
PSA Certified
Firmware Update API 1.0

Document number: IHI 0093
Release Quality: Final
Issue Number: 0
Confidentiality: Non-confidential
Date of Issue: 1/8/2023

Copyright © 2020-2023 Arm Limited and/or its affiliates

Abstract
This document defines a standard firmware interface for installing firmware updates.



Contents

About this document vi
Release information vi
License vii
References viii
Terms and abbreviations ix
Potential for change xi
Conventions xiTypographical conventions xiNumbers xi
Feedback xii

1 Introduction 13
1.1 About Platform Security Architecture 13
1.2 About the Firmware Update API 13
1.3 Firmware update 13
2 Design goals 15
2.1 Suitable for constrained devices 15
2.2 Updating the Platform Root of Trust 15
2.3 Updating the Application Root of Trust 16
2.4 Flexibility for different trust models 16
2.5 Protocol independence 16
2.6 Transport independence 16
2.7 Firmware format independence 17
2.8 Flexibility for different hardware designs 17
2.9 Suitable for composite devices 18
2.10 Robust and reliable update 18
2.11 Flexibility in implementation design 18

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page i



3 Architecture 19
3.1 Concepts and terminology 193.1.1 Firmware image 193.1.2 Manifest 193.1.3 Component 203.1.4 Component identifier 203.1.5 Firmware creator 203.1.6 Update server 203.1.7 Update client 213.1.8 Update service 213.1.9 Firmware store 213.1.10 Bootloader 213.1.11 Trust anchor 21
3.2 Firmware image format 22
3.3 Deployment scenarios 223.3.1 Untrusted client 223.3.2 Untrusted staging 233.3.3 Trusted client 24
4 Programming model 25
4.1 The firmware store 25
4.2 State model 264.2.1 Component state 264.2.2 Volatile states 284.2.3 State transitions 284.2.4 Behavior on error 304.2.5 Rationale 30
4.3 Verifying an update 314.3.1 Manifest verification 324.3.2 Firmware image verification 32
4.4 Dependencies 33
4.5 Update client operation 334.5.1 Querying installed firmware 344.5.2 Preparing a new firmware image 344.5.3 Installing the candidate firmware image 344.5.4 Testing the new firmware image 354.5.5 Cleaning up the firmware store 35
4.6 Bootloader operation 364.6.1 Determine firmware state 364.6.2 Install components 364.6.3 Rollback trial components 374.6.4 Authenticate and execute active firmware 37

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page ii



4.7 Sample sequence during firmware update 37
5 API reference 39
5.1 API conventions 395.1.1 Identifier names 395.1.2 Basic types 395.1.3 Data types 395.1.4 Constants 405.1.5 Functions 405.1.6 Return status 405.1.7 Pointer conventions 415.1.8 Implementation-specific types 41
5.2 Header file 415.2.1 Required functions 42
5.3 Library management 435.3.1 Library version 43
5.4 Status codes 435.4.1 Common status codes 435.4.2 Error codes specific to the Firmware Update API 445.4.3 Success status codes specific to the Firmware Update API 44
5.5 Firmware components 455.5.1 Component identifier 455.5.2 Component version 455.5.3 Component states 465.5.4 Component flags 485.5.5 Component information 49
5.6 Firmware installation 515.6.1 Candidate image preparation 515.6.2 Image installation 585.6.3 Image trial 62
A Example header file 63
A.1 psa/update.h 63
B Example usage 66
B.1 Retrieve versions of installed images 66
B.2 Individual component update (single part operation) 66
B.3 Individual component update (multi part operation) 67
B.4 Multiple components with dependent images 69
B.5 Clean up all component updates 71

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page iii



C Variation in system design parameters 73
C.1 Component with non-volatile staging 73C.1.1 Component that requires a reboot, but no trial 74C.1.2 Component that requires a trial, but no reboot 75C.1.3 Component that requires neither a reboot, nor a trial 76
C.2 Component with volatile staging 77
D Security Risk Assessment 82
D.1 About this assessment 82D.1.1 Subject and scope 82D.1.2 Risk assessment methodology 83
D.2 Feature definition 84D.2.1 Introduction 84D.2.2 Lifecycle 85D.2.3 Operation and trust boundaries 86D.2.4 Deployment models 87D.2.5 Assumptions and constraints 88D.2.6 Stakeholders and assets 89D.2.7 Security goals 89D.2.8 Adversarial model 90
D.3 Feature characterization 91D.3.1 Detailed deployment dataflow 91D.3.2 Security features of the API 92
D.4 Threats 94D.4.1 T.TAMPER: Tampering with the firmware image or manifest 94D.4.2 T.NON_FUNCTIONAL: Install defective firmware 95D.4.3 T.ROLLBACK: Install old firmware 96D.4.4 T.SKIP_INTERMEDIATE: Skip intermediate update 96D.4.5 T.DEGRADE_DEVICE: Repeatedly install invalid firmware 97D.4.6 T.INTERFACE_ABUSE: Illegal inputs to the API 97D.4.7 T.TOCTOU: Modify asset between authentication and use 98D.4.8 T.PARTIAL_UPDATE: Trigger installation of incomplete update 99D.4.9 T.INCOMPATIBLE: Mismatched firmware 100D.4.10 T.DISCLOSURE: Disclosure of protected firmware 100D.4.11 T.DISRUPT_INSTALL: Corrupt image by disrupting installer 101D.4.12 T.DISRUPT_DOWNLOAD: Corrupt image by disrupting writes 102D.4.13 T.FAULT_INJECTION: Verification bypass via glitching 102D.4.14 T.SERVER: Attack from exploited update server 103D.4.15 T.CREATOR: Attack from spoof firmware creator 103D.4.16 T.NETWORK: Manipulate network traffic 103
D.5 Mitigation summary 103D.5.1 Architectural mitigations 103D.5.2 Implementation-level mitigations 104D.5.3 User-level mitigations 106
IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page iv



E Document change history 107
E.1 Changes between version 1.0 Beta and 1.0.0 107
E.2 Changes between version 0.7 and 1.0 Beta 107
E.3 Changes between version 0.6 and 0.7 109

Index of API elements 110

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page v



About this document
Release information
The change history table lists the changes that have been made to this document.

Table 1 Document revision history
Date Version Confidentiality Change

Feb 2021 0.7 Beta 0 Non-confidential First release at Beta quality.
October 2022 1.0 Beta 0 Non-confidential Major update of programming model andAPI.

Relicensed as open source under CC BY-SA4.0.
August 2023 1.0.0 Non-confidential Finalize API for version 1.0.

Include Security Risk Assessment.
For a detailed list of changes, see Document change history on page 107.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page vi



PSA Certified Firmware Update API
Copyright © 2020-2023 Arm Limited and/or its affiliates. The copyright statement reflects the fact thatsome draft issues of this document have been released, to a limited circulation.

License
Text and illustrations
Text and illustrations in this work are licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy ofthe license, visit creativecommons.org/licenses/by-sa/4.0.
Grant of patent license. Subject to the terms and conditions of this license (both the CC BY-SA 4.0 Public License and this PatentLicense), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except asstated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the LicensedMaterial, where such license applies only to those patent claims licensable by such Licensor that are necessarily infringed by theircontribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such contribution(s) wassubmitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that theLicensed Material or a contribution incorporated within the Licensed Material constitutes direct or contributory patentinfringement, then any licenses granted to You under this license for that Licensed Material shall terminate as of the date suchlitigation is filed.
The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/orelsewhere. All rights reserved. Please visit arm.com/company/policies/trademarks for more information about Arm’s trademarks.
About the license
The language in the additional patent license is largely identical to that in section 3 of the Apache License, Version 2.0 (Apache2.0), with two exceptions:

1. Changes are made related to the defined terms, to align those defined terms with the terminology in CC BY-SA 4.0 ratherthan Apache 2.0 (for example, changing “Work” to “Licensed Material”).
2. The scope of the defensive termination clause is changed from “any patent licenses granted to You” to “any licensesgranted to You”. This change is intended to help maintain a healthy ecosystem by providing additional protection to thecommunity against patent litigation claims.

To view the full text of the Apache 2.0 license, visit apache.org/licenses/LICENSE-2.0.
Source code
Source code samples in this work are licensed under the Apache License, Version 2.0 (the “License”); you may not use suchsamples except in compliance with the License. You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS”BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page vii

https://creativecommons.org/licenses/by-sa/4.0
https://arm.com/company/policies/trademarks
https://apache.org/licenses/license-2.0
https://apache.org/licenses/license-2.0


References
This document refers to the following documents.

Table 2 Documents referenced by this document
Ref Document

Number
Title

[C99] ISO/IEC, ISO/IEC 9899:1999 — Programming Languages — C,December 1999. www.iso.org/standard/29237.html
[EBBR] Arm Limited and Contributors, Embedded Base BootRequirements (EBBR) Specification. arm-software.github.io/ebbr
[EN303645] EN 303 645 ETSI, Cyber Security for Consumer Internet of Things: BaselineRequirements, June 2020.www.etsi.org/standards/get-standards#search=303%20645
[IR8259] IR 8259 NIST, Foundational Cybersecurity Activities for IoT DeviceManufacturers, May 2020. doi.org/10.6028/NIST.IR.8259
[LWM2M] LwM2M v1.2 OMA, Lightweight M2M, November 2020.openmobilealliance.org/release/LightweightM2M
[PSA-CERT] JSA DEN 002 PSA Certified™ Level 2 Lightweight Protection Profile.psacertified.org/development-resources/certification-resources/#leveltwo
[PSA-FFM] ARM DEN 0063 Arm® Platform Security Architecture Firmware Framework.developer.arm.com/documentation/den0063
[PSA-STAT] ARM IHI 0097 PSA Certified Status code API.arm-software.github.io/psa-api/status-code
[PSM] ARM DEN 0128 Platform Security Model.developer.arm.com/documentation/den0128
[RFC4122] IETF, A Universally Unique IDentifier (UUID) URN Namespace.tools.ietf.org/html/rfc4122
[RFC8240] IAB, Report from the Internet of Things Software Update (IoTSU)Workshop 2016, September 2017. tools.ietf.org/html/rfc8240
[RFC9019] IETF, A Firmware Update Architecture for Internet of Things, April2021. tools.ietf.org/html/rfc9019
[RFC9124] IETF, A Manifest Information Model for Firmware Updates inInternet of Things (IoT) Devices, January 2022.tools.ietf.org/html/rfc9124
[SP800-30] NIST, NIST Special Publication 800-30 Revision 1: Guide forConducting Risk Assessments, September 2012.doi.org/10.6028/NIST.SP.800-30r1

continues on next page

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page viii

https://www.iso.org/standard/29237.html
https://arm-software.github.io/ebbr
https://www.etsi.org/standards/get-standards#search=303%20645
https://doi.org/10.6028/NIST.IR.8259
https://openmobilealliance.org/release/LightweightM2M
https://psacertified.org/development-resources/certification-resources/#leveltwo
https://psacertified.org/development-resources/certification-resources/#leveltwo
https://developer.arm.com/documentation/den0063
https://arm-software.github.io/psa-api/status-code
https://developer.arm.com/documentation/den0128
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc8240
https://tools.ietf.org/html/rfc9019
https://tools.ietf.org/html/rfc9124
https://doi.org/10.6028/NIST.SP.800-30r1


Table 2 – continued from previous page

Ref Document
Number

Title

[SUIT-ENC] IETF, (draft), Encrypted Payloads in SUIT Manifests, April 2023.datatracker.ietf.org/doc/draft-ietf-suit-firmware-encryption
[SUIT-MFST] IETF, (draft), A Concise Binary Object Representation(CBOR)-based Serialization Format for the Software Updates forInternet of Things (SUIT) Manifest, February 2023.datatracker.ietf.org/doc/draft-ietf-suit-manifest
[UEFI] UEFI v2.10 UEFI Forum, Inc., Unified Extensible Firmware Interface (UEFI)Specification, August 2022. uefi.org/specifications

Terms and abbreviations
This document uses the following terms and abbreviations.

Table 3 Terms and abbreviations
Term Meaning

Application firmware The main application firmware for the platform, typically comprising anOperating System (OS) and application tasks. On a platform with isolation,the application firmware runs in the NSPE.
Application Root ofTrust This is the security domain in which additional security services areimplemented. See Platform Security Model [PSM].
Immutable PlatformRoot of Trust Part of the Platform Root of Trust, which is inherently trusted. This refers tothe hardware and firmware that cannot be updated on a production device.See Platform Security Model [PSM].
IMPLEMENTATION DEFINED Behavior that is not defined by the this specification, but is defined anddocumented by individual implementations.

Firmware developers can choose to depend on IMPLEMENTATION DEFINEDbehavior, but must be aware that their code might not be portable to anotherimplementation.
Manifest Firmware image metadata that is signed with a cryptographic key. Themanifest can be bundled within the firmware image, or detached from it.

SeeManifest on page 19.
MPU Memory protection unit
Non-secure ProcessingEnvironment (NSPE) This is the security domain outside of the Secure Processing Environment. It isthe Application domain, typically containing the application firmware andhardware.

continues on next page

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page ix

https://datatracker.ietf.org/doc/draft-ietf-suit-firmware-encryption
https://datatracker.ietf.org/doc/draft-ietf-suit-manifest
https://uefi.org/specifications


Table 3 – continued from previous page

Term Meaning

NSPE See Non-secure Processing Environment.
OEM Original equipment manufacturer
OTA See Over-the-Air.
Over-the-Air (OTA) The procedure where a device downloads an update from a remote location(“over the air”).
PKI Public key infrastructure
Platform Root of Trust(PRoT) The overall trust anchor for the system. This ensures the platform is securelybooted and configured, and establishes the secure environments required toprotect security services. See Platform Security Model [PSM].
PRoT See Platform Root of Trust.
PSA Platform Security Architecture
Root of Trust (RoT) This is the minimal set of software, hardware and data that is implicitlytrusted in the platform — there is no software or hardware at a deeper levelthat can verify that the Root of Trust is authentic and unmodified.
RoT See Root of Trust.
Secure boot Secure boot is technology to provide a chain of trust for all the componentsduring boot.
Secure ProcessingEnvironment (SPE) This is the security domain that includes the Platform Root of Trust and theApplication Root of Trust domains.
SPE See Secure Processing Environment.
Staging area A region within the firmware store used for a firmware image that is beingtransferred to the device. Once transfer is complete, the image in the stagingarea can be verified during installation.

See Firmware store on page 21.
Updatable PlatformRoot of Trust Part of the Platform Root of Trust firmware that can be updated followingmanufacturing. See Platform Security Model [PSM].
Update client Software component that is responsible for downloading firmware updatesto the device. The Update client is part of the application firmware.
Volatile staging A component with volatile staging does not preserve a firmware image that isin the staging area after a reboot.

A component without volatile staging preserves a prepared candidatefirmware image after a reboot. It is IMPLEMENTATION DEFINED whether a partiallyprepared image in in the staging area is retained after a system reset.
See PSA_FWU_FLAG_VOLATILE_STAGING.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page x



Potential for change
The contents of this specification are stable for version 1.0.
The following may change in updates to the version 1.0 specification:

∙ Small optional feature additions.
∙ Clarifications.

Significant additions, or any changes that affect the compatibility of the interfaces defined in thisspecification will only be included in a new major or minor version of the specification.

Conventions
Typographical conventions

The typographical conventions are:
italic Introduces special terminology, and denotes citations.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other itemsappearing in assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALSUsed for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Termsand abbreviations.
Red text Indicates an open issue.
Blue text Indicates a link. This can be

∙ A cross-reference to another location within the document
∙ A URL, for example example.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbersby 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.To improve readability, long numbers can be written with an underscore separator between every fourcharacters, for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of anumber.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page xi

https://example.com


Feedback
We welcome feedback on the PSA Certified API documentation.
If you have comments on the content of this book, visit github.com/arm-software/psa-api/issues to createa new issue at the PSA Certified API GitHub project. Give:

∙ The title (Firmware Update API).
∙ The number and issue (IHI 0093 1.0.0).
∙ The location in the document to which your comments apply.
∙ A concise explanation of your comments.

We also welcome general suggestions for additions and improvements.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page xii

https://github.com/arm-software/psa-api/issues


1 Introduction
1.1 About Platform Security Architecture
This document is one of a set of resources provided by Arm that can help organizations develop productsthat meet the security requirements of PSA Certified on Arm-based platforms. The PSA Certified schemeprovides a framework and methodology that helps silicon manufacturers, system software providers andOEMs to develop more secure products. Arm resources that support PSA Certified range from threatmodels, standard architectures that simplify development and increase portability, and open-sourcepartnerships that provide ready-to-use software. You can read more about PSA Certified here atwww.psacertified.org and find more Arm resources here atdeveloper.arm.com/platform-security-resources.

1.2 About the Firmware Update API
The interface described in this document is a PSA Certified API, that provides a portable programminginterface to firmware update and installation operations on a wide range of hardware.
The interface enables the software and systems that manage and deliver a firmware update to a device, tobe developed independently from the hardware-specific mechanisms required to apply the update to thedevice. Reusing the deployment and delivery system for firmware updates reduces the complexity ofproviding firmware updates across a diverse set of managed devices.
You can find additional resources relating to the Firmware Update API here atarm-software.github.io/psa-api/fwu, and find other PSA Certified APIs here atarm-software.github.io/psa-api.

1.3 Firmware update
Connected devices need a reliable and secure firmware update mechanism. Incorporating such an updatemechanism is a fundamental requirement for fixing vulnerabilities, but it also enables other importantcapabilities such as updating configuration settings and adding new functionality. This can be particularlychallenging for devices with resource constraints, as highlighted in Report from the Internet of ThingsSoftware Update (IoTSU) Workshop 2016 [RFC8240].
Figure 1 on page 14 depicts the actors and agents involved in a typical firmware update scenario.
In this example, the new firmware is uploaded by the Firmware creator to an Update server. The Updateserver communicates with an Update client application on the device, announcing the availability of newfirmware. The client downloads the new firmware, and installs it into the device firmware storage.
In Figure 1 on page 14, the Update client has to combine the following capabilities:

∙ The specific protocols used by the network operator in which the device is deployed
∙ The specific mechanism used by the hardware platform to install firmware for execution

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 13

https://www.psacertified.org
https://developer.arm.com/platform-security-resources
https://arm-software.github.io/psa-api/fwu
https://arm-software.github.io/psa-api


Internet
«Device»

Update server Update client

Firmware store

Firmware creator

MQTT
CoAP
HTTPS

...

Figure 1 A typical over-the-air firmware update scenario
Devices developed for the Internet of Things (IoT) have a very diverse ecosystem of hardware andsoftware developers, and utilize a broad set of communication protocols and technologies. This will lead toa large, fragmented set of Update clients, that are each tightly coupled to one hardware platform and onenetwork protocol.
The Firmware Update API separates the software responsible for delivering the new firmware in thedevice, from the software that is responsible for storing and installing it in the device memory. Figure 2shows how the Firmware Update API separates an Update client, which obtains the new firmware fromthe Firmware Server, from an Update service, which stores the firmware in the device memory.

Internet
«Device»

Update server Update client

Firmware
Update API

Update service

Firmware store

BootloaderFirmware creator

MQTT
CoAP
HTTPS

...

Figure 2 The Firmware Update API
In practice, this enables an Update client to be written independently of the firmware storage design, andthe Update service to be written independently of the delivery mechanism.
The remainder of this document includes:

∙ The design goals for the Firmware Update API. See Design goals on page 15.
∙ A definition of the concepts and terminology used in this document. See Architecture on page 19.
∙ A description of the interface design. See Programming model on page 25.
∙ A detailed definition of the API. See API reference on page 39.

The appendixes provide additional information:
∙ A sample header file containing all of the API elements. See Example header file on page 63.
∙ Some example code demonstrating various use cases. See Example usage on page 66.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 14



2 Design goals
This section describes the main goals and use cases for the Firmware Update API.

2.1 Suitable for constrained devices
The interface is suitable for a range of embedded devices: from those with resource-limitedmicrocontrollers with one or two simple firmware images, to richer devices that have firmware images formultiple subsystems and separated applications.
For example, the following resource constraints can affect the Firmware Update API:
Resource Impact on interface requirements

Volatile memorycapacity Firmware images must be transferred to the device in blocks small enough tofit in device RAM.
Non-volatile memorycapacity Firmware updates must be small enough to be stored in memory prior toinstallation.
Delivery bandwidth Firmware download can take an extended period of time. The device mightrestart during this process.
Energy and power Downloading and installing updates must be reliable to avoid wasting energyon failed or repeated update attempts.
Performance ofcryptographicprimitives

The use of cryptographic protection for firmware updates must match thesecurity requirements for the device.

For devices with sufficient resources, it is recommended to follow the Embedded Base Boot Requirements(EBBR) Specification [EBBR] specification, which prescribes the Unified Extensible Firmware Interface (UEFI)Specification [UEFI] capsule update interface.

2.2 Updating the Platform Root of Trust
The Firmware Update API is suitable for updating the device’s Platform Root of Trust (PRoT) firmware.
The Platform Security Model [PSM] requires all of the Updatable Platform Root of Trust firmware to beupdatable. This can include bootloaders, Secure Partition Manager, Trusted OS, and runtime services. Insome implementations, the PRoT can include a trusted subsystem with its own isolated and updatablefirmware.
The [PSM] requirements for firmware update are also reflected in publications such as FoundationalCybersecurity Activities for IoT Device Manufacturers [IR8259] and Cyber Security for Consumer Internet ofThings: Baseline Requirements [EN303645], and in certification schemes such as PSA Certified™ Level 2Lightweight Protection Profile [PSA-CERT]. [PSA-CERT] provides the following definition of theF.FIRMWARE_UPDATE security function, where the Target of Evaluation (TOE) refers to the PRoT:
IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 15



The TOE verifies the integrity and authenticity of the TOE update prior to performing theupdate.
The TOE also rejects attempts of firmware downgrade.

2.3 Updating the Application Root of Trust
In addition to the PRoT firmware, other services that run in the Secure processing environment (SPE), butoutside of the PRoT, can require update via the Firmware Update API. These services may be combinedwith the updatable PRoT in a single firmware image, or provided in a separate firmware image.

2.4 Flexibility for different trust models
There are a number of factors that impact the trust model that is used to authorize device updates andfirmware execution. For example:

∙ A device can require firmware updates from multiple, mutually distrustful, firmware vendors.
∙ Regulation can require implementations to use specified Certificate Authorities and PKI.
∙ The entity that signs a firmware image can be distinct from the device owner or operator. Anoperator of a device can have a security policy that requires additional authorization to the firmwareauthor’s policy.

The Firmware Update API must be flexible enough to support the trust model required for particularproducts, without imposing unnecessary overheads on constrained devices.

2.5 Protocol independence
Different protocols are used to communicate with a device depending on the industry and applicationcontext. This includes open protocols, such as Lightweight M2M [LWM2M], and proprietary protocols fromcloud service providers. These protocols serve the specific needs of their respective markets.
Some of the protocols have manifest data that is separate from the firmware image.
The Firmware Update API must be independent of the protocol used by the update client to receive anupdate.

2.6 Transport independence
Embedded devices can receive over-the-air (OTA) firmware updates over different transport technologies,depending on the industry and the application. For example, this includes Wi-Fi, LTE, LoRa, andcommercial low-power wide-area networks.
Some devices might not be directly connected to a network but may receive updates through a physicalinterface from an adjacent device, such as UART, CAN bus, or USB.
The Firmware Update API must be independent of the transport used by the update client to receive anupdate.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 16



Note:
The Firmware Update API does not cover reprogramming of a device using a debug interface, forexample, JTAG or SWD.

2.7 Firmware format independence
Many device manufacturers and cloud service providers have established formats for firmware images andmanifests, tailored to the specific needs of their systems and markets.
The Firmware Update API must be independent of the format and encoding of firmware images andmanifests, to enable adoption of the interface by systems with existing formats.

Note:
New standards for firmware update within IoT are being developed, such as A Firmware UpdateArchitecture for Internet of Things [RFC9019].
This version of the Firmware Update API is suitable for some of the use cases that are defined by AManifest Information Model for Firmware Updates in Internet of Things (IoT) Devices [RFC9124] and AConcise Binary Object Representation (CBOR)-based Serialization Format for the Software Updates forInternet of Things (SUIT) Manifest [SUIT-MFST]. For example, where the payloads are integrated in themanifest envelope, or there is just one external payload to the envelope.
Support for the more complex use cases from [RFC9124], with multiple external payloads, is notconsidered in version 1.0 of the Firmware Update API, but might be in scope for future versions ofthe interface.

2.8 Flexibility for different hardware designs
The Firmware Update API is designed to be reasonably efficient to implement on different system-on-chip(SoC) architectures, while providing a consistent interface for update clients to target.
For example, the Firmware Update API should be effective in the following types of system:

∙ SoCs that use bus filters, or equivalent security IP, to protect the SPE.
∙ SoCs that use multiple CPUs, providing an isolated CPU and memories for the SPE and another forthe NSPE.
∙ Simple SoCs that use anMPU or equivalent to protect the SPE.
∙ Systems that have unified on-chip non-volatile memory used for firmware storage.
∙ Systems that have isolated on-chip non-volatile memory used for firmware storage.
∙ Systems that have a mixture of on-chip and external non-volatile memory used for firmware storage.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 17



2.9 Suitable for composite devices
Some platforms have independent subsystems that are isolated from the main microprocessor. Thesesubsystems can have their own firmware, which can also require updates. For example, radios, secureelements, secure enclaves, or other kinds of microcontroller.
The Firmware Update API must support an implementation updates these types of subsystem.

2.10 Robust and reliable update
Devices that are remotely deployed, or are deployed in large numbers, must use an update process thatdoes not have routine failure modes that result in devices that cannot be remotely recovered.
The Firmware Update API must support an update process that reduces the risk of in-field update failure,without compromising the requirements for secure boot.

Note:
A device can also have an additional recovery capability, for example, a separate recovery firmwareimage that the bootloader can execute if the installed firmware cannot be verified.
The Firmware Update API might be useful for implementation of recovery firmware, but therequirements of recovery firmware are not considered in the interface design.

2.11 Flexibility in implementation design
The Firmware Update API is architectural and does not define a single implementation. An implementationcan make trade-offs to target specific device needs. For example:

∙ An implementation can provide a more robust solution, while others optimize for device cost.
∙ An implementation can optimize for bandwidth efficiency, while others optimize for simplicity
∙ An implementation can provide fine-grained update of personalization data, while others performmonolithic updates of all code and data.
∙ An implementation can provide enhanced security for stricter markets, such as those which requireencrypted firmware images, while others only use the Firmware Update API to provide a commoninterface across all products.

The Firmware Update API permits the omission of optional features that are not used by theimplementation.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 18



3 Architecture
3.1 Concepts and terminology
This section describes important concepts and terminology used in the Firmware Update API specification.
Figure 3 identifies the main actors and agents involved in a typical firmware update scenario.

Internet

«Device»

Update server Update client

Firmware
Update API

Update service

Firmware store

Bootloader    
Trust anchor

Firmware creator

MQTT
CoAP
HTTPS

...

External storage
USB

Figure 3 The Firmware Update API in context

3.1.1 Firmware image

A firmware image, or simply the “image”, is a binary that can contain the complete software of a device or asubset of it. A firmware image can consist of multiple images if the device contains more than onemicrocontroller. It can also be a compressed archive that contains code, configuration data, and even theentire file system. An image may consist of a differential update for performance reasons.
The terms “firmware image”, “firmware”, and “image” are used in this document and are interchangeable.
3.1.2 Manifest

A manifest contains metadata about the firmware image. The manifest is typically protected againstmodification using a signed hash of its contents, seeManifest verification on page 32.
Metadata that can be in a manifest includes the following:

∙ The intended device, which might be a specific instance or class.
∙ The intended device component.
∙ The version or serial-number of the firmware image.
∙ A digest of the image.
∙ Information relating to rollback prevention, or other security policies.
∙ Dependencies on other firmware images.
∙ Hints or explicit instructions on how to decrypt, decompress or install an image.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 19



∙ Information on additional steps required to apply the update.
A manifest can be bundled within the firmware image, or detached from it.
3.1.3 Component

A component is a logical part of the device which needs a firmware image. Each firmware image isdesigned for exactly one component.
A component can have a one to one correspondence with a physical processor in the system, othermappings are possible:

∙ A single physical processor might have multiple components. For example:
— If the SPE and NSPE have separate firmware images, these are separate components.
— If configuration data for the system can be updated independently, this is a separatecomponent.

∙ Multiple processors, or even the whole system, can have the firmware packaged together in a singlefirmware image. As a whole, this forms a single component in the context of the Firmware UpdateAPI.
3.1.4 Component identifier

The component identifier is a small numerical value, that precisely identifies the component within thisdevice.
The identifier values are typically allocated by the device developer or integrator. A component identifiercan be used within the manifest during the update process, or can be translated from anotheridentification scheme via a mapping configured in the update client.
3.1.5 Firmware creator

A developer or integrator of the firmware for the device being updated.
The firmware creator is responsible for constructing firmware images and manifests for the device. Fordevices that implement a secure boot protocol, the firmware creator signs the manifest using a signing keyassociated with a trust anchor on the device. See Trust anchor on page 21.
In systems with multiple components, each component can have a different firmware creator.
3.1.6 Update server

A system within the operational network of the device that hosts firmware images and manages therollout of updates to devices within that network.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 20



3.1.7 Update client

The update client is a software component that obtains firmware images. For example, this can bedownloaded from an update server, or accessed from an attached storages device. When it obtains animage, it transfers it to the update service using the interface described in this document.
The update client runs as part of the application firmware.
It can report device identity and installation state to a remote party, such as the update server. Forexample, the reported installation state can include the versions of installed images and error informationof images that did not install successfully.
3.1.8 Update service

The update service is a software component that stores a firmware image in device memory, ready forinstallation. The update service implements the interface described in this document.
Depending on the system design, the installation process can be implemented within the update service,or it can be implemented within a bootloader or other system component.
3.1.9 Firmware store

The firmware store is the location where firmware images are stored. Conceptually the firmware store isshared between the update service and the bootloader. Both components share access to the firmwarestore to manage the firmware update process.
The Firmware Update API presents a separate firmware store for each component. Each component’sfirmware store can have one or more images present. The state of the firmware store determines howthose images are used, and what is required to proceed with a firmware update.
The staging area is a region within a firmware store used for a firmware image that is being transferred tothe device. Once transfer is complete, the image in the staging area can be verified during installation.
3.1.10 Bootloader

A bootloader selects a firmware image to execute when a device boots. The bootloader can alsoimplement the verification and installation process for a firmware update.
In a system that implements secure boot, the bootloader will always verify the authenticity of the firmwareimage prior to execution.
3.1.11 Trust anchor

A device contains one or more trust anchors. A trust anchor is used to check if an image, or its manifest,are signed by a signing authority that the device trusts.
Each trust anchor is pre-provisioned on the device. A trust anchor can be implemented in many ways, buttypically takes the form of a public key or a certificate chain, depending on the complexity of the trustmodel.
The management and provisioning of trust anchors is not within the scope of this document.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 21



3.2 Firmware image format
The Firmware Update API does not define the format for the firmware image and manifest. This is definedand documented by the implementation, so that a firmware creator can construct valid firmware imagesand manifests for the device.
The Firmware Update API assumes that manifests and firmware images passed to the update serviceconform to the format expected by the implementation. The implementation is responsible for verifyingthat data provided by the client represents a valid manifest or firmware image.
Examples of the firmware image and manifest design details that need to be provided by theimplementation, include the following:

∙ Whether the manifest is detached from, or bundled with, the firmware image.
∙ The format and encoding of the manifest and firmware image.
∙ The attributes provided by the manifest, and their impact on processing of the firmware image.
∙ Support for encrypted, compressed, or delta firmware image.
∙ Firmware image integrity and authentication data.

If firmware images must be signed — for example, for devices implementing secure boot — the devicecreator must enable the firmware creator to sign new firmware images in accordance with the devicepolicy.
For some deployments, the firmware and manifest formats used by a device can be affected by theprotocols used by the update server and update client to notify and transfer firmware updates. In otherdeployments, the update server and update client can have independent formats for describing firmwareupdates, to those used by the firmware creator and update service.

3.3 Deployment scenarios
There are different ways in which the Firmware Update API can be implemented, that apply to differentsystem designs. The primary differences relate to the presence and location of trust boundaries within thesystem, in particular trust boundaries that protect a device Root of Trust.
The implementation architecture can affect the behavior of the Firmware Update API, particularly inregard to if, and when, a firmware update is verified.
These implementation architectures provide use cases for the design of the Firmware Update API.
3.3.1 Untrusted client

Figure 4 on page 23 shows an implementation architecture for a system where the firmware store is fullyprotected by the Platform Root of Trust (PRoT).
In this architecture, part of the update service must run as a service within the PRoT, to query and updatethe firmware store. The update client accesses this service via an update service proxy library, whichimplements the Firmware Update API.
The Firmware Update API is designed for implementation across a security boundary, as used in thisarchitecture. The interface between the update service proxy and the update service itself is
IMPLEMENTATION DEFINED.
IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 22



«trust boundary»
Device

«trust boundary»
Platform Root of Trust

«app»
Update client

Firmware
Update API

«library»
Update service proxy

«RoT service»
Update service

Firmware store

Bootloader     
Trust anchor

«data»
Firmware package

Figure 4 Implementation architecture with an untrusted update client

This architecture enables all of the firmware verification requirements to be fulfilled by the update servicewithin the PRoT.
As the PRoT trusts the update service, but not the update client, this architecture is referred to as anuntrusted client implementation.
3.3.2 Untrusted staging
Figure 5 shows an implementation architecture for a system where the active image is protected by thePlatform Root of Trust (PRoT), but the staging area for a new firmware image is not protected from accessby the update client.

«trust boundary»
Device

«trust boundary»
Platform Root of Trust

«app»
Update client

Firmware
Update API

«library»
Update service

Staging area active image

Bootloader     
Trust anchor

«data»
Firmware package

Figure 5 Implementation architecture with an untrusted update service and staging
The staging area is accessible to untrusted components, so the bootloader cannot trust any verificationdone by the update service prior to system restart. The bootloader must do all firmware verification prior
IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 23



to completing installation of the firmware.
In this type of implementation, it is still beneficial for the update service to perform some verification offirmware updates: this can reduce the system impact of a malicious or accidental invalid update.
As the PRoT does not trust the staging, or the update service which writes to it, this architecture isreferred to as an untrusted staging implementation.
3.3.3 Trusted client

Figure 6 shows an implementation architecture for a system where the update client application is withinthe system’s Root of Trust.
«trust boundary»

Device

«app»
Update client

Firmware
Update API

«library»
Update service

Firmware store

Bootloader     
Trust anchor

«data»
Firmware package

Figure 6 Implementation architecture with a trusted update client
In this architecture, it is permitted for verification of an update to happen in any component, including theupdate client itself. This approach can be suitable for highly constrained devices, and relies on the securityprovided by the protocol used between the update server and update client.
Warning: If the implementation assumes that manifests and firmware images provided by the clientare valid, and carries out the preparation and installation without further verification, then theFirmware Update API is being used purely as a hardware abstraction layer (HAL) for the firmware store.
An implementation like this must clearly document this assumption to ensure update clients carry outsufficient verification of firmware manifests, firmware images, and firmware dependencies beforecalling the Firmware Update API.

This implementation architecture can also be used in a device that does not enforce a secure boot policy.For example, this can enable code reuse by using a single API for firmware update across devices that havedifferent security requirements and policies. Although permitted by the Firmware Update API, this usage isnot a focus for this specification.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 24



4 Programming model
4.1 The firmware store
For each component, depending on the state or progress of a firmware update, there can be one or morefirmware images currently in the component’s firmware store:

∙ An active image that is actively in use by the system.
∙ A staged image that is being prepared for installation.
∙ A backup of the previous image that is being replaced, used to recover if an attempted update fails.
∙ A dirty image that can be erased.

For a component that is essential for system operation, there will always be exactly one active image.Other images might, or might not, be present in the firmware store.
The Firmware Update API uses a state model for the firmware store that requires storage for a minimum oftwo images. This is possible because the store does not need to hold more than one staged, backup, ordirty image concurrently. An implementation of the Firmware Update API can have storage for more thantwo images, and selects the appropriate storage area for a requested operation. For example, providingadditional image storage locations can reduce the need to carry out expensive erase operations on thestorage during normal device operation.
This document uses the following names to identify the two required locations:
Location Present Description

Active Always The image that is actively in use by the system
Second Some-times An image that is being prepared, or is kept for recovery, or needs to be erased

Depending on the system and memory design, the active and second locations can be fixed physicalstorage locations, or can refer to different physical storage locations over time as an update progresses.The implementation of the Firmware Update API is responsible for mapping the logical storage locationsto the stored firmware images.
During the course of an update, a specific firmware image can change from being active to second, or fromsecond to active. For example:

∙ An image will switch from being second — while being prepared — to active following installation.
∙ An image will switch from being active to second when it becomes the backup image duringinstallation of new firmware.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 25



4.2 State model
The full set of use cases for the Firmware Update API requires a fine-grained state model to track eachcomponent through the update process. See Rationale on page 30 for an explanation of the relationshipbetween state model features and use cases.
This section describes the complete state model. Some of the states and transitions in the state model areonly necessary for specific use cases. In addition, the persistence of the component states following areboot depends on the implementation capabilities.
The complete state model is applicable for components that have the following properties:

1. A reboot is required to complete installation of a new image.
2. The image must be tested prior to acceptance.
3. A candidate image is persistent across a reboot, before it is staged for installation.

For components that do not require testing of new firmware before acceptance, or components that donot require a reboot to complete installation, only a subset of the states are visible to the update client. Forcomponents with volatile staging, almost all component states will transition when the system restarts.Some common examples of alternative component update characteristics are described in Variation insystem design parameters on page 73, including the changes in the state model for such components.
4.2.1 Component state

Table 4 shows the possible update states for a component. The states have corresponding elements in theAPI, see Component states on page 46.
Table 4 Component states

State Description

READY This is the normal state for the component. There is just one image, it is active, and iscurrently in use by the system.
The component is ready for a new firmware update to be started.

WRITING A new firmware image is being written to the staging area, in preparation for installation.
When writing is complete, the image becomes a CANDIDATE for installation.
This state is always volatile for components that have volatile staging. For othercomponents, it is IMPLEMENTATION DEFINED whether this state is volatile.
When this state is volatile, the incomplete image is discarded at reboot.

CANDI-DATE Transfer of the new firmware image to the staging area is complete.
When all components that require update are in CANDIDATE state, they can be installed.
This state is always volatile for components that have volatile staging. For othercomponents, it is always persistent.
When this state is volatile, the candidate image is discarded at reboot.

continues on next page

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 26



Table 4 – continued from previous page

State Description

STAGED Installation of the candidate image has been requested, but the system must berestarted as the final update operation runs within the bootloader.
This state is always volatile.

TRIAL Installation of the staged image has succeeded, and is now the active image running in‘trial mode’. This state is always volatile, and requires the trial to be explicitly accepted tomake the update permanent.
In this state, the previously installed active image is preserved as the second image. If thetrial is explicitly rejected, or the system restarts without accepting the trial, thepreviously installed image is re-installed and the trial image is rejected.

REJECTED The active trial image has been rejected, but the system must be restarted so thebootloader can revert to the previous image, which was previously saved as the secondimage.
This state is always volatile.

FAILED An update to a new image has been attempted, but has failed, or been cancelled forsome reason. The failure reason is recorded in the firmware store.
The second image needs to be cleaned before another update can be attempted.
This state is always volatile for components that have volatile staging. For othercomponents, it is IMPLEMENTATION DEFINED whether this state is volatile.
When this state is volatile, the second image is cleaned at reboot.

UPDATED The active trial image has been accepted.
The second image contains the now-expired previous firmware image, which needs to becleaned before another update can be started.
This state is always volatile for components that have volatile staging. For othercomponents, it is IMPLEMENTATION DEFINED whether this state is volatile.
When this state is volatile, the second image is cleaned at reboot.

Implementation note
An implementation can have additional internal states, provided that implementation-specific statesare not visible to the caller of the Firmware Update API.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 27



4.2.2 Volatile states

A component state is ‘volatile’, if the state is not preserved when the system reboots.
States that are volatile are not optional for an implementation of the Firmware Update API. Until a devicereboots, the update service must follow the state transitions and report the resulting states as shown inthe state model appropriate for the component update characteristics.

∙ READY state is never volatile.
∙ STAGED, TRIAL, and REJECTED states are always volatile.
∙ If the component has volatile staging, then CANDIDATE, WRITING, FAILED, and UPDATED statesare volatile.
∙ If the component does not have volatile staging, then CANDIDATE state is non-volatile, and it is

IMPLEMENTATION DEFINED whether WRITING, FAILED, or UPDATED states are volatile.
In most cases, at reboot the implementation effectively implements one or more transitions to a final,non-volatile state. The exception is for a component that is STAGED, and enters TRIAL state following asuccessful installation at reboot.
The transitions for volatile states are described as part of the appropriate state models for different typesof firmware component. See Variation in system design parameters on page 73.
4.2.3 State transitions

The state transitions occur either as a result of an function call from the update client, when thebootloader carries out an installation operation, or transitions over reboot from a volatile state. Thetransitions that occur within the bootloader are determined by the state of the component, and do notdepend on the reason for the restart.
Table Table 5 shows the operations that the update client uses to trigger transitions in the state model.The operations have corresponding elements in the API, see Firmware installation on page 51.

Table 5 Operations on components
start Begin a firmware update operation
write Write all, or part, of a firmware image
finish Complete preparation of a candidate firmware image
cancel Abandon a firmware image that is being prepared
install Start the installation of candidate firmware images
accept Accept an installation that is being trialed
reject Abandon an installation
clean Erase firmware storage before starting a new update

The start, write, and finish operations are used to prepare a new firmware image. The cancel and cleanoperations are used to clean up a component after a successful, failed, or abandoned update. It is an errorto invoke these operations on a component that is not in a valid starting state for the operation.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 28



The install, accept, and reject operations apply to all components in the system, affecting any componentin the required starting state for the transition. This allows an update client to update multiple componentsatomically, if directed by the firmware image manifests. Components that are not in a valid starting statefor these operations are not affected by the operation.
Figure 7 shows the typical flow through the component states.

READY

WRITING †

CANDIDATE

STAGED *

FAILED ‡

REJECTED *TRIAL *

UPDATED ‡ READY

start

write

finish cancel

install

cancel

reboot:
install success

reboot:
install failed

reject

accept

clean

reject

reboot:
rollback

reboot:
rollback

clean

Transitions
———Applies to a single component
———Applies to all components
---Transition over reboot.
 
Volatile states
* Always: reboot transition as shown
† Optional: reboot is equivalent to cancel and clean
‡ Optional: reboot is equivalent to clean

Figure 7 The standard component state model transitions
Note, that the READY state at the end is distinct from the starting READY state — at the end the activefirmware image is the updated version. The component is ready to start the process again from thebeginning for the next update.
The behavior in error scenarios is not shown, except for the transitions over reboot where a failure canonly be reported to the update client by changing the state of the component.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 29



4.2.4 Behavior on error

Many of the operations in the Firmware Update API modify the firmware store. These operations are notrequired to have atomic operation with respect to the firmware store — when a failure occurs during oneof these operations, the firmware store can be left in a different state after the operation reports an errorstatus.
The following behavior is required by every implementation:

∙ When an operation returns the status PSA_SUCCESS, the requested action has been carried out.
∙ When a operation returns the status PSA_SUCCESS_RESTART, or PSA_SUCCESS_REBOOT, the requestedaction has been carried out, and appropriate action must be taken by the caller to continue theinstallation or rollback process.
∙ When a operation returns the status PSA_ERROR_BAD_STATE, PSA_ERROR_DOES_NOT_EXIST, or

PSA_ERROR_NOT_SUPPORTED, no action has been carried out, and the affected components’ states areunchanged.
∙ If firmware image dependencies are verified when the component is in CANDIDATE state, a missingdependency leaves the component unchanged, in CANDIDATE state.
∙ If there is a failure when verifying other manifest or firmware image properties of a component inWRITING, CANDIDATE or STAGED state, the component is transitioned to FAILED state.
∙ If there is a failure when verifying or installing a new firmware image during a component restart, orsystem reboot, the component is transitioned to FAILED state.
∙ A component always follows a transition that is shown in the appropriate state model, except for:

— If FAILED is a volatile state, a reboot transition that is shown to end in the FAILED state mustinclude a clean operation to end in READY state.
— Other transitions to FAILED state, as described in the preceding rules.
— If UPDATED is a volatile state, a reboot transition that is shown to end in the UPDATED statemust include a clean operation to end in READY state.

If an operation fails because of other conditions, it is IMPLEMENTATION DEFINED whether the component stateis unchanged, or is transitioned to FAILED state. In this situation, it is recommended that the update clientabort the update process with a cancel operation.
If an unexpected system restart interrupts an operation, it is IMPLEMENTATION DEFINED whether thecomponent state is unchanged, is transitioned to FAILED state, or is processed to a following state by thebootloader as described by the state model. In this situation, the update client must query the componentstatus when it restarts, to determine the result.
4.2.5 Rationale

The complexity of the state model is a response to the requirements that follow from the use cases for theFirmware Update API. Table 6 on page 31 provides a rationale for the state model design.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 30



Table 6 Use case implications for the state model
State model feature Rationale

Optional non-volatileWRITING state Devices with slow download due to bandwidth or energy constraints cantake an extended period to obtain the firmware image. When this is not aconstraint, it is more efficient to not need to retain persistent state necessaryto resume a download.
Incremental imagetransfer in WRITINGstate

Devices with limited RAM cannot store the entire image in the update clientbefore writing to the firmware store.
CANDIDATE state Enables the update client to explicitly indicate which components are part ofan atomic multi-component install operation.
FAILED state Enables the update client to detect failed installation operations that occur inthe bootloader.
TRIAL and REJECTEDstates Enables a new firmware image to be tested by application firmware, prior toaccepting the update, without compromising a firmware rollback-preventionpolicy.
UPDATED state and
cancel operation Erasing non-volatile storage can be a high-latency operation. In somesystems, this activity might block other memory i/o operations, includingcode execution. Isolating the erase activity within the clean operationenables an update client to manage when such disruptive actions take place.

4.3 Verifying an update
A firmware update is essentially authorized remote code execution. Any security weaknesses in theupdate process expose that remote code execution system. Failure to secure the firmware update processwill help attackers take control of devices.
Where the installation results in the loss of the previous image, verification of the image during a secureboot process is not sufficient. If the boot time verification fails, then it is possible that the device can nolonger operate, unless additional recovery mechanisms are implemented.
It is important for the update process to verify that an update is appropriate for the device, authentic,correctly authorized, and not expected to result in a non-functioning system. This is achieved by verifyingvarious aspects of the firmware and its manifest. The various checks can take place at different points inthe update process, depending on the firmware update implementation architecture — as a result, averification failure can cause an error response in different function calls depending on theimplementation.
The following sections provide example of verification checks that can be implemented as part of theupdate process.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 31



4.3.1 Manifest verification

Before processing the content of the manifest, the implementation must verify that the manifest is valid,and authentic. This is typically achieved using a digital signature on the manifest, that can be verified by atrust anchor that is associated with the component.
The manifest must conform to a format that is expected by the implementation. It is recommended thatthe implementation treats unexpected manifest content as an error.
The manifest describes the type of device, and component, that the firmware is for. The implementationmust check that this information matches the device and component being updated.
The manifest provides the version, or sequence number, of the new firmware image. For somedeployments, the implementation must not install an earlier version of firmware than is currently installed.This security requirement prevents a firmware downgrade that can expose a known security vulnerability.
The manifest can provide information about dependencies on other firmware images. The implementationmust only install the new firmware if its dependencies are satisfied. See Dependencies on page 33.

Implementation note
In a trusted-client implementation of the Firmware Update API, these steps can be carried out by theupdate client, and then no verification is done by the implementation. See Trusted client on page 24.

4.3.2 Firmware image verification

Before installation, the firmware integrity must be verified. This can be done by checking that a hash of thefirmware image matches the associated value in the manifest, or by checking that a provided imagesignature matches the firmware image using the trust anchor associated with the component.
In a system that implements secure boot, the firmware verification processes that occur during firmwareupdate do not replace the requirement for the bootloader to ensure that only correctly authorizedfirmware can execute on the device.
The implementation is permitted to defer all of the verification of the manifest and firmware image to thebootloader. However, it is recommended that as much verification as possible is carried out beforerebooting the system. This reduces the loss of system availability during a reboot, or the cost of storing thefirmware image, when it can be determined ahead of time that the update will fail at least one verificationcheck. This recommendation is also made for systems which repeat the verification in the bootloader, priorto final installation and execution of the new firmware.

Implementation note
In a trusted-client implementation of the Firmware Update API, this verification can be carried outby the update client, and then no verification is done by the implementation. See Trusted client onpage 24.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 32



4.4 Dependencies
A firmware image can have a dependency on another component’s firmware image. When a firmwareimage has a dependency it cannot be installed until all of its dependencies are satisfied.
A dependency can be satisfied by a firmware image that is already installed, or by a firmware image that isinstalled at the same time as the dependent image. In the latter case, both images must be prepared ascandiate images before the install operation. If new firmware images for multiple components areinter-dependent, then the components must be installed at the same time. TheMultiple components withdependent images on page 69 example shows how this can be done.
Dependencies are typically described in the firmware image manifest. It is the responsibility of the updateclient to update components in an order that ensures that dependencies are met during the installationprocess. Typically, the firmware creator and update server ensure that firmware image updates arepresented to the update client in an appropriate order. In more advanced systems, a manifest mightprovide the update client with sufficient information to determine dependencies and installation order ofmultiple components itself.

Implementation note
In a trusted-client implementation of the Firmware Update API, dependency verification can becarried out by the update client, and then no verification is done by the implementation. See Trustedclient on page 24.

4.5 Update client operation
A typical sequence of activity relating to a firmware update within a device is as follows:

1. Query the current component status, to determine if an update is required
2. Obtain the required manifests and firmware images for the update
3. Validate the manifest
4. Store the firmware image
5. Verify the firmware image
6. Invoke the updated firmware image
7. Clean up any outdated stored firmware image

The design of the Firmware Update API offers functions for these actions.
The activity does not always follow this sequence in order. For example,

∙ To support devices with constrained download bandwidth, the interface permits an implementationto retain a partially stored firmware image across a system restart. The transfer of the image to theupdate service can be resumed after the update client has determined the component status.
∙ For components where the manifest and image are bundled together, the image will be stored priorto verification of the manifest data.
∙ Some components require execution of the new image to complete verification of the updatefunctionality, before committing to the update.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 33



4.5.1 Querying installed firmware

Each component has a local component identifier. Component queries are based on the componentidentifier.
The update client calls psa_fwu_query() with each component identifier to retrieve information about thecomponent firmware. This information is reported in a psa_fwu_component_info_t object, and includes thestate of the component, and version of the current active firmware.
If a component state is not READY, the update client should proceed with the appropriate operations tocontinue or abandon the update that is in progress.
4.5.2 Preparing a new firmware image

To start this process, the component must be in READY state.
To prepare a new firmware image for a component, the update client calls psa_fwu_start(). Forcomponents with a detached manifest, the manifest data is passed as part of the call to psa_fwu_start().The implementation can verify the manifest at this point, or can defer verification until later in the process.
The update client can now transfer the firmware image data to the firmware store by calling
psa_fwu_write() one or more times. In systems with sufficient resources, the firmware image can betransferred in a single call. In systems with limited RAM, the update client can transfer the imageincrementally, and specify the location of the provided data within the overall firmware image.
When all of the firmware image has been transferred to the update service, the update client calls
psa_fwu_finish() to complete the preparation of the candidate firmware image. The implementation canverify the manifest and verify the image at this point, or can defer this until later in the process.
If preparation is successful, the component is now in CANDIDATE state.
To abandon a component update at any stage during the image preparation, the update client calls
psa_fwu_cancel(), and the psa_fwu_clean() to remove the abandoned firmware image.
Multi-component updates

A system with multiple components might sometimes require that more than one component is updatedatomically.
To update multiple components atomically, all of the new firmware images must be prepared as candidatesbefore proceeding to the installation step.
4.5.3 Installing the candidate firmware image

Once the images have been prepared as candidates, the update client calls psa_fwu_install() to begin theinstallation process. This operation will apply to all components in CANDIDATE state. The implementationwill complete the verification of the manifest data at this point, and can also verify the new firmware image.
Invoking the new firmware image can require part, or all, of the system to be restarted. If this is required,the affected components will be in STAGED state, and the call to psa_fwu_install() returns a status codethat informs the update client of the action required.
If a system restart is required, the update client can call psa_fwu_request_reboot(). If a component restart isrequired, this requires an IMPLEMENTATION DEFINED action by the update client.
IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 34



When the update requires a system reboot, the bootloader will perform additional manifest and firmwareimage verification, prior to invoking the new firmware. On restart, the update client must query thecomponent status to determine the result of the installation operation within the bootloader.
If the installation succeeds, the components will be in TRIAL or UPDATED state.
4.5.4 Testing the new firmware image

Some components need to execute the new firmware to verify the updated functionality, before acceptingthe new firmware. For systems that implement a rollback-prevention policy, the testing is done with thecomponent in TRIAL state. The tests are run immediately after the update, and results used to determinewhether to accept or reject the update.
The update client reports a successful test result by calling psa_fwu_accept(). In an atomic,multi-component update, this will apply to all of the components in the update. The components will nowbe in UPDATED state.
The update client reports a test failure by calling psa_fwu_reject(). In an atomic, multi-component update,this will apply to all of the components in the update. Rolling back to the previous firmware can requirepart, or all, of the system to be restarted. If this is required, the affected components will be in REJECTEDstate, and the call to psa_fwu_reject() returns a status code that informs the update client of the actionrequired. If a restart is not required, then following the call to psa_fwu_reject(), the components will nowbe in FAILED state.
The updated firmware is automatically rejected if the system restarts while a component is in TRIAL state.

Implementation note
Where possible, it is recommended that a firmware update can be accepted by the system prior toexecuting the new firmware. This reduces the complexity of the firmware update process, andreduces risks related to firmware rollback. However, for complex devices that require very reliable,remote update, support for in-field testing of new firmware can be important.

4.5.5 Cleaning up the firmware store

After a successful, failed, or abandoned update, the storage containing the inactive firmware image needsto be reclaimed for reuse. The update client calls to psa_fwu_clean() to do this.
Rationale
Erasing non-volatile storage can be a high-latency operation. In some systems, this activity might blockother memory i/o operations, including code execution. Isolating the erase activity within the call to
psa_fwu_clean() enables an update client to manage when such disruptive actions take place.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 35



4.6 Bootloader operation
When the bootloader is involved in the firmware installation process, it does more than select and verify afirmware image to execute. This section describes the responsibilities of the bootloader for the type ofcomponent depicted in State transitions on page 28.
4.6.1 Determine firmware state

The bootloader checks the state of each component:
∙ If there are any STAGED components, proceed to install them. See Install components.
∙ If there are any TRIAL or REJECTED components, proceed to roll them back. See Rollback trialcomponents on page 37.
∙ If staging is volatile, and there are any WRITING, FAILED, or UPDATED components, proceed toclean their firmware store.
∙ Otherwise, proceed to boot the firmware. See Authenticate and execute active firmware on page 37.

Note:
The design of the state model prevents the situation in which there is a STAGED component at thesame time as a TRIAL or REJECTED component.

4.6.2 Install components

If the implementation defers verification of the updated firmware to the bootloader, or the bootloaderdoes not trust the staged firmware image (see Untrusted staging on page 23), the bootloader must verify allcomponents that are in STAGED state. If verification fails, all STAGED components are set to FAILEDstate, and the reason for failure stored for retrieval by the update client. The bootloader proceeds to bootthe existing firmware. See Authenticate and execute active firmware on page 37.
The new firmware images for all STAGED components are installed as the active firmware. If theinstallation fails for any component, the previous images are restored for all components, the componentsare set to FAILED state, and the reason for failure stored for retrieval by the update client. The bootloaderproceeds to boot the existing firmware. See Authenticate and execute active firmware on page 37.
If the components require the new firmware to be tested before acceptance, the bootloader stores thepreviously active firmware images as backup, for recovery if the new firmware images fail. Thecomponents are set to TRIAL state, and the bootloader proceeds to boot the new firmware. SeeAuthenticate and execute active firmware on page 37.
Otherwise, the components are set to UPDATED state, and the bootloader proceeds to boot the newfirmware. See Authenticate and execute active firmware on page 37.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 36



4.6.3 Rollback trial components

If the system restarts while components are in TRIAL state, or after an update has been explicitly rejectedby the update client, the bootloader restores the previous firmware images for the affected components asthe active image. These images were stored as a backup during the installation of the firmware beingtested (see Install components on page 36).
The components are set to FAILED state, and the reason for failure stored for retrieval by the updateclient. This will result in the firmware images, that failed the trial, being erased when the update clientcarries out a clean operation.
The bootloader proceeds to boot the previous firmware. See Authenticate and execute active firmware.
4.6.4 Authenticate and execute active firmware

In a system that implements a secure boot policy, the bootloader verifies the integrity and authenticity ofthe active firmware. If this verification fails, the result is IMPLEMENTATION DEFINED, for example:
∙ The bootloader can rollback to a previous firmware image, if one is available and policy permits.
∙ The bootloader can run a special recovery firmware image, if this is provided by the system.
∙ The device can become non-functional and unrecoverable.

Otherwise, the bootloader will complete initialization and transfer execution to the active firmware image.

4.7 Sample sequence during firmware update
Figure 8 on page 38 is a detailed sequence diagram shows how the overall logic could be implemented.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 37



Update server Update client Update service Firmware store Bootloader

In READY state

Get information about a component

psa_fwu_query(component_id)

Firmware information

Notify that an update is available

psa_fwu_start(component_id)

Set WRITING state

loop [while image is downloading]

Download block of image

psa_fwu_write(component_id, ...)

Write block to image

psa_fwu_finish(component_id)

Set CANDIDATE state

Report download complete

Request to apply update

psa_fwu_install()

Check image

alt [dependency needed]

PSA_ERROR_DEPENDENCY_NEEDED

[fail firmware image checks]

Set FAILED state

PSA_ERROR_INVALID_ARGUMENT

[all dependencies met]

Set STAGED state

PSA_SUCCESS_REBOOT

psa_fwu_request_reboot()

System restarts

Verify new image

alt [verification fails]

Set FAILED state

[verification succeeds]

Install new image

Set TRIAL state

Boot image

alt [Component in TRIAL state]

Test image functionality

alt [update is working properly]

psa_fwu_accept()

Set UPDATED state

[testing fails]

psa_fwu_reject()

Set REJECTED state

PSA_SUCCESS_REBOOT

psa_fwu_request_reboot()

System restarts

Restore previous image

Set FAILED state

Boot image

Report update status

psa_fwu_clean(component_id)

Erase store area

Set READY state

Figure 8 A sequence diagram showing an example flow
IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 38



5 API reference
To enable implementation optimization for constrained devices, the Firmware Update API does not requirebinary compatibility between different implementations. The Firmware Update API is defined as asource-level interface, and applications that target this interface will typically need to be recompiled fordifferent implementations.

5.1 API conventions
The interface in this specification is defined in terms of C macros, data types, and functions.
5.1.1 Identifier names

All of the identifiers defined in the Firmware Update API begin with the prefix psa_, for types andfunctions, or PSA_ for macros.
Future versions of this specification will use the same prefix for additional API elements. It isrecommended that applications and implementations do not use this prefix for their own identifiers, toavoid a potential conflict with a future version of the Firmware Update API.
5.1.2 Basic types

This specification makes use of standard C data types, including the fixed-width integer types from theISO C99 specification update [C99]. The following standard C types are used:
int32_t a 32-bit signed integer
uint8_t an 8-bit unsigned integer
uint16_t a 16-bit unsigned integer
uint32_t a 32-bit unsigned integer
size_t an unsigned integer large enough to hold the size of an object in memory

5.1.3 Data types

Integral types are defined for specific API elements to provide clarity in the interface definition, and toimprove code readability. For example, psa_fwu_component_t and psa_status_t.
Structure types are declared using typedef instead of a struct tag, also to improve code readability.
Fully-defined types must be declared exactly as defined in this specification. Types that are not fullydefined in this specification must be defined by an implementation. See Implementation-specific types onpage 41.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 39



5.1.4 Constants

Constant values are defined using C macros. Constants defined in this specification have names that are allupper-case.
A constant macro evaluates to a compile-time constant expression.
5.1.5 Functions

Functions defined in this specification have names that are all lower-case.
An implementation is permitted to declare any API function with static inline linkage, instead of thedefault extern linkage.
An implementation is permitted to also define a function-like macro with the same name as a function inthis specification. If an implementation defines a function-like macro for a function from this specification,then:

∙ The implementation must also provide a definition of the function. This enables an application totake the address of a function defined in this specification.
∙ The function-like macro must expand to code that evaluates each of its arguments exactly once, as ifthe call was made to a C function. This enables an application to safely use arbitrary expressions asarguments to a function defined in this specification.

If a non-pointer argument to a function has an invalid value (for example, a value outside the domain ofthe function), then the function will normally return an error, as specified in the function definition.
If a pointer argument to a function has an invalid value (for example, a pointer outside the address space ofthe program, or a null pointer), the result is IMPLEMENTATION DEFINED. See also Pointer conventions on page 41.
5.1.6 Return status

All functions return a status indication of type psa_status_t. This is an integer value, with 0 (PSA_SUCCESS), ora positive value, indicating successful operation, and other values indicating errors.
Unless specified otherwise, if multiple error conditions apply, an implementation is free to return any ofthe applicable error codes.
If the behavior is undefined — for example, if a function receives an invalid pointer as a parameter — thisspecification does not require that the function will return an error. Implementations are encouraged toreturn an error or halt the application in a manner that is appropriate for the platform if the undefinedbehavior condition can be detected. However, application developers need to be aware that undefinedbehavior conditions cannot be detected in general.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 40



5.1.7 Pointer conventions

Unless explicitly stated in the documentation of a function, all pointers must be valid pointers to an objectof the specified type.
A parameter is considered to be a buffer if it points to an array of bytes. A buffer parameter always has thetype uint8_t * or const uint8_t *, and always has an associated parameter indicating the size of the array.Note that a parameter of type void * is never considered a buffer.
All parameters of pointer type must be valid non-null pointers, unless the pointer is to a buffer of length 0or the function’s documentation explicitly describes the behavior when the pointer is null.
Pointers to input parameters can be in read-only memory. Output parameters must be in writable memory.
The implementation will only access memory referenced by a pointer or buffer parameter for the durationof the function call.
Input buffers are fully consumed by the implementation after a successful function call.
Unless otherwise documented, the content of output parameters is not defined when a function returnsan error status. It is recommended that implementations set output parameters to safe defaults to reducerisk, in case the caller does not properly handle all errors.
5.1.8 Implementation-specific types

This specification defines a number of implementation-specific types, which represent objects whosecontent depends on the implementation. These are defined as C typedef types in this specification, with acomment /* implementation-defined type */ in place of the underlying type definition. For some types thespecification constrains the type, for example, by requiring that the type is a struct, or that it is convertibleto and from an unsigned integer. In the implementation’s version of the Firmware Update API header file,these types need to be defined as complete C types so that objects of these types can be instantiated byapplication code.
Applications that rely on the implementation specific definition of any of these types might not beportable to other implementations of this specification.

5.2 Header file
The header file for the Firmware Update API has the name psa/update.h. All of the interface elements thatare provided by an implementation must be visible to an application program that includes this header file.
#include "psa/update.h"

Implementations must provide their own version of the psa/update.h header file. Example header file onpage 63 provides an incomplete, example header file which includes all of the Firmware Update APIelements.
This Firmware Update API uses some of the common status codes that are defined by PSA Certified Statuscode API [PSA-STAT] as part of the psa/error.h header file. Applications are not required to explicitlyinclude the psa/error.h header file when using these status codes with the Firmware Update API. SeeStatus codes on page 43.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 41



Note:
The common error codes in psa/error.h were previously defined in Arm® Platform SecurityArchitecture Firmware Framework [PSA-FFM].

5.2.1 Required functions

All of the API elements defined in API reference on page 39 must be present for an implementation to claimcompliance with this spec.
Mandatory function implementations cannot simply return PSA_ERROR_NOT_SUPPORTED. Optional functionsmust be present, but are permitted to always return PSA_ERROR_NOT_SUPPORTED.
The following functions are mandatory for all implementations:

∙ psa_fwu_query()

∙ psa_fwu_start()

∙ psa_fwu_write()

∙ psa_fwu_finish()

∙ psa_fwu_install()

∙ psa_fwu_cancel()

∙ psa_fwu_clean()

If the implementation includes components that use the STAGED state, the following functions are alsomandatory:
∙ psa_fwu_reject()

If the implementation includes components that use the TRIAL state, the following functions are alsomandatory:
∙ psa_fwu_reject()

∙ psa_fwu_accept()

If the implementation includes components that require a system restart, the following functions are alsomandatory:
∙ psa_fwu_request_reboot()

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 42



5.3 Library management
5.3.1 Library version

PSA_FWU_API_VERSION_MAJOR (macro)

The major version of this implementation of the Firmware Update API.
#define PSA_FWU_API_VERSION_MAJOR 1

PSA_FWU_API_VERSION_MINOR (macro)

The minor version of this implementation of the Firmware Update API.
#define PSA_FWU_API_VERSION_MINOR 0

5.4 Status codes
The Firmware Update API uses the status code definitions that are shared with the other PSA CertifiedAPIs. The Firmware Update API also provides some Firmware Update API-specific status codes, see Errorcodes specific to the Firmware Update API on page 44 and Success status codes specific to the FirmwareUpdate API on page 44.
5.4.1 Common status codes

The following elements are defined in psa/error.h from [PSA-STAT] (previously defined in [PSA-FFM]):
typedef int32_t psa_status_t;

#define PSA_SUCCESS ((psa_status_t)0)

#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)

#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)

#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)

#define PSA_ERROR_BAD_STATE ((psa_status_t)-137)

#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)

#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)

#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)

#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)

#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)

#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)

Implementation note
An implementation is permitted to define these interface elements within the psa/update.h header,or to define them via inclusion of a psa/error.h header file that is shared with the implementation ofother PSA Certified APIs.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 43



5.4.2 Error codes specific to the Firmware Update API

These error codes are defined in psa/update.h.
PSA_ERROR_DEPENDENCY_NEEDED (macro)

A status code that indicates that the firmware of another component requires updating.
#define PSA_ERROR_DEPENDENCY_NEEDED ((psa_status_t)-156)

This error indicates that the firmware image depends on a newer version of the firmware for anothercomponent. The firmware of the other component must be updated before this firmware image can beinstalled, or both components must be updated at the same time.
See Dependencies on page 33 andMulti-component updates on page 34.
PSA_ERROR_FLASH_ABUSE (macro)

A status code that indicates that the system is limiting i/o operations to avoid rapid flash exhaustion.
#define PSA_ERROR_FLASH_ABUSE ((psa_status_t)-160)

Excessive i/o operations can cause certain types of flash memories to wear out, resulting in storage devicefailure. This error code can be used by a system that detects unusually high i/o activity, to reduce the riskof flash exhaustion.
The time-out period is IMPLEMENTATION DEFINED.
PSA_ERROR_INSUFFICIENT_POWER (macro)

A status code that indicates that the system does not have enough power to carry out the request.
#define PSA_ERROR_INSUFFICIENT_POWER ((psa_status_t)-161)

A function can return this error code if it determines that there is not sufficient power or energy availableto reliably complete the operation.
Operations that update the state of the firmware can require significant energy to reprogram thenon-volatile memories. It is recommended to wait until sufficient energy is available for the updateprocess, rather than failing to update the firmware and leaving the device temporarily or permanentlynon-operational.
5.4.3 Success status codes specific to the Firmware Update API

These success codes are defined in psa/update.h.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 44



PSA_SUCCESS_REBOOT (macro)

The action was completed successfully and requires a system reboot to complete installation.
#define PSA_SUCCESS_REBOOT ((psa_status_t)+1)

PSA_SUCCESS_RESTART (macro)

The action was completed successfully and requires a restart of the component to complete installation.
#define PSA_SUCCESS_RESTART ((psa_status_t)+2)

5.5 Firmware components
5.5.1 Component identifier

psa_fwu_component_t (typedef)

Firmware component type identifier.
typedef uint8_t psa_fwu_component_t;

A value of type psa_fwu_component_t identifies a firmware component on this device. This is used to specifywhich component a function call applies to.
In systems that only have a single component, it is recommended that the caller uses the value 0 in callsthat require a component identifier.
5.5.2 Component version

psa_fwu_image_version_t (struct)

Version information about a firmware image.
typedef struct psa_fwu_image_version_t {

uint8_t major;

uint8_t minor;

uint16_t patch;

uint32_t build;

} psa_fwu_image_version_t;

Fields

major The major version of an image.
minor The minor version of an image. If the image has no minor versionthen this field is set to 0.
patch The revision or patch version of an image. If the image has no suchversion then this field is set to 0.
build The build number of an image. If the image has no such number thenthis field is set to 0.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 45



5.5.3 Component states
Each of the component states defined in State model on page 26 has a corresponding identifier in the API.These are used to indicate the state of a component, in the state field of a psa_fwu_component_info_tstructure returned by a call to psa_fwu_query().
PSA_FWU_READY (macro)

The READY state: the component is ready to start another update.
#define PSA_FWU_READY 0u

In this state, the update client can start a new firmware update, by calling psa_fwu_start().
PSA_FWU_WRITING (macro)

The WRITING state: a new firmware image is being written to the firmware store.
#define PSA_FWU_WRITING 1u

In this state, the update client transfers the firmware image to the firmware store, by calling
psa_fwu_write().
When all of the image has been transferred, the update client marks the new firmware image as ready forinstallation, by calling psa_fwu_finish().
The update client can abort an update that is in this state, by calling psa_fwu_cancel().

Note:
This state is volatile for components that have volatile staging. For other components, it is
IMPLEMENTATION DEFINED whether this state is volatile.
When this state is volatile, the incomplete image is discarded at reboot.

PSA_FWU_CANDIDATE (macro)

The CANDIDATE state: a new firmware image is ready for installation.
#define PSA_FWU_CANDIDATE 2u

In this state, the update client starts the installation process of the component, by calling
psa_fwu_install().
The update client can abort an update that is in this state, by calling psa_fwu_cancel().

Note:
This state is volatile for components that have volatile staging. For other components, it is
IMPLEMENTATION DEFINED whether this state is volatile.
When this state is volatile, the candidate image is discarded at reboot.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 46



PSA_FWU_STAGED (macro)

The STAGED state: a new firmware image is queued for installation.
#define PSA_FWU_STAGED 3u

A system reboot, or component restart, is required to complete the installation process.
The update client can abort an update that is in this state, by calling psa_fwu_reject().

Note:
This state is always volatile — on a reboot the system will attempt to install the new firmware image.

PSA_FWU_FAILED (macro)

The FAILED state: a firmware update has been cancelled or has failed.
#define PSA_FWU_FAILED 4u

The error field of the psa_fwu_component_info_t structure will contain an status code indicating the reasonfor the failure.
The failed firmware image needs to be erased using a call to psa_fwu_clean() before another update can bestarted.

Note:
This state is volatile for components that have volatile staging. For other components, it is
IMPLEMENTATION DEFINED whether this state is volatile.
When this state is volatile, the failed firmware image is discarded at reboot.

PSA_FWU_TRIAL (macro)

The TRIAL state: a new firmware image requires testing prior to acceptance of the update.
#define PSA_FWU_TRIAL 5u

In this state, the update client calls psa_fwu_accept() or psa_fwu_reject() to either accept or reject the newfirmware image.
It is recommended that the new firmware is tested for correct operation, before accepting the update. Thisis particularly important to for systems that implement an update policy that prevents rollback to oldfirmware versions.

Note:
This state is always volatile — on a reboot, a component in this state will be rolled back to theprevious firmware image.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 47



PSA_FWU_REJECTED (macro)

The REJECTED state: a new firmware image has been rejected after testing.
#define PSA_FWU_REJECTED 6u

A system reboot, or component restart, is required to complete the process of reverting to the previousfirmware image.
Note:
This state is always volatile — on a reboot, a component in this state will be rolled back to theprevious firmware image.

PSA_FWU_UPDATED (macro)

The UPDATED state: a firmware update has been successful, and the new image is now active.
#define PSA_FWU_UPDATED 7u

The previous firmware image needs to be erased using a call to psa_fwu_clean() before another update canbe started.
Note:
This state is volatile for components that have volatile staging. For other components, it is
IMPLEMENTATION DEFINED whether this state is volatile.
When this state is volatile, the previously installed firmware image is discarded at reboot.

5.5.4 Component flags
These flags can be present in the flags member of a psa_fwu_component_info_t object returned by a call to
psa_fwu_query().
PSA_FWU_FLAG_VOLATILE_STAGING (macro)

Flag to indicate whether a candidate image in the component staging area is discarded at system reset.
#define PSA_FWU_FLAG_VOLATILE_STAGING 0x00000001u

A component with volatile staging sets this flag in the psa_fwu_component_info_t object returned by a call to
psa_fwu_query.
If this flag is set, then image data written to the staging area is discarded after a system reset. If the systemrestarts while the component in is WRITING, CANDIDATE, FAILED, or UPDATED state, the componentwill be in the READY state after the restart.
If this flag is not set, then an image in CANDIDATE state is retained after a system reset. It is
IMPLEMENTATION DEFINED whether a partially prepared image in WRITING state, or a discarded image inFAILED or UPDATED state, is retained after a system reset.
IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 48



PSA_FWU_FLAG_ENCRYPTION (macro)

Flag to indicate whether a firmware component expects encrypted images during an update.
#define PSA_FWU_FLAG_ENCRYPTION 0x00000002u

If set, then the firmware image for this component must be encrypted when installing.
If not set, then the firmware image for this component must not be encrypted when installing.
5.5.5 Component information

psa_fwu_impl_info_t (typedef)

The implementation-specific data in the component information structure.
typedef struct { /* implementation-defined type */ } psa_fwu_impl_info_t;

The members of this data structure are IMPLEMENTATION DEFINED. This can be an empty data structure.
psa_fwu_component_info_t (struct)

Information about the firmware store for a firmware component.
typedef struct psa_fwu_component_info_t {

uint8_t state;

psa_status_t error;

psa_fwu_image_version_t version;

uint32_t max_size;

uint32_t flags;

uint32_t location;

psa_fwu_impl_info_t impl;

} psa_fwu_component_info_t;

Fields

state State of the component. This is one of the values defined inComponent states on page 46.
error Error for second image when store state is REJECTED or FAILED.
version Version of active image.
max_size Maximum image size in bytes.
flags Flags that describe extra information about the firmware component.See Component flags on page 48 for defined flag values.
location Implementation-defined image location.
impl Reserved for implementation-specific usage. For example, provideinformation about image encryption or compression.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 49



Description

The attributes of a component are retrieved using a call to psa_fwu_query().
Rationale
When a component is in a state that is not READY, there is a second image, or partial image, present inthe firmware store. The Firmware Update API provides no mechanism to report the version of thesecond image, for the following reasons:

∙ During preparation of a new firmware image, the implementation is not required to extractversion information from the firmware image manifest:
— This information might not be available if the firmware image has not been completelywritten.
— The update service might not be capable of extracting the version information. For example,in the untrusted-staging deployment model, verification of the manifest can be deferreduntil the image is installed. See Untrusted staging on page 23.

If the version of an image that is being prepared is required by the update client, the update clientmust maintain this information locally.
∙ In TRIAL or REJECTED states, the second image is the previously installed firmware, which isrequired in case of rollback. Reporting the version of this is not required by the update client.
∙ In UPDATED or FAILED states, the second image needs to be erased. The version of the imagedata in this state has no effect on the behavior of the update client.

psa_fwu_query (function)

Retrieve the firmware store information for a specific firmware component.
psa_status_t psa_fwu_query(psa_fwu_component_t component,

psa_fwu_component_info_t *info);

Parameters

component Firmware component for which information is requested.
info Output parameter for component information.

Returns: psa_status_t

Result status.
PSA_SUCCESS Component information has been returned in the

psa_fwu_component_t object at *info.
PSA_ERROR_DOES_NOT_EXIST There is no firmware component with the specified Id.
PSA_ERROR_NOT_PERMITTED The caller is not authorized to call this function.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 50



Description

This function is used to query the status of a component.
The caller is expected to know the component identifiers for all of the firmware components. Thisinformation might be built into the update client, provided by configuration data, or provided alongside thefirmware images from the update server.

5.6 Firmware installation
Each of the component operations defined in State model on page 26 has a corresponding function in theAPI, described in sections §5.6.1 to §5.6.3 on page 62.
5.6.1 Candidate image preparation

The following functions are used to prepare a new candidate firmware image in the component’s firmwarestore. They act on a single component, specified by a component identifier parameter.
psa_fwu_start (function)

Begin a firmware update operation for a specific firmware component.
psa_status_t psa_fwu_start(psa_fwu_component_t component,

const void *manifest,

size_t manifest_size);

Parameters

component Identifier of the firmware component to be updated.
manifest A pointer to a buffer containing a detached manifest for the update.If the manifest is bundled with the firmware image, manifest must be

NULL.
manifest_size The size of the detached manifest. If the manifest is bundled with thefirmware image, manifest_size must be 0.

Returns: psa_status_t

Result status.
PSA_SUCCESS Success: the component is now in WRITING state, and ready for thenew image to be transferred using psa_fwu_write().
PSA_ERROR_DOES_NOT_EXIST There is no firmware component with the specified Id.
PSA_ERROR_BAD_STATE The component is not in the READY state.
PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:

∙ The caller is not authorized to call this function.
∙ The provided manifest is valid, but fails to comply with theupdate service’s firmware update policy.

PSA_ERROR_INVALID_SIGNATURE A signature or integrity check on the manifest has failed.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 51



PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:
∙ The provided manifest is unexpected, or invalid.
∙ A detached manifest was expected, but none was provided.

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_STORAGE_FAILURE

Description

This function is used to begin the process of preparing a new firmware image for a component, optionallyproviding a detached manifest. On success, the component is in WRITING state, and the update client cancall psa_fwu_write() to transfer the new firmware image.
If the firmware image manifest is detached from the firmware image, it must be provided to the updateservice using the manifest and manifest_size parameters in psa_fwu_start().
If a detached manifest is expected by the update service for a firmware component, but none is provided,
psa_fwu_start() returns PSA_ERROR_INVALID_ARGUMENT. If a detached manifest is provided for a componentwhich expects the manifest to be bundled with the image, psa_fwu_start() returns
PSA_ERROR_INVALID_ARGUMENT.
To abandon an update that has been started, call psa_fwu_cancel(), and then psa_fwu_clean().
PSA_FWU_LOG2_WRITE_ALIGN (macro)

Base-2 logarithm of the required alignment of firmware image data blocks when calling psa_fwu_write().
#define PSA_FWU_LOG2_WRITE_ALIGN /* implementation-defined value */

This value specifies the minimum alignment of a data block within a firmware image, when written using
psa_fwu_write(). The value is the base-2 log of the alignment size. PSA_FWU_LOG2_WRITE_ALIGN is used toconstrain the values of image_offset that are supported, and the handling of a data block of unaligned size,as follows:

∙ Let WRITE_ALIGN_MASK = (1<<PSA_FWU_LOG2_WRITE_ALIGN) - 1

∙ If (image_offset & WRITE_ALIGN_MASK) != 0, then the implementation returns
PSA_ERROR_INVALID_ARGUMENT.

∙ If (block_size & WRITE_ALIGN_MASK) != 0, then the implementation will pad the data with
IMPLEMENTATION DEFINED values up to the next aligned size, before writing the data to the firmwareimage.

∙ This value does not constrain the alignment of the data buffer, block.
The specific value of PSA_FWU_LOG2_WRITE_ALIGN is an IMPLEMENTATION DEFINED, non-negative integer. If animplementation has no alignment requirement, then it defines PSA_FWU_LOG2_WRITE_ALIGN to be 0.

Implementation note

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 52



It is recommended that PSA_FWU_LOG2_WRITE_ALIGN is not greater than 17, which corresponds to ablock size of 128 KB. This limit ensures compatibility with block-based file transfer protocols that areused within IoT systems.

Rationale
This value is the minimum size and alignment for writing image data to the firmware store. Forexample, this can be set to 3 for an implementation where the non-volatile storage used for thefirmware store only supports aligned, 64-bit writes.
For a component that has a non-volatile WRITING state, the data passed to psa_fwu_write() must bewritten into non-volatile storage. If this is not aligned with the blocks of storage, this can result insignificant complexity and cost in the implementation.
Aligning the provided data blocks with PSA_FWU_LOG2_WRITE_ALIGN is the minimum requirement for aclient. The method demonstrated in the Individual component update (multi part operation) on page 67example, using blocks of size PSA_FWU_MAX_WRITE_SIZE until the final block, always satisfies the alignmentrequirement.

PSA_FWU_MAX_WRITE_SIZE (macro)

The maximum permitted size for block in psa_fwu_write(), in bytes.
#define PSA_FWU_MAX_WRITE_SIZE /* implementation-defined value */

The specific value is an IMPLEMENTATION DEFINED unsigned integer, and is greater than 0. The value mustsatisfy the condition (PSA_FWU_MAX_WRITE_SIZE & ((1<<PSA_FWU_LOG2_WRITE_ALIGN) - 1)) == 0.
Implementation note
This value is the maximum size for transferring data to the update service. The reasons for selectinga particular value can include the following:

∙ The size of the available RAM buffer within the update service used for storing the data intothe firmware store.
∙ A value that is optimized for storing the data in the firmware store, for example, a multiple ofthe block-size of the storage media.

psa_fwu_write (function)

Write a firmware image, or part of a firmware image, to its staging area.
psa_status_t psa_fwu_write(psa_fwu_component_t component,

size_t image_offset,

const void *block,

size_t block_size);

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 53



Parameters

component Identifier of the firmware component being updated.
image_offset The offset of the data block in the whole image. The offset of thefirst block is 0.

The offset must be a multiple of the image alignment size,
(1<<PSA_FWU_LOG2_WRITE_ALIGN).

block A buffer containing a block of image data. This can be a completeimage or part of the image.
block_size Size of block, in bytes.

block_size must not be greater than PSA_FWU_MAX_WRITE_SIZE.
Returns: psa_status_t

Result status.
PSA_SUCCESS Success: the data in block has been successfully stored.
PSA_ERROR_DOES_NOT_EXIST There is no firmware component with the specified Id.
PSA_ERROR_BAD_STATE The component is not in the WRITING state.
PSA_ERROR_NOT_PERMITTED The caller is not authorized to call this function.
PSA_ERROR_INVALID_ARGUMENT The following conditions can result in this error:

∙ The parameter image_offset is not a multiple of
(1<<PSA_FWU_LOG2_WRITE_ALIGN).

∙ The parameter block_size is greater than
PSA_FWU_MAX_WRITE_SIZE.

∙ The parameter block_size is 0.
∙ The image region specified by image_offset and block_size doesnot lie inside the supported image storage.

PSA_ERROR_FLASH_ABUSE The system has temporarily limited i/o operations to avoid rapid flashexhaustion.
PSA_ERROR_INVALID_SIGNATURE A signature or integrity check on the provided data has failed.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_STORAGE_FAILURE

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 54



Description

This function is used to transfer all, or part, of a firmware image to the component’s firmware store. Onsuccess, the component remains in WRITING state. Once all of the firmware image has been written tothe store, a call to psa_fwu_finish() is required to continue the installation process.
If the image size is less than or equal to PSA_FWU_MAX_WRITE_SIZE, the caller can provide the entire image inone call.
If the image size is greater than PSA_FWU_MAX_WRITE_SIZE, the caller must provide the image in parts, bycalling psa_fwu_write() multiple times with different data blocks.
Write operations can take an extended execution time on flash memories. The caller can provide data inblocks smaller than PSA_FWU_MAX_WRITE_SIZE to reduce the time for each call to psa_fwu_write().
The image_offset of a data block must satisfy the firmware image alignment requirement, provided by
PSA_FWU_LOG2_WRITE_ALIGN. If the block_size of a data block is not aligned, the data is padded with an
IMPLEMENTATION DEFINED value. It is recommended that a client only provides a block with an unaligned sizewhen it is the final block of a firmware image.
When data is written in multiple calls to psa_fwu_write(), it is the caller’s responsibility to account for howmuch data is written at which offset within the image.
On error, the component can remain in WRITING state. In this situation, it is not possible to determinehow much of the data in block has been written to the staging area. It is IMPLEMENTATION DEFINED whetherrepeating the write operation again with the same data at the same offset will correctly store the data tothe staging area.
If the data fails an integrity check, the implementation is permitted to transition the component to theFAILED state. From this state, the caller is required to use psa_fwu_clean() to return the store to READYstate before attempting another firmware update.
To abandon an update that has been started, call psa_fwu_cancel() and then psa_fwu_clean().
psa_fwu_finish (function)

Mark a firmware image in the staging area as ready for installation.
psa_status_t psa_fwu_finish(psa_fwu_component_t component);

Parameters

component Identifier of the firmware component to install.
Returns: psa_status_t

Result status.
PSA_SUCCESS The operation completed successfully: the component is now inCANDIDATE state.
PSA_ERROR_DOES_NOT_EXIST There is no firmware component with the specified Id.
PSA_ERROR_BAD_STATE The component is not in the WRITING state.
PSA_ERROR_INVALID_SIGNATURE A signature or integrity check for the image has failed.
PSA_ERROR_INVALID_ARGUMENT The firmware image is not valid.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 55



PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:
∙ The caller is not authorized to call this function.
∙ The firmware image is valid, but fails to comply with the updateservice’s firmware update policy. For example, the updateservice can deny the installation of older versions of firmware(rollback prevention).

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_STORAGE_FAILURE

Description

This function is used to complete the preparation of the candidate firmware image for a component. Onsuccess, the component is in CANDIDATE state, and the update client calls psa_fwu_install() to initiatethe installation process.
The validity, authenticity and integrity of the image can be checked during this operation. If this verificationfails, the component is transitioned to the FAILED state. From the FAILED state, the caller is required touse psa_fwu_clean() to return the component to READY state before attempting another firmware update.
Dependencies on other firmware components are not checked as part of psa_fwu_finish(). If theimplementation provides dependency verification, this is done as part of psa_fwu_install(), or duringinstallation at reboot.
To abandon an update that is in CANDIDATE state, call psa_fwu_cancel() and then psa_fwu_clean().
psa_fwu_cancel (function)

Abandon an update that is in WRITING or CANDIDATE state.
psa_status_t psa_fwu_cancel(psa_fwu_component_t component);

Parameters

component Identifier of the firmware component to be cancelled.
Returns: psa_status_t

Result status.
PSA_SUCCESS Success: the new firmware image is rejected. The component is nowin FAILED state.
PSA_ERROR_DOES_NOT_EXIST There is no firmware component with the specified Id.
PSA_ERROR_BAD_STATE The component is not in the WRITING or CANDIDATE state.
PSA_ERROR_NOT_PERMITTED The caller is not authorized to call this function.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 56



Description

This function is used when the caller wants to abort an incomplete update process, for a component inWRITING or CANDIDATE state. This will discard the uninstalled image or partial image, and leave thecomponent in FAILED state. To prepare for a new update after this, call psa_fwu_clean().
psa_fwu_clean (function)

Prepare the component for another update.
psa_status_t psa_fwu_clean(psa_fwu_component_t component);

Parameters

component Identifier of the firmware component to tidy up.
Returns: psa_status_t

Result status.
PSA_SUCCESS Success: the staging area is ready for a new update. The componentis now in state READY.
PSA_ERROR_DOES_NOT_EXIST There is no firmware component with the specified Id.
PSA_ERROR_BAD_STATE The component is not in the FAILED or UPDATED state.
PSA_ERROR_NOT_PERMITTED The caller is not authorized to call this function.
PSA_ERROR_INSUFFICIENT_POWER

PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_STORAGE_FAILURE

Description

This function is used to ensure that the component is ready to start another update process, after anupdate has succeeded, failed, or been rejected.
If the implementation needs to perform long-running operations to erase firmware store memories, it isrecommended that this is done as part of psa_fwu_clean(), rather than during other operations. Thisenables the update client to schedule this long-running operation at a time when this is less disruptive tothe application.
If this function is called when the component state is FAILED, then the staging area is cleaned, leaving thecurrent active image installed.
If this function is called when the component state is UPDATED, then the previously installed image iscleaned, leaving the new active image installed.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 57



5.6.2 Image installation

The following functions are used to install candidate firmware images. They act concurrently on allcomponents that have been prepared as candidates for installation.
psa_fwu_install (function)

Start the installation of all candidate firmware images.
psa_status_t psa_fwu_install(void);

Returns: psa_status_t

Result status.
PSA_SUCCESS The installation completed successfully: the affected components arenow in TRIAL or UPDATED state.
PSA_SUCCESS_REBOOT The installation has been initiated, but a system reboot is needed tocomplete the installation. The affected components are now inSTAGED state.

A system reboot can be requested using psa_fwu_request_reboot().
PSA_SUCCESS_RESTART The installation has been initiated, but the components must berestarted to complete the installation. The affected components arenow in STAGED state.

The component restart mechanism is IMPLEMENTATION DEFINED.
PSA_ERROR_BAD_STATE The following conditions can result in this error:

∙ An existing installation process is in progress: there is at leastone component in STAGED, TRIAL, or REJECTED state.
∙ There is no component in the CANDIDATE state.

PSA_ERROR_INVALID_SIGNATURE A signature or integrity check for the image has failed.
PSA_ERROR_DEPENDENCY_NEEDED A different firmware image must be installed first.
PSA_ERROR_INVALID_ARGUMENT The firmware image is not valid.
PSA_ERROR_NOT_PERMITTED The following conditions can result in this error:

∙ The caller is not authorized to call this function.
∙ The firmware image is valid, but fails to comply with the updateservice’s firmware update policy. For example, the updateservice can deny the installation of older versions of firmware(rollback prevention).

PSA_ERROR_INSUFFICIENT_POWER The system does not have enough power to safely install thefirmware.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_STORAGE_FAILURE

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 58



Description

This function starts the installation process atomically on all components that are in CANDIDATE state.This function reports an error if there are no components in this state. If an error occurs when installingany of the images, then none of the images will be installed.
Only one installation process can be in progress at a time. After a successful call to psa_fwu_install(),another call is only permitted once the affected components have transitioned to FAILED, UPDATED, orREADY state.
Support for concurrent installation of multiple components is IMPLEMENTATION DEFINED. Concurrentinstallation enables new firmware images that are interdependent to be installed. If concurrent installationis not supported, each new firmware image must be compatible with the current version of other firmwarecomponents in the system.
Device updates that affect multiple components must be carried out in line with the system capabilities.For example:

∙ An implementation is permitted to require each component to be installed separately.
∙ An implementation is permitted to support atomic installation of any combination of components.
∙ An implementation is permitted to support atomic installation of a specific subset of components,but require other components to be installed individually

The validity, authenticity and integrity of the images can be checked during this operation. If thisverification fails, the components are transitioned to the FAILED state. From the FAILED state, the caller isrequired to use psa_fwu_clean() on each component to return them to the READY state before attemptinganother firmware update.
Dependencies on other firmware components can be checked as part of psa_fwu_install(). Thedependency check is carried out against the version of the candidate image for a component that is inCANDIDATE state, and the active image for other components. If this verification fails, then
PSA_ERROR_DEPENDENCY_NEEDED is returned, and the components will remain in CANDIDATE state. A later callto psa_fwu_install() can be attempted after preparing a new firmware image for the dependency.
On other error conditions, it is IMPLEMENTATION DEFINED whether the components are all transitioned toFAILED state, or all remain in CANDIDATE state. See Behavior on error on page 30.
If a component restart, or system reboot, is required to complete installation then the implementation ispermitted to defer verification checks to that point. Verification failures during a reboot will result in thecomponents being transitioned to FAILED state. The failure reason is recorded in the error field in the
psa_fwu_component_info_t object for each firmware component, which can be queried by the update clientafter restart.
To abandon an update that is STAGED, before restarting the system or component, call psa_fwu_reject()and then psa_fwu_clean() on each component.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 59



psa_fwu_request_reboot (function)

Requests the platform to reboot.
psa_status_t psa_fwu_request_reboot(void);

Returns: psa_status_t

Result status. It is IMPLEMENTATION DEFINED whether this function returns to the caller.
PSA_SUCCESS The platform will reboot soon.
PSA_ERROR_NOT_PERMITTED The caller is not authorized to call this function.
PSA_ERROR_NOT_SUPPORTED This function call is not implemented.

Description

On success, the platform initiates a reboot, and might not return to the caller.
Implementation note
This function is mandatory in an implementation where one or more components require a systemreboot to complete installation.
On other implementations, this function is optional.
See Required functions on page 42.

psa_fwu_reject (function)

Abandon an installation that is in STAGED or TRIAL state.
psa_status_t psa_fwu_reject(psa_status_t error);

Parameters

error An application-specific error code chosen by the application. If aspecific error does not need to be reported, the value should be 0.On success, this error is recorded in the error field of the
psa_fwu_component_info_t structure corresponding to each affectedcomponent.

Returns: psa_status_t

Result status.
PSA_SUCCESS Success: the new firmware images are rejected, and the previousfirmware is now active. The affected components are now in FAILEDstate.
PSA_SUCCESS_REBOOT The new firmware images are rejected, but a system reboot isneeded to complete the rollback to the previous firmware. Theaffected components are now in REJECTED state.

A system reboot can be requested using psa_fwu_request_reboot().
IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 60



PSA_SUCCESS_RESTART The new firmware images are rejected, but the components must berestarted to complete the rollback to the previous firmware. Theaffected components are now in REJECTED state.
The component restart mechanism is IMPLEMENTATION DEFINED.

PSA_ERROR_BAD_STATE There are no components in the STAGED or TRIAL state.
PSA_ERROR_NOT_PERMITTED The caller is not authorized to call this function.
PSA_ERROR_NOT_SUPPORTED This function call is not implemented.
PSA_ERROR_INSUFFICIENT_POWER The system does not have enough power to safely uninstall thefirmware.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_STORAGE_FAILURE

Description

This function is used in the following situations:
∙ When the caller wants to abort an incomplete update process, for components in STAGED state.This will discard the uninstalled images.
∙ When the caller detects an error in new firmware that is in TRIAL state.

If this function is called when the installation state is STAGED, then the state of affected componentschanges to FAILED. To prepare for a new update after this, call psa_fwu_clean() for each component.
If this function is called when the installation state is TRIAL, then the action depends on whether a rebootor component restart is required to complete the rollback process:

∙ If a reboot is required, the state of affected components changes to REJECTED and
PSA_SUCCESS_REBOOT is returned. To continue the rollback process, call psa_fwu_request_reboot().
After reboot, the affected components will be in FAILED state. To prepare for a new update afterthis, call psa_fwu_clean() for each component.

∙ If a component restart is required, the state of affected components changes to REJECTED and
PSA_SUCCESS_RESTART is returned. To continue the rollback process, restart the affected components.
After restart, the affected components will be in FAILED state. To prepare for a new update afterthis, call psa_fwu_clean() for each component.

∙ If no reboot or component restart is required, the state of affected components changes to FAILEDand PSA_SUCCESS is returned. To prepare for a new update after this, call psa_fwu_clean() for eachcomponent.
Implementation note
This function is mandatory in an implementation for which any of the following are true:

∙ One or more components have a TRIAL state
∙ One or more components require a system reboot to complete installation

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 61



∙ One or more components require a component restart to complete installation
On implementations where none of these hold, this function is optional.
See Required functions on page 42.

5.6.3 Image trial
The following function is used to manage a trial of new firmware images. It acts atomically on allcomponents that are in TRIAL state.
psa_fwu_accept (function)

Accept a firmware update that is currently in TRIAL state.
psa_status_t psa_fwu_accept(void);

Returns: psa_status_t

Result status.
PSA_SUCCESS Success: the affected components are now in UPDATED state.
PSA_ERROR_BAD_STATE There are no components in the TRIAL state.
PSA_ERROR_NOT_PERMITTED The caller is not authorized to call this function.
PSA_ERROR_NOT_SUPPORTED This function call is not implemented.
PSA_ERROR_INSUFFICIENT_POWER The system does not have enough power to safely update thefirmware.
PSA_ERROR_INSUFFICIENT_MEMORY

PSA_ERROR_INSUFFICIENT_STORAGE

PSA_ERROR_COMMUNICATION_FAILURE

PSA_ERROR_STORAGE_FAILURE

Description

This function is used when new firmware images in TRIAL state have been determined to be functional, topermanently accept the new firmware images. If successful, the state of affected components changes toUPDATED. To prepare for another update after this, call psa_fwu_clean() for each component.
For firmware components in TRIAL state, if psa_fwu_accept() is not called, then rebooting the systemresults in the image being automatically rejected. To explicitly reject a firmware update in TRIAL state, call
psa_fwu_reject().

Implementation note
This function is mandatory in an implementation where one or more components have a TRIAL state.
On implementations where none of these hold, this function is optional.
See Required functions on page 42.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 62



Appendix A: Example header file
Each implementation of the Firmware Update API must provide a header file named psa/update.h, in whichthe API elements in this specification are defined.
This appendix provides a example of the psa/update.h header file with all of the API elements. This can beused as a starting point or reference for an implementation.

Note:
Not all of the API elements are fully defined. An implementation must provide the full definition.
The header will not compile without these missing definitions, and might require reordering tosatisfy C compilation rules.

A.1 psa/update.h
/* This file is a reference template for implementation of the

* PSA Certified Firmware Update API v1.0.0
*/

#ifndef PSA_UPDATE_H

#define PSA_UPDATE_H

#include <stdint.h>

#include "psa/error.h"

#ifdef __cplusplus

extern "C" {

#endif

#define PSA_FWU_API_VERSION_MAJOR 1

#define PSA_FWU_API_VERSION_MINOR 0

#define PSA_ERROR_DEPENDENCY_NEEDED ((psa_status_t)-156)

#define PSA_ERROR_FLASH_ABUSE ((psa_status_t)-160)

#define PSA_ERROR_INSUFFICIENT_POWER ((psa_status_t)-161)

#define PSA_SUCCESS_REBOOT ((psa_status_t)+1)

#define PSA_SUCCESS_RESTART ((psa_status_t)+2)

typedef uint8_t psa_fwu_component_t;

typedef struct psa_fwu_image_version_t {

uint8_t major;

uint8_t minor;

uint16_t patch;

(continues on next page)

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 63



(continued from previous page)
uint32_t build;

} psa_fwu_image_version_t;

#define PSA_FWU_READY 0u

#define PSA_FWU_WRITING 1u

#define PSA_FWU_CANDIDATE 2u

#define PSA_FWU_STAGED 3u

#define PSA_FWU_FAILED 4u

#define PSA_FWU_TRIAL 5u

#define PSA_FWU_REJECTED 6u

#define PSA_FWU_UPDATED 7u

#define PSA_FWU_FLAG_VOLATILE_STAGING 0x00000001u

#define PSA_FWU_FLAG_ENCRYPTION 0x00000002u

typedef struct { /* implementation-defined type */ } psa_fwu_impl_info_t;

typedef struct psa_fwu_component_info_t {

uint8_t state;

psa_status_t error;

psa_fwu_image_version_t version;

uint32_t max_size;

uint32_t flags;

uint32_t location;

psa_fwu_impl_info_t impl;

} psa_fwu_component_info_t;

psa_status_t psa_fwu_query(psa_fwu_component_t component,

psa_fwu_component_info_t *info);

psa_status_t psa_fwu_start(psa_fwu_component_t component,

const void *manifest,

size_t manifest_size);

#define PSA_FWU_LOG2_WRITE_ALIGN /* implementation-defined value */

#define PSA_FWU_MAX_WRITE_SIZE /* implementation-defined value */

psa_status_t psa_fwu_write(psa_fwu_component_t component,

size_t image_offset,

const void *block,

size_t block_size);

psa_status_t psa_fwu_finish(psa_fwu_component_t component);

psa_status_t psa_fwu_cancel(psa_fwu_component_t component);

psa_status_t psa_fwu_clean(psa_fwu_component_t component);

psa_status_t psa_fwu_install(void);

psa_status_t psa_fwu_request_reboot(void);

psa_status_t psa_fwu_reject(psa_status_t error);

psa_status_t psa_fwu_accept(void);

#ifdef __cplusplus

}

#endif

#endif // PSA_UPDATE_H

(continues on next page)

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 64



(continued from previous page)

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 65



Appendix B: Example usage

Warning: These examples are for illustrative purposes only and are not guaranteed to compile. Manyerror codes are not handled in order to keep the examples brief. A real implementation will need toinitialize variables appropriately and handle failures as they see fit.

B.1 Retrieve versions of installed images
This example shows the retrieval of image versions for all components.
1 #include <psa/update.h>

3 /* Assume that the components in this system have sequential identifiers

4 * starting at zero.
2

5 */

6 #define NUM_COMPONENTS 3

7

8 void example_get_installation_info() {

9

10 psa_status_t rc;

11 psa_fwu_component_t id;

12 psa_fwu_component_info_t info;

13

14 for (id = 0; id < NUM_COMPONENTS; ++id) {

15 rc = psa_fwu_query(id, &info);

16

17 if (rc == PSA_SUCCESS) {

18 specific_protocol_report(id, info.version);

19 }

20 }

21 }

B.2 Individual component update (single part operation)
This example shows the installation of a single component that is smaller than PSA_FWU_MAX_WRITE_SIZE.
1 #include <psa/update.h>

3 /* Simple, single image update with a bundled manifest.

4 * Component requires reboot
2

5 */

6

(continues on next page)

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 66



(continued from previous page)
7 void example_install_single_image(psa_fwu_component_t id,

8 const void *image, size_t image_size) {

9 psa_status_t rc;

10

11 // Assume the component state is READY

12 rc = psa_fwu_start(id, NULL, 0);

13

14 if (rc == PSA_SUCCESS) {

15 rc = psa_fwu_write(id, 0, image, image_size);

16

17 if (rc == PSA_SUCCESS) {

18 rc = psa_fwu_finish(id);

19

20 if (rc == PSA_SUCCESS) {

21 rc = psa_fwu_install();

22

23 if (rc == PSA_SUCCESS_REBOOT) {

24 // do other things and then eventually...

25 psa_fwu_request_reboot();

26 return; // or wait for reboot to happen

27 }

28 }

29 }

30 // an error occurred during image preparation: clean up

31 psa_fwu_cancel(id);

32 psa_fwu_clean(id);

33 }

34 // report failure...

35 }

B.3 Individual component update (multi part operation)
This example shows the installation of a component that can be larger than PSA_FWU_MAX_WRITE_SIZE, andrequires writing in multiple blocks.
1 #include <psa/update.h>

2 #include <stdlib.h>

3 #include <stddef.h>

5 /* Single image update with a bundled manifest.

6 * Image data is fetched and written incrementally in blocks
4

7 */

8

9 void example_install_single_image_multipart(psa_fwu_component_t id,

10 size_t total_image_size) {

11 psa_status_t rc;

(continues on next page)

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 67



(continued from previous page)
12 size_t offset;

13 size_t to_send;

14 void *image;

15

16 // Assume the component state is READY

17 rc = psa_fwu_start(id, NULL, 0);

18

19 if (rc == PSA_SUCCESS) {

20 // Using dynamically allocated memory for this example

21

22 image = malloc(PSA_FWU_MAX_WRITE_SIZE);

23 if (image == NULL) {

24 rc == PSA_ERROR_INSUFFICIENT_MEMORY;

25 } else {

26 for (offset = 0;

27 offset < total_image_size,

28 offset += PSA_FWU_MAX_WRITE_SIZE) {

29 to_send = min(PSA_FWU_MAX_WRITE_SIZE, total_image_size - offset);

30 if (fetch_next_part_of_image(id, image, to_send)) {

31 // failed to obtain next block of image

32 rc == PSA_ERROR_GENERIC_ERROR;

33 break;

34 } else {

35 rc = psa_fwu_write(id, offset, image, to_send);

36 if (rc != PSA_SUCCESS) {

37 break;

38 }

39 }

40 }

41 free(image);

42 }

43

44 if (rc == PSA_SUCCESS) {

45 rc = psa_fwu_finish(id);

46

47 if (rc == PSA_SUCCESS) {

48 rc = psa_fwu_install();

49

50 if (rc == PSA_SUCCESS) {

51 // installation completed, now clean up

52 psa_fwu_clean(id);

53 // report success ...

54 return;

55 } else if (rc == PSA_SUCCESS_REBOOT) {

56 // do other things and then eventually...

57 psa_fwu_request_reboot();

(continues on next page)

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 68



(continued from previous page)
58 return; // or wait for reboot to happen

59 }

60 }

61 }

62 // an error occurred during image preparation: clean up

63 psa_fwu_cancel(id);

64 psa_fwu_clean(id);

65 }

66 // report failure...

67 }

B.4 Multiple components with dependent images
This example shows how multiple components can be installed together. This is required if the images areinter-dependent, and it is not possible to install them in sequence because of the dependencies.

Note:
Not all implementations that have multiple components support this type of multi-componentupdate.

1 #include <psa/update.h>

3 /* Atomic, multiple image update, with bundled manifests.

4 * Installation requires reboot
2

5 */

6

7 // Prepare a single image for update

8 static psa_status_t prepare_image(psa_fwu_component_t id,

9 const void *image, size_t image_size) {

10 psa_status_t rc;

11

12 // Assume the component state is READY

13 rc = psa_fwu_start(id, NULL, 0);

14

15 if (rc == PSA_SUCCESS) {

16 rc = psa_fwu_write(id, 0, image, image_size);

17

18 if (rc == PSA_SUCCESS) {

19 rc = psa_fwu_finish(id);

20

21 if (rc != PSA_SUCCESS) {

22 // an error occurred during image preparation: clean up

23 psa_fwu_cancel(id);

24 psa_fwu_clean(id);

(continues on next page)

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 69



(continued from previous page)
25 }

26 }

27 return rc;

28 }

29

30 // Fetch and prepare a single image for update

31 static psa_status_t fetch_and_prepare_image(psa_fwu_component_t id) {

32 psa_status_t rc;

33 void *image;

34 size_t image_size;

35

36 // Get image data.

37 // Assume this is dynamically allocated memory in this example

38 image = fetch_image_data(id, &image_size);

39 if (image == NULL)

40 return PSA_ERROR_INSUFFICIENT_MEMORY;

41

42 rc = prepare_image(id, image, image_size);

43 free(image);

44 return rc;

45 }

46

47 // Update a set of components atomically

48 // Prepare all the images before installing

49 // Clean up all preparation on error

50 void example_install_multiple_images(psa_fwu_component_id ids[],

51 size_t num_ids) {

52 psa_status_t rc;

53 int ix;

54

55 for (ix = 0, ix < num_ids; ++ix) {

56 rc = fetch_and_prepare_image(ids[ix]);

57 if (rc != PSA_SUCCESS)

58 break;

59 }

60

61 if (rc == PSA_SUCCESS) {

62 // All images are prepared, so now install them

63 rc = psa_fwu_install();

64

65 if (rc == PSA_SUCCESS_REBOOT) {

66 // do other things and then eventually...

67 psa_fwu_request_reboot();

68 return; // or wait for reboot to happen

69 }

70 }

(continues on next page)

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 70



(continued from previous page)
71 // an error occurred during image preparation: clean up.

72 // All of the components prior to element ix have been prepared

73 // Update of these needs to be aborted and erased.

74 while (--ix >= 0) {

75 psa_fwu_cancel(ids[ix]);

76 psa_fwu_clean(ids[ix]);

77 }

78 // Report the failure ...

79 }

B.5 Clean up all component updates
This example removes any prepared and failed update images for all components.
1 #include <psa/update.h>

3 /* Assume that the components in this system have sequential identifiers

4 * starting at zero.
2

5 */

6 #define NUM_COMPONENTS 3

7

8 /* Forcibly cancel and clean up all components to return to READY state */

9

10 void example_clean_all_components() {

11

12 psa_status_t rc;

13 psa_fwu_component_t id;

14 psa_fwu_component_info_t info;

15

16 rc = psa_fwu_reject();

17 if (rc == PSA_SUCCESS_REBOOT) {

18 psa_fwu_request_reboot();

19 // After reboot, run this function again to finish clean up

20 return;

21 }

22

23 for (id = 0; id < NUM_COMPONENTS; ++id) {

24 rc = psa_fwu_query(id, &info);

25

26 if (rc == PSA_SUCCESS) {

27 switch (info.state) {

28 case PSA_FWU_WRITING:

29 case PSA_FWU_CANDIDATE:

30 psa_fwu_cancel(id);

31 psa_fwu_clean(id);

32 break;

(continues on next page)

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 71



(continued from previous page)
33 case PSA_FWU_FAILED:

34 case PSA_FWU_UPDATED:

35 psa_fwu_clean(id);

36 break;

37 }

38 }

39 }

40 }

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 72



Appendix C: Variation in system design parameters
Depending on the system design and product requirements, an implementation is permitted to collapse achain of transitions for a component, where this does not remove information that is required by theupdate client, or compromise other system requirements. This can result in some states and transitionsbeing eliminated from the state model for that component’s firmware store.
An implementation is also permitted to provide either volatile or persistent behavior for the WRITING,CANDIDATE, FAILED, and UPDATED states. See also Volatile states on page 28. Volatile states causeadditional transitions to occur at reboot.
Table 7 lists a sample of the possible variations that are illustrated in this appendix, as well as the completestate model provided in Programming model on page 25.

Table 7 Variations of the state model
Reboot required Trial required Staging type a Description

Yes Yes Non-volatile See complete model
Yes Yes Volatile See complete model with volatile staging
Yes No Non-volatile See no-trial model
Yes No Volatile See no-trial model with volatile staging
No Yes Non-volatile See no-reboot model
No Yes Volatile See no-reboot model with volatile staging
No No Non-volatile See basic state model
No No Volatile See basic state model with volatile staging
a) If the staging type is volatile, then CANDIDATE, WRITING, FAILED, and UPDATED states arevolatile.

If the staging type is non-volatile, then CANDIDATE state is non-volatile, and it is IMPLEMENTATION
DEFINED whether WRITING, FAILED, and UPDATED states are volatile.

C.1 Component with non-volatile staging
A component that does not have volatile staging will maintain the CANDIDATE component state across areboot, and can optionally maintain the WRITING, FAILED, and UPDATED component states across areboot.

∙ Additional reboot transitions for states with optional volatility are indicated with ‘†’ and ‘‡’ marks onthe state, and described in the figure legend.
See Component with volatile staging on page 77 for example state models for a component that has volatilestaging.
IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 73



C.1.1 Component that requires a reboot, but no trial

If a component does not require testing before committing the update, the the TRIAL and REJECTEDstates are not used.
∙ The reboot that installs the firmware will transition the component to UPDATED on success, orFAILED on failure, unless the target state is volatile, in which case the reboot will transition thecomponent to READY.
∙ The accept operation is never used.
∙ The reject operation is only used to abandon an update that has been STAGED.

The simplified flow is shown in Figure 9.
READY

WRITING †

CANDIDATE

STAGED *

FAILED ‡

UPDATED ‡ READY

start

write

finish cancel

cancel

install

reboot:
install success

reboot:
install failed

reject

clean

clean

Transitions
———Applies to a single component
———Applies to all components
---Transition over reboot.
 
Volatile states
* Always: reboot transition as shown
† Optional: reboot is equivalent to cancel and clean
‡ Optional: reboot is equivalent to clean

Figure 9 State model for a component that does not require a trial

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 74



C.1.2 Component that requires a trial, but no reboot

If a component does not require a reboot to complete installation, the STAGED and REJECTED states arenot used.
∙ The install operation will complete the installation immediately, transitioning to TRIAL if successful.
∙ The reject operation from TRIAL state does not require a reboot to complete. A reject operationfrom TRIAL states transitions directly to FAILED.

The simplified flow is shown in Figure 10:
READY

WRITING †

CANDIDATE FAILED ‡

TRIAL

UPDATED ‡ READY

start

write

finish cancel

install:
install success

cancel

accept

clean

reject

clean

Transitions
———Applies to a single component
———Applies to all components
 
Volatile states
† Optional: reboot is equivalent to cancel and clean
‡ Optional: reboot is equivalent to clean

Figure 10 State model for a component that does not require a reboot

Implementation note
There is no ability for the update service to automatically reject a TRIAL, because a reboot does not

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 75



affect this component’s installation.

C.1.3 Component that requires neither a reboot, nor a trial

If a component does not require a reboot to complete installation, and does not require testing beforecommitting the update, then the STAGED, TRIAL, and REJECTED states are not used.
∙ The install operation will complete the installation immediately, transitioning to UPDATED ifsuccessful.
∙ The accept and reject operations are not used.

The simplified flow is shown in Figure 11:
READY

WRITING †

CANDIDATE FAILED ‡

UPDATED ‡ READY

start

write

finish cancel

install:
install success

cancel

clean

clean

Transitions
———Applies to a single component
———Applies to all components
 
Volatile states
† Optional: reboot is equivalent to cancel and clean
‡ Optional: reboot is equivalent to clean

Figure 11 State model for a component that does not require a reboot or trial

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 76



C.2 Component with volatile staging
A component that has volatile staging does not maintain the WRITING, CANDIDATE, FAILED, andUPDATED component states across a reboot.
In each case the state model is very similar to the associated state model for a component withnon-volatile staging, except that a reboot now affects almost all states:

∙ WRITING, CANDIDATE, and FAILED states will always revert to READY, discarding any image thathad been prepared or rejected.
∙ UPDATED state is progressed to READY.
∙ Existing reboot transitions from STAGED, TRIAL, and REJECTED, that go to FAILED in thenon-volatile-staging model, are reverted to READY.
∙ The existing reboot transition from STAGED to UPDATED for a successful installation in the ‘no trial’model, transitions to READY.

The modified flows are shown in the following figures:
∙ Modified reboot transitions are shown explicitly in the diagrams.
∙ New reboot transitions are indicated with ‘*’, ‘†’, and ‘‡’ marks on the state, and described in thediagram legend.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 77



READY

WRITING †

CANDIDATE †

STAGED *

FAILED ‡

REJECTED *TRIAL *

UPDATED ‡ READY

start

write

finish cancel

install

cancel

reboot:
install success

reboot:
install failed

reject

accept

clean

reject

reboot:
rollback

reboot:
rollback

clean

Transitions
———Applies to a single component
———Applies to all components
---Transition over reboot
 
Volatile states
* Always: reboot transition as shown
† Always: reboot is equivalent to cancel and clean
‡ Always: reboot is equivalent to clean

Figure 12 Full state model for a component with volatile staging

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 78



READY

WRITING †

CANDIDATE †

STAGED *

FAILED ‡

READY

start

write

finish cancel

cancel

install

reboot:
install success

reboot:
install failed

reject

clean

Transitions
———Applies to a single component
———Applies to all components
---Transition over reboot
 
Volatile states
* Always: reboot transition as shown
† Always: reboot is equivalent to cancel and clean
‡ Always: reboot is equivalent to clean

Figure 13 State model for a component with volatile staging that does not require a trial

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 79



READY

WRITING †

CANDIDATE † FAILED ‡

TRIAL *

UPDATED ‡ READY

start

write

finish cancel

install:
install success

cancel

accept

clean

reject

clean

Transitions
———Applies to a single component
———Applies to all components
 
Volatile states
* Always: reboot is equivalent to reject and clean
† Always: reboot is equivalent to cancel and clean
‡ Always: reboot is equivalent to clean

Figure 14 State model for a component with volatile staging that does not require a reboot

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 80



READY

WRITING †

CANDIDATE † FAILED ‡

UPDATED ‡ READY

start

write

finish cancel

install:
install success

cancel

clean

clean

Transitions
———Applies to a single component
———Applies to all components
 
Volatile states
† Always: reboot is equivalent to cancel and clean
‡ Always: reboot is equivalent to clean

Figure 15 State model for a component with volatile staging that does not require a reboot or trial

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 81



Appendix D: Security Risk Assessment
This appendix provides a Security Risk Assessment (SRA) of the Firmware Update API. It describes thethreats presented by various types of adversary against the security goals for an implementation of thefirmware update process, and mitigating actions for those threats.

∙ About this assessment describes the assessment methodology.
∙ Feature definition on page 84 defines the security problem.
∙ Feature characterization on page 91 provides additional security design details.
∙ Threats on page 94 describes the threats and the recommended mitigating actions.
∙ Mitigation summary on page 103 summarizes the mitigations, and where these are implemented.

D.1 About this assessment
D.1.1 Subject and scope

This SRA analyses the security of the Firmware Update API itself, not of any specific implementation ofthe API, or any specific application of the API.
The purpose of the SRA is to identify requirements on the design of the Firmware Update API. Thoserequirements can arise from threats that directly affect the caller and implementation of the API, but alsofrom threats against the whole firmware update process. As a result, the assessment considers a broad setof threats to the entire firmware update process.
Secure firmware update has been the subject of a number of recent studies and working groups. Theseexamine the challenges faced when implementing over-the-air updates to secure devices at scale, orpresent architectures for addressing those challenges. For example, see Report from the Internet of ThingsSoftware Update (IoTSU) Workshop 2016 [RFC8240], A Firmware Update Architecture for Internet of Things[RFC9019], and A Manifest Information Model for Firmware Updates in Internet of Things (IoT) Devices[RFC9124].
This SRA does not cover the Trusted client on page 24 deployment architecture. Operation and trustboundaries on page 86 describes the effects of the deployment model on the security analysis.

Note:
This document is not a substitute for performing a security risk assessment of the overall firmwareupdate process for a system that incorporates the Firmware Update API. However, this SRA can beused as a foundation for such an implementation-specific assessment.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 82



D.1.2 Risk assessment methodology

Our risk ratings use an approach derived from NIST Special Publication 800-30 Revision 1: Guide forConducting Risk Assessments [SP800-30]: for each Threat, we determine its Likelihood and the Impact.Each is evaluated on a 5-level scale, as defined in Table 8 and Table 9.
Table 8 Likelihood levels

Level Definition

Very Low Unlikely to ever occur in practice, or mathematically near impossible
Low The event could occur, but only if the attacker employs significant resources; or it ismathematically unlikely
Medium A motivated, and well-equipped adversary can make it happen within the lifetime of aproduct based on the feature (resp. of the feature itself)
High Likely to happen within the lifetime of the product or feature
Very High Will happen, and soon (for instance a zero-day)

Table 9 Impact levels
Level Definition Example Effects

Very Low Causes virtually no damage Probably none
Low The damage can easily be tolerated orabsorbed There would be a CVE at most
Medium The damage will have a noticeable effect,such as degrading some functionality, butwon’t degrade completely the use of theconsidered functionality

There would be a CVE at most

High The damage will have a strong effect, suchas causing a significant reduction in itsfunctionality or in its security guarantees
Security Analysts would discuss this atlength, there would be papers, blogentries. Partners would complain

Very High The damage will have criticalconsequences — it could kill the feature, byaffecting several of its security guarantees
It would be quite an event.
Partners would complain strongly, anddelay or cancel deployment of the feature

For both Likelihood and Impact, when in doubt always choose the higher value. These two values arecombined using Table 10 on page 84 to determine the Overall Risk of a Threat.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 83



Table 10 Overall risk calculation
Impact

Likelihood Very Low Low Medium High Very High

Very Low Very Low Very Low Very Low Low Low
Low Very Low Very Low Low Low Medium
Medium Very Low Low Medium Medium High
High (Very) Low Low Medium High Very High
Very High (Very) Low Medium High Very High Very High

Threats are handled starting from the most severe ones. Mitigations will be devised for these Threats oneby one (note that a Mitigation may mitigate more Threats, and one Threat may require the deployment ofmore than one Mitigation in order to be addressed). Likelihood and Impact will be reassessed assumingthat the Mitigations are in place, resulting in a Mitigated Likelihood (this is the value that usuallydecreases), a Mitigated Impact (it is less common that this value will decrease), and finally a Mitigated Risk.The Analysis is completed when all the Mitigated Risks are at the chosen residual level or lower, whichusually is Low or Very Low.
The Mitigating actions that can be taken are defined in the acronym CAST:

∙ Control: Put in place steps to reduce the Likelihood and/or Impact of a Threat, thereby reducing therisk to an acceptable level.
∙ Accept: The threat is considered to be of acceptable risk such that a mitigation is not necessary, ormust be accepted because of other constraint or market needs.
∙ Suppress: Remove the feature or process that gives rise to the threat.
∙ Transfer: Identify a more capable or suitable party to address the risk and transfer the responsibilityof providing a mitigation for the threat to them.

D.2 Feature definition
D.2.1 Introduction

Background

Using firmware updates to fix vulnerabilities in devices is important, but securing this update mechanism isequally important since security problems are exacerbated by the update mechanism. An update isessentially authorized remote code execution, so any security problems in the update process expose thatremote code execution system. Failure to secure the firmware update process will help attackers takecontrol of devices.
Firmware update on page 13 provides the context in which the Firmware Update API is designed. Figure 16on page 85 is a reproduction of Figure 2 on page 14 that illustrates where the Firmware Update API fits inthe overall firmware update process.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 84



Internet
«Device»

Update server Update client

Firmware
Update API

Update service

Firmware store

BootloaderFirmware creator

MQTT
CoAP
HTTPS

...

Figure 16 A firmware update process

Purpose

The Firmware Update API separates the software responsible for delivering the new firmware in thedevice, from the software that is responsible for storing and installing it in the device memory. Figure 16shows how the Firmware Update API separates an update client, which obtains the new firmware from theupdate server, from an update service, which stores the firmware in the device memory.
The API enables an update client to be written independently of the firmware storage design, and theupdate service to be written independently of the delivery mechanism.
Function

The Firmware Update API provides an interface by which an update client can query the state of firmwarecomponents that are managed by the service, prepare firmware updates for those components, andinitiate the installation of the updates.
D.2.2 Lifecycle

Figure 17 shows the typical lifecycle of a device that provide firmware updates.

«Operational phase»
 

Boot
(Install update)

Operation
(Prepare update)

Reset

SiP and OEM

System
manufacturing
and initialization

SiP, OEM,
and/or Owner

Provision of
authorization
credentials

[everybody] SiP, OEM,
and Owner

Return to
Manufacturer

Figure 17 Device lifecycle of a system providing firmware updates
The software implementing the on-device firmware update functionality, and the credentials forauthorizing the update process, are installed or provisioned to device prior to its operational phase.
The overall firmware update process is active during the operational phase. The Firmware Update API isused within the run-time software to prepare an update. The implementation of the API prepares theupdate at run-time, and installs the update at boot-time.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 85



D.2.3 Operation and trust boundaries

The following operational dataflow diagrams include all of the main components in a firmware updateprocess. Presenting the context in which the Firmware Update API operates aids understanding of thethreats and security mitigations, and provides the rationale for some elements of the API design.
The firmware creator and update server components are representative: in a real implementation of theprocess these roles may be distributed amongst multiple systems and stakeholders.
The Firmware Update API is a C language API. Therefore, any implementation of the API must execute, atleast partially, within the context of the calling application. When an implementation includes a trustboundary, the mechanism and protocol for communication across the boundary is IMPLEMENTATION DEFINED.
The Firmware Update API supports implementation in various deployment architectures, described inDeployment scenarios on page 22. The operation and dataflow of the firmware update process is similaracross these deployments. However, the trust boundaries within the device are different.
Figure 18 shows the simplest deployment — trusted client — which has no trust boundaries within thedevice. The individual dataflows are described in Table 11. This deployment is described in Trusted client onpage 24.
In the trusted client deployment, the attack surface lies outside of the Firmware Update API and itsimplementation, and mitigations for relevant threats to this deployment do not result in additional securityrequirements for the API. However, the threat model for the other deployments are very different,because they have a security boundary inside the implementation that protects the device’s Root of Trust.Deployment models on page 87 describes the dataflows for the other deployment models.
As a consequence, this SRA does not provide an assessment of the mitigations required for the trustedclient deployment architecture. See also Assumptions and constraints on page 88.

F
ir

m
w

ar
e

U
p

d
at

e 
A

P
I

Firmware 
creator

Update 
client

Update 
service

Bootloader

Second 
image

Active 
image

Device implementing Firmware update

Update 
server

Firmware store

DF.A

Trust boundary Trusted component Untrusted component Untrusted environment

DF.B DF.C

DF.D

DF.E DF.G

Figure 18 Operational dataflow diagram for firmware update in a trusted client deployment

Table 11 Dataflow descriptions for the firmware update process
Dataflow Description

DF.A The firmware creator uploads a firmware update to the update server.
DF.B Communication between the update server and a managed device that supportsfirmware update, to track firmware status and deliver updates.

continues on next page

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 86



Table 11 – continued from previous page

Dataflow Description

DF.C The Firmware Update API, used by the update client to query component state andprepare firmware updates for installation.
DF.D Active firmware image state read by the update service.
DF.E Update service i/o to the second image, to read the component state and preparecandidate images for update.
DF.F Bootloader i/o to the active image, to install a firmware image, or to authenticate it.
DF.G Bootloader i/o to the second image, to verify an update and install it.

D.2.4 Deployment models

This SRA is relevant for the deployment architectures — described in Deployment scenarios on page 22 —that include a Root of Trust within the device.
DM.UNTRUSTED_CLIENT deployment model

This deployment model corresponds to the deployment architecture shown in Untrusted client on page 22.Figure 19 shows the dataflow diagram for this deployment, and Table 11 on page 86 describes thedataflows.
A detailed dataflow is provided in Feature characterization on page 91.

F
ir

m
w

ar
e

U
p

d
at

e 
A

P
I

Firmware 
creator

Update 
client

Update 
service

Bootloader

Second 
image

Active 
image

Device implementing Firmware update

Update 
server

Firmware store

DF.A

Trust boundary Trusted component Untrusted component Untrusted environment

DF.B DF.C

DF.D

DF.E DF.G

Figure 19 Operational dataflow diagram for firmware update in an untrusted client deployment

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 87



DM.UNTRUSTED_STAGING deployment model

This deployment model corresponds to the deployment architecture shown in Untrusted staging onpage 23. Figure 20 shows the dataflow diagram for this deployment. The dataflow is described by Table 11on page 86, the same as for DM.UNTRUSTED_CLIENT.
A detailed dataflow is provided in Feature characterization on page 91.

F
ir

m
w

ar
e

U
p

d
at

e 
A

P
I

Firmware 
creator

Update 
client

Update 
service

Bootloader

Second 
image

Active 
image

Device implementing Firmware update

Update 
server

Firmware store

DF.A

Trust boundary Trusted component Untrusted component Untrusted environment

DF.B DF.C

DF.D

DF.E DF.G

DF.F

Figure 20 Operational dataflow diagram for firmware update in an untrusted staging deployment
The second image in the firmware store is accessible to untrusted software. The Root of Trust protects theactive image from modification by untrusted software. In this deployment model, there is no benefit fromimplementing the update service within the Root of Trust:

∙ The update service only communicates with the bootloader via the data in the firmware store.
∙ As the second image can be modified by untrusted components, the content and state of the secondimage is not trusted until the bootloader has verified the update.

In this deployment model, the update service can be implemented entirely as software library that runswithin the update client execution context.
D.2.5 Assumptions and constraints

∙ This SRA assumes that the system implements a Root of Trust, with, at least, the following capabilities:
— The Root of Trust implements a Secure boot process that ensures that all firmware is authorizedprior to execution when the device boots.
— The active firmware image cannot be modified by the system after the bootloader hasauthenticated the firmware.

Although the Firmware Update API can be used to provide a firmware update service in a systemthat does not have a Root of Trust, or implement Secure boot, such a system is not considered withinthis SRA.
∙ Attacks against the firmware supply chain are not considered as part of this assessment. It isassumed that firmware creators and the off-device update infrastructure are designed to protect thecredentials and processes that are involved in signing firmware images and updates.
∙ Within the scope of AM.1, the adversary is assumed to have the ability to execute software withinthe context of the caller of the Firmware Update API, or other untrusted components. The adversaryis assumed to not have software execution capability within the Root of Trust.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 88



For example, this might be achieved by an adversary that initially has remote access to the device(AM.0), who then exploits a vulnerability in the firmware to achieved local code execution (AM.1).
∙ Reliable update is a design goal for the Firmware Update API. That is, the firmware update process isrobust against failures that would result in an inoperable device. However, the API cannot prevent adenial of service of the overall firmware update process, and this is not in scope for this SRA.
∙ This API is designed for implementation in small microprocessor systems, which generally use SRAMor PSRAM memory, rather than the DDR memories that are typical in larger systems. Attacks againstDDR memory, such as Rowhammer, are out of scope for this assessment.

As a result of these assumptions:
∙ Threats to the interfaces outside the device (DF.A and DF.B in Table 11 on page 86) are equivalent ineffect to threats against the interface between the update client and update service (DF.C). Thissecurity analysis focuses on the latter dataflows.
∙ Threats to the interfaces within the Root of Trust are assumed to be mitigated by the Root of Trustimplementation.

D.2.6 Stakeholders and assets

The following assets are considered in this assessment:
Device firmwareThe device manufacturers (SiP, OEM), and device operator are interested in the integrityand authenticity of the device software.

The firmware developers (SiP, OEM, ISV) might also be concerned about the confidentialityof the firmware. Disclosure of the firmware can reveal confidential IP, or reduce the cost offinding and exploiting a vulnerability in the device.
Device firmware manifestThe device manufacturers (SiP, OEM), and device operator are interested in the integrityand authenticity of the firmware metadata within the firmware manifest.
Reliability of device operationThe device operator is concerned about the availability of the device to execute theapplication firmware.

All stakeholders are concerned about the integrity of their reputation with regards to device security, andliability for security failures. A scalable security flaw related to firmware update, or an inability to usefirmware update to address a security issue, can have a significant impact on the stakeholders.
D.2.7 Security goals

The following security goals are applicable for all systems which implement the Firmware Update API:
SG.AUTHENTICAn adversary is unable to install, or cause to be installed, a firmware image that is not validand authorized for the device.
SG.RELIABLEAn adversary is unable to use the firmware update process to render the device inoperable.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 89



The following security goal is applicable for some systems which implement the API:
SG.CONFIDENTIALAn adversary is unable to disclose the content of a firmware image.

D.2.8 Adversarial model
Adversarial models are descriptions of capabilities that adversaries of systems implementing the FirmwareUpdate API can have, grouped into classes. The adversaries are defined in this way to assist with threatmodelling an abstract API, which can have different implementations, in systems with a wide range ofsecurity sensitivity.

AM.0 The Adversary is only capable of accessing data that requires neither physical access to asystem containing an implementation of the feature nor the ability to run software on it.This Adversary is intercepting or providing data or requests to the target system via anetwork or other remote connection.
For instance, the Adversary can:

∙ Read any input and output to the target through external devices.
∙ Provide, forge, replay or modify such inputs and outputs.
∙ Perform timings on the observable operations being done by the target machine,either in normal operation or as a response to crafted inputs. For example, timingattacks on web servers.

AM.1 The Adversary can additionally mount attacks from software running on a target deviceimplementing the feature. This type of Adversary can run software on the target.
For instance, the Adversary can:

∙ Attempt software exploitation by running software on the target.
∙ Exploit access to any memory mapped configuration, monitoring, debug register.
∙ Mount any side channel analysis that relying on software-exposed built-in hardwarefeatures to perform physical unit and time measurements.
∙ Perform software-induced glitching of resources such as Rowhammer, RASpberry orcrashing the CPU by running intensive tasks.

AM.2 In addition to the above, the Adversary is capable of mounting hardware attacks and faultinjection that does not require breaching the physical envelope of the chips. This type ofAdversary has access to a system containing an implementation of the target feature.
For instance, the Adversary can:

∙ Conduct side-channel analysis that requires measurement devices. For example, thiscan utilize leakage sources such as EM emissions, power consumption, photonicsemission, or acoustic channels.
∙ Plug malicious hardware into an unmodified system.
∙ Gain access to the internals of the target system and interpose the SoC or memory forthe purposes of reading, blocking, replaying, and injecting transactions.
∙ Replace or add chips on the motherboard.
∙ Make simple, reversible modifications, to perform glitching.

AM.3 In addition to all the above, the Adversary is capable of performing invasive SoC attacks.
For instance, the Adversary can:

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 90



∙ Decapsulate a chip, via laser or chemical etching, followed by microphotography toreverse engineer the chip.
∙ Use a focussed ion beam microscope to perform gate level modification.

The adversarial models that are in scope for a firmware update process depend on the productrequirements. To ensure that the Firmware Update API can be used in a wide range of systems, thisassessment considers adversarial models AM.0, AM.1, and AM.2 to be in-scope.

D.3 Feature characterization
D.3.1 Detailed deployment dataflow

The following diagrams expand on the diagrams in Operation and trust boundaries on page 86 to show thedetailed operational dataflow during the firmware update process.
Figure 21 shows the detailed dataflow diagram for the DM.UNTRUSTED_CLIENT deployment, and Table 12describes each dataflow.

F
ir

m
w

ar
e

U
p

d
at

e 
A

P
I

Firmware creator Update client Update service Bootloader

Second image

Active image

Device implementing Firmware update

Update server

Notify devices 
of new update

Create 
firmware

Upload 
firmware

DF.4

Deliver update

Request firmare 
update

Query firmware 
state

Prepare update

Request 
installation

Report update 
is ready

Reboot

DF.5

DF.6

DF.7

Request to 
apply update

DF.10

DF.11

Get firmware 
status

Write image to 
store

Stage update

DF.2

DF.8

DF.9

DF.13

DF.12

Install update

Check firmware 
state

Authenticate & 
run firmware

Device restarts

DF.14

DF.16

DF.15

DF.17

Firmware store

DF.1

Sign firmware
Report 

firmware state
DF.3

Untrusted component

Trusted component

Track firmware 
status

Untrusted environment

Trust boundary

Figure 21 Detailed dataflow diagram for DM.UNTRUSTED_CLIENT
The individual dataflows are described in Table 12.

Table 12 Detailed dataflow descriptions for the firmware update process
Dataflow Description

DF.1 The update service reads status information for the protected, active image, and theunprotected second image.
continues on next page

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 91



Table 12 – continued from previous page

Dataflow Description

DF.2 Firmware information in response to Firmware Update API query.
DF.3 [Optional] Client reports device firmware status to online Status Tracker.
DF.4 Firmware creator loads a firmware update containing new firmware images to theupdate server. Images are signed by firmware creator to authenticate their origin. SeeAssumptions and constraints on page 88.
DF.5 [Optional] Update server issues notification to device about the firmware update.

Alternatively, device periodically polls server to discover update.
DF.6, DF.7 Device requests and downloads firmware update images from the update server.
DF.8 Update client uses Firmware Update API to prepare the candidate firmware imagesfor update.
DF.9 Update service writes new firmware images into the firmware store’s staging area.
DF.10 [Optional] Device reports to the update server that the update is ready.

Alternatively, the device immediately installs the prepared update.
DF.11 [Optional] Update server issues command to device to apply the update.
DF.12 Update client uses Firmware Update API to request installation of the update.
DF.13 Update service marks the candidate firmware images as ready for installation.
DF.14 Bootloader inspects the second image, to determine if an update is ready forinstallation.
DF.15, DF.16 Bootloader verifies the update, and installs it as the active image.

[Optional] Bootloader retains the previous firmware image for rollback.
DF.17 Bootloader authenticates the firmware image, and then executes it.

Figure 22 on page 93 shows the detailed dataflow diagram for the DM.UNTRUSTED_STAGING deployment.The dataflows are described by Table 12 on page 91, the same as for DM.UNTRUSTED_CLIENT.
D.3.2 Security features of the API

The following aspects of the Firmware Update API result from the mitigations identified by thisassessment:
∙ The behavior of memory buffer parameters is fully specified. See also Pointer conventions on page 41.
∙ The API provides a full state model for the firmware update process. See State model on page 26.Common variations are also defined in Variation in system design parameters on page 73.
∙ Firmware images are not automatically staged for installation after being written to the firmwarestore, to support atomic update of multiple images. See also Rationale on page 30.
∙ A TRIAL state is provided to permit a new firmware image to be tested, and then reverted to theprevious image in case of a fault. See also Rationale on page 30.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 92



F
ir

m
w

ar
e

U
p

d
at

e 
A

P
I

Device implementing Firmware update

Firmware creator Update client Update service Bootloader

Second image

Active image
Update server

Notify devices 
of new update

Create 
firmware

Upload 
firmware

DF.4

Deliver update

Request firmare 
update

Query firmware 
state

Prepare update

Request 
installation

Report update 
is ready

Reboot

DF.5

DF.6

DF.7

Request to 
apply update

DF.10

DF.11

Get firmware 
status

Write image to 
store

Stage update

DF.2

DF.8

DF.9

DF.13

DF.12

Install update

Check firmware 
state

Authenticate & 
run firmware

Device restarts

DF.14

DF.16

DF.15

DF.17

Firmware store

DF.1

Sign firmware
Report 

firmware state
DF.3

Untrusted component

Trusted component

Track firmware 
status

Untrusted environment

Trust boundary

Figure 22 Detailed dataflow diagram for DM.UNTRUSTED_STAGING
The individual dataflows are described in Table 12 on page 91.

The different deployment models, and variability in the adversarial model in scope for a particular product,requires that the Firmware Update API provides the following features:
∙ Flexibility in when a firmware update is verified: verification errors can be reported from multiplefunctions. See also Verifying an update on page 31.

Some mitigations are required in the format of the firmware image or the firmware manifest. The FirmwareUpdate API does not specify a firmware update format — see Firmware image format on page 22 — andenables the following aspects to be included in the firmware image or manifest, as required for theimplementation:
∙ Compatibility information that identifies the system and component the firmware image is intendedfor.
∙ Description and verification of dependencies between firmware images.
∙ Authentication of the firmware image and manifest.
∙ Encryption of the firmware image and manifest.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 93



D.4 Threats
Because Firmware Update API can be used in a wide range of deployment models and a wide range ofthreats, not all mitigating actions apply to all scenarios. As a result, various mitigations are optional toimplement, depending on which threats exist in a particular domain of application, and which firmwareupdate use cases are important for deployments.
Table 13 summarizes the threats.

Table 13 Summary of threats
Threat Description

T.TAMPER Tampering with the firmware image or manifest
T.NON_FUNCTIONAL Install defective firmware
T.ROLLBACK Install old firmware
T.SKIP_INTERMEDIATE Skip intermediate update
T.DEGRADE_DEVICE Repeatedly install invalid firmware
T.INTERFACE_ABUSE Call the API with illegal inputs
T.TOCTOU Modify asset between authentication and use
T.PARTIAL_UPDATE Trigger installation of incomplete update
T.INCOMPATIBLE Install firmware for a different device
T.DISCLOSURE Unauthorized disclosure of a firmware image or manifest
T.DISRUPT_INSTALL Corrupt image by disrupting installer
T.DISRUPT_DOWNLOAD Corrupt image by disrupting writes
T.FAULT_INJECTION Verification bypass via glitching
T.SERVER Exploiting or spoofing the update server
T.CREATOR Spoofing the firmware creator
T.NETWORK Manipulation of network traffic outside the device

D.4.1 T.TAMPER: Tampering with the firmware image or manifest

Description: An attacker modifies the firmware image or firmware manifest to cause a malfunction in theinstaller.
For example:

∙ If a device misinterprets the format of the firmware image, it may cause a device to install a firmwareimage incorrectly. An incorrectly installed firmware image would likely cause the device to stopfunctioning.
∙ If a device installs a firmware image to the wrong location on the device, then it is likely to break.

This can cause device malfunction, or enable elevation of privilege.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 94



Adversarial Model AM.0, AM.1
Security Goal SG.AUTHENTIC, SG.RELIABLE
Unmitigated Impact High
Unmitigated Likelihood High
Unmitigated Risk High
Mitigating Actions Secure boot (see Assumptions and constraints on page 88) will prevent tamperedfirmware images from executing, but installation of such images can leave thedevice inoperable.

M.AUTHENTICATE. Transfer to firmware creator and implementation:authenticate the content of the firmware image manifest and firmware imagesto prevent unauthorized modification. Authentication must occur within atrusted component. For detached manifests this can be achieved by including acryptographic hash of the firmware image in the manifest, and then signing themanifest with an authorized key. The Firmware Update API design must enableauthentication of firmware images and manifests.
Residual Impact High
Residual Likelihood Very Low
Residual Risk Low
D.4.2 T.NON_FUNCTIONAL: Install defective firmware

Description: An attacker sends a firmware update to a device that is known to not function correctly. If thefirmware update function is non-operational following this update, the device also cannot be recoveredwithout a physical repair.
Adversarial Model AM.0, AM.1
Security Goal SG.RELIABLE
Unmitigated Impact High
Unmitigated Likelihood Medium
Unmitigated Risk Medium
Mitigating Actions M.TRIAL. Control by API design: provide a firmware image state where a failureto run a new firmware image will cause a roll back to the previously installedfirmware, instead of making the device inoperable, without bypassing

M.SEQUENCE. Transfer to implementation and update client: use the providedTRIAL state in the firmware update process.
Residual Impact High
Residual Likelihood Very Low
Residual Risk Low

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 95



D.4.3 T.ROLLBACK: Install old firmware

Description: An attacker sends an old, but otherwise valid, firmware update to a device. If there is a knownvulnerability in the provided firmware image, this may allow an attacker to exploit the vulnerability andgain control of the device.
Adversarial Model AM.0, AM.1
Security Goal SG.AUTHENTIC
Unmitigated Impact High
Unmitigated Likelihood Medium
Unmitigated Risk Medium
Mitigating Actions M.SEQUENCE. Transfer to the firmware creator and implementation. Firmwareimages, or their manifests, must be monotonically sequenced for the device, orfor each component within a device. The implementation will deny an attemptto install an update with a sequence number that is lower than the currentlyinstalled firmware. Verification of sequence numbers must occur within atrusted component.

This mitigation creates a fragility when an update is non-functional, andrequires the implementation of M.TRIAL to maintain availability in case of anon-functional update. See also T.NON_FUNCTIONAL.
Residual Impact High
Residual Likelihood Very Low
Residual Risk Low
D.4.4 T.SKIP_INTERMEDIATE: Skip intermediate update

Description: An attacker sends a valid firmware update to the device, that requires an intermediate updateto be installed first.
Following update the device might operate incorrectly, or can be left completely inoperable.
Adversarial Model AM.0, AM.1
Security Goal SG.RELIABLE
Unmitigated Impact High
Unmitigated Likelihood Medium
Unmitigated Risk Medium
Mitigating Actions M.CHECK_DEPENDENCY. Transfer to the implementation: dependenciesbetween firmware images are declared in the authenticated firmware image ormanifest, and verified by the implementation. Dependency verification mustoccur within a trusted component. The Firmware Update API design mustenable verification of firmware images.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 96



Residual Impact High
Residual Likelihood Very Low
Residual Risk Low
D.4.5 T.DEGRADE_DEVICE: Repeatedly install invalid firmware

An attacker repeatedly causes an attempted installation of invalid firmware, to make the installationprocess disrupt the application availability, exhaust the device power supply, or excessively degrade thefirmware store non-volatile memory.
Adversarial Model AM.0, AM.1
Security Goal SG.RELIABLE
Deployment Model DM.UNTRUSTED_CLIENT DM.UNTRUSTED_STAGING
Unmitigated Impact High High
Unmitigated Likelihood Medium Medium
Unmitigated Risk Medium Medium
Mitigating Actions M.VERIFY_EARLY. Transfer to the update client and the implementation: verifyfirmware images as early as possible in the update process, to detect and rejectan invalid update. This can reduce the storage of invalid image data in thefirmware store, prevent unnecessary device reboots, and eliminate installationof firmware that will be rejected by a Secure boot process. The FirmwareUpdate API design must permit verification to occur at all appropriate firmwareupdate operations.

Warning: Although verification outside of the Root of Trust can reduce thelikelihood of this threat, it is insufficient to mitigate attackers that canbypass such a check. See also T.TOCTOU.
Residual Impact High High
Residual Likelihood Very Low Low
Residual Risk Low Low
D.4.6 T.INTERFACE_ABUSE: Illegal inputs to the API

Description: An attacker can abuse the Firmware Update API. For example:
∙ Passing out of range values to the interface to provoke unexpected behavior of the implementation.
∙ Passing invalid input or output buffers to the interface, that would cause the implementation toaccess non-existent memory, or memory that is inaccessible to the caller.
∙ Invoking the interface functions out of sequence to cause a malfunction of the implementation.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 97



Using the interface to install attacker-defined firmware images and manifests is covered by T.TAMPER,
T.NON_FUNCTIONAL, and T.INCOMPATIBLE.
Note that for DM.UNTRUSTED_STAGING, the attacker can bypass the API entirely as there is no securityboundary between the update service and the update client.
Adversarial Model AM.1
Security Goal SG.AUTHENTIC
Deployment Model DM.UNTRUSTED_CLIENT DM.UNTRUSTED_STAGING
Unmitigated Impact High High
Unmitigated Likelihood Medium Low
Unmitigated Risk Medium Low
Mitigating Actions M.STATE_MODEL. Control by API design: the valid operation sequence for theAPI is fully specified by the API, to prevent unexpected firmware update states.Responsibility for enforcing the state model is transferred to theimplementation.

M.MEMORY_BUFFER. Control by API design: input buffers are fully consumedby the implementation before returning from a function. An implementationmust not access the caller’s memory after a function has returned.
M.VALIDATE_PARAMETER. Transfer to the implementation: check all APIparameters to lie within valid ranges, including memory access permissions.

Residual Impact High High
Residual Likelihood Very Low Very Low
Residual Risk Low Low
D.4.7 T.TOCTOU: Modify asset between authentication and use

Description: An attacker modifies a manifest, or a firmware image, after it is authenticated (time of check)but before it is used (time of use). The attacker can place any content whatsoever in the affected asset.
Adversarial Model AM.1, AM.2
Security Goal SG.AUTHENTIC
Deployment Model DM.UNTRUSTED_CLIENT DM.UNTRUSTED_STAGING
Unmitigated Impact High High
Unmitigated Likelihood Low Medium
Unmitigated Risk Low Medium
Mitigating Actions M.PROTECT_THEN_VERIFY. Transfer to the implementation: verification offirmware images and manifests must be done on a copy of the asset that isprotected from tampering by untrusted components.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 98



∙ For a DM.UNTRUSTED_STAGING deployment, this requires that everythingmust be verified by the bootloader.
∙ For a DM.UNTRUSTED_CLIENT deployment, the verification can beimplemented within the update service, or the bootloader.

This SRA assumes that Secure boot is implemented, which is the final mitigationto detect unauthorized modification of firmware. See Assumptions andconstraints on page 88.
See also T.DEGRADE_DEVICE.

Residual Impact High High
Residual Likelihood Very Low Very Low
Residual Risk Low Low
D.4.8 T.PARTIAL_UPDATE: Trigger installation of incomplete update

Description: An attacker triggers the installation of an update before all of the candidate firmware imageshave been prepared.
For example, where an update requires multiple images to be installed concurrently, the attacker mightattempt to trigger the installation by forcing the device to restart. A partial installation might render thedevice inoperable.
Adversarial Model AM.0, AM.1, AM.2
Security Goal SG.RELIABLE
Unmitigated Impact High
Unmitigated Likelihood Medium
Unmitigated Risk Medium
Mitigating Actions M.EXPLICIT_STAGING. Control by Firmware Update API design: candidatefirmware images that have been prepared are not automatically staged forinstallation. An explicit API call is used to stage all candidate images.

M.CHECK_DEPENDENCY. Verify that all dependencies are satisfied beforeinstallation.
Residual Impact High
Residual Likelihood Very Low
Residual Risk Low

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 99



D.4.9 T.INCOMPATIBLE: Mismatched firmware

Description: An attacker sends a valid firmware image, for the wrong type of device, signed by a key withfirmware installation permission on both device types. This could have wide-ranging consequences. Thiscould cause minor breakage, expose security vulnerabilities, or render devices inoperable.
Adversarial Model AM.0, AM.1
Security Goal SG.AUTHENTIC, SG.RELIABLE
Unmitigated Impact High
Unmitigated Likelihood Medium
Unmitigated Risk Medium
Mitigating Actions M.COMPATIBILITY. Transfer to the firmware creator and implementation:include authenticated device type information in the manifest, and verify itprior to installation. Verification must occur within a trusted component. TheFirmware Update API design must enable authentication of firmware manifests,and validation of device type.
Residual Impact High
Residual Likelihood Very Low
Residual Risk Low
D.4.10 T.DISCLOSURE: Disclosure of protected firmware

Description: An attacker wants to mount an attack on the device. To prepare the attack, the providedfirmware image is reverse engineered and analyzed for vulnerabilities.
The firmware image might be obtained while in transit from the firmware creator to the device, or whilestored in the update server, or on the device prior to installation.
Adversarial Model AM.0, AM.1, AM.2
Security Goal SG.CONFIDENTIAL
Unmitigated Impact Medium
Unmitigated Likelihood High
Unmitigated Risk Medium
Mitigating Actions M.ENCRYPT. Transfer to the firmware creator and implementation: useencryption to protect the firmware image. The Firmware Update API designmust enable the use of encrypted firmware images.

Note:
There are challenges when implementing encryption of firmware in amanner that is secure at scale. For example, the problems and some

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 100



solutions are described in Encrypted Payloads in SUIT Manifests[SUIT-ENC].
Protection of installed firmware images is outside the scope of the firmwareupdate process.

Residual Impact Medium
Residual Likelihood Very Low
Residual Risk Very Low
D.4.11 T.DISRUPT_INSTALL: Corrupt image by disrupting installer

Description: An attacker attempts to corrupt the firmware store by causing a device restart while aninstallation operation is in process. For example, causing a device restart while the bootloader is copying orswapping images, or cleaning the firmware store. After restart the corrupted firmware store can result inan inoperable device.
Note:
For implementations where the bootloader does the installation, this threat only relevant for anattacker with physical access (AM.2).

Adversarial Model AM.0, AM.1, AM.2
Security Goal SG.RELIABLE
Unmitigated Impact High
Unmitigated Likelihood Medium
Unmitigated Risk Medium
Mitigating Actions M.ROBUST_INSTALL. Transfer to the implementation: updates to the firmwarestore must be resilient to a power failure or reset interrupting the installationprocess. This requires that the installer can detect when an update process hasbeen interrupted in this way, and then either recover and resume theinstallation, or revert to the previous firmware image.
Residual Impact High
Residual Likelihood Very Low
Residual Risk Low

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 101



D.4.12 T.DISRUPT_DOWNLOAD: Corrupt image by disrupting writes

Description: In a component with a non-volatile WRITING state, an attacker attempts to corrupt thefirmware image being staged by causing a device restart while firmware image data is being written. Whenthe update process resumes following restart, an incomplete write might not be detected, or corrected.
Adversarial Model AM.0, AM.1, AM.2
Security Goal SG.RELIABLE
Unmitigated Impact High
Unmitigated Likelihood Medium
Unmitigated Risk Medium
Mitigating Actions M.ROBUST_DOWNLOAD. Transfer to the update client and the implementation:implement a protocol for reliably synchronizing the partially written imagestatus between the update client and implementation when the device restarts.This should include detecting situations that cannot be resumed due toincompletely written or corrupted data, and require the update to restart fromthe beginning.

Note:
This threat is related to T.TAMPER. Authentication of the complete imagevia M.AUTHENTICATE will detect the corruption. However, a device willimplement a non-volatile WRITING state when the transfer and storageof firmware update images is relatively expensive. For example, insystems with very low bandwidth, or small energy budgets.

Residual Impact High
Residual Likelihood Very Low
Residual Risk Low
D.4.13 T.FAULT_INJECTION: Verification bypass via glitching

Description: An attacker attempts to bypass verification of a firmware update by injecting faults, enablingthe installation of non-authentic, non-functional, incompatible, or known to be vulnerable firmwareimages.
Adversarial Model AM.2
Security Goal SG.AUTHENTIC, SG.RELIABLE
Unmitigated Impact Very High
Unmitigated Likelihood Low
Unmitigated Risk Medium

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 102



Mitigating Actions M.FAULT_HARDENING. Transfer to the implementation: usefault-injection-hardening techniques in the design and implementation of theupdate service and bootloader.
Residual Impact Very High
Residual Likelihood Very Low
Residual Risk Low
D.4.14 T.SERVER: Attack from exploited update server

Description: An attacker can impersonate, or exploit the update server to provide attacker-controlledcommands and data to the update client.
For the deployment models that are in scope for this SRA, this threat is indistinguishable from T.TAMPER.
D.4.15 T.CREATOR: Attack from spoof firmware creator

Description: An attacker can impersonate the firmware creator to upload attacker-controlled firmwareimages.
For the deployment models that are in scope for this SRA, this threat is indistinguishable from T.TAMPER.
D.4.16 T.NETWORK: Manipulate network traffic

Description: An attacker intercepts all traffic to and from a device. The attacker can monitor or modify anydata sent to or received from the device.
For the deployment models that are in scope for this SRA, this threat is indistinguishable from T.TAMPER.

D.5 Mitigation summary
This section provides a summary of the mitigations described in the threat analysis, organized by the entityresponsible for providing the mitigation. Security features of the API on page 92 lists the API impacts thatresult from the security assessment.
D.5.1 Architectural mitigations

Table 14 on page 104 lists mitigations that must be included in the design of the Firmware Update API.
Table 15 on page 104 lists mitigations that need to be included in the design of the firmware image andfirmware manifest formats used by the selected firmware update process. An example of a firmwaremanifest format that provides these features is described in [RFC9124].

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 103



Table 14Mitigations controlled by the Firmware Update API
Mitigation Description Mitigated threats

M.EXPLICIT_STAGING Candidate firmware images that have beenprepared require an explicit API call to stage forinstallation.
T.PARTIAL_UPDATE

M.MEMORY_BUFFER The implementation use of memory buffers in theAPI is fully specified. T.INTERFACE_ABUSE
M.STATE_MODEL The valid operation sequence for the API is fullyspecified by the API. T.INTERFACE_ABUSE
M.TRIAL Provide a firmware image state where a failure torun a new firmware image will cause a roll back tothe previously installed firmware.

T.NON_FUNCTIONAL,
T.ROLLBACK

Table 15Mitigations transferred to the firmware image and manifest formats
Mitigation Description Mitigated threats

M.AUTHENTICATE Authenticate the content of the firmware imagemanifest and firmware images to preventunauthorized modification. For detachedmanifests this can be achieved by including acryptographic hash of the firmware image in themanifest, and then signing the manifest with anauthorized key.

T.TAMPER

M.CHECK_DEPENDENCY Dependencies between firmware images aredeclared in the firmware image or manifest. T.SKIP_INTERMEDIATE,
T.PARTIAL_UPDATE

M.COMPATIBILITY Include authenticated device type information inthe manifest. T.INCOMPATIBLE
M.ENCRYPT Use encryption to protect the firmware image. T.DISCLOSURE
M.SEQUENCE Firmware images, or their manifests, must bemonotonically sequenced for the device, or foreach component within a device.

T.ROLLBACK

D.5.2 Implementation-level mitigations

Table 16 on page 105 lists the mitigations that are transferred to the implementation. These are alsoknown as ‘remediations’.

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 104



Table 16Mitigations that are transferred to the implementation
Mitigation Description Mitigated threats

M.AUTHENTICATE Verify the authenticity of the firmware imagemanifest and firmware images against a trustanchor within the implementation, prior toinstallation.

T.TAMPER

M.CHECK_DEPENDENCY Dependencies between firmware images areverified by the implementation prior to installation. T.SKIP_INTERMEDIATE,
T.PARTIAL_UPDATE

M.COMPATIBILITY Verify firmware image compatibility prior toinstallation. T.INCOMPATIBLE
M.ENCRYPT Use cryptographic encryption to protect thefirmware image. T.DISCLOSURE
M.FAULT_HARDENING Use fault-injection-hardening techniques. T.FAULT_INJECTION
M.PROTECT_THEN_VERIFY Verification of firmware images and manifestsmust be done on a copy of the asset that isprotected from tampering by untrustedcomponents.

T.TOCTOU

M.ROBUST_DOWNLOAD Synchronize a partially written image statusbetween the update client and implementationwhen the device restarts.
T.DISRUPT_DOWNLOAD

M.ROBUST_INSTALL Updates to the firmware store must be resilient toa power failure or reset interrupting theinstallation process.
T.DISRUPT_INSTALL

M.SEQUENCE Deny an attempt to install an update with asequence number that is lower than the currentlyinstalled firmware.
T.ROLLBACK

M.STATE_MODEL Enforce the state model defined by the API. T.INTERFACE_ABUSE
M.TRIAL Use the provided TRIAL state in the firmwareupdate process, to enable recovery of a failedupdate

T.NON_FUNCTIONAL,
T.ROLLBACK

M.VALIDATE_PARAMETER Check all API parameters to lie within valid ranges,including memory access permissions. T.INTERFACE_ABUSE
M.VERIFY_EARLY Verify firmware images as early as possible in theupdate process, to detect and reject an invalidupdate.

T.DEGRADE_DEVICE

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 105



D.5.3 User-level mitigations

Table 17 lists mitigations that are transferred to the application or other external components. These arealso known as ‘residual risks’.
Table 17Mitigations that are transferred to the application

Mitigation Description Mitigated threats

M.ROBUST_DOWNLOAD Synchronize a partially written image statusbetween the update client and implementationwhen the device restarts.
T.DISRUPT_DOWNLOAD

M.VERIFY_EARLY Verify firmware images as early as possible in theupdate process, to detect and reject an invalidupdate.
T.DEGRADE_DEVICE

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 106



Appendix E: Document change history
E.1 Changes between version 1.0 Beta and 1.0.0
General changes

∙ Clarified the definition of volatile staging and relaxed the requirements for non-volatile staging.
— Defined the effects of the PSA_FWU_FLAG_VOLATILE_STAGING flag.
— Permitted the volatility of the WRITING, FAILED, and UPDATED states to be IMPLEMENTATION

DEFINED when the CANDIDATE state is not volatile.
— Defined the impact on the state transitions when these states are volatile.
— Added additional example state model diagrams for components with volatile staging.
— See State model on page 26, Volatile states on page 28, and Variation in system design parameterson page 73.

∙ Added a Security Risk Assessment appendix for the Firmware Update API. See Security RiskAssessment on page 82.
API changes

∙ Added PSA_FWU_LOG2_WRITE_ALIGN, which the implementation uses to specify the required alignmentof the data blocks written using psa_fwu_write().

E.2 Changes between version 0.7 and 1.0 Beta
General changes

∙ Relicensed the document under Attribution-ShareAlike 4.0 International with a patent licensederived from Apache License 2.0. See License on page vii.
∙ Removed Profile IDs, and discussion of SUIT and manifest formats
∙ Revised and extended all of the early chapters covering the goals, architecture and design of the API.
∙ Updated code examples to match the v1.0 API. See Example usage on page 66.

API changes

∙ Renamed psa_image_id_t to psa_fwu_component_t, and changed the type to uint8_t.
∙ Renamed psa_image_info_t to psa_fwu_component_info_t.

— Removed Image ID, Vendor ID and Class ID from psa_fwu_component_info_t structure.
— Removed psa_fwu_staging_info_t, adding any important members directly to

psa_fwu_component_info_t.
∙ Renamed psa_image_version_t to psa_fwu_image_version_t.

— Resized the fields in psa_fwu_image_version_t to align with other project structures.
IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 107



— Added build field to psa_fwu_image_version_t.
∙ Reworked the state model to reflect the overall state of a firmware component, not a specific image.

— Renamed PSA_FWU_UNDEFINED to PSA_FWU_READY - the default starting state for the state model.
— Renamed CANDIDATE state to WRITING state. The new definition is PSA_FWU_WRITING.
— Renamed REBOOT_NEEDED state to STAGED state. The new definition is PSA_FWU_STAGED.
— Renamed PENDING_INSTALL state to TRIAL state. The new definition is PSA_FWU_TRIAL.
— Renamed INSTALLED state to UPDATED state. The new definition is PSA_FWU_UPDATED.
— Renamed REJECTED state to FAILED state. The new definition is PSA_FWU_FAILED.
— Reintroduced REJECTED as a volatile state when rollback has been requested, but reboot has notyet occurred.

∙ Renamed some of the installation functions:
— Rename psa_fwu_set_manifest() to psa_fwu_start(). This call is now mandatory, but the manifestdata is optional.
— Rename psa_fwu_request_rollback() to psa_fwu_reject(), to mirror psa_fwu_accept().
— Rename psa_fwu_abort() to psa_fwu_clean().

∙ Explicit support for concurrent installation of multiple components:
— Reintroduced CANDIDATE state for an image that has been prepared for installation, but notinstalled.
— Add psa_fwu_finish() to mark a new firmware image as ready for installation.
— Add psa_fwu_cancel() to abandon an update that is being prepared.
— Removed the component_id parameter from psa_fwu_install(), psa_fwu_accept(), and

psa_fwu_reject(): these now act atomically on all components in the initial state for theoperation.
∙ Reference the standard definition of the status codes, and remove them from this specification. SeeStatus codes on page 43.

— Rationalize the API-specific error codes. This removes the following error codes:
∘ PSA_ERROR_WRONG_DEVICE

∘ PSA_ERROR_CURRENTLY_INSTALLING

∘ PSA_ERROR_ALREADY_INSTALLED

∘ PSA_ERROR_INSTALL_INTERRUPTED

∘ PSA_ERROR_DECRYPTION_FAILURE

∘ PSA_ERROR_MISSING_MANIFEST

— Standardize the use of error codes, aligning with other PSA Certified APIs:
∘ Use PSA_ERROR_BAD_STATE when operations are called in the wrong sequence.
∘ Use PSA_ERROR_DOES_NOT_EXIST when operations are called with an unknown component Id.
∘ Use PSA_ERROR_NOT_PERMITTED when firmware images do not comply with update policy.

∙ Removed the discovery API functions and types
— psa_fwu_get_image_id_iterator()

— psa_fwu_get_image_id_next()

— psa_fwu_get_image_id_valid()

— psa_fwu_get_image_id()

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 108



— psa_fwu_iterator_t

∙ Removed Profile IDs, and discussion of SUIT and metadata formats

E.3 Changes between version 0.6 and 0.7
This section describes detailed changes between past versions.

∙ PSA_FWU_API_VERSION_MINOR has increased from 6 to 7
∙ psa_image_id_t is now defined as a 32-bit integer. Functions no longer have a pointer type for thisparameter.
∙ UUID concept dropped from function names and parameters.
∙ Added Vendor ID and Class ID to psa_image_info_t structure.
∙ Added Future changes section
∙ Added error code and success code definitions
∙ Fixed mistake: psa_fwu_abort return type changed from void to psa_status_t

∙ Clarifications to the text
∙ Replaced PSA_ERROR_ROLLBACK_DETECTED with PSA_ERROR_NOT_PERMITTED

∙ Remove standardized image IDs until we get more feedback
∙ Improvements to the Design Overview text

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 109



Index of API elements

PSA_E
PSA_ERROR_DEPENDENCY_NEEDED, 44
PSA_ERROR_FLASH_ABUSE, 44
PSA_ERROR_INSUFFICIENT_POWER, 44
PSA_FWU_A
PSA_FWU_API_VERSION_MAJOR, 43
PSA_FWU_API_VERSION_MINOR, 43
psa_fwu_accept, 62
PSA_FWU_C
PSA_FWU_CANDIDATE, 46
psa_fwu_cancel, 56
psa_fwu_clean, 57
psa_fwu_component_info_t, 49
psa_fwu_component_t, 45
PSA_FWU_F
PSA_FWU_FAILED, 47
PSA_FWU_FLAG_ENCRYPTION, 49
PSA_FWU_FLAG_VOLATILE_STAGING, 48
psa_fwu_finish, 55
PSA_FWU_I
psa_fwu_image_version_t, 45
psa_fwu_impl_info_t, 49
psa_fwu_install, 58
PSA_FWU_L
PSA_FWU_LOG2_WRITE_ALIGN, 52
PSA_FWU_M
PSA_FWU_MAX_WRITE_SIZE, 53
PSA_FWU_Q
psa_fwu_query, 50
PSA_FWU_R
PSA_FWU_READY, 46
PSA_FWU_REJECTED, 48

psa_fwu_reject, 60
psa_fwu_request_reboot, 60
PSA_FWU_S
PSA_FWU_STAGED, 47
psa_fwu_start, 51
PSA_FWU_T
PSA_FWU_TRIAL, 47
PSA_FWU_U
PSA_FWU_UPDATED, 48
PSA_FWU_W
PSA_FWU_WRITING, 46
psa_fwu_write, 53
PSA_S
PSA_SUCCESS_REBOOT, 45
PSA_SUCCESS_RESTART, 45

IHI 00931.0.0 Copyright© 2020-2023 Arm Limited and/or its affiliatesNon-confidential Page 110


	About this document
	Release information
	License
	References
	Terms and abbreviations
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Feedback

	1 Introduction
	1.1 About Platform Security Architecture
	1.2 About the Firmware Update API
	1.3 Firmware update

	2 Design goals
	2.1 Suitable for constrained devices
	2.2 Updating the Platform Root of Trust
	2.3 Updating the Application Root of Trust
	2.4 Flexibility for different trust models
	2.5 Protocol independence
	2.6 Transport independence
	2.7 Firmware format independence
	2.8 Flexibility for different hardware designs
	2.9 Suitable for composite devices
	2.10 Robust and reliable update
	2.11 Flexibility in implementation design

	3 Architecture
	3.1 Concepts and terminology
	3.1.1 Firmware image
	3.1.2 Manifest
	3.1.3 Component
	3.1.4 Component identifier
	3.1.5 Firmware creator
	3.1.6 Update server
	3.1.7 Update client
	3.1.8 Update service
	3.1.9 Firmware store
	3.1.10 Bootloader
	3.1.11 Trust anchor

	3.2 Firmware image format
	3.3 Deployment scenarios
	3.3.1 Untrusted client
	3.3.2 Untrusted staging
	3.3.3 Trusted client


	4 Programming model
	4.1 The firmware store
	4.2 State model
	4.2.1 Component state
	4.2.2 Volatile states
	4.2.3 State transitions
	4.2.4 Behavior on error
	4.2.5 Rationale

	4.3 Verifying an update
	4.3.1 Manifest verification
	4.3.2 Firmware image verification

	4.4 Dependencies
	4.5 Update client operation
	4.5.1 Querying installed firmware
	4.5.2 Preparing a new firmware image
	Multi-component updates

	4.5.3 Installing the candidate firmware image
	4.5.4 Testing the new firmware image
	4.5.5 Cleaning up the firmware store

	4.6 Bootloader operation
	4.6.1 Determine firmware state
	4.6.2 Install components
	4.6.3 Rollback trial components
	4.6.4 Authenticate and execute active firmware

	4.7 Sample sequence during firmware update

	5 API reference
	5.1 API conventions
	5.1.1 Identifier names
	5.1.2 Basic types
	5.1.3 Data types
	5.1.4 Constants
	5.1.5 Functions
	5.1.6 Return status
	5.1.7 Pointer conventions
	5.1.8 Implementation-specific types

	5.2 Header file
	5.2.1 Required functions

	5.3 Library management
	5.3.1 Library version
	PSA_FWU_API_VERSION_MAJOR (macro)
	PSA_FWU_API_VERSION_MINOR (macro)


	5.4 Status codes
	5.4.1 Common status codes
	5.4.2 Error codes specific to the Firmware Update API
	PSA_ERROR_DEPENDENCY_NEEDED (macro)
	PSA_ERROR_FLASH_ABUSE (macro)
	PSA_ERROR_INSUFFICIENT_POWER (macro)

	5.4.3 Success status codes specific to the Firmware Update API
	PSA_SUCCESS_REBOOT (macro)
	PSA_SUCCESS_RESTART (macro)


	5.5 Firmware components
	5.5.1 Component identifier
	psa_fwu_component_t (typedef)

	5.5.2 Component version
	psa_fwu_image_version_t (struct)

	5.5.3 Component states
	PSA_FWU_READY (macro)
	PSA_FWU_WRITING (macro)
	PSA_FWU_CANDIDATE (macro)
	PSA_FWU_STAGED (macro)
	PSA_FWU_FAILED (macro)
	PSA_FWU_TRIAL (macro)
	PSA_FWU_REJECTED (macro)
	PSA_FWU_UPDATED (macro)

	5.5.4 Component flags
	PSA_FWU_FLAG_VOLATILE_STAGING (macro)
	PSA_FWU_FLAG_ENCRYPTION (macro)

	5.5.5 Component information
	psa_fwu_impl_info_t (typedef)
	psa_fwu_component_info_t (struct)
	psa_fwu_query (function)


	5.6 Firmware installation
	5.6.1 Candidate image preparation
	psa_fwu_start (function)
	PSA_FWU_LOG2_WRITE_ALIGN (macro)
	PSA_FWU_MAX_WRITE_SIZE (macro)
	psa_fwu_write (function)
	psa_fwu_finish (function)
	psa_fwu_cancel (function)
	psa_fwu_clean (function)

	5.6.2 Image installation
	psa_fwu_install (function)
	psa_fwu_request_reboot (function)
	psa_fwu_reject (function)

	5.6.3 Image trial
	psa_fwu_accept (function)



	A Example header file
	A.1 psa/update.h

	B Example usage
	B.1 Retrieve versions of installed images
	B.2 Individual component update (single part operation)
	B.3 Individual component update (multi part operation)
	B.4 Multiple components with dependent images
	B.5 Clean up all component updates

	C Variation in system design parameters
	C.1 Component with non-volatile staging
	C.1.1 Component that requires a reboot, but no trial
	C.1.2 Component that requires a trial, but no reboot
	C.1.3 Component that requires neither a reboot, nor a trial

	C.2 Component with volatile staging

	D Security Risk Assessment
	D.1 About this assessment
	D.1.1 Subject and scope
	D.1.2 Risk assessment methodology

	D.2 Feature definition
	D.2.1 Introduction
	Background
	Purpose
	Function

	D.2.2 Lifecycle
	D.2.3 Operation and trust boundaries
	D.2.4 Deployment models
	DM.UNTRUSTED_CLIENT deployment model
	DM.UNTRUSTED_STAGING deployment model

	D.2.5 Assumptions and constraints
	D.2.6 Stakeholders and assets
	D.2.7 Security goals
	D.2.8 Adversarial model

	D.3 Feature characterization
	D.3.1 Detailed deployment dataflow
	D.3.2 Security features of the API

	D.4 Threats
	D.4.1 T.TAMPER: Tampering with the firmware image or manifest
	D.4.2 T.NON_FUNCTIONAL: Install defective firmware
	D.4.3 T.ROLLBACK: Install old firmware
	D.4.4 T.SKIP_INTERMEDIATE: Skip intermediate update
	D.4.5 T.DEGRADE_DEVICE: Repeatedly install invalid firmware
	D.4.6 T.INTERFACE_ABUSE: Illegal inputs to the API
	D.4.7 T.TOCTOU: Modify asset between authentication and use
	D.4.8 T.PARTIAL_UPDATE: Trigger installation of incomplete update
	D.4.9 T.INCOMPATIBLE: Mismatched firmware
	D.4.10 T.DISCLOSURE: Disclosure of protected firmware
	D.4.11 T.DISRUPT_INSTALL: Corrupt image by disrupting installer
	D.4.12 T.DISRUPT_DOWNLOAD: Corrupt image by disrupting writes
	D.4.13 T.FAULT_INJECTION: Verification bypass via glitching
	D.4.14 T.SERVER: Attack from exploited update server
	D.4.15 T.CREATOR: Attack from spoof firmware creator
	D.4.16 T.NETWORK: Manipulate network traffic

	D.5 Mitigation summary
	D.5.1 Architectural mitigations
	D.5.2 Implementation-level mitigations
	D.5.3 User-level mitigations


	E Document change history
	E.1 Changes between version 1.0 Beta and 1.0.0
	E.2 Changes between version 0.7 and 1.0 Beta
	E.3 Changes between version 0.6 and 0.7

	Index of API elements

