PSA_ALG_DETERMINISTIC_SLH_DSA, 37

PSA_ALG_H

PSA_ALG_HASH_ML_DSA, 25
PSA_ALG_HASH_SLH_DSA, 38
PSA_ALG_HSS, 44

PSA_ALG_I

PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA, 28
PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA, 41
PSA_ALG_IS_HASH_ML_DSA, 28
PSA_ALG_IS_HASH_SLH_DSA, 40
PSA_ALG_IS_HEDGED_HASH_ML_DSA, 28
PSA_ALG_IS_HEDGED_HASH_SLH_DSA, 41
PSA_ALG_IS_ML_DSA, 27/

PSA_ALG_IS_SLH_DSA, 40

PSA_ALG L
PSA_ALG_LMS, 43

PSA_ALG_M

PSA_ALG_ML_DSA, 23
PSA_ALG_ML_KEM, 18

PSA_ALG_S

PSA_ALG_SHAKE128_256, 14
PSA_ALG_SHAKE256_192, 15
PSA_ALG_SHAKE256_256, 15
PSA_ALG_SHA_256_192, 14

PSA_ALG_SLH_DSA, 36

PSA_ALG_X

PSA_ALG_XMSS, 46
PSA_ALG_XMSS_MT, 46

PSA_K
PSA_KEY_TYPE_HSS_PUBLIC_KEY, 43

PSA_KEY_TYPE_IS_ML_DSA, 21
PSA_KEY_TYPE_IS_ML_KEM, 17/
PSA_KEY_TYPE_IS_SLH_DSA, 32
PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR, 33

PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY, 33

PSA_KEY_TYPE_LMS_PUBLIC_KEY, 42
PSA_KEY_TYPE_ML_DSA_KEY_PAIR, 19
PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY, 20
PSA_KEY_TYPE_ML_KEM_KEY_PAIR, 15
PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY, 17
PSA_KEY_TYPE_SLH_DSA_GET_FAMILY, 33
PSA_KEY_TYPE_SLH_DSA_KEY_PAIR, 29
PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY, 30
PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY, 45
PSA_KEY_TYPE_XMSS_PUBLIC_KEY, 45

PSA_S

PSA_SLH_DSA_FAMILY_SHA2_F, 32
PSA_SLH_DSA_FAMILY_SHA2_S, 31
PSA_SLH_DSA_FAMILY_SHAKE_F, 32
PSA_SLH_DSA_FAMILY_SHAKE_S, 32
psa_slh_dsa_family_t, 29

AES 0119 Copyright © 2024-2025 Arm Limited and/or its affiliates Page 58
1.4 PQC Extension.1 Non-confidential

	About this document
	Release information
	License
	References
	Terms and abbreviations
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Current status and anticipated changes
	Feedback

	1 Introduction
	1.1 About Platform Security Architecture
	1.2 About the Crypto API PQC Extension
	1.3 Objectives for the PQC Extension
	1.3.1 Background
	1.3.2 Selection of algorithms
	NIST PQC project finalists
	Other NIST-approved schemes

	2 API Reference
	2.1 Additional Hash algorithms
	2.1.1 SHA-256-based hash algorithms
	PSA_ALG_SHA_256_192 (macro)

	2.1.2 SHAKE-based hash algorithms
	PSA_ALG_SHAKE128_256 (macro)
	PSA_ALG_SHAKE256_192 (macro)
	PSA_ALG_SHAKE256_256 (macro)

	2.2 Module Lattice-based key encapsulation
	2.2.1 Module Lattice-based key-encapsulation keys
	PSA_KEY_TYPE_ML_KEM_KEY_PAIR (macro)
	PSA_KEY_TYPE_ML_KEM_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_ML_KEM (macro)

	2.2.2 Module Lattice-based key-encapsulation algorithm
	PSA_ALG_ML_KEM (macro)

	2.3 Module Lattice-based signatures
	2.3.1 Module Lattice-based signature keys
	PSA_KEY_TYPE_ML_DSA_KEY_PAIR (macro)
	PSA_KEY_TYPE_ML_DSA_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_IS_ML_DSA (macro)

	2.3.2 Module Lattice-based signature algorithms
	PSA_ALG_ML_DSA (macro)
	PSA_ALG_DETERMINISTIC_ML_DSA (macro)
	PSA_ALG_HASH_ML_DSA (macro)
	PSA_ALG_DETERMINISTIC_HASH_ML_DSA (macro)
	PSA_ALG_IS_ML_DSA (macro)
	PSA_ALG_IS_HASH_ML_DSA (macro)
	PSA_ALG_IS_DETERMINISTIC_HASH_ML_DSA (macro)
	PSA_ALG_IS_HEDGED_HASH_ML_DSA (macro)

	2.4 Stateless Hash-based signatures
	2.4.1 Stateless Hash-based signature keys
	psa_slh_dsa_family_t (typedef)
	PSA_KEY_TYPE_SLH_DSA_KEY_PAIR (macro)
	PSA_KEY_TYPE_SLH_DSA_PUBLIC_KEY (macro)
	PSA_SLH_DSA_FAMILY_SHA2_S (macro)
	PSA_SLH_DSA_FAMILY_SHA2_F (macro)
	PSA_SLH_DSA_FAMILY_SHAKE_S (macro)
	PSA_SLH_DSA_FAMILY_SHAKE_F (macro)
	PSA_KEY_TYPE_IS_SLH_DSA (macro)
	PSA_KEY_TYPE_IS_SLH_DSA_KEY_PAIR (macro)
	PSA_KEY_TYPE_IS_SLH_DSA_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_SLH_DSA_GET_FAMILY (macro)

	2.4.2 Stateless Hash-based signature algorithms
	PSA_ALG_SLH_DSA (macro)
	PSA_ALG_DETERMINISTIC_SLH_DSA (macro)
	PSA_ALG_HASH_SLH_DSA (macro)
	PSA_ALG_DETERMINISTIC_HASH_SLH_DSA (macro)
	PSA_ALG_IS_SLH_DSA (macro)
	PSA_ALG_IS_HASH_SLH_DSA (macro)
	PSA_ALG_IS_DETERMINISTIC_HASH_SLH_DSA (macro)
	PSA_ALG_IS_HEDGED_HASH_SLH_DSA (macro)

	2.5 Leighton-Micali Signatures
	2.5.1 Leighton-Micali Signature keys
	PSA_KEY_TYPE_LMS_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_HSS_PUBLIC_KEY (macro)

	2.5.2 Leighton-Micali Signature algorithms
	PSA_ALG_LMS (macro)
	PSA_ALG_HSS (macro)

	2.6 eXtended Merkle Signature Scheme
	2.6.1 XMSS and XMSSMT keys
	PSA_KEY_TYPE_XMSS_PUBLIC_KEY (macro)
	PSA_KEY_TYPE_XMSS_MT_PUBLIC_KEY (macro)

	2.6.2 XMSS and XMSSMT algorithms
	PSA_ALG_XMSS (macro)
	PSA_ALG_XMSS_MT (macro)

	A Example header file
	A.1 psa/crypto.h

	B Algorithm and key type encoding
	B.1 Algorithm encoding
	B.1.1 Hash algorithm encoding
	B.1.2 Asymmetric signature algorithm encoding
	B.1.3 Key-encapsulation algorithm encoding

	B.2 Key encoding
	B.2.1 Non-parameterized asymmetric key encoding
	B.2.2 SLH-DSA key encoding

	C Example macro implementations
	C.1 Algorithm macros
	C.1.1 Updated macros
	C.1.2 New macros

	C.2 Key type macros

	D Document change history
	D.1 Changes between Final 0 and Final 1
	D.2 Changes between Beta 3 and Final 0
	D.3 Changes between Beta 2 and Beta 3
	D.4 Changes between Beta 1 and Beta 2
	D.5 Changes between Beta 0 and Beta 1
	D.6 Beta release

	Index of API elements

