
PSA Certified
Secure Storage API 1.0

Document number: IHI 0087
Release Quality: Final
Issue Number: 1
Confidentiality: Non-confidential
Date of Issue: 17/10/2022

Copyright © 2018-2019, 2022 Arm Limited and/or its affiliates



Contents

About this document iii
Release information iii
License iv
References v
Terms and abbreviations v
Potential for change vi
Conventions viTypographical conventions viNumbers vii
Feedback vii

1 Introduction 8
1.1 About Platform Security Architecture 8
1.2 About the Secure Storage API 8
2 Architecture 9
2.1 Use Cases and Rationale 9
2.2 Technical Background 9
2.3 The Protected Storage API 9
2.4 The Internal Trusted Storage API 10
2.5 UIDs 11
2.6 Atomicity of Operations 11
2.7 Components 12
3 Requirements 13
3.1 Protected Storage requirements 13
3.2 Internal Trusted Storage requirements 14
4 Theory of Operation 15
4.1 Internal Trusted Storage API 15
IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page i



4.2 Memory access errors 15
5 API Reference 16
5.1 Status codes 16
5.2 General Definitions 165.2.1 psa_storage_info_t (struct) 165.2.2 psa_storage_create_flags_t (typedef) 175.2.3 psa_storage_uid_t (typedef) 175.2.4 PSA_STORAGE_FLAG_NONE (macro) 175.2.5 PSA_STORAGE_FLAG_WRITE_ONCE (macro) 175.2.6 PSA_STORAGE_FLAG_NO_CONFIDENTIALITY (macro) 175.2.7 PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION (macro) 175.2.8 PSA_STORAGE_SUPPORT_SET_EXTENDED (macro) 18
5.3 Internal Trusted Storage API 185.3.1 PSA_ITS_API_VERSION_MAJOR (macro) 185.3.2 PSA_ITS_API_VERSION_MINOR (macro) 185.3.3 psa_its_set (function) 185.3.4 psa_its_get (function) 195.3.5 psa_its_get_info (function) 215.3.6 psa_its_remove (function) 21
5.4 Protected Storage API 225.4.1 PSA_PS_API_VERSION_MAJOR (macro) 225.4.2 PSA_PS_API_VERSION_MINOR (macro) 225.4.3 psa_ps_set (function) 235.4.4 psa_ps_get (function) 245.4.5 psa_ps_get_info (function) 255.4.6 psa_ps_remove (function) 265.4.7 psa_ps_create (function) 275.4.8 psa_ps_set_extended (function) 285.4.9 psa_ps_get_support (function) 29
A Example header files 30
A.1 psa/storage_common.h 30
A.2 psa/internal_trusted_storage.h 31
A.3 psa/protected_storage.h 31
B Document history 33

Index of API elements 34

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page ii



About this document
Release information
The change history table lists the changes that have been made to this document.

Table 1 Document revision history
Date Version Confidentiality Change

Feb 2019 1.0 beta 2 Non-confidential Initial publication.
June 2019 1.0.0 Non-confidential First stable release with 1.0 API finalized.

Uses the common PSA Certified Statuscodes.
Modified the API parameters to align withother PSA Certified APIs.
Added storage flags to specify protectionrequirement.

October 2022 1.0.1 Non-confidential Relicensed as open source under CC BY-SA4.0.
Documentation clarifications.

The detailed changes in each release are described in Document history on page 33.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page iii



PSA Certified Secure Storage API
Copyright © 2018-2019, 2022 Arm Limited and/or its affiliates. The copyright statement reflects the factthat some draft issues of this document have been released, to a limited circulation.

License
Text and illustrations
Text and illustrations in this work are licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy ofthe license, visit creativecommons.org/licenses/by-sa/4.0.
Grant of patent license. Subject to the terms and conditions of this license (both the CC BY-SA 4.0 Public License and this PatentLicense), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except asstated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the LicensedMaterial, where such license applies only to those patent claims licensable by such Licensor that are necessarily infringed by theircontribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such contribution(s) wassubmitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that theLicensed Material or a contribution incorporated within the Licensed Material constitutes direct or contributory patentinfringement, then any licenses granted to You under this license for that Licensed Material shall terminate as of the date suchlitigation is filed.
The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/orelsewhere. All rights reserved. Please visit arm.com/company/policies/trademarks for more information about Arm’s trademarks.
About the license
The language in the additional patent license is largely identical to that in section 3 of the Apache License, Version 2.0 (Apache2.0), with two exceptions:

1. Changes are made related to the defined terms, to align those defined terms with the terminology in CC BY-SA 4.0 ratherthan Apache 2.0 (for example, changing “Work” to “Licensed Material”).
2. The scope of the defensive termination clause is changed from “any patent licenses granted to You” to “any licensesgranted to You”. This change is intended to help maintain a healthy ecosystem by providing additional protection to thecommunity against patent litigation claims.

To view the full text of the Apache 2.0 license, visit apache.org/licenses/LICENSE-2.0.
Source code
Source code samples in this work are licensed under the Apache License, Version 2.0 (the “License”); you may not use suchsamples except in compliance with the License. You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS”BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page iv

https://creativecommons.org/licenses/by-sa/4.0
https://arm.com/company/policies/trademarks
https://apache.org/licenses/license-2.0
https://apache.org/licenses/license-2.0


References
This document refers to the following documents.

Table 2 Documents referenced by this document
Ref Document

Number
Title

[PSM] ARM DEN 0128 Platform Security Model.developer.arm.com/documentation/den0128
[PSA-CRYPT] IHI 0086 PSA Certified Crypto API. arm-software.github.io/psa-api/crypto
[PSA-STAT] ARM IHI 0097 PSA Certified Status code API.arm-software.github.io/psa-api/status-code
[PSA-FF-M] ARM DEN 0063 Arm® Platform Security Architecture Firmware Framework.pages.arm.com/psa-apis

Terms and abbreviations
This document uses the following terms and abbreviations.

Table 3 Terms and abbreviations
Term Meaning

Application Root ofTrust (ARoT) This is the security domain in which additional security services areimplemented. See Platform Security Model [PSM].
ARoT See Application Root of Trust.
IMPLEMENTATION DEFINED Behavior that is not defined by the this specification, but is defined anddocumented by individual implementations.

Firmware developers can choose to depend on IMPLEMENTATION DEFINEDbehavior, but must be aware that their code might not be portable to anotherimplementation.
Non-secure ProcessingEnvironment (NSPE) This is the security domain outside of the Secure Processing Environment. It isthe Application domain, typically containing the application firmware andhardware.
NSPE See Non-secure Processing Environment.
Platform Root of Trust(PRoT) The overall trust anchor for the system. This ensures the platform is securelybooted and configured, and establishes the secure environments required toprotect security services. See Platform Security Model [PSM].
PRoT See Platform Root of Trust.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page v

https://developer.arm.com/documentation/den0128
https://arm-software.github.io/psa-api/crypto
https://arm-software.github.io/psa-api/status-code
https://pages.arm.com/psa-apis


Table 3 (continued)
Term Meaning

Root of Trust (RoT) This is the minimal set of software, hardware and data that is implicitlytrusted in the platform — there is no software or hardware at a deeper levelthat can verify that the Root of Trust is authentic and unmodified.
Root of Trust Service(RoT Service) A set of related security operations that are provided by a Root of Trust.
RoT See Root of Trust.
RoT Service See Root of Trust Service.
Secure Partition A processing context with protected runtime state within the SecureProcessing Environment. A secure partition may implement one or more RoTServices, accessible via well-defined interfaces.
Secure PartitionManager (SPM) Part of the Secure Processing Environment that is responsible for allocatingresources to Secure Partitions, managing the isolation and execution ofsoftware within partitions, and providing IPC between partitions.
Secure ProcessingEnvironment (SPE) This is the security domain that includes the Platform Root of Trust and theApplication Root of Trust domains.
SPE See Secure Processing Environment.
SPM See Secure Partition Manager.

Potential for change
The contents of this specification are stable for version 1.0.
The following may change in updates to the version 1.0 specification:

∙ Small optional feature additions.
∙ Clarifications.

Significant additions, or any changes that affect the compatibility of the interfaces defined in thisspecification will only be included in a new major or minor version of the specification.

Conventions
Typographical conventions

The typographical conventions are:
italic Introduces special terminology, and denotes citations.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other itemsappearing in assembler syntax descriptions, pseudocode, and source code examples.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page vi



SMALL CAPITALSUsed for some common terms such as IMPLEMENTATION DEFINED.
Used for a few terms that have specific technical meanings, and are included in the Termsand abbreviations.

Red text Indicates an open issue.
Blue text Indicates a link. This can be

∙ A cross-reference to another location within the document
∙ A URL, for example example.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbersby 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.To improve readability, long numbers can be written with an underscore separator between every fourcharacters, for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of anumber.

Feedback
We welcome feedback on the PSA Certified API documentation.
If you have comments on the content of this book, visit github.com/arm-software/psa-api/issues to createa new issue at the PSA Certified API GitHub project. Give:

∙ The title (Secure Storage API).
∙ The number and issue (IHI 0087 1.0.1).
∙ The location in the document to which your comments apply.
∙ A concise explanation of your comments.

We also welcome general suggestions for additions and improvements.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page vii

https://example.com
https://github.com/arm-software/psa-api/issues


1 Introduction
1.1 About Platform Security Architecture
This document is one of a set of resources provided by Arm that can help organizations develop productsthat meet the security requirements of PSA Certified on Arm-based platforms. The PSA Certified schemeprovides a framework and methodology that helps silicon manufacturers, system software providers andOEMs to develop more secure products. Arm resources that support PSA Certified range from threatmodels, standard architectures that simplify development and increase portability, and open-sourcepartnerships that provide ready-to-use software. You can read more about PSA Certified here atwww.psacertified.org and find more Arm resources here atdeveloper.arm.com/platform-security-resources.

1.2 About the Secure Storage API
The interface described in this document is a PSA Certified API, that provides key/value storage interfacesfor use with device-protected storage. The Secure Storage API describes two interfaces for storage:
Internal Trusted Storage API An interface for storage provided by the Platform Root of Trust (PRoT).
Protected Storage API An interface for external protected storage.

The Internal Trusted Storage API must be implemented in the PRoT as described in the Platform SecurityModel [PSM] specification.
If there are no Application Root of Trust (ARoT) services that rely on it, the Protected Storage API can beimplemented in the NSPE. Otherwise, the Protected Storage API must be implemented in an ARoT withinthe SPE.
You can find additional resources relating to the Secure Storage API here atarm-software.github.io/psa-api/storage, and find other PSA Certified APIs here atarm-software.github.io/psa-api.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 8

https://www.psacertified.org
https://developer.arm.com/platform-security-resources
https://arm-software.github.io/psa-api/storage
https://arm-software.github.io/psa-api


2 Architecture
2.1 Use Cases and Rationale
Two use cases are addressed by Secure Storage API:

∙ Secure storage for device intimate data (Internal Trusted Storage).
∙ Protection for data-at-rest (Protected Storage).

Internal Trusted Storage aims at providing a place for devices to store their most intimate secrets, either toensure data privacy or data integrity. For example, a device identity key requires confidentiality, whereasan authority public key is public data but requires integrity. Other critical values that are part of a Root ofTrust Service — for example, secure time values, monotonic counter values, or firmware image hashes —will also need trusted storage.
Protected Storage is meant to protect larger data-sets against physical attacks. It aims to provide theability for a firmware developer to store data onto external flash, with a promise of data-at-rest protection,including device-bound encryption, integrity, and replay protection. It should be possible to select theappropriate protection level — for example, encryption only, or integrity only, or both — depending on thethreat model of the device and the nature of its deployment.

2.2 Technical Background
Modern embedded platforms have multiple types of storage, each with different security properties.
Most embedded microprocessors (MCU) have on-chip flash storage that can be made inaccessible exceptto software running on the MCU. If the storage is made inaccessible to software other than that of thePlatform Root of Trust (PRoT), then it can be used to store key material, replay protection values, or otherdata critical to the secure operation of the device.
In addition, many platforms also have external storage that requires confidentiality, integrity, and replayprotection from attackers with physical access to the device.
By providing consistent APIs for accessing storage, software in both the NSPE and SPE can be written in aplatform-independent manner. This improves portability between platforms that implement the PSACertified APIs.

2.3 The Protected Storage API
The Protected Storage API is the general-purpose API that most developers should use. It is intended tobe used to protect storage media that are external to the MCU package.
If the Protected Storage API is implemented using external storage without hardware protection, the datamust be stored using authenticated encryption, as well as replay-protection values stored using theInternal Trusted Storage API. If the external storage has hardware protection — for example, remotelocations or tamper proof enclosures — the need for cryptographic protection will be different.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 9



Secure Storage API provides flags, PSA_STORAGE_FLAG_NO_CONFIDENTIALITY and
PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION, enabling the caller to request a lower level of protection.

∙ PSA_STORAGE_FLAG_NO_CONFIDENTIALITY requests integrity but not confidentiality. For example, thismight be selected when storing other party’s public keys. This flag does not affect replay protection.
∙ PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION requests confidentiality and integrity protection of the dataas controlled by PSA_STORAGE_FLAG_NO_CONFIDENTIALITY, but does not require the implementation tostore data that would detect replacement with a previously valid value. For all other data objects, theimplementation must ensure that the version returned is the most recently stored version.

Implementation note
This is usually achieved by creating a hash table or tree of all the file tags and storing the root inInternal Trusted Storage. Some implementations may only store the root and recreate the tree atboot — in which case when it detects and error it cannot tell which file has been tampered with andmust reject all attempts to read replay protected files.

The implementation is permitted to treat these flags as indicative, and to apply a higher level of protectionif it does not implement every protection class. It must not apply a lower level of protection than thatrequested.
An implementation must treat the PSA_STORAGE_FLAG_WRITE_ONCE flag as definitive, if it is supported.
When reporting meta data, psa_ps_get_info() should report the actual protection level applied, and notthe requested level.

2.4 The Internal Trusted Storage API
The Internal Trusted Storage API is a more specialized API. Uses of the Internal Trusted Storage API will beless common. It is intended to be used for assets that must be placed inside internal flash. Some examplesof assets that require this are replay protection values for external storage, and keys used by componentsof the PRoT.
Storing assets that don’t fit this requirement is permissible. In fact, it is expected that many platforms willhave the Protected Storage API call directly into the Internal Trusted Storage API. For example, this can bedone on platforms that do not have external flash.
While this document makes no requirements about the size of the storage available by the Internal TrustedStorage API, it is expected to be limited, and therefore should be used for small, security-critical values.
As the Internal Storage is implicitly confidential and protected from replay, the implementation can ignorethe flags requesting lower levels of protection. However, it must honor the PSA_STORAGE_FLAG_WRITE_ONCEflag.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 10



2.5 UIDs
uids in the Secure Storage API are defined as uint64_t. This is expected to be larger than would be used onany system. This large namespace is chosen to allow a Root of Trust Service to easily manage assets onbehalf of other services.
For example, consider a cryptography service running as a RoT Service. When a service running in a SecurePartition requests key storage from the cryptography service, the cryptography service can concatenate anumerical identity of the requesting partition (for example, a int32_t in the Arm® Platform SecurityArchitecture Firmware Framework [PSA-FF-M]) with the key identifier (for example, a uint32_t in the PSACertified Crypto API [PSA-CRYPT]) to generate the uid of the Internal Trusted Storage entry for the key.This allows the cryptography service to easily manage isolation between the key namespaces of its variousclients.
Requirements for uid:

∙ The value zero (0) is reserved, and will result in an error if passed to any of the Secure Storage APIfunctions.
∙ Each partition can use any of the non-zero uids in the full 64-bit range.
∙ uid namespaces are independent. Using a uid in one partition has no impact on the uids or dataassets in another partition.
∙ Data assets are always private. There is no mechanism that enables one partition to access a dataasset owned by another partition.

The implication is that the implementation cannot divide the uid range between partitions, but it must usea partition identify, in addition to the uid, to identify a specific data asset.

2.6 Atomicity of Operations
In the event of power failure or other interruption of operations that modify storage, implementations ofthe Secure Storage API must maintain the properties shown in Table 5.

Table 5 Properties of storage operations
Atomicity After the operation, the data assets of the storage service either contain the new dataor are unchanged. Atomicity should be guaranteed in all situations — for example, aninvalid request, a software crash or a power cycle — and must not result in corruptionof the data assets. The only exceptions to this are situations involving storage failuresor corruption.
Consistency In the Secure Storage API, each operation is individually atomic. A multi-threadedapplication using Secure Storage API must not be able to observe any intermediatestate in the data assets. If thread ‘B’ calls the Secure Storage API while thread ‘A’ is inthe middle of an operation that modifies a data asset, thread ‘B’ must either see thestate of the asset before, or the state of the asset after, the operation requested bythread ‘A’.
Isolation A partition using the storage service cannot cause a change in the data assetsbelonging to a different partition.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 11



Table 5 (continued)
Durability When an operation that modifies storage returns to the caller, the data is persisted.System reset or power fail at this point will not revert the data assets to the previousstate.

2.7 Components
Table 6 lists the significant components in a system that implements Secure Storage API.

Table 6 Components in a system that implements the Trusted Storage API
Component Description

Internal TrustedStorage API The storage API described in this document intended for access to internalflash memory.
Internal TrustedStorage service A Platform Root of Trust service that implements the Internal Trusted StorageAPI.
Protected Storage API The general-purpose storage API described in this document.
Protected Storageservice A service, implemented either in the Application Root of Trust or the NSPE,that implements the Protected Storage API.
Secure PartitionManager The entity in the Secure Processing Environment responsible forcommunicating requests between the various secure services.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 12



3 Requirements
3.1 Protected Storage requirements

1. The technology and techniques used by the Protected Storage service must allow for frequent writesand data updates.
2. If writing to external storage, the Protected Storage service must provide confidentiality — unless thecaller specifically requests integrity only.
3. Confidentiality for a Protected Storage service may be provided by cryptographic ciphers usingdevice-bound keys, a tamper resistant enclosure, or an inaccessible deployment location, dependingon the threat model of the deployed system. If using counter-based encryption, the service mustensure a fresh key and nonce pair is used for each object instance encrypted.
4. If writing to external storage, the Protected Storage service must provide integrity protection.
5. Integrity protection for a Protected Storage service may be provided by cryptographic MessageAuthentication Codes (MAC) or signatures generated using device-bound keys, a tamper resistantenclosure, or an inaccessible deployment location, depending on the threat model of the deployedsystem.
6. If writing to external storage, the Protected Storage service must provide replay protection bywriting replay protection values through the Internal Trusted Storage API, unless the callerspecifically requests no replay protection.
7. If providing services to Secure Partitions, and the system isolates partitions from each other, then theProtected Storage service must provide protection from one partition accessing the storage assets ofa different partition.
8. The Protected Storage service must use the partition identifier associated with each request for itsaccess control mechanism.
9. If the Protected Storage service is providing services to other ARoT services, it must be implementedinside the ARoT itself.

10. If implemented inside the ARoT, the Protected Storage service can use helper services outside of theARoT to perform actual read and write operations through the external interface or file system.
11. In the event of power failures or unexpected flash write failures, the implementation must attemptto fallback to allow retention of old content.
12. The creation of a uid with value 0 (zero) must be treated as an error.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 13



3.2 Internal Trusted Storage requirements
1. The storage underlying the Internal Trusted Storage service must be protected from read andmodification by attackers with physical access to the device.
2. The storage underlying the Internal Trusted Storage service must be protected from direct read orwrite access from software partitions outside of the Platform Root of Trust.
3. The technology and techniques used by the Internal Trusted Storage service must allow for frequentwrites and data updates.
4. The Internal Trusted Storage service MAY provide confidentiality using cryptographic ciphers.
5. The Internal Trusted Storage service MAY provide integrity protection using cryptographic MessageAuthentication Codes (MAC) or signatures.
6. The Internal Trusted Storage service must provide protection from one partition accessing thestorage assets of a different partition.
7. The Internal Trusted Storage service must use the partition identifier associated with each requestfor its access control mechanism.
8. The medium and methods utilized by a Internal Trusted Storage service must provide confidentialitywithin the threat model of the system.
9. The medium and methods utilized by a Internal Trusted service must provide integrity within thethreat model of the system.

10. If the Debug Lifecycle state allows for a device to be debugged after deployment, then the InternalTrusted Storage service must provide confidentiality and integrity using cryptographic primitiveswith keys that are unavailable in the debug state.
11. If the device supports the RECOVERABLE_PSA_ROT_DEBUG Lifecycle state, then the Internal TrustedStorage service must provide confidentiality and integrity using cryptographic primitives with keysthat are unavailable in the RECOVERABLE_PSA_ROT_DEBUG state.
12. In the event of power failures or unexpected flash write failures, the implementation must attemptto fallback to allow retention of old content.
13. In the extreme case of storage medium being completely non-accessible, no assurances can be madeabout the availability of the old content.
14. The PSA_STORAGE_FLAG_WRITE_ONCE must be enforced when the Root of Trust Lifecycle state of thedevice is SECURED or NON_PSA_ROT_DEBUG. It must not be enforced when the device is in the

PSA_ROT_PROVISIONING state.
15. The creation of a uid with value 0 (zero) must be treated as an error.

The lifecycle states are described in Platform Security Model [PSM] and Arm® Platform Security ArchitectureFirmware Framework [PSA-FF-M].

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 14



4 Theory of Operation
4.1 Internal Trusted Storage API
The Internal Trusted Storage service that implements the Internal Trusted Storage API is not expected toreplace the need for a filesystem that resides on external storage. Instead, it’s intended to be used tointerface to a small piece of storage that is only accessible to software that is part of the Platform Root ofTrust. The Internal Trusted Storage API can be made accessible to the Non-secure Processing Environment aswell as the Secure Processing Environment.
Internally the Internal Trusted Storage service should be designed such that one partition cannot accessthe data owned by another partition. The method of doing this is not specified here, but one methodwould be to store metadata with the data indicating the partition that owns it.
Figure 1 provides a simple example of how an Internal Trusted Storage service can be used by a servicethat implements PSA Certified Crypto API [PSA-CRYPT] to secure key-store material. This is illustrative andnot prescriptive.

Platform Root of Trust

Application
Cryptography

service
Internal Trusted
Storage service

psa_import_key(key_slot, key_material)

psa_its_set(partition_id<<32 | key_identifier, key_material)

pass/fail

pass/fail

Figure 1 Sample Storage implementation with a service implementing the Crypto API

4.2 Memory access errors
When specifying an input or output buffer, the caller should ensure that the entire buffer is within memoryit can access.
Attempting to reference memory that does not belong to the caller will either result in a memory accessviolation or will cause the function to return PSA_ERROR_INVALID_ARGUMENT.
Implementations of the Internal Trusted Storage API and Protected Storage API must check the lengthparameters of a buffer before attempting to access them. It is permissible to pass a null pointer to a zerolength buffer.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 15



5 API Reference
5.1 Status codes
The Secure Storage API uses the status code definitions that are shared with the other PSA Certified APIs.
The following elements are defined in psa/error.h from PSA Certified Status code API [PSA-STAT](previously defined in [PSA-FF-M]):
typedef int32_t psa_status_t;

#define PSA_SUCCESS ((psa_status_t)0)

#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)
#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)
#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)
#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)
#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)
#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)
#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)
#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)
#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)

These definitions must be available to an application that includes either of the
psa/internal_trusted_storage.h or psa/protected_storage.h header files.

Implementation note
An implementation is permitted to define the status code interface elements within the SecureStorage API header files, or to define them via inclusion of a psa/error.h header file that is sharedwith the implementation of other PSA Certified APIs.

5.2 General Definitions
These definitions must be defined in the header file psa/storage_common.h.
5.2.1 psa_storage_info_t (struct)

A container for metadata associated with a specific uid.
struct psa_storage_info_t {

size_t capacity;
size_t size;
psa_storage_create_flags_t flags;

};

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 16



Fields

capacity The allocated capacity of the storage associated with a uid.
size The size of the data associated with a uid.
flags The flags set when the uid was create

5.2.2 psa_storage_create_flags_t (typedef)

Flags used when creating a data entry.
typedef uint32_t psa_storage_create_flags_t;

5.2.3 psa_storage_uid_t (typedef)

A type for uid used for identifying data.
typedef uint64_t psa_storage_uid_t;

5.2.4 PSA_STORAGE_FLAG_NONE (macro)

#define PSA_STORAGE_FLAG_NONE 0u

No flags to pass.
5.2.5 PSA_STORAGE_FLAG_WRITE_ONCE (macro)

#define PSA_STORAGE_FLAG_WRITE_ONCE (1u << 0)

The data associated with the uid will not be able to be modified or deleted. Intended to be used to set bitsin psa_storage_create_flags_t.
5.2.6 PSA_STORAGE_FLAG_NO_CONFIDENTIALITY (macro)

#define PSA_STORAGE_FLAG_NO_CONFIDENTIALITY (1u << 1)

The data associated with the uid is public and therefore does not require confidentiality. It therefore onlyneeds to be integrity protected.
5.2.7 PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION (macro)

#define PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION (1u << 2)

The data associated with the uid does not require replay protection. This can permit faster storage — but itpermits an attacker with physical access to revert to an earlier version of the data.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 17



5.2.8 PSA_STORAGE_SUPPORT_SET_EXTENDED (macro)

#define PSA_STORAGE_SUPPORT_SET_EXTENDED (1u << 0)

Flag indicating that psa_ps_create() and psa_ps_set_extended() are supported.

5.3 Internal Trusted Storage API
These definitions must be defined in the header file psa/internal_trusted_storage.h.
5.3.1 PSA_ITS_API_VERSION_MAJOR (macro)

The major version number of the Internal Trusted Storage API.
#define PSA_ITS_API_VERSION_MAJOR 1

It will be incremented on significant updates that can include breaking changes.
5.3.2 PSA_ITS_API_VERSION_MINOR (macro)

The minor version number of the Internal Trusted Storage API.
#define PSA_ITS_API_VERSION_MINOR 0

It will be incremented in small updates that are unlikely to include breaking changes.
5.3.3 psa_its_set (function)

Set the data associated with the specified uid.
psa_status_t psa_its_set(psa_storage_uid_t uid,

size_t data_length,
const void * p_data,
psa_storage_create_flags_t create_flags);

Parameters

uid The identifier for the data.
data_length The size in bytes of the data in p_data. If data_length == 0 theimplementation will create a zero-length asset associated with the

uid. While no data can be stored in such an asset, a call to
psa_its_get_info() will return PSA_SUCCESS.

p_data A buffer of data_length containing the data to store.
create_flags The flags that the data will be stored with.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 18



Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_NOT_PERMITTED The operation failed because the provided uid value was alreadycreated with PSA_STORAGE_FLAG_WRITE_ONCE.
PSA_ERROR_NOT_SUPPORTED The operation failed because one or more of the flags provided in

create_flags is not supported or is not valid.
PSA_ERROR_INSUFFICIENT_STORAGE The operation failed because there was insufficient space on thestorage medium.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).
PSA_ERROR_INVALID_ARGUMENT The operation failed because either:

∙ the uid is 0.
∙ caller cannot access some or all of the memory in the range[p_data, p_data + data_length - 1].

Description

Stores data in the internal storage.
∙ The uid value must not be zero.
∙ If uid exists it must not have been created as with PSA_STORAGE_FLAG_WRITE_ONCE — would result in

PSA_ERROR_NOT_PERMITTED

∙ The caller must have access all memory from p_data to p_data + data_length.
∙ Even if all parameters are correct, the function can fail if there is insufficient storage space or in thecase of a storage failure.

5.3.4 psa_its_get (function)

Retrieve data associated with a provided uid.
psa_status_t psa_its_get(psa_storage_uid_t uid,

size_t data_offset,
size_t data_size,
void * p_data,
size_t * p_data_length);

Parameters

uid The uid value.
data_offset The starting offset of the data requested.
data_size The amount of data requested.
p_data On success, the buffer where the data will be placed.
p_data_length On success, this will contain size of the data placed in p_data.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 19



Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found inthe storage.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).
PSA_ERROR_INVALID_ARGUMENT The operation failed because either:

∙ The uid is 0.
∙ The caller cannot access some or all of the memory in the range[p_data, p_data + data_size - 1].
∙ data_offset is larger than the size of the data associated with

uid.
Description

Retrieves data associated with uid, starting at data_offset bytes from the beginning of the data. Fetchesthe lesser of data_size or uid.size - data_offset bytes, which can be zero.
psa_its_get() must not return bytes from beyond the end of uid.
Upon successful completion, the data will be placed in the p_data buffer, which must be at least data_sizebytes in size. The length of the data returned will be in p_data_length. Any bytes beyond p_data_length areleft unmodified.
If data_size is 0 or data_offset == uid.size, the contents of p_data_length will be set to zero, but thecontents of p_data are unchanged. The function returns PSA_SUCCESS.

∙ The uid value must not be zero.
∙ The value of data_offset must be less than or equal to the length of uid.
∙ If data_ffset is greater than uid.size, no data is retrieved and the functions returnsPSA_INVALID_ARGUMENT.
∙ If data_size is not zero, p_data must mot be NULL.
∙ The call must have access to the memory from p_data to p_data + data_size - 1.
∙ If the location uid exists the lesser of data_size or uid.size - data_offset bytes are written to theoutput buffer and p_data_length is set to the number of bytes written, which can be zero.
∙ Even if all parameters are correct, the function can fail in the case of a storage failure.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 20



5.3.5 psa_its_get_info (function)

Retrieve the metadata about the provided uid.
psa_status_t psa_its_get_info(psa_storage_uid_t uid,

struct psa_storage_info_t * p_info);

Parameters

uid The uid value.
p_info A pointer to the psa_storage_info_t struct that will be populated withthe metadata.

Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found inthe storage.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).
PSA_ERROR_INVALID_ARGUMENT The operation failed because either:

∙ The uid is 0.
∙ The caller cannot access some or all of the memory in the range[p_info, p_info + sizeof(psa_storage_info_t) - 1]

Description

Retrieves the metadata stored for a given uid as a psa_storage_info_t structure.
∙ The uid value must not be zero.
∙ The call must have access to the memory from p_info to p_info + sizeof(psa_storage_info_t) - 1.
∙ If the location uid exists the metadata for the object is written to p_info.
∙ Even if all parameters are correct, the function can fail in the case of a storage failure.

5.3.6 psa_its_remove (function)

Remove the provided uid and its associated data from the storage.
psa_status_t psa_its_remove(psa_storage_uid_t uid);

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 21



Parameters

uid The uid value.
Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found inthe storage.
PSA_ERROR_INVALID_ARGUMENT The uid is 0.
PSA_ERROR_NOT_PERMITTED The operation failed because the provided uid value was createdwith PSA_STORAGE_FLAG_WRITE_ONCE.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).

Description

Deletes the data from internal storage.
∙ The uid value must not be zero.
∙ If uid exists it and any metadata are removed from storage.
∙ Even if all parameters are correct, the function can fail in the case of a storage failure.

5.4 Protected Storage API
These definitions must be defined in the header file psa/protected_storage.h.
5.4.1 PSA_PS_API_VERSION_MAJOR (macro)

The major version number of the Protected Storage API.
#define PSA_PS_API_VERSION_MAJOR 1

It will be incremented on significant updates that can include breaking changes.
5.4.2 PSA_PS_API_VERSION_MINOR (macro)

The minor version number of the Protected Storage API.
#define PSA_PS_API_VERSION_MINOR 0

It will be incremented in small updates that are unlikely to include breaking changes.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 22



5.4.3 psa_ps_set (function)
Set the data associated with the specified uid.
psa_status_t psa_ps_set(psa_storage_uid_t uid,

size_t data_length,
const void * p_data,
psa_storage_create_flags_t create_flags);

Parameters

uid The identifier for the data.
data_length The size in bytes of the data in p_data. If data_length == 0 theimplementation will create a zero-length asset associated with the

uid. While no data can be stored in such an asset, a call to
psa_ps_get_info() will return PSA_SUCCESS.

p_data A buffer containing the data.
create_flags The flags indicating the properties of the data.

Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_NOT_PERMITTED The operation failed because the provided uid value was alreadycreated with PSA_STORAGE_FLAG_WRITE_ONCE.
PSA_ERROR_INVALID_ARGUMENT The operation failed because either:

∙ The uid is 0.
∙ The operation failed because caller cannot access some or all ofthe memory in the range [p_data, p_data + data_length - 1].

PSA_ERROR_NOT_SUPPORTED The operation failed because one or more of the flags provided in
create_flags is not supported or is not valid.

PSA_ERROR_INSUFFICIENT_STORAGE The operation failed because there was insufficient space on thestorage medium.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).
PSA_ERROR_GENERIC_ERROR The operation failed because of an unspecified internal failure.

Description

The newly created asset has a capacity and size that are equal to data_length.
∙ The uid value must not be zero.
∙ If uid exists it must not have been created as with PSA_STORAGE_FLAG_WRITE_ONCE - would result in

PSA_ERROR_NOT_PERMITTED

∙ The caller must have access all memory from p_data to p_data + data_length.
∙ Even if all parameters are correct, the function can fail if there is insufficient storage space or in thecase of a storage failure.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 23



5.4.4 psa_ps_get (function)

Retrieve data associated with a provided uid.
psa_status_t psa_ps_get(psa_storage_uid_t uid,

size_t data_offset,
size_t data_size,
void * p_data,
size_t * p_data_length);

Parameters

uid The uid value.
data_offset The starting offset of the data requested. This must be less than orequal to uid.size.
data_size The amount of data requested.
p_data On success, the buffer where the data will be placed.
p_data_length On success, will contain size of the data placed in p_data.

Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_INVALID_ARGUMENT The operation failed because either:

∙ The uid is 0.
∙ The caller cannot access some or all of the memory in the range[p_data, p_data + data_size - 1].
∙ data_offset is larger than the size of the data associated with

uid.
PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found inthe storage.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).
PSA_ERROR_GENERIC_ERROR The operation failed because of an unspecified internal failure.
PSA_ERROR_DATA_CORRUPT The operation failed because the data associated with the uid hasbeen corrupted.
PSA_ERROR_INVALID_SIGNATURE The operation failed because the data associated with the uid failedauthentication.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 24



Description

Retrieves data associated with uid, starting at data_offset bytes from the beginning of the data. Fetchesthe smaller of data_size or uid.size - data_offset bytes. This can be zero.
psa_ps_get() must not return bytes from beyond the end of uid.
Upon successful completion, the data will be placed in the p_data buffer, which must be at least data_sizebytes in size. The length of the data returned will be in p_data_length. Any bytes beyond p_data_length areleft unmodified.
If data_size is 0 or data_offset == uid.size, the contents of p_data_length will be set to zero, but thecontents of p_data are unchanged. The function returns PSA_SUCCESS.

∙ The uid value must not be zero.
∙ The value of data_offset must be less than or equal to the length of uid.
∙ If data_offset is greater than uid.size the function retrieves no data and returns

PSA_ERROR_INVALID_ARGUMENT

∙ If data_size is not zero, p_data must mot be NULL.
∙ The call must have access to the memory from p_data to p_data + data_size - 1.
∙ If the location uid exists the lesser of data_size and uid.size - data_offset bytes are written to theoutput buffer and p_data_length is set to the number of bytes written, which can be zero.
∙ Any bytes in the buffer beyond p_data_length are left unmodified.
∙ Even if all parameters are correct, the function can fail in the case of a storage failure.

5.4.5 psa_ps_get_info (function)
Retrieve the metadata about the provided uid.
psa_status_t psa_ps_get_info(psa_storage_uid_t uid,

struct psa_storage_info_t * p_info);

Parameters

uid The identifier for the data.
p_info A pointer to the psa_storage_info_t struct that will be populated withthe metadata.

Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_INVALID_ARGUMENT The operation failed because either:

∙ The uid is 0.
∙ The caller cannot access some or all of the memory in the range[p_info, p_info + sizeof(psa_storage_info_t) - 1]

PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found inthe storage.
IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 25



PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).
PSA_ERROR_GENERIC_ERROR The operation failed because of an unspecified internal failure.
PSA_ERROR_DATA_CORRUPT The operation failed because the data associated with the uid hasbeen corrupted.
PSA_ERROR_INVALID_SIGNATURE The operation failed because the data associated with the uid failedauthentication.

Description

Retrieves the metadata stored for a given uid as a psa_storage_info_t structure.
∙ The uid value must not be zero.
∙ The call must have access to the memory from p_info to p_info + sizeof(psa_storage_info_t) - 1.
∙ If the location uid exists the metadata for the object is written to p_info.
∙ Even if all parameters are correct, the function can fail in the case of a storage failure.

5.4.6 psa_ps_remove (function)

Remove the provided uid and its associated data from the storage.
psa_status_t psa_ps_remove(psa_storage_uid_t uid);

Parameters

uid The identifier for the data to be removed.
Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found inthe storage.
PSA_ERROR_INVALID_ARGUMENT The uid is 0.
PSA_ERROR_NOT_PERMITTED The operation failed because the provided uid value was createdwith PSA_STORAGE_FLAG_WRITE_ONCE.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).
PSA_ERROR_GENERIC_ERROR The operation failed because of an unspecified internal failure.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 26



Description

Removes previously stored data and any associated metadata, including rollback protection data.
∙ The uid value must not be zero.
∙ If the location uid exists, it and any metadata are removed.
∙ Even if all parameters are correct, the function can fail in the case of a storage failure.

5.4.7 psa_ps_create (function)

Reserves storage for the specified uid.
psa_status_t psa_ps_create(psa_storage_uid_t uid,

size_t capacity,
psa_storage_create_flags_t create_flags);

Parameters

uid A unique identifier for the asset.
capacity The allocated capacity, in bytes, of the uid.
create_flags Flags indicating properties of the storage.

Returns: psa_status_t

PSA_SUCCESS The storage was successfully reserved.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).
PSA_ERROR_INSUFFICIENT_STORAGE capacity is bigger than the current available space.
PSA_ERROR_NOT_SUPPORTED The function is not implemented or one or more create_flags are notsupported.
PSA_ERROR_INVALID_ARGUMENT The operation failed because the uid is 0.
PSA_ERROR_GENERIC_ERROR The operation has failed due to an unspecified error.
PSA_ERROR_ALREADY_EXISTS Storage for the specified uid already exists.

Description

Reserves storage for the specified uid. Upon success, the capacity of the storage is capacity, and the size is
0.
It is only necessary to call this function for assets that will be written with the psa_ps_set_extended()function. If only the psa_ps_set() function is needed, calls to this function are redundant.
This function cannot be used to replace or resize an existing asset and attempting to do so will return
PSA_ERROR_ALREADY_EXISTS.
If the PSA_STORAGE_FLAG_WRITE_ONCE flag is passed, psa_ps_create() will return PSA_ERROR_NOT_SUPPORTED.
This function is optional. Consult the platform documentation to determine if it is implemented or performa call to psa_ps_get_support(). This function must be implemented if psa_ps_get_support() returns
PSA_STORAGE_SUPPORT_SET_EXTENDED.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 27



∙ The uid value must not be zero.
∙ If uid must not exist.
∙ The flag PSA_STORAGE_FLAG_WRITE_ONCE must not be set.
∙ Even if all parameters are correct, the function can fail if there is insufficient storage space or in thecase of a storage failure.

5.4.8 psa_ps_set_extended (function)

Overwrite part of the data of the specified uid.
psa_status_t psa_ps_set_extended(psa_storage_uid_t uid,

size_t data_offset,
size_t data_length,
const void * p_data);

Parameters

uid The unique identifier for the asset.
data_offset Offset within the asset to start the write.
data_length The size in bytes of the data in p_data to write.
p_data Pointer to a buffer which contains the data to write.

Returns: psa_status_t

PSA_SUCCESS The asset exists, the input parameters are correct and the data iscorrectly written in the physical storage.
PSA_ERROR_STORAGE_FAILURE The data was not written correctly in the physical storage.
PSA_ERROR_INVALID_ARGUMENT The operation failed because either:

∙ The uid is 0.
∙ The caller cannot access some or all of the memory in the range[p_data, p_data + data_size - 1].
∙ One or more of the preconditions regarding data_offset, size, or

data_length was violated.
PSA_ERROR_DOES_NOT_EXIST The specified uid was not found.
PSA_ERROR_NOT_SUPPORTED The implementation does not support this function.
PSA_ERROR_GENERIC_ERROR The operation failed due to an unspecified error.
PSA_ERROR_DATA_CORRUPT The operation failed because the existing data has been corrupted.
PSA_ERROR_INVALID_SIGNATURE The operation failed because the existing data failed authentication(MAC check failed).
PSA_ERROR_NOT_PERMITTED The operation failed because it was attempted on an asset which waswritten with the flag PSA_STORAGE_FLAG_WRITE_ONCE.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 28



Description

Sets partial data into an asset based on the given identifier, data_offset, data length and p_data.
Before calling this function, the storage must have been reserved with a call to psa_ps_create(). It can alsobe used to overwrite data in an asset that was created with a call to psa_ps_set().
Calling this function with data_length == 0 is permitted. This makes no change to the stored data.
This function can overwrite existing data and/or extend it up to the capacity for the uid specified in
psa_ps_create() but cannot create gaps.
This function is optional. Consult the platform documentation to determine if it is implemented or performa call to psa_ps_get_support(). This function must be implemented if psa_ps_get_support() returns
PSA_STORAGE_SUPPORT_SET_EXTENDED.

∙ The uid value must not be zero.
∙ If uid exists it must not have been created as with PSA_STORAGE_FLAG_WRITE_ONCE - would result in

PSA_ERROR_NOT_PERMITTED

∙ data_offset <= size

∙ data_offset + data_length <= capacity

On Success:
∙ size = max(size, data_offset + data_length)

∙ capacity unchanged.
5.4.9 psa_ps_get_support (function)

Returns a bitmask with flags set for the optional features supported by the implementation.
uint32_t psa_ps_get_support(void);

Returns: uint32_t
Description

Currently defined flags are limited to:
∙ PSA_STORAGE_SUPPORT_SET_EXTENDED

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 29



Appendix A: Example header files
Each implementation of the Secure Storage API must provide a header file named psa/storage_common.h,and also any of psa/internal_trusted_storage.h and psa/protected_storage.h for the APIs that areimplemented.
This appendix provides examples of the header files with all of the API elements. This can be used as astarting point or reference for an implementation.

A.1 psa/storage_common.h
/* This file is a reference template for implementation of the
* PSA Certified Secure Storage API v1.0.1
*
* This file includes common definitions
*/

#ifndef PSA_STORAGE_COMMON_H
#define PSA_STORAGE_COMMON_H

#include <stddef.h>
#include <stdint.h>

#ifdef __cplusplus
extern "C" {
#endif

struct psa_storage_info_t {
size_t capacity;
size_t size;
psa_storage_create_flags_t flags;

};
typedef uint32_t psa_storage_create_flags_t;
typedef uint64_t psa_storage_uid_t;
#define PSA_STORAGE_FLAG_NONE 0u
#define PSA_STORAGE_FLAG_WRITE_ONCE (1u << 0)
#define PSA_STORAGE_FLAG_NO_CONFIDENTIALITY (1u << 1)
#define PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION (1u << 2)
#define PSA_STORAGE_SUPPORT_SET_EXTENDED (1u << 0)

#ifdef __cplusplus
}
#endif

#endif // PSA_STORAGE_COMMON_H

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 30



A.2 psa/internal_trusted_storage.h
/* This file is a reference template for implementation of the
* PSA Certified Secure Storage API v1.0.1
*
* This file describes the Internal Trusted Storage API
*/

#ifndef PSA_INTERNAL_TRUSTED_STORAGE_H
#define PSA_INTERNAL_TRUSTED_STORAGE_H

#include <stddef.h>
#include <stdint.h>

#include "psa/error.h"
#include "psa/storage_common.h"

#ifdef __cplusplus
extern "C" {
#endif

#define PSA_ITS_API_VERSION_MAJOR 1
#define PSA_ITS_API_VERSION_MINOR 0
psa_status_t psa_its_set(psa_storage_uid_t uid,

size_t data_length,
const void * p_data,
psa_storage_create_flags_t create_flags);

psa_status_t psa_its_get(psa_storage_uid_t uid,
size_t data_offset,
size_t data_size,
void * p_data,
size_t * p_data_length);

psa_status_t psa_its_get_info(psa_storage_uid_t uid,
struct psa_storage_info_t * p_info);

psa_status_t psa_its_remove(psa_storage_uid_t uid);

#ifdef __cplusplus
}
#endif

#endif // PSA_INTERNAL_TRUSTED_STORAGE_H

A.3 psa/protected_storage.h
/* This file is a reference template for implementation of the
* PSA Certified Secure Storage API v1.0.1
*
* This file describes the Protected Storage API
*/

#ifndef PSA_PROTECTED_STORAGE_H

(continues on next page)

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 31



(continued from previous page)
#define PSA_PROTECTED_STORAGE_H

#include <stddef.h>
#include <stdint.h>

#include "psa/error.h"
#include "psa/storage_common.h"

#ifdef __cplusplus
extern "C" {
#endif

#define PSA_PS_API_VERSION_MAJOR 1
#define PSA_PS_API_VERSION_MINOR 0
psa_status_t psa_ps_set(psa_storage_uid_t uid,

size_t data_length,
const void * p_data,
psa_storage_create_flags_t create_flags);

psa_status_t psa_ps_get(psa_storage_uid_t uid,
size_t data_offset,
size_t data_size,
void * p_data,
size_t * p_data_length);

psa_status_t psa_ps_get_info(psa_storage_uid_t uid,
struct psa_storage_info_t * p_info);

psa_status_t psa_ps_remove(psa_storage_uid_t uid);
psa_status_t psa_ps_create(psa_storage_uid_t uid,

size_t capacity,
psa_storage_create_flags_t create_flags);

psa_status_t psa_ps_set_extended(psa_storage_uid_t uid,
size_t data_offset,
size_t data_length,
const void * p_data);

uint32_t psa_ps_get_support(void);

#ifdef __cplusplus
}
#endif

#endif // PSA_PROTECTED_STORAGE_H

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 32



Appendix B: Document history

Date Release Details

2019-02-25 1.0 Beta 2 First Release
2019-06-12 1.0 Rel Final 1.0 API

∙ The protected storage API now supports flags
PSA_STORAGE_FLAG_NO_CONFIDENTIALITY and
PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION.

∙ Error values now use standard PSA error codes, which are nowdefined in <psa/error.h>.
∙ Input parameters are now separate from output parameters.There are no longer any in/out parameters.
∙ Size types have been replaced with size_t instead of uint32_t.

2022-10-17 1.0.1 Rel
∙ Relicensed the document under Attribution-ShareAlike 4.0International with a patent license derived from Apache License2.0. See License on page iv.
∙ Documentation clarifications.

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 33



Index of API elements

PSA_I
PSA_ITS_API_VERSION_MAJOR, 18
PSA_ITS_API_VERSION_MINOR, 18
psa_its_get, 19
psa_its_get_info, 21
psa_its_remove, 21
psa_its_set, 18
PSA_P
PSA_PS_API_VERSION_MAJOR, 22
PSA_PS_API_VERSION_MINOR, 22
psa_ps_create, 27
psa_ps_get, 24
psa_ps_get_info, 25
psa_ps_get_support, 29
psa_ps_remove, 26
psa_ps_set, 23
psa_ps_set_extended, 28
PSA_S
PSA_STORAGE_FLAG_NONE, 17
PSA_STORAGE_FLAG_NO_CONFIDENTIALITY, 17
PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION, 17
PSA_STORAGE_FLAG_WRITE_ONCE, 17
PSA_STORAGE_SUPPORT_SET_EXTENDED, 18
psa_storage_create_flags_t, 17
psa_storage_info_t, 16
psa_storage_uid_t, 17

IHI 00871.0.1 Copyright © 2018-2019, 2022 Arm Limited and/or its affiliatesNon-confidential Page 34


	About this document
	Release information
	License
	References
	Terms and abbreviations
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Feedback

	1 Introduction
	1.1 About Platform Security Architecture
	1.2 About the Secure Storage API

	2 Architecture
	2.1 Use Cases and Rationale
	2.2 Technical Background
	2.3 The Protected Storage API
	2.4 The Internal Trusted Storage API
	2.5 UIDs
	2.6 Atomicity of Operations
	2.7 Components

	3 Requirements
	3.1 Protected Storage requirements
	3.2 Internal Trusted Storage requirements

	4 Theory of Operation
	4.1 Internal Trusted Storage API
	4.2 Memory access errors

	5 API Reference
	5.1 Status codes
	5.2 General Definitions
	5.2.1 psa_storage_info_t (struct)
	5.2.2 psa_storage_create_flags_t (typedef)
	5.2.3 psa_storage_uid_t (typedef)
	5.2.4 PSA_STORAGE_FLAG_NONE (macro)
	5.2.5 PSA_STORAGE_FLAG_WRITE_ONCE (macro)
	5.2.6 PSA_STORAGE_FLAG_NO_CONFIDENTIALITY (macro)
	5.2.7 PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION (macro)
	5.2.8 PSA_STORAGE_SUPPORT_SET_EXTENDED (macro)

	5.3 Internal Trusted Storage API
	5.3.1 PSA_ITS_API_VERSION_MAJOR (macro)
	5.3.2 PSA_ITS_API_VERSION_MINOR (macro)
	5.3.3 psa_its_set (function)
	5.3.4 psa_its_get (function)
	5.3.5 psa_its_get_info (function)
	5.3.6 psa_its_remove (function)

	5.4 Protected Storage API
	5.4.1 PSA_PS_API_VERSION_MAJOR (macro)
	5.4.2 PSA_PS_API_VERSION_MINOR (macro)
	5.4.3 psa_ps_set (function)
	5.4.4 psa_ps_get (function)
	5.4.5 psa_ps_get_info (function)
	5.4.6 psa_ps_remove (function)
	5.4.7 psa_ps_create (function)
	5.4.8 psa_ps_set_extended (function)
	5.4.9 psa_ps_get_support (function)


	A Example header files
	A.1 psa/storage_common.h
	A.2 psa/internal_trusted_storage.h
	A.3 psa/protected_storage.h

	B Document history
	Index of API elements

