
PSA Certified
Status code API 1.0

Document number: IHI 0097
Release Quality: Final
Issue Number: 1
Confidentiality: Non-confidential
Date of Issue: 17/10/2022

Copyright © 2017-2022 Arm Limited and/or its affiliates



Contents

About this document ii
Release information ii
License iii
References iv
Terms and abbreviations iv
Conventions vTypographical conventions vNumbers v
Feedback v

1 Introduction 6
1.1 About Platform Security Architecture 6
1.2 About the Status code API 6
2 Status codes 7
2.1 Overview 7
2.2 API Reference 92.2.1 Status type 92.2.2 Success code 92.2.3 Error codes 102.2.4 Unfinished operation code 16
A Reference header file 17
B Change history 19
B.1 Changes between version 1.0.0 and version 1.0.1 19
B.2 Changes prior to version 1.0.0 19

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page i



About this document
Release information
Prior to version 1.0.1, the definitions in this specification were released as part of Arm® Platform SecurityArchitecture Firmware Framework [PSA-FFM].
The change history table lists the changes that have been made to this document.

Table 1 Document revision history
Date Version Confidentiality Change

October 2022 1.0.1 Non-confidential Definition of status codes moved to aseparate specification.
Incorporated some error codes from otherPSA Certified APIs.
Relicensed as open source under CC BY-SA4.0.

For a detailed list of changes, see Change history on page 19.

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page ii



PSA Certified Status code API
Copyright © 2017-2022 Arm Limited and/or its affiliates. The copyright statement reflects the fact thatsome draft issues of this document have been released, to a limited circulation.

License
Text and illustrations
Text and illustrations in this work are licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy ofthe license, visit creativecommons.org/licenses/by-sa/4.0.
Grant of patent license. Subject to the terms and conditions of this license (both the CC BY-SA 4.0 Public License and this PatentLicense), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except asstated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the LicensedMaterial, where such license applies only to those patent claims licensable by such Licensor that are necessarily infringed by theircontribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such contribution(s) wassubmitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that theLicensed Material or a contribution incorporated within the Licensed Material constitutes direct or contributory patentinfringement, then any licenses granted to You under this license for that Licensed Material shall terminate as of the date suchlitigation is filed.
The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/orelsewhere. All rights reserved. Please visit arm.com/company/policies/trademarks for more information about Arm’s trademarks.
About the license
The language in the additional patent license is largely identical to that in section 3 of the Apache License, Version 2.0 (Apache2.0), with two exceptions:

1. Changes are made related to the defined terms, to align those defined terms with the terminology in CC BY-SA 4.0 ratherthan Apache 2.0 (for example, changing “Work” to “Licensed Material”).
2. The scope of the defensive termination clause is changed from “any patent licenses granted to You” to “any licensesgranted to You”. This change is intended to help maintain a healthy ecosystem by providing additional protection to thecommunity against patent litigation claims.

To view the full text of the Apache 2.0 license, visit apache.org/licenses/LICENSE-2.0.
Source code
Source code samples in this work are licensed under the Apache License, Version 2.0 (the “License”); you may not use suchsamples except in compliance with the License. You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS”BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page iii

https://creativecommons.org/licenses/by-sa/4.0
https://arm.com/company/policies/trademarks
https://apache.org/licenses/license-2.0
https://apache.org/licenses/license-2.0


References
This document refers to the following documents.

Table 2 Documents referenced by this document
Ref Document

Number
Title

[PSA-FFM] DEN 0063 Arm® Platform Security Architecture Firmware Framework.pages.arm.com/psa-apis.html
[TF-M] trustedfirmware.org, Trusted Firmware-M.git.trustedfirmware.org/trusted-firmware-m.git/about/

Terms and abbreviations
This document uses the following terms and abbreviations.

Table 3 Terms and abbreviations
Term Meaning

IMPLEMENTATION DEFINED Behavior that is not defined by the this specification, but is defined anddocumented by individual implementations.
Software developers can choose to depend on IMPLEMENTATION DEFINEDbehavior, but must be aware that their code might not be portable to anotherimplementation.

PROGRAMMER ERROR An error that is caused by the misuse of a programming interface.
A PROGRAMMER ERROR is in the caller of the interface, but it is detected by theimplementer of the interface.

Root of Trust (RoT) This is the minimal set of software, hardware and data that is implicitlytrusted in the platform — there is no software or hardware at a deeper levelthat can verify that the Root of Trust is authentic and unmodified.
Root of Trust Service(RoT Service) A set of related security operations that are implemented in a Root of Trust.
RoT See Root of Trust.
RoT Service See Root of Trust Service.
Secure PartitionManager (SPM) Part of Arm® Platform Security Architecture Firmware Framework [PSA-FFM]that is responsible for isolating software in Partitions, managing theexecution of software within Partitions, and providing communicationbetween Partitions.
SPM See Secure Partition Manager.

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page iv

https://pages.arm.com/psa-apis.html
https://git.trustedfirmware.org/trusted-firmware-m.git/about/


Conventions
Typographical conventions

The typographical conventions are:
italic Introduces special terminology, and denotes citations.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other itemsappearing in assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALSUsed for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Termsand abbreviations.
Red text Indicates an open issue.
Blue text Indicates a link. This can be

∙ A cross-reference to another location within the document
∙ A URL, for example example.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbersby 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.To improve readability, long numbers can be written with an underscore separator between every fourcharacters, for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of anumber.

Feedback
We welcome feedback on the PSA Certified API documentation.
If you have comments on the content of this book, visit github.com/arm-software/psa-api/issues to createa new issue at the PSA Certified API GitHub project. Give:

∙ The title (Status code API).
∙ The number and issue (IHI 0097 1.0.1).
∙ The location in the document to which your comments apply.
∙ A concise explanation of your comments.

We also welcome general suggestions for additions and improvements.

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page v

https://example.com
https://github.com/arm-software/psa-api/issues


1 Introduction
1.1 About Platform Security Architecture
This document is one of a set of resources provided by Arm that can help organizations develop productsthat meet the security requirements of PSA Certified on Arm-based platforms. The PSA Certified schemeprovides a framework and methodology that helps silicon manufacturers, system software providers andOEMs to develop more secure products. Arm resources that support PSA Certified range from threatmodels, standard architectures that simplify development and increase portability, and open-sourcepartnerships that provide ready-to-use software. You can read more about PSA Certified here atwww.psacertified.org and find more Arm resources here atdeveloper.arm.com/platform-security-resources.

1.2 About the Status code API
The interface described in this document is a PSA Certified API, that provides a shared set of interfacedefinitions used by other PSA Certified APIs.
You can find additional resources relating to the Status code API here atarm-software.github.io/psa-api/status-code, and find other PSA Certified APIs here atarm-software.github.io/psa-api.

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page 6

https://www.psacertified.org
https://developer.arm.com/platform-security-resources
https://arm-software.github.io/psa-api/status-code
https://arm-software.github.io/psa-api


2 Status codes
2.1 Overview
The PSA Certified APIs are often implemented together in a larger framework. For example, the TrustedFirmware-M [TF-M] project implements all of the PSA functional APIs as Root of Trust Services within theSecure Processing Environment that it provides. Using a common definition for status and error codesenables easier integration and inter-operation of these APIs.
The PSA Certified APIs use the convention that status codes that are negative indicate an error, and zeroor positive values indicate success. These are identified in the API by the psa_status_t type.
Status codes -129 to -248 are for use by PSA Certified API specifications. These codes are defined in thecurrent PSA specifications, or are reserved for future PSA specifications. Status codes in this range areused in the following ways:

∙ A set of standard error codes that cover failure conditions that are common to more than one PSACertified API.
∙ Error codes that are specific to an individual PSA Certified API.

Status codes in this range must only be used as defined in a PSA specification.
In the context of an implementation of Arm® Platform Security Architecture Firmware Framework[PSA-FFM]:

∙ The Secure Partition Manager (SPM) implementation can define error codes in the range -249 to -256for IMPLEMENTATION DEFINED purposes.
∙ A Root of Trust Service (RoT Service) can define additional error codes in the ranges -1 to -128 and -257to MIN_INT32 for RoT Service-specific error conditions.

Table 4 defines the common error codes and reserved ranges for the PSA Certified APIs. See the errorcode macros and function definitions in API Reference on page 9 for details on their usage.
Table 4 Standard error codes

Status code name Value Condition

Success >= 1 API-specific status code.
PSA_SUCCESS 0 General success status code.
API-specific error -1 to -128 API-specific error code.
PSA_ERROR_PROGRAMMER_ERROR -129 Connection dropped due to PROGRAMMER ERROR.
PSA_ERROR_CONNECTION_REFUSED -130 Connection to the service is not permitted.
PSA_ERROR_CONNECTION_BUSY -131 Connection to the service is not possible.
PSA_ERROR_GENERIC_ERROR -132 An error not related to a specific failure cause.

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page 7



Table 4 (continued)
Status code name Value Condition

PSA_ERROR_NOT_PERMITTED -133 The operation is denied by a policy.
PSA_ERROR_NOT_SUPPORTED -134 The operation or a parameter is not supported.
PSA_ERROR_INVALID_ARGUMENT -135 One or more parameters are invalid.
PSA_ERROR_INVALID_HANDLE -136 A handle parameter is not valid.
PSA_ERROR_BAD_STATE -137 The operation is not valid in the current state.
PSA_ERROR_BUFFER_TOO_SMALL -138 An output buffer parameter is too small.
PSA_ERROR_ALREADY_EXISTS -139 An identifier or index is already in use.
PSA_ERROR_DOES_NOT_EXIST -140 An identified resource does not exist.
PSA_ERROR_INSUFFICIENT_MEMORY -141 There is not enough runtime memory.
PSA_ERROR_INSUFFICIENT_STORAGE -142 There is not enough persistent storage.
PSA_ERROR_INSUFFICIENT_DATA -143 A data source has insufficient capacity left.
PSA_ERROR_SERVICE_FAILURE -144 Failure within the service.
PSA_ERROR_COMMUNICATION_FAILURE -145 Communication failure with another component.
PSA_ERROR_STORAGE_FAILURE -146 Storage failure that may have led to data loss.
PSA_ERROR_HARDWARE_FAILURE -147 General hardware failure.
Reserved -148 Reserved for PSA Certified APIs.
PSA_ERROR_INVALID_SIGNATURE -149 A signature, MAC or hash is incorrect.
Reserved -150 Reserved for PSA Certified APIs.
PSA_ERROR_CORRUPTION_DETECTED -151 Internal data has been tampered with.
PSA_ERROR_DATA_CORRUPT -152 Stored data has been corrupted.
PSA_ERROR_DATA_INVALID -153 Data read from storage is not valid.
Reserved -154 to -247 Reserved for PSA Certified APIs.
PSA_OPERATION_INCOMPLETE -248 The requested operation is not finished.
SPM Implementation error -249 to -256 Reserved for the SPM implementation.
API-specific error <= -257 API-specific error code.

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page 8



2.2 API Reference
These are common status and error codes for all PSA Certified APIs, and for SPM and RoT Service APIs.See Overview on page 7 for a summary of the status codes.
The API elements described in the following sections §2.2.1 to §2.2.4, must be defined in a header file
psa/error.h. See Reference header file on page 17 for a reference version of this header file.
It is permitted for these API elements to also be defined in header files that are part of an implementationof another PSA Certified API, for example, in psa/crypto.h.
2.2.1 Status type

psa_status_t (typedef)

A status code type used for all PSA Certified APIs.
/* Prevent multiple definitions of psa_status_t, if PSA_SUCCESS is already

defined in an external header
*/
#ifndef PSA_SUCCESS
typedef int32_t psa_status_t;
#endif

A zero or positive value indicates success, the interpretation of the value depends on the specificoperation.
A negative integer value indicates an error.

Implementation note
This definition is permitted to be present in multiple header files that are included in a singlecompilation.
To prevent a compilation error from duplicate definitions of psa_status_t, the definition of
psa_status_t must be guarded, by testing for an exiting definition of PSA_SUCCESS, in any header filethat defines psa_status_t.
The definition of psa_status_t above shows the recommended form of the guard.

2.2.2 Success code

PSA_SUCCESS (macro)

A status code to indicate general success.
#define PSA_SUCCESS ((psa_status_t) 0)

This is a general return value to indicate success of the operation.

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page 9



2.2.3 Error codes

PSA_ERROR_PROGRAMMER_ERROR (macro)

A status code that indicates a PROGRAMMER ERROR in the client.
#define PSA_ERROR_PROGRAMMER_ERROR ((psa_status_t) -129)

This error indicates that the function has detected an abnormal call, which typically indicates aprogramming error in the caller, or an abuse of the API.
This error has a specific meaning in an implementation of Arm® Platform Security Architecture FirmwareFramework [PSA-FFM].
PSA_ERROR_CONNECTION_REFUSED (macro)

A status code that indicates that the caller is not permitted to connect to a Service.
#define PSA_ERROR_CONNECTION_REFUSED ((psa_status_t) -130)

This message has a specific meaning in an implementation of Arm® Platform Security Architecture FirmwareFramework [PSA-FFM].
PSA_ERROR_CONNECTION_BUSY (macro)

A status code that indicates that the caller cannot connect to a service.
#define PSA_ERROR_CONNECTION_BUSY ((psa_status_t) -131)

This message has a specific meaning in an implementation of Arm® Platform Security Architecture FirmwareFramework [PSA-FFM].
PSA_ERROR_GENERIC_ERROR (macro)

A status code that indicates an error that does not correspond to any defined failure cause.
#define PSA_ERROR_GENERIC_ERROR ((psa_status_t) -132)

Functions can return this error code if none of the other standard error codes are applicable.
Note:
For new APIs, it is recommended that additional error codes are defined by the API for importanterror conditions which do not correspond to an existing status code.

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page 10



PSA_ERROR_NOT_PERMITTED (macro)

A status code that indicates that the requested action is denied by a policy.
#define PSA_ERROR_NOT_PERMITTED ((psa_status_t) -133)

It is recommended that a function returns this error code when the parameters are recognized as valid andsupported, and a policy explicitly denies the requested operation.
If a subset of the parameters of a function call identify a forbidden operation, and another subset of theparameters are not valid or not supported, it is unspecified whether the function returns with
PSA_ERROR_NOT_PERMITTED, PSA_ERROR_NOT_SUPPORTED, or PSA_ERROR_INVALID_ARGUMENT.
PSA_ERROR_NOT_SUPPORTED (macro)

A status code that indicates that the requested operation or a parameter is not supported.
#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t) -134)

This error code is recommended for indicating that optional functionality in an API specification is notprovided by the implementation.
If a combination of parameters is recognized and identified as not valid, prefer to return
PSA_ERROR_INVALID_ARGUMENT instead.
PSA_ERROR_INVALID_ARGUMENT (macro)

A status code that indicates that the parameters passed to the function are invalid.
#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t) -135)

Functions can return this error any time a parameter or combination of parameters are recognized asinvalid.
It is recommended that a function returns a more specific error code where applicable, for example
PSA_ERROR_INVALID_HANDLE, PSA_ERROR_DOES_NOT_EXIST, or PSA_ERROR_ALREADY_EXISTS.
PSA_ERROR_INVALID_HANDLE (macro)

A status code that indicates that a handle parameter is not valid.
#define PSA_ERROR_INVALID_HANDLE ((psa_status_t) -136)

A function can return this error any time a handle parameter is invalid.

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page 11



PSA_ERROR_BAD_STATE (macro)

A status code that indicates that the requested action cannot be performed in the current state.
#define PSA_ERROR_BAD_STATE ((psa_status_t) -137)

It is recommended that a function returns this error when an operation is requested out of sequence.
PSA_ERROR_BUFFER_TOO_SMALL (macro)

A status code that indicates that an output buffer parameter is too small.
#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t) -138)

A function can return this error if an output parameter is too small for the requested output data.
It is recommended that a function only returns this error code in cases where performing the operationwith a larger output buffer would succeed. However, a function can also return this error if a function hasinvalid or unsupported parameters in addition to an insufficient output buffer size.
PSA_ERROR_ALREADY_EXISTS (macro)

A status code that indicates that an identifier or index is already in use.
#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t) -139)

A function can return this error if the call is attempting to reuse an identifier or a resource index that isalready allocated or in use.
It is recommended that this error code is not used for a handle or index that is invalid. For these situations,return PSA_ERROR_PROGRAMMER_ERROR, PSA_ERROR_INVALID_HANDLE, or PSA_ERROR_INVALID_ARGUMENT.
PSA_ERROR_DOES_NOT_EXIST (macro)

A status code that indicates that an identified resource does not exist.
#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t) -140)

A function can return this error if a request identifies a resource that has not been created or is not present.
It is recommended that this error code is not used for a handle or index that is invalid. For these situations,return PSA_ERROR_PROGRAMMER_ERROR, PSA_ERROR_INVALID_HANDLE, or PSA_ERROR_INVALID_ARGUMENT.
PSA_ERROR_INSUFFICIENT_MEMORY (macro)

A status code that indicates that there is not enough runtime memory.
#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t) -141)

A function can return this error if runtime memory required for the requested operation cannot beallocated.
If the operation involves multiple components, this error can refer to available memory in any of thecomponents.
IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page 12



PSA_ERROR_INSUFFICIENT_STORAGE (macro)

A status code that indicates that there is not enough persistent storage.
#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t) -142)

A function can return this error if the operation involves storing data in non-volatile memory, and whenthere is insufficient space on the host media.
Operations that do not directly store persistent data can also return this error code if the implementationrequires a mandatory log entry for the requested action and the log storage space is full.
PSA_ERROR_INSUFFICIENT_DATA (macro)

A status code that indicates that a data source has insufficient capacity left.
#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t) -143)

A function can return this error if the operation attempts to extract data from a source which has beenexhausted.
PSA_ERROR_SERVICE_FAILURE (macro)

A status code that indicates an error within the service.
#define PSA_ERROR_SERVICE_FAILURE ((psa_status_t) -144)

A function can return this error if it unable to operate correctly. For example, if an essential initializationoperation failed.
For failures that are related to hardware peripheral errors, it is recommended that the function returns
PSA_ERROR_COMMUNICATION_FAILURE or PSA_ERROR_HARDWARE_FAILURE.
PSA_ERROR_COMMUNICATION_FAILURE (macro)

A status code that indicates a communication failure between the function and another service orcomponent.
#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t) -145)

A function can return this error if there is a fault in the communication between the implementation andanother service or peripheral used to provide the requested service. A communication failure may betransient or permanent depending on the cause.
Warning: If a function returns this error, it is undetermined whether the requested action hascompleted.
Returning PSA_SUCCESS is recommended on successful completion whenever possible. However, afunction can return PSA_ERROR_COMMUNICATION_FAILURE if the requested action was completedsuccessfully in an external component, but there was a breakdown of communication before this wasreported to the application.

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page 13



PSA_ERROR_STORAGE_FAILURE (macro)

A status code that indicates a storage failure that may have led to data loss.
#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t) -146)

A function can return this error to indicate that some persistent storage could not be read or written. Itdoes not indicate the following situations, which have specific error codes:
∙ A corruption of volatile memory — use PSA_ERROR_CORRUPTION_DETECTED.
∙ A communication error between the processor and the storage hardware — use

PSA_ERROR_COMMUNICATION_FAILURE.
∙ When the storage is in a valid state but is full — use PSA_ERROR_INSUFFICIENT_STORAGE.
∙ When the storage or stored data is corrupted — use PSA_ERROR_DATA_CORRUPT.
∙ When the stored data is not valid — use PSA_ERROR_DATA_INVALID.

A storage failure does not indicate that any data that was previously read is invalid. However, thispreviously read data may no longer be readable from storage.
It is recommended to only use this error code to report a permanent storage corruption. However,transient errors while reading the storage can also be reported using this error code.
PSA_ERROR_HARDWARE_FAILURE (macro)

A status code that indicates that a hardware failure was detected.
#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t) -147)

A function can return this error to report a general hardware fault. A hardware failure may be transient orpermanent depending on the cause.
PSA_ERROR_INVALID_SIGNATURE (macro)

A status code that indicates that a signature, MAC or hash is incorrect.
#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t) -149)

A function can return this error to report when a verification calculation completes successfully, and thevalue to be verified is incorrect.
PSA_ERROR_CORRUPTION_DETECTED (macro)

A status code that indicates that internal data has been tampered with.
#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)

A function can return this error if it detects an invalid state that cannot happen during normal operationand that indicates that the implementation’s security guarantees no longer hold. Depending on theimplementation architecture and on its security and safety goals, the implementation might forciblyterminate the application.
IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page 14



This error should not be used to indicate a hardware failure that merely makes it impossible to perform therequested operation, instead use PSA_ERROR_COMMUNICATION_FAILURE, PSA_ERROR_STORAGE_FAILURE,
PSA_ERROR_HARDWARE_FAILURE, or other applicable error code.
This error should not be used to report modification of application state, or misuse of the API.
If an application receives this error code, there is no guarantee that previously accessed or computed datawas correct and remains confidential. In this situation, it is recommended that applications perform nofurther security functions and enter a safe failure state.
PSA_ERROR_DATA_CORRUPT (macro)

A status code that indicates that stored data has been corrupted.
#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)

A function can return this error to indicate that some persistent storage has suffered corruption. It doesnot indicate the following situations, which have specific error codes:
∙ A corruption of volatile memory — use PSA_ERROR_CORRUPTION_DETECTED.
∙ A communication error between the processor and its external storage — use

PSA_ERROR_COMMUNICATION_FAILURE.
∙ When the storage is in a valid state but is full — use PSA_ERROR_INSUFFICIENT_STORAGE.
∙ When the storage fails for other reasons — use PSA_ERROR_STORAGE_FAILURE.
∙ When the stored data is not valid — use PSA_ERROR_DATA_INVALID.

Note that a storage corruption does not indicate that any data that was previously read is invalid. Howeverthis previously read data might no longer be readable from storage.
It is recommended to only use this error code to report when a storage component indicates that thestored data is corrupt, or fails an integrity check.
PSA_ERROR_DATA_INVALID (macro)

A status code that indicates that data read from storage is not valid for the implementation.
#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)

This error indicates that some data read from storage does not have a valid format. It does not indicate thefollowing situations, which have specific error codes:
∙ When the storage or stored data is corrupted — use PSA_ERROR_DATA_CORRUPT.
∙ When the storage fails for other reasons — use PSA_ERROR_STORAGE_FAILURE.
∙ An invalid argument to the API — use PSA_ERROR_INVALID_ARGUMENT.

This error is typically a result of an integration failure, where the implementation reading the data is notcompatible with the implementation that stored the data.
It is recommended to only use this error code to report when data that is successfully read from storage isinvalid.
IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page 15



2.2.4 Unfinished operation code

PSA_OPERATION_INCOMPLETE (macro)

A status code that indicates that the requested operation is interruptible, and still has work to do.
#define PSA_OPERATION_INCOMPLETE ((psa_status_t)-248)

This status code does not mean that the operation has failed or that it has succeeded. The operation mustbe repeated until it completes with either success or failure.
Usage

This is an example of how this status code can be used:
psa_status_t r = start_operation();

if (r == PSA_SUCCESS) {
do {

r = complete_operation();
} while (r == PSA_OPERATION_INCOMPLETE);

}

if (r == PSA_SUCCESS) {
/* Handle success */

} else {
/* Handle errors */

}

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page 16



Appendix A: Reference header file
The following is an example of the standard header files for the Status code API.
An implementation of other PSA Certified APIs will provide an instance of the psa/error.h source file.
psa/error.h

// This file is a reference template for implementation of the PSA Certified Status code API

#ifndef PSA_ERROR_H
#define PSA_ERROR_H

#include <stddef.h>
#include <stdint.h>

#ifdef __cplusplus
extern "C" {
#endif

/* Prevent multiple definitions of psa_status_t, if PSA_SUCCESS is already
defined in an external header

*/
#ifndef PSA_SUCCESS
typedef int32_t psa_status_t;
#endif
#define PSA_SUCCESS ((psa_status_t) 0)
#define PSA_ERROR_PROGRAMMER_ERROR ((psa_status_t) -129)
#define PSA_ERROR_CONNECTION_REFUSED ((psa_status_t) -130)
#define PSA_ERROR_CONNECTION_BUSY ((psa_status_t) -131)
#define PSA_ERROR_GENERIC_ERROR ((psa_status_t) -132)
#define PSA_ERROR_NOT_PERMITTED ((psa_status_t) -133)
#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t) -134)
#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t) -135)
#define PSA_ERROR_INVALID_HANDLE ((psa_status_t) -136)
#define PSA_ERROR_BAD_STATE ((psa_status_t) -137)
#define PSA_ERROR_BUFFER_TOO_SMALL ((psa_status_t) -138)
#define PSA_ERROR_ALREADY_EXISTS ((psa_status_t) -139)
#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t) -140)
#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t) -141)
#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t) -142)
#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t) -143)
#define PSA_ERROR_SERVICE_FAILURE ((psa_status_t) -144)
#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t) -145)
#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t) -146)
#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t) -147)
#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t) -149)
#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)
#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)

(continues on next page)

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page 17



(continued from previous page)
#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)
#define PSA_OPERATION_INCOMPLETE ((psa_status_t)-248)

#ifdef __cplusplus
}
#endif

#endif // PSA_ERROR_H

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page 18



Appendix B: Change history
B.1 Changes between version 1.0.0 and version 1.0.1

∙ Moved the specification of the common error codes into a separate specification.
∙ Relicensed the document under Attribution-ShareAlike 4.0 International with a patent licensederived from Apache License 2.0. See License on page iii.
∙ Generalized the definitions of the error codes to better fit all PSA Certified APIs.
∙ Added definitions from other PSA Certified APIs:

— PSA_ERROR_CORRUPTION_DETECTED

— PSA_ERROR_DATA_CORRUPT

— PSA_ERROR_DATA_INVALID

∙ Added PSA_OPERATION_INCOMPLETE to indicate that the requested operation is unfinished. This can beused to break long-running operations into smaller pieces.

B.2 Changes prior to version 1.0.0
The definition of the common status codes was incorporated in the Arm® Platform Security ArchitectureFirmware Framework [PSA-FFM] specification up until version 1.0.0.

IHI 00971.0.1 Copyright© 2017-2022 Arm Limited and/or its affiliatesNon-confidential Page 19


	About this document
	Release information
	License
	References
	Terms and abbreviations
	Conventions
	Typographical conventions
	Numbers

	Feedback

	1 Introduction
	1.1 About Platform Security Architecture
	1.2 About the Status code API

	2 Status codes
	2.1 Overview
	2.2 API Reference
	2.2.1 Status type
	psa_status_t (typedef)

	2.2.2 Success code
	PSA_SUCCESS (macro)

	2.2.3 Error codes
	PSA_ERROR_PROGRAMMER_ERROR (macro)
	PSA_ERROR_CONNECTION_REFUSED (macro)
	PSA_ERROR_CONNECTION_BUSY (macro)
	PSA_ERROR_GENERIC_ERROR (macro)
	PSA_ERROR_NOT_PERMITTED (macro)
	PSA_ERROR_NOT_SUPPORTED (macro)
	PSA_ERROR_INVALID_ARGUMENT (macro)
	PSA_ERROR_INVALID_HANDLE (macro)
	PSA_ERROR_BAD_STATE (macro)
	PSA_ERROR_BUFFER_TOO_SMALL (macro)
	PSA_ERROR_ALREADY_EXISTS (macro)
	PSA_ERROR_DOES_NOT_EXIST (macro)
	PSA_ERROR_INSUFFICIENT_MEMORY (macro)
	PSA_ERROR_INSUFFICIENT_STORAGE (macro)
	PSA_ERROR_INSUFFICIENT_DATA (macro)
	PSA_ERROR_SERVICE_FAILURE (macro)
	PSA_ERROR_COMMUNICATION_FAILURE (macro)
	PSA_ERROR_STORAGE_FAILURE (macro)
	PSA_ERROR_HARDWARE_FAILURE (macro)
	PSA_ERROR_INVALID_SIGNATURE (macro)
	PSA_ERROR_CORRUPTION_DETECTED (macro)
	PSA_ERROR_DATA_CORRUPT (macro)
	PSA_ERROR_DATA_INVALID (macro)

	2.2.4 Unfinished operation code
	PSA_OPERATION_INCOMPLETE (macro)



	A Reference header file
	B Change history
	B.1 Changes between version 1.0.0 and version 1.0.1
	B.2 Changes prior to version 1.0.0


