
PSA Certified
Secure Storage API 1.0

Document number: IHI 0087
Release Quality: Final
Issue Number: 3
Confidentiality: Non-confidential
Date of Issue: 22/01/2024

Copyright © 2018-2019, 2022-2024 Arm Limited and/or its affiliates



Contents

About this document iv
Release information iv
License v
References vi
Terms and abbreviations vi
Potential for change vii
Conventions viiiTypographical conventions viiiNumbers viii
Feedback viii

1 Introduction 9
1.1 About Platform Security Architecture 9
1.2 About the Secure Storage API 9
2 Architecture 10
2.1 Use Cases and Rationale 10
2.2 Technical Background 10
2.3 The Protected Storage API 10
2.4 The Internal Trusted Storage API 11
2.5 UIDs 12
2.6 Atomicity of Operations 12
2.7 Components 13
3 Requirements 14
3.1 Protected Storage requirements 14
3.2 Internal Trusted Storage requirements 15
4 Theory of Operation 16
4.1 Internal Trusted Storage API 16
IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page i



4.2 Memory access errors 16
5 API Reference 17
5.1 Status codes 17
5.2 General Definitions 175.2.1 psa_storage_info_t (struct) 185.2.2 psa_storage_create_flags_t (typedef) 185.2.3 psa_storage_uid_t (typedef) 185.2.4 PSA_STORAGE_FLAG_NONE (macro) 185.2.5 PSA_STORAGE_FLAG_WRITE_ONCE (macro) 185.2.6 PSA_STORAGE_FLAG_NO_CONFIDENTIALITY (macro) 195.2.7 PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION (macro) 195.2.8 PSA_STORAGE_SUPPORT_SET_EXTENDED (macro) 19
5.3 Internal Trusted Storage API 195.3.1 PSA_ITS_API_VERSION_MAJOR (macro) 195.3.2 PSA_ITS_API_VERSION_MINOR (macro) 195.3.3 psa_its_set (function) 205.3.4 psa_its_get (function) 215.3.5 psa_its_get_info (function) 225.3.6 psa_its_remove (function) 23
5.4 Protected Storage API 235.4.1 PSA_PS_API_VERSION_MAJOR (macro) 235.4.2 PSA_PS_API_VERSION_MINOR (macro) 245.4.3 psa_ps_set (function) 245.4.4 psa_ps_get (function) 255.4.5 psa_ps_get_info (function) 265.4.6 psa_ps_remove (function) 275.4.7 psa_ps_create (function) 285.4.8 psa_ps_set_extended (function) 295.4.9 psa_ps_get_support (function) 30
A Example header files 31
A.1 psa/storage_common.h 31
A.2 psa/internal_trusted_storage.h 32
A.3 psa/protected_storage.h 33
B Security Risk Assessment 35
B.1 About this assessment 35B.1.1 Subject and scope 35B.1.2 Risk assessment methodology 35
B.2 Feature definition 37B.2.1 Introduction 37
IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page ii



B.2.2 Lifecycle 37B.2.3 Operation and trust boundaries 38B.2.4 Deployment models 38B.2.5 Assumptions, constraints, and interacting entities 42B.2.6 Stakeholders and Assets 42B.2.7 Goals 42B.2.8 Adversarial models 43
B.3 Threats 44B.3.1 T.INTERFACE_ABUSE: Illegal inputs to the API 45B.3.2 T.SPOOF_READ: Use the API to read another caller’s data 45B.3.3 T.SPOOF_WRITE: Use the API to modify another caller’s data 46B.3.4 T.EAVESDROPPING: Eavesdropping 47B.3.5 T.MITM: Man In The Middle 48B.3.6 T.DIRECT_READ: Bypassing the API to directly read data 49B.3.7 T.DIRECT_WRITE: Bypassing the API to directly modify data 50B.3.8 T.REPLACE: Physical replacement of the storage medium 51B.3.9 T.GLITCH_READ: Glitching during a read 52B.3.10 T.GLITCH_WRITE: Glitching during a write 52
B.4 Mitigation Summary 54B.4.1 Architecture level mitigations 54B.4.2 Implementation-level mitigations 54B.4.3 User-level mitigations 56B.4.4 Mitigations required by each deployment model 56
C Document history 58

Index of API elements 59

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page iii



About this document
Release information
The change history table lists the changes that have been made to this document.

Table 1 Document revision history
Date Version Confidentiality Change

Feb 2019 1.0 beta 2 Non-confidential Initial publication.
June 2019 1.0.0 Non-confidential First stable release with 1.0 API finalized.

Uses the common PSA Certified Statuscodes.
Modified the API parameters to align withother PSA Certified APIs.
Added storage flags to specify protectionrequirement.

October 2022 1.0.1 Non-confidential Relicensed as open source under CC BY-SA4.0.
Documentation clarifications.

March 2023 1.0.2 Non-confidential Documentation clarifications.
January 2024 1.0.3 Non-confidential Provide a Security Risk Assessment.

The detailed changes in each release are described in Document history on page 58.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page iv



PSA Certified Secure Storage API
Copyright © 2018-2019, 2022-2024 Arm Limited and/or its affiliates. The copyright statement reflectsthe fact that some draft issues of this document have been released, to a limited circulation.

License
Text and illustrations
Text and illustrations in this work are licensed under Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). To view a copy ofthe license, visit creativecommons.org/licenses/by-sa/4.0.
Grant of patent license. Subject to the terms and conditions of this license (both the CC BY-SA 4.0 Public License and this PatentLicense), each Licensor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except asstated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the LicensedMaterial, where such license applies only to those patent claims licensable by such Licensor that are necessarily infringed by theircontribution(s) alone or by combination of their contribution(s) with the Licensed Material to which such contribution(s) wassubmitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that theLicensed Material or a contribution incorporated within the Licensed Material constitutes direct or contributory patentinfringement, then any licenses granted to You under this license for that Licensed Material shall terminate as of the date suchlitigation is filed.
The Arm trademarks featured here are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/orelsewhere. All rights reserved. Please visit arm.com/company/policies/trademarks for more information about Arm’s trademarks.
About the license
The language in the additional patent license is largely identical to that in section 3 of the Apache License, Version 2.0 (Apache2.0), with two exceptions:

1. Changes are made related to the defined terms, to align those defined terms with the terminology in CC BY-SA 4.0 ratherthan Apache 2.0 (for example, changing “Work” to “Licensed Material”).
2. The scope of the defensive termination clause is changed from “any patent licenses granted to You” to “any licensesgranted to You”. This change is intended to help maintain a healthy ecosystem by providing additional protection to thecommunity against patent litigation claims.

To view the full text of the Apache 2.0 license, visit apache.org/licenses/LICENSE-2.0.
Source code
Source code samples in this work are licensed under the Apache License, Version 2.0 (the “License”); you may not use suchsamples except in compliance with the License. You may obtain a copy of the License at apache.org/licenses/LICENSE-2.0.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS”BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page v

https://creativecommons.org/licenses/by-sa/4.0
https://arm.com/company/policies/trademarks
https://apache.org/licenses/LICENSE-2.0
https://apache.org/licenses/LICENSE-2.0


References
This document refers to the following documents.

Table 2 Documents referenced by this document
Ref Document

Number
Title

[PSM] ARM DEN 0128 Platform Security Model.developer.arm.com/documentation/den0128
[PSA-CRYPT] IHI 0086 PSA Certified Crypto API. arm-software.github.io/psa-api/crypto
[PSA-STAT] ARM IHI 0097 PSA Certified Status code API.arm-software.github.io/psa-api/status-code
[PSA-FFM] ARM DEN 0063 Arm® Platform Security Architecture Firmware Framework.developer.arm.com/documentation/den0063
[SP800-30] NIST, NIST Special Publication 800-30 Revision 1: Guide forConducting Risk Assessments, September 2012.doi.org/10.6028/NIST.SP.800-30r1

Terms and abbreviations
This document uses the following terms and abbreviations.

Table 3 Terms and abbreviations
Term Meaning

Application Root ofTrust (ARoT) This is the security domain in which additional security services areimplemented. See Platform Security Model [PSM].
ARoT See Application Root of Trust.
IMPLEMENTATION DEFINED Behavior that is not defined by the this specification, but is defined anddocumented by individual implementations.

Firmware developers can choose to depend on IMPLEMENTATION DEFINEDbehavior, but must be aware that their code might not be portable to anotherimplementation.
Non-secure ProcessingEnvironment (NSPE) This is the security domain outside of the Secure Processing Environment. It isthe Application domain, typically containing the application firmware andhardware.
NSPE See Non-secure Processing Environment.

continues on next page

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page vi

https://developer.arm.com/documentation/den0128
https://arm-software.github.io/psa-api/crypto
https://arm-software.github.io/psa-api/status-code
https://developer.arm.com/documentation/den0063
https://doi.org/10.6028/NIST.SP.800-30r1


Table 3 – continued from previous page

Term Meaning

Platform Root of Trust(PRoT) The overall trust anchor for the system. This ensures the platform is securelybooted and configured, and establishes the secure environments required toprotect security services. See Platform Security Model [PSM].
PRoT See Platform Root of Trust.
Root of Trust (RoT) This is the minimal set of software, hardware and data that is implicitlytrusted in the platform — there is no software or hardware at a deeper levelthat can verify that the Root of Trust is authentic and unmodified.
Root of Trust Service(RoT Service) A set of related security operations that are provided by a Root of Trust.
RoT See Root of Trust.
RoT Service See Root of Trust Service.
Secure Partition A processing context with protected runtime state within the SecureProcessing Environment. A secure partition may implement one or more RoTServices, accessible via well-defined interfaces.
Secure PartitionManager (SPM) Part of the Secure Processing Environment that is responsible for allocatingresources to Secure Partitions, managing the isolation and execution ofsoftware within partitions, and providing IPC between partitions.
Secure ProcessingEnvironment (SPE) This is the security domain that includes the Platform Root of Trust and theApplication Root of Trust domains.
SPE See Secure Processing Environment.
SPM See Secure Partition Manager.

Potential for change
The contents of this specification are stable for version 1.0.
The following may change in updates to the version 1.0 specification:

∙ Small optional feature additions.
∙ Clarifications.

Significant additions, or any changes that affect the compatibility of the interfaces defined in thisspecification will only be included in a new major or minor version of the specification.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page vii



Conventions
Typographical conventions

The typographical conventions are:
italic Introduces special terminology, and denotes citations.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other itemsappearing in assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALSUsed for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Termsand abbreviations.
Red text Indicates an open issue.
Blue text Indicates a link. This can be

∙ A cross-reference to another location within the document
∙ A URL, for example example.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbersby 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.To improve readability, long numbers can be written with an underscore separator between every fourcharacters, for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of anumber.

Feedback
We welcome feedback on the PSA Certified API documentation.
If you have comments on the content of this book, visit github.com/arm-software/psa-api/issues to createa new issue at the PSA Certified API GitHub project. Give:

∙ The title (Secure Storage API).
∙ The number and issue (IHI 0087 1.0.3).
∙ The location in the document to which your comments apply.
∙ A concise explanation of your comments.

We also welcome general suggestions for additions and improvements.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page viii

https://example.com
https://github.com/arm-software/psa-api/issues


1 Introduction
1.1 About Platform Security Architecture
This document is one of a set of resources provided by Arm that can help organizations develop productsthat meet the security requirements of PSA Certified on Arm-based platforms. The PSA Certified schemeprovides a framework and methodology that helps silicon manufacturers, system software providers andOEMs to develop more secure products. Arm resources that support PSA Certified range from threatmodels, standard architectures that simplify development and increase portability, and open-sourcepartnerships that provide ready-to-use software. You can read more about PSA Certified here atwww.psacertified.org and find more Arm resources here atdeveloper.arm.com/platform-security-resources.

1.2 About the Secure Storage API
The interface described in this document is a PSA Certified API, that provides key/value storage interfacesfor use with device-protected storage. The Secure Storage API describes two interfaces for storage:
Internal Trusted Storage API An interface for storage provided by the Platform Root of Trust (PRoT).
Protected Storage API An interface for external protected storage.

The Internal Trusted Storage API must be implemented in the PRoT as described in the Platform SecurityModel [PSM] specification.
If there are no Application Root of Trust (ARoT) services that rely on it, the Protected Storage API can beimplemented in the NSPE. Otherwise, the Protected Storage API must be implemented in an ARoT withinthe SPE.
You can find additional resources relating to the Secure Storage API here atarm-software.github.io/psa-api/storage, and find other PSA Certified APIs here atarm-software.github.io/psa-api.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 9

https://www.psacertified.org
https://developer.arm.com/platform-security-resources
https://arm-software.github.io/psa-api/storage
https://arm-software.github.io/psa-api


2 Architecture
2.1 Use Cases and Rationale
Two use cases are addressed by Secure Storage API:

∙ Secure storage for device intimate data (Internal Trusted Storage).
∙ Protection for data-at-rest (Protected Storage).

Internal Trusted Storage aims at providing a place for devices to store their most intimate secrets, either toensure data privacy or data integrity. For example, a device identity key requires confidentiality, whereasan authority public key is public data but requires integrity. Other critical values that are part of a Root ofTrust Service — for example, secure time values, monotonic counter values, or firmware image hashes —will also need trusted storage.
Protected Storage is meant to protect larger data-sets against physical attacks. It aims to provide theability for a firmware developer to store data onto external flash, with a promise of data-at-rest protection,including device-bound encryption, integrity, and replay protection. It should be possible to select theappropriate protection level — for example, encryption only, or integrity only, or both — depending on thethreat model of the device and the nature of its deployment.

2.2 Technical Background
Modern embedded platforms have multiple types of storage, each with different security properties.
Most embedded microprocessors (MCU) have on-chip flash storage that can be made inaccessible exceptto software running on the MCU. If the storage is made inaccessible to software other than that of thePlatform Root of Trust (PRoT), then it can be used to store key material, replay protection values, or otherdata critical to the secure operation of the device.
In addition, many platforms also have external storage that requires confidentiality, integrity, and replayprotection from attackers with physical access to the device.
By providing consistent APIs for accessing storage, software in both the NSPE and SPE can be written in aplatform-independent manner. This improves portability between platforms that implement the PSACertified APIs.

2.3 The Protected Storage API
The Protected Storage API is the general-purpose API that most developers should use. It is intended tobe used to protect storage media that are external to the MCU package.
If the Protected Storage API is implemented using external storage without hardware protection, the datamust be stored using authenticated encryption, as well as replay-protection values stored using theInternal Trusted Storage API. If the external storage has hardware protection — for example, remotelocations or tamper proof enclosures — the need for cryptographic protection will be different.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 10



Secure Storage API provides flags, PSA_STORAGE_FLAG_NO_CONFIDENTIALITY and
PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION, enabling the caller to request a lower level of protection.

∙ PSA_STORAGE_FLAG_NO_CONFIDENTIALITY requests integrity but not confidentiality. For example, thismight be selected when storing other party’s public keys. This flag does not affect replay protection.
∙ PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION requests confidentiality and integrity protection of the dataas controlled by PSA_STORAGE_FLAG_NO_CONFIDENTIALITY, but does not require the implementation tostore data that would detect replacement with a previously valid value. For all other data objects, theimplementation must ensure that the version returned is the most recently stored version.

Implementation note
This is usually achieved by creating a hash table or tree of all the file tags and storing the root inInternal Trusted Storage. Some implementations may only store the root and recreate the tree atboot — in which case when it detects and error it cannot tell which file has been tampered with andmust reject all attempts to read replay protected files.

The implementation is permitted to treat these flags as indicative, and to apply a higher level of protectionif it does not implement every protection class. It must not apply a lower level of protection than thatrequested.
An implementation must treat the PSA_STORAGE_FLAG_WRITE_ONCE flag as definitive, if it is supported.
When reporting meta data, psa_ps_get_info() should report the actual protection level applied, and not therequested level.

2.4 The Internal Trusted Storage API
The Internal Trusted Storage API is a more specialized API. Uses of the Internal Trusted Storage API will beless common. It is intended to be used for assets that must be placed inside internal flash. Some examplesof assets that require this are replay protection values for external storage, and keys used by componentsof the PRoT.
Storing assets that don’t fit this requirement is permissible. In fact, it is expected that many platforms willhave the Protected Storage API call directly into the Internal Trusted Storage API. For example, this can bedone on platforms that do not have external flash.
While this document makes no requirements about the size of the storage available by the Internal TrustedStorage API, it is expected to be limited, and therefore should be used for small, security-critical values.
As the Internal Storage is implicitly confidential and protected from replay, the implementation can ignorethe flags requesting lower levels of protection. However, it must honor the PSA_STORAGE_FLAG_WRITE_ONCEflag.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 11



2.5 UIDs
uids in the Secure Storage API are defined as uint64_t. This is expected to be larger than would be used onany system. This large namespace is chosen to allow a Root of Trust Service to easily manage assets onbehalf of other services.
For example, consider a cryptography service running as a RoT Service. When a service running in a SecurePartition requests key storage from the cryptography service, the cryptography service can concatenate anumerical identity of the requesting partition (for example, a int32_t in the Arm® Platform SecurityArchitecture Firmware Framework [PSA-FFM]) with the key identifier (for example, a uint32_t in the PSACertified Crypto API [PSA-CRYPT]) to generate the uid of the Internal Trusted Storage entry for the key.This allows the cryptography service to easily manage isolation between the key namespaces of its variousclients.
Requirements for uid:

∙ The value zero (0) is reserved, and will result in an error if passed to any of the Secure Storage APIfunctions.
∙ Each partition can use any of the non-zero uids in the full 64-bit range.
∙ uid namespaces are independent. Using a uid in one partition has no impact on the uids or dataassets in another partition.
∙ Data assets are always private. There is no mechanism that enables one partition to access a dataasset owned by another partition.

The implication is that the implementation cannot divide the uid range between partitions, but it must usea partition identify, in addition to the uid, to identify a specific data asset.

2.6 Atomicity of Operations
In the event of power failure or other interruption of operations that modify storage, implementations ofthe Secure Storage API must maintain the properties shown in Table 4.

Table 4 Properties of storage operations
Atomicity After the operation, the data assets of the storage service either contain the new dataor are unchanged. Atomicity should be guaranteed in all situations — for example, aninvalid request, a software crash or a power cycle — and must not result in corruptionof the data assets. The only exceptions to this are situations involving storage failuresor corruption.
Consistency In the Secure Storage API, each operation is individually atomic. A multi-threadedapplication using Secure Storage API must not be able to observe any intermediatestate in the data assets. If thread ‘B’ calls the Secure Storage API while thread ‘A’ is inthe middle of an operation that modifies a data asset, thread ‘B’ must either see thestate of the asset before, or the state of the asset after, the operation requested bythread ‘A’.

continues on next page

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 12



Table 4 – continued from previous page

Isolation A partition using the storage service cannot cause a change in the data assetsbelonging to a different partition.
Durability When an operation that modifies storage returns to the caller, the data is persisted.System reset or power fail at this point will not revert the data assets to the previousstate.

2.7 Components
Table 5 lists the significant components in a system that implements Secure Storage API.

Table 5 Components in a system that implements the Trusted Storage API
Component Description

Internal Trusted StorageAPI The storage API described in this document intended for access to internalflash memory.
Internal Trusted Storageservice A Platform Root of Trust service that implements the Internal Trusted StorageAPI.
Protected Storage API The general-purpose storage API described in this document.
Protected Storageservice A service, implemented either in the Application Root of Trust or the NSPE,that implements the Protected Storage API.
Secure Partition Manager The entity in the Secure Processing Environment responsible forcommunicating requests between the various secure services.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 13



3 Requirements
3.1 Protected Storage requirements

1. The technology and techniques used by the Protected Storage service must allow for frequent writesand data updates.
2. If writing to external storage, the Protected Storage service must provide confidentiality — unless thecaller specifically requests integrity only.
3. Confidentiality for a Protected Storage service may be provided by cryptographic ciphers usingdevice-bound keys, a tamper resistant enclosure, or an inaccessible deployment location, dependingon the threat model of the deployed system. If using counter-based encryption, the service mustensure a fresh key and nonce pair is used for each object instance encrypted.
4. If writing to external storage, the Protected Storage service must provide integrity protection.
5. Integrity protection for a Protected Storage service may be provided by cryptographic MessageAuthentication Codes (MAC) or signatures generated using device-bound keys, a tamper resistantenclosure, or an inaccessible deployment location, depending on the threat model of the deployedsystem.
6. If writing to external storage, the Protected Storage service must provide replay protection bywriting replay protection values through the Internal Trusted Storage API, unless the callerspecifically requests no replay protection.
7. If providing services to Secure Partitions, and the system isolates partitions from each other, then theProtected Storage service must provide protection from one partition accessing the storage assets ofa different partition.
8. The Protected Storage service must use the partition identifier associated with each request for itsaccess control mechanism.
9. If the Protected Storage service is providing services to other ARoT services, it must be implementedinside the ARoT itself.

10. If implemented inside the ARoT, the Protected Storage service can use helper services outside of theARoT to perform actual read and write operations through the external interface or file system.
11. In the event of power failures or unexpected flash write failures, the implementation must attemptto fallback to allow retention of old content.
12. The creation of a uid with value 0 (zero) must be treated as an error.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 14



3.2 Internal Trusted Storage requirements
1. The storage underlying the Internal Trusted Storage service must be protected from read andmodification by attackers with physical access to the device.
2. The storage underlying the Internal Trusted Storage service must be protected from direct read orwrite access from software partitions outside of the Platform Root of Trust.
3. The technology and techniques used by the Internal Trusted Storage service must allow for frequentwrites and data updates.
4. Confidentiality of data stored by the Internal Trusted Storage service can be implemented using aninaccessible deployment location, cryptographic ciphers, or a combination of these techniques.
5. Integrity of data stored by the Internal Trusted Storage service can be implemented using aninaccessible deployment location, cryptographic Message Authentication Codes (MAC) or signatures,or a combination of these techniques.
6. The Internal Trusted Storage service must provide protection from one partition accessing thestorage assets of a different partition.
7. The Internal Trusted Storage service must use the partition identifier associated with each requestfor its access control mechanism.
8. The medium and methods utilized by a Internal Trusted Storage service must provide confidentialitywithin the threat model of the system.
9. The medium and methods utilized by a Internal Trusted service must provide integrity within thethreat model of the system.

10. If the Debug Lifecycle state allows for a device to be debugged after deployment, then the InternalTrusted Storage service must provide confidentiality and integrity using cryptographic primitiveswith keys that are unavailable in the debug state.
11. If the device supports the RECOVERABLE_PSA_ROT_DEBUG Lifecycle state, then the Internal TrustedStorage service must provide confidentiality and integrity using cryptographic primitives with keysthat are unavailable in the RECOVERABLE_PSA_ROT_DEBUG state.
12. In the event of power failures or unexpected flash write failures, the implementation must attemptto fallback to allow retention of old content.
13. In the extreme case of storage medium being completely non-accessible, no assurances can be madeabout the availability of the old content.
14. The PSA_STORAGE_FLAG_WRITE_ONCE must be enforced when the Root of Trust Lifecycle state of thedevice is SECURED or NON_PSA_ROT_DEBUG. It must not be enforced when the device is in the

PSA_ROT_PROVISIONING state.
15. The creation of a uid with value 0 (zero) must be treated as an error.

The lifecycle states are described in Platform Security Model [PSM] and Arm® Platform Security ArchitectureFirmware Framework [PSA-FFM].

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 15



4 Theory of Operation
4.1 Internal Trusted Storage API
The Internal Trusted Storage service that implements the Internal Trusted Storage API is not expected toreplace the need for a filesystem that resides on external storage. Instead, it’s intended to be used tointerface to a small piece of storage that is only accessible to software that is part of the Platform Root ofTrust. The Internal Trusted Storage API can be made accessible to the Non-secure Processing Environment aswell as the Secure Processing Environment.
Internally the Internal Trusted Storage service should be designed such that one partition cannot accessthe data owned by another partition. The method of doing this is not specified here, but one methodwould be to store metadata with the data indicating the partition that owns it.
Figure 1 provides a simple example of how an Internal Trusted Storage service can be used by a servicethat implements PSA Certified Crypto API [PSA-CRYPT] to secure key-store material. This is illustrative andnot prescriptive.

Platform Root of Trust

Application
Cryptography

service
Internal Trusted
Storage service

psa_import_key(key_slot, key_material)

psa_its_set(partition_id<<32 | key_identifier, key_material)

pass/fail

pass/fail

Figure 1 Sample Storage implementation with a service implementing the Crypto API

4.2 Memory access errors
When specifying an input or output buffer, the caller should ensure that the entire buffer is within memoryit can access.
Attempting to reference memory that does not belong to the caller will either result in a memory accessviolation or will cause the function to return PSA_ERROR_INVALID_ARGUMENT.
Implementations of the Internal Trusted Storage API and Protected Storage API must check the lengthparameters of a buffer before attempting to access them. It is permissible to pass a null pointer to a zerolength buffer.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 16



5 API Reference
5.1 Status codes
The Secure Storage API uses the status code definitions that are shared with the other PSA Certified APIs.
The following elements are defined in psa/error.h from PSA Certified Status code API [PSA-STAT](previously defined in [PSA-FFM]):
typedef int32_t psa_status_t;

#define PSA_SUCCESS ((psa_status_t)0)

#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)

#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)

#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)

#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)

#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)

#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)

#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)

#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)

#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)

These definitions must be available to an application that includes either of the
psa/internal_trusted_storage.h or psa/protected_storage.h header files.

Implementation note
An implementation is permitted to define the status code interface elements within the SecureStorage API header files, or to define them via inclusion of a psa/error.h header file that is sharedwith the implementation of other PSA Certified APIs.

5.2 General Definitions
These definitions must be defined in the header file psa/storage_common.h.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 17



5.2.1 psa_storage_info_t (struct)

A container for metadata associated with a specific uid.
struct psa_storage_info_t {

size_t capacity;

size_t size;

psa_storage_create_flags_t flags;

};

Fields

capacity The allocated capacity of the storage associated with a uid.
size The size of the data associated with a uid.
flags The flags set when the uid was create

5.2.2 psa_storage_create_flags_t (typedef)

Flags used when creating a data entry.
typedef uint32_t psa_storage_create_flags_t;

5.2.3 psa_storage_uid_t (typedef)

A type for uid used for identifying data.
typedef uint64_t psa_storage_uid_t;

5.2.4 PSA_STORAGE_FLAG_NONE (macro)

#define PSA_STORAGE_FLAG_NONE 0u

No flags to pass.
5.2.5 PSA_STORAGE_FLAG_WRITE_ONCE (macro)

#define PSA_STORAGE_FLAG_WRITE_ONCE (1u << 0)

The data associated with the uid will not be able to be modified or deleted. Intended to be used to set bitsin psa_storage_create_flags_t.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 18



5.2.6 PSA_STORAGE_FLAG_NO_CONFIDENTIALITY (macro)

#define PSA_STORAGE_FLAG_NO_CONFIDENTIALITY (1u << 1)

The data associated with the uid is public and therefore does not require confidentiality. It therefore onlyneeds to be integrity protected.
5.2.7 PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION (macro)

#define PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION (1u << 2)

The data associated with the uid does not require replay protection. This can permit faster storage — but itpermits an attacker with physical access to revert to an earlier version of the data.
5.2.8 PSA_STORAGE_SUPPORT_SET_EXTENDED (macro)

#define PSA_STORAGE_SUPPORT_SET_EXTENDED (1u << 0)

Flag indicating that psa_ps_create() and psa_ps_set_extended() are supported.

5.3 Internal Trusted Storage API
These definitions must be defined in the header file psa/internal_trusted_storage.h.
5.3.1 PSA_ITS_API_VERSION_MAJOR (macro)

The major version number of the Internal Trusted Storage API.
#define PSA_ITS_API_VERSION_MAJOR 1

It will be incremented on significant updates that can include breaking changes.
5.3.2 PSA_ITS_API_VERSION_MINOR (macro)

The minor version number of the Internal Trusted Storage API.
#define PSA_ITS_API_VERSION_MINOR 0

It will be incremented in small updates that are unlikely to include breaking changes.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 19



5.3.3 psa_its_set (function)

Set the data associated with the specified uid.
psa_status_t psa_its_set(psa_storage_uid_t uid,

size_t data_length,

const void * p_data,

psa_storage_create_flags_t create_flags);

Parameters

uid The identifier for the data.
data_length The size in bytes of the data in p_data. If data_length == 0 theimplementation will create a zero-length asset associated with the

uid. While no data can be stored in such an asset, a call to
psa_its_get_info() will return PSA_SUCCESS.

p_data A buffer of data_length containing the data to store.
create_flags The flags that the data will be stored with.

Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_NOT_PERMITTED The operation failed because the provided uid value was alreadycreated with PSA_STORAGE_FLAG_WRITE_ONCE.
PSA_ERROR_INVALID_ARGUMENT The operation failed because either:

∙ the uid is 0.
∙ caller cannot access some or all of the memory in the range[p_data, p_data + data_length - 1].

PSA_ERROR_NOT_SUPPORTED The operation failed because one or more of the flags provided in
create_flags is not supported or is not valid.

PSA_ERROR_INSUFFICIENT_STORAGE The operation failed because there was insufficient space on thestorage medium.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).

Description

Stores data in the internal storage.
∙ The uid value must not be zero.
∙ If uid exists it must not have been created as with PSA_STORAGE_FLAG_WRITE_ONCE — would result in

PSA_ERROR_NOT_PERMITTED

∙ The caller must have access all memory from p_data to p_data + data_length.
∙ Even if all parameters are correct, the function can fail if there is insufficient storage space or in thecase of a storage failure.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 20



5.3.4 psa_its_get (function)

Retrieve data associated with a provided uid.
psa_status_t psa_its_get(psa_storage_uid_t uid,

size_t data_offset,

size_t data_size,

void * p_data,

size_t * p_data_length);

Parameters

uid The uid value.
data_offset The starting offset of the data requested.
data_size The amount of data requested.
p_data On success, the buffer where the data will be placed.
p_data_length On success, this will contain size of the data placed in p_data.

Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found inthe storage.
PSA_ERROR_INVALID_ARGUMENT The operation failed because either:

∙ The uid is 0.
∙ The caller cannot access some or all of the memory in the range[p_data, p_data + data_size - 1].
∙ data_offset is larger than the size of the data associated with

uid.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).

Description

Retrieves data associated with uid, starting at data_offset bytes from the beginning of the data. Fetchesthe lesser of data_size or uid.size - data_offset bytes, which can be zero.
psa_its_get() must not return bytes from beyond the end of uid.
Upon successful completion, the data will be placed in the p_data buffer, which must be at least data_sizebytes in size. The length of the data returned will be in p_data_length. Any bytes beyond p_data_length areleft unmodified.
If data_size is 0 or data_offset == uid.size, the contents of p_data_length will be set to zero, but thecontents of p_data are unchanged. The function returns PSA_SUCCESS.

∙ The uid value must not be zero.
∙ The value of data_offset must be less than or equal to the length of uid.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 21



∙ If data_ffset is greater than uid.size, no data is retrieved and the functions returnsPSA_INVALID_ARGUMENT.
∙ If data_size is not zero, p_data must mot be NULL.
∙ The call must have access to the memory from p_data to p_data + data_size - 1.
∙ If the location uid exists the lesser of data_size or uid.size - data_offset bytes are written to theoutput buffer and p_data_length is set to the number of bytes written, which can be zero.
∙ Even if all parameters are correct, the function can fail in the case of a storage failure.

5.3.5 psa_its_get_info (function)

Retrieve the metadata about the provided uid.
psa_status_t psa_its_get_info(psa_storage_uid_t uid,

struct psa_storage_info_t * p_info);

Parameters

uid The uid value.
p_info A pointer to the psa_storage_info_t struct that will be populated withthe metadata.

Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found inthe storage.
PSA_ERROR_INVALID_ARGUMENT The operation failed because either:

∙ The uid is 0.
∙ The caller cannot access some or all of the memory in the range[p_info, p_info + sizeof(psa_storage_info_t) - 1]

PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).
Description

Retrieves the metadata stored for a given uid as a psa_storage_info_t structure.
∙ The uid value must not be zero.
∙ The call must have access to the memory from p_info to p_info + sizeof(psa_storage_info_t) - 1.
∙ If the location uid exists the metadata for the object is written to p_info.
∙ Even if all parameters are correct, the function can fail in the case of a storage failure.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 22



5.3.6 psa_its_remove (function)

Remove the provided uid and its associated data from the storage.
psa_status_t psa_its_remove(psa_storage_uid_t uid);

Parameters

uid The uid value.
Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_NOT_PERMITTED The operation failed because the provided uid value was createdwith PSA_STORAGE_FLAG_WRITE_ONCE.
PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found inthe storage.
PSA_ERROR_INVALID_ARGUMENT The uid is 0.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).

Description

Deletes the data from internal storage.
∙ The uid value must not be zero.
∙ If uid exists it and any metadata are removed from storage.
∙ Even if all parameters are correct, the function can fail in the case of a storage failure.

5.4 Protected Storage API
These definitions must be defined in the header file psa/protected_storage.h.
5.4.1 PSA_PS_API_VERSION_MAJOR (macro)

The major version number of the Protected Storage API.
#define PSA_PS_API_VERSION_MAJOR 1

It will be incremented on significant updates that can include breaking changes.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 23



5.4.2 PSA_PS_API_VERSION_MINOR (macro)

The minor version number of the Protected Storage API.
#define PSA_PS_API_VERSION_MINOR 0

It will be incremented in small updates that are unlikely to include breaking changes.
5.4.3 psa_ps_set (function)

Set the data associated with the specified uid.
psa_status_t psa_ps_set(psa_storage_uid_t uid,

size_t data_length,

const void * p_data,

psa_storage_create_flags_t create_flags);

Parameters

uid The identifier for the data.
data_length The size in bytes of the data in p_data. If data_length == 0 theimplementation will create a zero-length asset associated with the

uid. While no data can be stored in such an asset, a call to
psa_ps_get_info() will return PSA_SUCCESS.

p_data A buffer containing the data.
create_flags The flags indicating the properties of the data.

Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_NOT_PERMITTED The operation failed because the provided uid value was alreadycreated with PSA_STORAGE_FLAG_WRITE_ONCE.
PSA_ERROR_INVALID_ARGUMENT The operation failed because either:

∙ The uid is 0.
∙ The operation failed because caller cannot access some or all ofthe memory in the range [p_data, p_data + data_length - 1].

PSA_ERROR_NOT_SUPPORTED The operation failed because one or more of the flags provided in
create_flags is not supported or is not valid.

PSA_ERROR_INSUFFICIENT_STORAGE The operation failed because there was insufficient space on thestorage medium.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).
PSA_ERROR_GENERIC_ERROR The operation failed because of an unspecified internal failure.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 24



Description

The newly created asset has a capacity and size that are equal to data_length.
∙ The uid value must not be zero.
∙ If uid exists it must not have been created as with PSA_STORAGE_FLAG_WRITE_ONCE - would result in

PSA_ERROR_NOT_PERMITTED

∙ The caller must have access all memory from p_data to p_data + data_length.
∙ Even if all parameters are correct, the function can fail if there is insufficient storage space or in thecase of a storage failure.

5.4.4 psa_ps_get (function)
Retrieve data associated with a provided uid.
psa_status_t psa_ps_get(psa_storage_uid_t uid,

size_t data_offset,

size_t data_size,

void * p_data,

size_t * p_data_length);

Parameters

uid The uid value.
data_offset The starting offset of the data requested. This must be less than orequal to uid.size.
data_size The amount of data requested.
p_data On success, the buffer where the data will be placed.
p_data_length On success, will contain size of the data placed in p_data.

Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_INVALID_SIGNATURE The operation failed because the data associated with the uid failedauthentication.
PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found inthe storage.
PSA_ERROR_INVALID_ARGUMENT The operation failed because either:

∙ The uid is 0.
∙ The caller cannot access some or all of the memory in the range[p_data, p_data + data_size - 1].
∙ data_offset is larger than the size of the data associated with

uid.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 25



PSA_ERROR_DATA_CORRUPT The operation failed because the data associated with the uid hasbeen corrupted.
PSA_ERROR_GENERIC_ERROR The operation failed because of an unspecified internal failure.

Description

Retrieves data associated with uid, starting at data_offset bytes from the beginning of the data. Fetchesthe smaller of data_size or uid.size - data_offset bytes. This can be zero.
psa_ps_get() must not return bytes from beyond the end of uid.
Upon successful completion, the data will be placed in the p_data buffer, which must be at least data_sizebytes in size. The length of the data returned will be in p_data_length. Any bytes beyond p_data_length areleft unmodified.
If data_size is 0 or data_offset == uid.size, the contents of p_data_length will be set to zero, but thecontents of p_data are unchanged. The function returns PSA_SUCCESS.

∙ The uid value must not be zero.
∙ The value of data_offset must be less than or equal to the length of uid.
∙ If data_offset is greater than uid.size the function retrieves no data and returns

PSA_ERROR_INVALID_ARGUMENT

∙ If data_size is not zero, p_data must mot be NULL.
∙ The call must have access to the memory from p_data to p_data + data_size - 1.
∙ If the location uid exists the lesser of data_size and uid.size - data_offset bytes are written to theoutput buffer and p_data_length is set to the number of bytes written, which can be zero.
∙ Any bytes in the buffer beyond p_data_length are left unmodified.
∙ Even if all parameters are correct, the function can fail in the case of a storage failure.

5.4.5 psa_ps_get_info (function)

Retrieve the metadata about the provided uid.
psa_status_t psa_ps_get_info(psa_storage_uid_t uid,

struct psa_storage_info_t * p_info);

Parameters

uid The identifier for the data.
p_info A pointer to the psa_storage_info_t struct that will be populated withthe metadata.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 26



Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_INVALID_SIGNATURE The operation failed because the data associated with the uid failedauthentication.
PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found inthe storage.
PSA_ERROR_INVALID_ARGUMENT The operation failed because either:

∙ The uid is 0.
∙ The caller cannot access some or all of the memory in the range[p_info, p_info + sizeof(psa_storage_info_t) - 1]

PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).
PSA_ERROR_DATA_CORRUPT The operation failed because the data associated with the uid hasbeen corrupted.
PSA_ERROR_GENERIC_ERROR The operation failed because of an unspecified internal failure.

Description

Retrieves the metadata stored for a given uid as a psa_storage_info_t structure.
∙ The uid value must not be zero.
∙ The call must have access to the memory from p_info to p_info + sizeof(psa_storage_info_t) - 1.
∙ If the location uid exists the metadata for the object is written to p_info.
∙ Even if all parameters are correct, the function can fail in the case of a storage failure.

5.4.6 psa_ps_remove (function)
Remove the provided uid and its associated data from the storage.
psa_status_t psa_ps_remove(psa_storage_uid_t uid);

Parameters

uid The identifier for the data to be removed.
Returns: psa_status_t

A status indicating the success or failure of the operation.
PSA_SUCCESS The operation completed successfully.
PSA_ERROR_NOT_PERMITTED The operation failed because the provided uid value was createdwith PSA_STORAGE_FLAG_WRITE_ONCE.
PSA_ERROR_DOES_NOT_EXIST The operation failed because the provided uid value was not found inthe storage.
PSA_ERROR_INVALID_ARGUMENT The uid is 0.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 27



PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).
PSA_ERROR_GENERIC_ERROR The operation failed because of an unspecified internal failure.

Description

Removes previously stored data and any associated metadata, including rollback protection data.
∙ The uid value must not be zero.
∙ If the location uid exists, it and any metadata are removed.
∙ Even if all parameters are correct, the function can fail in the case of a storage failure.

5.4.7 psa_ps_create (function)

Reserves storage for the specified uid.
psa_status_t psa_ps_create(psa_storage_uid_t uid,

size_t capacity,

psa_storage_create_flags_t create_flags);

Parameters

uid A unique identifier for the asset.
capacity The allocated capacity, in bytes, of the uid.
create_flags Flags indicating properties of the storage.

Returns: psa_status_t

PSA_SUCCESS The storage was successfully reserved.
PSA_ERROR_INVALID_ARGUMENT The operation failed because the uid is 0.
PSA_ERROR_NOT_SUPPORTED The function is not implemented or one or more create_flags are notsupported.
PSA_ERROR_INSUFFICIENT_STORAGE capacity is bigger than the current available space.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).
PSA_ERROR_GENERIC_ERROR The operation has failed due to an unspecified error.
PSA_ERROR_ALREADY_EXISTS Storage for the specified uid already exists.

Description

Reserves storage for the specified uid. Upon success, the capacity of the storage is capacity, and the size is
0.
It is only necessary to call this function for assets that will be written with the psa_ps_set_extended()function. If only the psa_ps_set() function is needed, calls to this function are redundant.
This function cannot be used to replace or resize an existing asset and attempting to do so will return
PSA_ERROR_ALREADY_EXISTS.
If the PSA_STORAGE_FLAG_WRITE_ONCE flag is passed, psa_ps_create() will return PSA_ERROR_NOT_SUPPORTED.
IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 28



This function is optional. Consult the platform documentation to determine if it is implemented or performa call to psa_ps_get_support(). This function must be implemented if psa_ps_get_support() returns
PSA_STORAGE_SUPPORT_SET_EXTENDED.

∙ The uid value must not be zero.
∙ If uid must not exist.
∙ The flag PSA_STORAGE_FLAG_WRITE_ONCE must not be set.
∙ Even if all parameters are correct, the function can fail if there is insufficient storage space or in thecase of a storage failure.

5.4.8 psa_ps_set_extended (function)

Overwrite part of the data of the specified uid.
psa_status_t psa_ps_set_extended(psa_storage_uid_t uid,

size_t data_offset,

size_t data_length,

const void * p_data);

Parameters

uid The unique identifier for the asset.
data_offset Offset within the asset to start the write.
data_length The size in bytes of the data in p_data to write.
p_data Pointer to a buffer which contains the data to write.

Returns: psa_status_t

PSA_SUCCESS The asset exists, the input parameters are correct and the data iscorrectly written in the physical storage.
PSA_ERROR_NOT_PERMITTED The operation failed because it was attempted on an asset which waswritten with the flag PSA_STORAGE_FLAG_WRITE_ONCE.
PSA_ERROR_INVALID_SIGNATURE The operation failed because the existing data failed authentication(MAC check failed).
PSA_ERROR_DOES_NOT_EXIST The specified uid was not found.
PSA_ERROR_INVALID_ARGUMENT The operation failed because either:

∙ The uid is 0.
∙ The caller cannot access some or all of the memory in the range[p_data, p_data + data_size - 1].
∙ One or more of the preconditions regarding data_offset, size, or

data_length was violated.
PSA_ERROR_NOT_SUPPORTED The implementation does not support this function.
PSA_ERROR_STORAGE_FAILURE The operation failed because the physical storage has failed (Fatalerror).
PSA_ERROR_DATA_CORRUPT The operation failed because the existing data has been corrupted.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 29



PSA_ERROR_GENERIC_ERROR The operation failed due to an unspecified error.
Description

Sets partial data into an asset based on the given identifier, data_offset, data length and p_data.
Before calling this function, the storage must have been reserved with a call to psa_ps_create(). It can alsobe used to overwrite data in an asset that was created with a call to psa_ps_set().
Calling this function with data_length == 0 is permitted. This makes no change to the stored data.
This function can overwrite existing data and/or extend it up to the capacity for the uid specified in
psa_ps_create() but cannot create gaps.
This function is optional. Consult the platform documentation to determine if it is implemented or performa call to psa_ps_get_support(). This function must be implemented if psa_ps_get_support() returns
PSA_STORAGE_SUPPORT_SET_EXTENDED.

∙ The uid value must not be zero.
∙ If uid exists it must not have been created as with PSA_STORAGE_FLAG_WRITE_ONCE - would result in

PSA_ERROR_NOT_PERMITTED

∙ data_offset <= size

∙ data_offset + data_length <= capacity

∙ Even if all parameters are correct, the function can fail in the case of a storage failure.
On Success:

∙ size = max(size, data_offset + data_length)

∙ capacity unchanged.
5.4.9 psa_ps_get_support (function)

Returns a bitmask with flags set for the optional features supported by the implementation.
uint32_t psa_ps_get_support(void);

Returns: uint32_t
Description

Currently defined flags are limited to:
∙ PSA_STORAGE_SUPPORT_SET_EXTENDED

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 30



Appendix A: Example header files
Each implementation of the Secure Storage API must provide a header file named psa/storage_common.h,and also any of psa/internal_trusted_storage.h and psa/protected_storage.h for the APIs that areimplemented.
This appendix provides examples of the header files with all of the API elements. This can be used as astarting point or reference for an implementation.

A.1 psa/storage_common.h

/* This file is a reference template for implementation of the

* PSA Certified Secure Storage API v1.0.1

*

* This file includes common definitions
*/

#ifndef PSA_STORAGE_COMMON_H

#define PSA_STORAGE_COMMON_H

#include <stddef.h>

#include <stdint.h>

#ifdef __cplusplus

extern "C" {

#endif

struct psa_storage_info_t {

size_t capacity;

size_t size;

psa_storage_create_flags_t flags;

};

typedef uint32_t psa_storage_create_flags_t;

typedef uint64_t psa_storage_uid_t;

#define PSA_STORAGE_FLAG_NONE 0u

#define PSA_STORAGE_FLAG_WRITE_ONCE (1u << 0)

#define PSA_STORAGE_FLAG_NO_CONFIDENTIALITY (1u << 1)

#define PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION (1u << 2)

#define PSA_STORAGE_SUPPORT_SET_EXTENDED (1u << 0)

#ifdef __cplusplus

}

#endif

(continues on next page)

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 31



(continued from previous page)
#endif // PSA_STORAGE_COMMON_H

A.2 psa/internal_trusted_storage.h

/* This file is a reference template for implementation of the

* PSA Certified Secure Storage API v1.0.1

*

* This file describes the Internal Trusted Storage API
*/

#ifndef PSA_INTERNAL_TRUSTED_STORAGE_H

#define PSA_INTERNAL_TRUSTED_STORAGE_H

#include <stddef.h>

#include <stdint.h>

#include "psa/error.h"

#include "psa/storage_common.h"

#ifdef __cplusplus

extern "C" {

#endif

#define PSA_ITS_API_VERSION_MAJOR 1

#define PSA_ITS_API_VERSION_MINOR 0

psa_status_t psa_its_set(psa_storage_uid_t uid,

size_t data_length,

const void * p_data,

psa_storage_create_flags_t create_flags);

psa_status_t psa_its_get(psa_storage_uid_t uid,

size_t data_offset,

size_t data_size,

void * p_data,

size_t * p_data_length);

psa_status_t psa_its_get_info(psa_storage_uid_t uid,

struct psa_storage_info_t * p_info);

psa_status_t psa_its_remove(psa_storage_uid_t uid);

#ifdef __cplusplus

}

#endif

#endif // PSA_INTERNAL_TRUSTED_STORAGE_H

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 32



A.3 psa/protected_storage.h
/* This file is a reference template for implementation of the

* PSA Certified Secure Storage API v1.0.1

*

* This file describes the Protected Storage API
*/

#ifndef PSA_PROTECTED_STORAGE_H

#define PSA_PROTECTED_STORAGE_H

#include <stddef.h>

#include <stdint.h>

#include "psa/error.h"

#include "psa/storage_common.h"

#ifdef __cplusplus

extern "C" {

#endif

#define PSA_PS_API_VERSION_MAJOR 1

#define PSA_PS_API_VERSION_MINOR 0

psa_status_t psa_ps_set(psa_storage_uid_t uid,

size_t data_length,

const void * p_data,

psa_storage_create_flags_t create_flags);

psa_status_t psa_ps_get(psa_storage_uid_t uid,

size_t data_offset,

size_t data_size,

void * p_data,

size_t * p_data_length);

psa_status_t psa_ps_get_info(psa_storage_uid_t uid,

struct psa_storage_info_t * p_info);

psa_status_t psa_ps_remove(psa_storage_uid_t uid);

psa_status_t psa_ps_create(psa_storage_uid_t uid,

size_t capacity,

psa_storage_create_flags_t create_flags);

psa_status_t psa_ps_set_extended(psa_storage_uid_t uid,

size_t data_offset,

size_t data_length,

const void * p_data);

uint32_t psa_ps_get_support(void);

#ifdef __cplusplus

}

#endif

(continues on next page)

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 33



(continued from previous page)
#endif // PSA_PROTECTED_STORAGE_H

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 34



Appendix B: Security Risk Assessment
This appendix provides a Security Risk Assessment (SRA) of the Secure Storage API and of a genericimplementation of storage. It describes the threats presented by various types of adversaries against thesecurity goals for an implementation of a secure storage service, and mitigating actions for those threats.

∙ About this assessment describes the assessment methodology.
∙ Feature definition on page 37 defines the security problem.
∙ Threats on page 44 describes the threats and the recommended mitigating actions.
∙ Mitigation Summary on page 54 summarizes the mitigations, and where these are implemented.

B.1 About this assessment
B.1.1 Subject and scope

This SRA analyses the security of the Secure Storage API itself, and of the conceptual architectures forstorage, not of any specific implementation of the API, or any specific use of the API. It does, however,divide implementations into four deployment models representing common implementation types, andlooks at the different mitigations needed in each deployment model.
In this SRA:

∙ Storage service means the firmware implementing the Secure Storage API.
∙ Storage medium refers to the physical storage location.

B.1.2 Risk assessment methodology

Our risk ratings use an approach derived from NIST Special Publication 800-30 Revision 1: Guide forConducting Risk Assessments [SP800-30]: for each Threat, we determine its Likelihood and the Impact.Each is evaluated on a 5-level scale, as defined in Table 6 and Table 7 on page 36.
Table 6 Likelihood levels

Level Definition

Very Low Unlikely to ever occur in practice, or mathematically near impossible
Low The event could occur, but only if the attacker employs significant resources; or it ismathematically unlikely
Medium A motivated, and well-equipped adversary can make it happen within the lifetime of aproduct based on the feature (resp. of the feature itself)
High Likely to happen within the lifetime of the product or feature
Very High Will happen, and soon (for instance a zero-day)

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 35



Table 7 Impact levels
Level Definition Example Effects

Very Low Causes virtually no damage. Probably none.
Low The damage can easily be tolerated orabsorbed. There would be a CVE at most.
Medium The damage will have a noticeable effect,such as degrading some functionality, butwon’t degrade completely the use of theconsidered functionality.

There would be a CVE at most.

High The damage will have a strong effect, suchas causing a significant reduction in itsfunctionality or in its security guarantees.
Security Analysts would discuss this atlength, there would be papers, blogentries. Partners would complain.

Very High The damage will have criticalconsequences — it could kill the feature, byaffecting several of its security guarantees.
It would be quite an event.
Partners would complain strongly, anddelay or cancel deployment of the feature.

For both Likelihood and Impact, when in doubt always choose the higher value. These two values arecombined using Table 8 to determine the Overall Risk of a Threat.
Table 8 Overall risk calculation

Impact

Likelihood Very Low Low Medium High Very High

Very Low Very Low Very Low Very Low Low Low
Low Very Low Very Low Low Low Medium
Medium Very Low Low Medium Medium High
High (Very) Low Low Medium High Very High
Very High (Very) Low Medium High Very High Very High

Threats are handled starting from the most severe ones. Mitigations will be devised for these Threats oneby one (note that a Mitigation may mitigate more Threats, and one Threat may require the deployment ofmore than one Mitigation to be addressed). Likelihood and Impact will be reassessed assuming that theMitigations are in place, resulting in a Mitigated Likelihood (this is the value that usually decreases), aMitigated Impact (it is less common that this value will decrease), and finally a Mitigated Risk. The Analysisis completed when all the Mitigated Risks are at the chosen residual level or lower, which usually is Low orVery Low.
The Mitigating actions that can be taken are defined in the acronym CAST:

∙ Control: Put in place steps to reduce the Likelihood and/or Impact of a Threat, thereby reducing therisk to an acceptable level.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 36



∙ Accept: The threat is considered to be of acceptable risk such that a mitigation is not necessary ormust be accepted because of other constraint or market needs.
∙ Suppress: Remove the feature or process that gives rise to the threat.
∙ Transfer: Identify a more capable or suitable party to address the risk and transfer the responsibilityof providing a mitigation for the threat to them.

B.2 Feature definition
B.2.1 Introduction

Background

Introduction on page 9 provides the context in which the Secure Storage API is designed.
Purpose

The Secure Storage API separates the software responsible for providing the security of the data from thecaller. The storage service calls on firmware that provides low level reads and writes of non-volatilestorage medium and the access to any required bus. The Secure Storage API is to provide a consistentinterface, so that applications do not need to account for the different low-level implementations.
This analysis does not address the engineering requirements to create a reliable storage medium from theunderlying physical storage. It is assumed that the implementation will use the standard techniques, errorcorrecting codes, wear levelling and so on, to ensure the storage is reliable.
B.2.2 Lifecycle

Figure 2 shows the typical lifecycle of a device.

Manufacturing

Operational
End of life

System
manufacturing
and initialization

Provision of
Root of Trust
secrets

Boot Secure operation
Return to
Manufacturer

SiP and OEM SiP and/or OEM [everybody]
SiP, OEM,
and Owner

Figure 2 Device lifecycle of a system providing storage
The storage service, and the Secure Storage API are active during the operational phase, implementedwithin the boot-time and run-time software.
Within a boot session, it is the responsibility of the secure boot firmware to:

∙ Set up the isolation barriers between partitions.
∙ Provision the firmware implementing the storage service.
∙ Provision the credentials for authorizing the storage of data.
∙ Enable or disable debug facilities.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 37



This SRA only considers threats to the storage service in its operational phase. The security of the bootprocess and of any data provisioning service are not considered in this SRA.
B.2.3 Operation and trust boundaries

Figure 3 shows all of the main components in the storage service. Presenting the context in which theSecure Storage API operates aids understanding of the threats and security mitigations and providesjustification for some of the aspects of the API design.
«Application boundary»

«Data protection boundary»

«Application boundary»

Application 1

Secure Storage API

Storage service
Storage medium

Secure Storage API

Application 2

Figure 3 Trust boundaries of a system providing storage
Secure Storage API is a C language API. Therefore, any implementation of the API must execute, at leastpartially, within the context of the caller. When an implementation includes a trust boundary, themechanism and protocol for communication across the boundary is not defined by this specification.
The operational dataflow diagram is reproduced for each of the deployment models. Although thedataflow itself is common to the models, the placement of trust boundaries is different.
It is helpful to visualize the effect of these differences on the threats against the dataflows.
B.2.4 Deployment models

DM.PROTECTEDThe storage service and all physical storage is within the Platform Root of Trust (PRoT)partition. The PRoT partition has sole access to an area of non-volatile storage, thus thatstorage cannot be accessed by any other partition or any other means. This means that thestorage service, any driver code, the storage service and storage medium all reside with thePRoT and are protected by the PRoT’s isolation mechanisms as shown in Figure 4 onpage 39.
The storage service is the arbitrator of access from different applications and manages alldata accesses (write, update and deletion). Therefore, the storage service is responsible forthe SG.CONFIDENTIALITY, SG.INTEGRITY and SG.CURRENCY goals of each caller, includingmaintaining confidentiality between different callers.
An example of this deployment model is the use of on-chip flash or OTP with an accesscontrol mechanism such as a Memory Protection Unit.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 38



«Device»

«trust boundary»
Platform Root of Trust

Application

Secure Storage API

Storage
service Storage medium

DF1 DF2

Figure 4 Trust boundaries in the deployment model DM.PROTECTED

DM.EXPOSEDThe PRoT partition does not have sole access to the area of non-volatile storage, thus thestorage medium can be read or written by another partition or by other means. This meansthat the driver code, or the storage medium resides outside the PRoT and is accessible toother partitions or by other means, as shown in as shown in Figure 5. Therefore, attackerscan bypass the storage service.
«Device»

«trust boundary»
Platform Root of Trust

Application

Secure Storage API
Storage medium

Storage service
DF1 DF3

Figure 5 Trust boundaries in the deployment model DM.EXPOSED
The storage service is the arbitrator of access from different applications and managesaccesses that write, update, and delete data. Therefore, the storage service is responsiblefor the SG.CONFIDENTIALITY, SG.INTEGRITY and SG.CURRENCY goal with respect topreventing access by a different caller.
The storage service cannot prevent other partitions or other means from reading or writingthe storage, or accessing the link DF3. Therefore, the storage service is responsible for the
SG.CONFIDENTIALITY, SG.INTEGRITY and SG.CURRENCY goals.
An example of this deployment model is the use of a file system on a flash chip.

DM.AUTHORIZEDThere is a separate isolated storage medium that can only be accessed in response to anauthenticated command and from which all replies include a means for verification of theresponse, as shown in Figure 6 on page 40. The isolation guarantees that there is no accessto the storage medium other than by using the authentication mechanism.
The storage service is the arbitrator of access from different applications and managesthose data accesses (write, update and deletion). Therefore, the storage service isresponsible for the SG.CONFIDENTIALITY goal with respect to preventing access by a

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 39



«Device»

«trust boundary»
Platform Root of Trust

«trust boundary»
Replay-Protected

Memory Block

Application

Secure Storage API

Storage service
Storage medium

DF1 DF4

Figure 6 Trust boundaries in the deployment model DM.AUTHORIZED

different caller.
The authorization and verification mechanism provided by the storage medium controlsaccess to data (reads, writes and modification). Therefore, the storage medium isresponsible for the SG.INTEGRITY and SG.CURRENCY goals. Attacks on these mechanismsare out of scope.
However, the communication between the storage service and the storage medium isobservable by other partitions and any other means as any data sent in plain text can beobserved. Therefore, the storage service is responsible for SG.CONFIDENTIALITY.
The storage service and the storage medium are jointly responsible for protecting theassets required to authorize commands. Attacks on the storage service that expose theseassets are in scope.
An example of this deployment model is the use of an RPMB memory block.

DM.SECURE_LINKThere is a separate isolated storage medium that can only be accessed across acryptographically protected secure channel as shown in Figure 7. The secure channelprotocol provides authentication, confidentiality and integrity of data in transit. Theisolation guarantees that there is no access to the storage medium other than by using thischannel.
«Device»

«trust boundary»
Platform Root of Trust

«trust boundary»
Secure Element

Application

Secure Storage API

Storage service
Storage medium

DF1 DF5

Figure 7 Trust boundaries in the deployment model DM.SECURE_LINK
The storage service is the arbitrator of access from different applications and managesthose data accesses (write, update and deletion). Therefore, the storage service isresponsible for the SG.CONFIDENTIALITY goal with respect to preventing access by adifferent caller.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 40



The authorization and verification mechanism provided by the secure channel protocolcontrols access to data (reads, writes and modification). Therefore, the storage medium isresponsible for the SG.INTEGRITY and SG.CURRENCY goals. Attacks on the storage mediumare out of scope.
The communication between the storage service and the storage medium is protected fromobservation by other partitions and other means as the data is sent in encrypted form overthe secure channel. Attacks on the secure channel protocol are out of scope.
The storage service uses the secure channel protocol, the storage service and the storagemedium are jointly responsible for protecting the assets required to set up the channel.Attacks on the storage service that expose these assets are in scope.
An example of this deployment model is the use of a Secure Element, or a secure flashdevice.

Optional isolation

Implementations can isolate the storage service from the caller and can further isolate multiple callingapplications. Various technologies can provide protection, for example:
∙ Process isolation in an operating system.
∙ Partition isolation, either with a virtual machine or a partition manager.
∙ Physical separation between execution environments.

The mechanism for identifying callers is beyond the scope of this specification. An implementation thatprovides caller isolation must document the identification mechanism. An implementation that providescaller isolation must document any implementation-specific extension of the API that enables callers toshare data in any form.
In summary, there are three types of implementation:

∙ No isolation: there is no security boundary between the caller and the storage service. For example,a statically or dynamically linked library is an implementation with no isolation. As the caller is in thesame security domain as the storage, the API cannot prevent access to the storage medium thatdoes not go through the API.
∙ Simple Isolation: A single security boundary separates the storage service from the callers, but thereis no isolation between callers. The only access to stored data is via the storage service, but thestorage service cannot partition data between different callers.
∙ Caller isolation: there are multiple caller instances, with a security boundary between the callerinstances among themselves, as well as between the storage service and the caller instances. Forexample, a storage service in a multiprocessor environment is an implementation with callerisolation. The only access to the stored data is via the storage service and the storage service canpartition stored data between the different callers.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 41



B.2.5 Assumptions, constraints, and interacting entities
This SRA makes the following assumptions about the Secure Storage API design:

∙ The API does not provide arguments that identify the caller, because they can be spoofed easily, andcannot be relied upon. It is assumed that the implementation of the API can determine the calleridentity, where this is required. See Optional isolation on page 41.
∙ The API does not prevent the use of mitigations that are required by an implementation of the API.SeeMitigations that are transferred to the implementation on page 54.
∙ The Platform Security Model [PSM] assumes that at least the code in the Root of Trust partitions (PRoTand ARoT) are verified at boot, and on any update. Therefore, it is assumed that this code istrustworthy. If any malicious code can run in the RoT partitions, it has achieved full control.
∙ For the purposes of this analysis, it is assumed that in deployment models DM.AUTHORIZED and

DM.SECURE_LINK, there is no way to access the stored data without going through the authenticatedchannel. That is, an attack that would expose the physical storage medium is beyond the resourcesof the attacker.
∙ The analysis ignores attacks that only result in a denial of service. There are many ways an attackercan deny service to the complete system, with or without involving the storage service.
∙ The analysis only looks at an active attack. However, data is also subject to accidental modification,for example from cosmic radiation causing a bit flip. Therefore, standard engineering practice — suchas use of error correcting codes — should be taken to protect data.

B.2.6 Stakeholders and Assets
This analysis looks at the security from the point of view of the applications that call on the service tostore data, and on the overall system.
The following assets are considered in this assessment:
Data to be storedThe purpose of a storage service is to securely store data for its callers.
Caller IdentitiesTo ensure that data stored for one caller is not revealed to a different caller, each callermust have a unique identity.
Implementation SecretsIf in order to secure the data, the storage service uses encryption keys for confidentialityand integrity, these mut be considered assets of the storage service.

B.2.7 Goals
SG.CONFIDENTIALITYAn adversary is unable to disclose Stored Data that belongs to a different Stored DataOwner. A legitimate owner can guarantee their data has not been exposed.
SG.INTEGRITYAn adversary is unable to modify Stored Data that belongs to a different Stored DataOwner, to a value that was not previously stored by the Stored Data Owner. A legitimateowner can guarantee that data returned is a value they have stored.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 42



SG.CURRENCYAn adversary is unable to modify Stored Data that belongs to a different Stored DataOwner. The legitimate owner can guarantee that data returned is the most recent valuethat have stored.
B.2.8 Adversarial models

Adversarial models are descriptions of capabilities that adversaries of systems implementing the SecureStorage API can have, grouped into classes. The adversaries are defined in this way to assist with threatmodelling an abstract API, which can have different implementations, in systems with a wide range ofsecurity sensitivity.
AM.0 The Adversary is only capable of accessing data that requires neither physical access to asystem containing an implementation of the feature nor the ability to run software on it.This Adversary is intercepting or providing data or requests to the target system via anetwork or other remote connection.

For instance, the Adversary can:
∙ Read any input and output to the target through external apparatus.
∙ Provide, forge, replay or modify such inputs and outputs.
∙ Perform timings on the observable operations being done by the target, either innormal operation or as a response to crafted inputs. For example, timing attacks onweb servers.

AM.1 The Adversary can additionally mount attacks from software running on a target processorimplementing the feature. This type of Adversary can run software on the target.
For instance, the Adversary can:

∙ Attempt software exploitation by running software on the target.
∙ Exploit access to any memory mapped configuration, monitoring, debug register.
∙ Mount any side channel analysis that relying on software-exposed built-in hardwarefeatures to perform physical unit and time measurements.
∙ Perform software-induced glitching of resources such as Rowhammer, RASpberry orcrashing the CPU by running intensive tasks.

AM.2 In addition to the above, the Adversary is capable of mounting hardware attacks and faultinjection that does not require breaching the physical envelope of the chips. This type ofAdversary has access to a system containing an implementation of the target feature.
For instance, the Adversary can:

∙ Conduct side-channel analysis that requires measurement equipment. For example,this can utilize leakage sources such as EM emissions, power consumption, photonicsemission, or acoustic channels.
∙ Plug malicious hardware into an unmodified system.
∙ Gain access to the internals of the target system and interpose the SoC or memory forthe purposes of reading, blocking, replaying, and injecting transactions.
∙ Replace or add chips on the motherboard.
∙ Make simple, reversible modifications, to perform glitching.

AM.3 In addition to all the above, the Adversary can perform invasive SoC attacks.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 43



For instance, the Adversary can:
∙ Decapsulate a chip, via laser or chemical etching, followed by microphotography toreverse engineer the chip.
∙ Use a focused ion beam microscope to perform gate level modification.

The adversarial models that are in scope depend on the product requirements. To ensure that the SecureStorage API can be used in a wide range of systems, this assessment considers adversarial models AM.0,
AM.1, and AM.2 to be in-scope.
Code in the RoT partitions is assumed to be trustworthy — and any untrustworthy code running in PRoTpartitions already has complete control of the target — therefore, in AM.1 this SRA only considers threatsfrom malicious actors running in Non-secure Processing Environment.

B.3 Threats
Because Secure Storage API can be used in a wide range of deployment models and a wide range ofthreats, not all mitigating actions apply to all deployment models. As a result, various mitigations areoptional to implement, depending on which threats exist in a particular domain of application, and whichdeployment model is used.
Table 9 summarizes the threats.

Table 9 Summary of threats
Threat Description

T.INTERFACE_ABUSE Call the API with illegal inputs
T.SPOOF_READ Reading data for a different caller using the API
T.SPOOF_WRITE Writing data for a different caller using the API
T.EAVESDROPPING Accessing data in transit
T.MITM A Man in the Middle can actively interfere with communication
T.DIRECT_READ Directly reading stored data, bypassing the API
T.DIRECT_WRITE Directly modifying data, bypassing the API
T.REPLACE Physical replacement of the storage medium
T.GLITCH_READ Glitching during a read
T.GLITCH_WRITE Glitching during a write

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 44



B.3.1 T.INTERFACE_ABUSE: Illegal inputs to the API

Description: An attacker can abuse the Secure Storage API. For example:
∙ Passing out of range values to the interface to provoke unexpected behavior of the implementation.
∙ Passing invalid input or output buffers to the interface, that would cause the implementation toaccess non-existent memory, or memory that is inaccessible to the caller — including accessingassets of the storage service.

Adversarial Model AM.1
Security Goal SG.CONFIDENTIALITY, SG.INTEGRITY
Unmitigated Impact Very High
Unmitigated Likelihood Very High
Unmitigated Risk Very High
Mitigating Actions M.ValidateParameter. Transfer to the implementation: check all API parametersto lie within valid ranges, including memory access permissions.

M.MemoryBuffer. Control by API design: input buffers are fully consumed by theimplementation before returning from a function. An implementation must notaccess the caller’s memory after a function has returned.
Residual Impact Very High
Residual Likelihood Very Low
Residual Risk Low
B.3.2 T.SPOOF_READ: Use the API to read another caller’s data

Description: In all deployment models, an attacker attempts to read data stored for another caller usingthe Secure Storage API.
The API does not require that the names used by caller for stored data are globally unique, only uniquewithin that caller’s namespace.
Adversarial Model AM.1
Security Goal SG.CONFIDENTIALITY
Unmitigated Impact Very High
Unmitigated Likelihood Very High
Unmitigated Risk Very High
Mitigating Actions M.ImplicitIdentity. Control by API design: caller identity is not provided by thecaller to the API. If caller identity is supplied by the caller in the API, the identitycan be spoofed by another caller. Using authentication credentials only movesthe problem of storing secrets, but does not solve it.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 45



Transfer to the implementation: provide caller identities, to isolate data thatbelongs to different callers. The assurance that the storage service can give islimited by the assurance that the implementation can give as to the identity ofthe caller.
Where each user runs in a separate partition, the identity can be provided bythe partition manager. Where different users run within a single partition,
Transfer the responsibility for separating users within that partition to theoperating system or run time within that partition.
M.FullyQualifiedNames. Transfer to the implementation: use a fully-qualified dataidentifier, that is a combination of an owner identity and the item UID. Theimplementation must used the owner identity to ensure that a data request tothe storage service does not return data of the same UID, that was stored by adifferent caller.
The storage service must also ensure that if a data item with the fully-qualifiedidentifier does not exist, the implementation returns the correct error.

Residual Impact Very High
Residual Likelihood Very Low
Residual Risk Low
B.3.3 T.SPOOF_WRITE: Use the API to modify another caller’s data

Description: In all deployment models, an attacker attempts to write data to a file belonging to anothercaller using the Secure Storage API or create a new file in a different caller’s namespace.
This threat is the counterpart to T.SPOOF_READ except that the attacker tries to write data rather thanread. It is therefore subject to the same analysis.
Adversarial Model AM.1
Security Goal SG.CONFIDENTIALITY
Unmitigated Impact Very High
Unmitigated Likelihood Very High
Unmitigated Risk Very High
Mitigating Actions M.FullyQualifiedNames, M.ImplicitIdentity.
Residual Impact Very High
Residual Likelihood Very Low
Residual Risk Low

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 46



B.3.4 T.EAVESDROPPING: Eavesdropping

Description: An attacker accesses data in transit, either between the caller and the storage service, orbetween the storage service and the storage medium.
In all deployment models, by the definition of an isolated partition in the Platform Security Model [PSM],transfer within the partition, and transfers between one Secure Partition and another are isolated fromeavesdroppers. Therefore, if the caller is in a Secure Partition, there is no possibility of an eavesdropperaccessing the data. However, if data is sent or returned to a caller in the Non-secure Processing Environment(NSPE), although the data is securely delivered to the NSPE, it is exposed to all users in the NSPE. Aspreviously noted, the implementation transfers the duty of separating users in the NSPE to the OS.
For deployment model DM.PROTECTED, the storage service and the storage medium are isolated.
In DM.EXPOSED, any adversary that can obtain operating system privileges in the NSPE will have access toall the memory and will therefore be able to eavesdrop on all data in transit.
An attacker that is external to the processor, AM.2, will be able to exploit an eavesdropping attack if thebus to which the memory is attached is accessible via external pins. Otherwise, the attack is limited tointernal attackers AM.1.
In DM.AUTHORIZED, an attacker with access to the bus, or to intermediate data buffers, can eavesdrop andobtain the messages.
In DM.SECURE_LINK, an attacker can only eavesdrop on any data transfer not protected by the securechannel.
Adversarial Model AM.0, AM.1, AM.2
Security Goal SG.CONFIDENTIALITY
Deployment Model DM.PROTECTED DM.EXPOSED DM.AUTHORIZED DM.SECURE_LINK
Unmitigated Impact Very High Very High Very High Very High
Unmitigated Likelihood n/a — except fortransfer of data toclients in the NSPE

Very High High High

Unmitigated Risk n/a Very High Very High Very High
Mitigating Actions M.Encrypt. Transfer to the implementation: for DM.EXPOSED and

DM.AUTHORIZED, the data at rest must be encrypted. The storage service mustapply the encryption to the data before it leaves the PRoT partition. Theencryption mechanism chosen must be sufficiently robust. The key used forencryption must be sufficiently protected, that is, it must only be available tothe storage service.
M.PRoTRootedSecLink. Transfer to the implementation: for DM.SECURE_LINK,communication with the storage medium must be over a well-designed securechannel. If the secure channel is not rooted in the PRoT then any adversary inthe partition (AM.1), or with access to the partition (AM.2), in which the channelterminates will be able to eavesdrop on traffic leaving the PRoT before it isencrypted. The secure channel must be rooted within the PRoT. However, thestored data does not need to be separately encrypted beyond the protection

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 47



provided by the secure channel. The private information required to establishthe channel must be suitably protected by both the storage service and thestorage medium.
M.UseSecurePartitions. Transfer to the application: for all deployment models,place callers that handle sensitive data into separate partitions. To ensure thatan attacker in the NSPE cannot access the data sent by the caller to the storageservice, or the replies the storage service returns to the caller, place all codethat needs to use the storage service into one or more Secure Partition, with onepartition per service.

Residual Impact Very High Very High Very High Very High
Residual Likelihood n/a Very Low Very Low Very Low
Residual Risk n/a Low Low Low
B.3.5 T.MITM: Man In The Middle
Description: An attacker can actively interfere with communication and replace the transmitted data. Inthis threat the SRA only considers attackers between the storage service and the storage medium. Anattacker interposing between the Caller and the storage service is considered under T.SPOOF_READ or
T.SPOOF_WRITE.
For DM.PROTECTED, the storage service and the storage medium are isolated.
For DM.EXPOSED, any code running in the NSPE has access to the storage medium and any driverfirmware, and therefore can act as a man in the middle, by for example persuading the storage service towrite to one buffer, and the storage medium to read from another.
For DM.AUTHORIZED, a man in the middle eavesdrops on data in transit.
For DM.SECURE_LINK, a naive secure channel is vulnerable to a man in the middle attack.
Adversarial Model AM.1, AM.2
Security Goal SG.INTEGRITY
Deployment Model DM.PROTECTED DM.EXPOSED DM.AUTHORIZED DM.SECURE_LINK
Unmitigated Impact Very High Very High Very High High
Unmitigated Likelihood n/a Very High High High
Unmitigated Risk n/a Very High Very High High
Mitigating Actions M.Encrypt. Transfer to the implementation: if data is encrypted, a man in themiddle cannot know what data is being transferred. It also means they cannotforce a specific value to be stored.

M.MAC. Transfer to the implementation: for DM.EXPOSED, apply a MessageAuthentication Code or a signature to the stored data, or use an authenticatedencryption scheme. If the storage service checks the MAC or tag when data isread back from the storage medium to detect unauthorized modification.
M.UniqueKeys. Transfer to the implementation: for DM.AUTHORIZED and
DM.SECURE_LINK, use unique keys for securing the authenticated or secure

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 48



channel. If the keys used by the storage medium are unique to each instance, asan attacker can only learn the key used on this specific instance. They cannotconstruct a class break by discovering the key for every instance.
M.VerifyReplies. Transfer to the implementation: for DM.AUTHORIZED,commands and replies are authenticated by the storage medium. Therefore, theman in the middle cannot forge a valid reply which indicates that the data hasbeen stored when it has not. If the storage service validates replies from thestorage medium, it can verify that the data it sent was correctly stored, and thedata retrieved is the value previously stored.
M.AuthenticateEndpoints. Transfer to the implementation: for DM.SECURE_LINK,use mutual authentication of the storage service and storage medium whensetting up the secure channel. For example, this can be achieved by using asingle key, known only to both parties.
M.ReplayProtection. Transfer to the implementation: for DM.AUTHORIZED and
DM.SECURE_LINK, use replay protection in the communication protocol. Thiscan be achieved by including a nonce in the construction of protocol messages.This enables the storage medium to detect attempts to replay previouscommands and reject them.

Residual Impact Very High Very High High High
Residual Likelihood n/a Very Low Very Low Very Low
Residual Risk n/a Low Low Low
B.3.6 T.DIRECT_READ: Bypassing the API to directly read data

Description: An attacker might be able to read stored data through a mechanism other than the API.
In DM.PROTECTED, no attacker should be able to access the stored data.
In DM.EXPOSED, all attackers can access the data.
In DM.AUTHORIZED, the attacker cannot form valid requests to access data. It can, however, eavesdrop ona legitimate request and replay it later.
In DM.SECURE_LINK, the attacker cannot form valid requests to access data. It can, however, eavesdrop ona legitimate request and even if it cannot understand it, it could replay it later.
Adversarial Model AM.1, AM.2
Security Goal SG.CONFIDENTIALITY
Deployment Model DM.PROTECTED DM.EXPOSED DM.AUTHORIZED DM.SECURE_LINK
Unmitigated Impact Very High Very High Very High High
Unmitigated Likelihood n/a Very High High High
Unmitigated Risk n/a Very High Very High High

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 49



Mitigating Actions M.ReplayProtection. Transfer to the implementation: for DM.AUTHORIZED and
DM.SECURE_LINK, use replay protection in the communication protocol.
M.Encrypt. Transfer to the implementation: for DM.EXPOSED and
DM.AUTHORIZED, encrypting the data prevents disclosure.

Residual Impact Very High Very High High High
Residual Likelihood n/a Very Low Very Low Very Low
Residual Risk n/a Low Low Low
B.3.7 T.DIRECT_WRITE: Bypassing the API to directly modify data

Description: An attacker might be able to modify data stored for another caller.
In DM.PROTECTED, no attacker should be able to access the stored data.
In DM.EXPOSED, the SRA assumes that any attacker capable of running code in the NSPE can modify thestored data. However, assuming it is encrypted, the attacker cannot create the correct ciphertext forchosen plain text.
In DM.AUTHORIZED, although the attacker cannot form a valid command, the attacker can eavesdrop on alegitimate request and replay it later.
In DM.SECURE_LINK, although the attacker cannot form a valid command, the attacker can eavesdrop on alegitimate request and replay it later.
Adversarial Model AM.1 AM.2
Security Goal SG.INTEGRITY, SG.CURRENCY
Deployment Model DM.PROTECTED DM.EXPOSED DM.AUTHORIZED DM.SECURE_LINK
Unmitigated Impact Very High Very High Very High High
Unmitigated Likelihood n/a Very High High High
Unmitigated Risk n/a Very High Very High High
Mitigating Actions M.Encrypt. Transfer to the implementation: encrypted data cannot be modifiedto an attacker-chosen plaintext value. However, an attacker can still corrupt thestored data.

M.MAC. Transfer to the implementation: for DM.EXPOSED, integrity-protect thestored data using a MAC, signature, or AEAD scheme. The verification of dataintegrity must be implemented within the storage service in the PRoT,otherwise the result could be spoofed.
M.ReplayProtection. Transfer to the implementation: for DM.AUTHORIZED and
DM.SECURE_LINK, if the channel protocol includes replay protection, the storagemedium will check the nonce for freshness, and prevent replay of old messages.
M.AntiRollback. Transfer to the implementation: in DM.EXPOSED, M.MAC isinsufficient to prevent an attacker from replacing one version of stored data —or the entire contents of the storage medium — with a previously storedversion. The previously stored data would pass the integrity checks.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 50



To prevent this attack, the storage service must keep some authentication datain a location the attacker cannot access. This location could be stored withinthe PRoT partition, that is using the DM.PROTECTED, or in a separate secureenclave using the deployment model DM.AUTHORIZED or DM.SECURE_LINK.The data could be the root of a hash tree, or it could be a counter used with aroot key to generate a version-specific MAC key.
In the case of a counter, some consideration should be given to the expectednumber of updates that will be made to the data. If the implementation onlyneeds to offer rollback protection on firmware updates, where a low number isexpected in the lifetime of the product and the counter could be stored in fuse.If the implementations needs to ensure the currency of a file store that isregularly updated — the number of updates could exhaust any practical numberof fuses and would instead need a 32-bit counter.

Residual Impact Very High Very High High High
Residual Likelihood n/a Very Low Very Low Very Low
Residual Risk n/a Low Low Low
B.3.8 T.REPLACE: Physical replacement of the storage medium

Description: An attacker might physically replace the storage medium.
For DM.PROTECTED, it is not possible to replace the storage.
For DM.EXPOSED, if the storage medium is integrated with the chip, it is not possible to replace thestorage. But in many systems, the storage medium will be on a separate device.
For DM.AUTHORIZED and DM.SECURE_LINK, it is possible to replace the storage medium.
Adversarial Model AM.3
Security Goal SG.INTEGRITY
Deployment Model DM.PROTECTED DM.EXPOSED DM.AUTHORIZED DM.SECURE_LINK
Unmitigated Impact Very High Very High Very High Very High
Unmitigated Likelihood n/a Very High High High
Unmitigated Risk n/a Very High Very High Very High
Mitigating Actions

M.UniqueKeys and M.MAC. Transfer to the implementation: for
DM.EXPOSED, use device-specific secret keys to authenticate thestored data. With unique authentication keys, data stored on onedevice cannot be verified on another device.

M.UniqueKeys and M.VerifyReplies. Transfer to the implementation: for
DM.AUTHORIZED and DM.SECURE_LINK, use device-specific secret keys toauthenticate the communication between the storage service and storagemedium.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 51



In DM.AUTHORIZED, the attacker will not be able to find a new instance of thestorage medium that can form the correct responses to commands.
In DM.SECURE_LINK, the attacker will not be able to find a new instance of thestorage medium that can complete the handshake to set up the secure channel.

Residual Impact Very High Very High High High
Residual Likelihood n/a Very Low Very Low Very Low
Residual Risk n/a Low Low Low
B.3.9 T.GLITCH_READ: Glitching during a read

Description: An attacker with physical access might be able to disrupt the power or clock to cause amisread.
In this threat, an attacker with physical access to the device causes a power or frequency glitch to cause amisread. In particular, it might prevent the storage service from performing the verification of replies orcausing it to ignore the result of any check. Thus, causing the storage service to return an incorrect valueto the caller.
Adversarial Model AM.3
Security Goal SG.INTEGRITY
Deployment Model DM.PROTECTED DM.EXPOSED DM.AUTHORIZED DM.SECURE_LINK
Unmitigated Impact Very High Very High Very High Very High
Unmitigated Likelihood High High Low Low
Unmitigated Risk Very High Very High Medium Medium
Mitigating Actions M.GlitchDetection. Transfer to the implementation: for all deployment models,active glitch detection circuits can raise an exception if a glitch is detected,permitting the computing circuitry to take corrective action.
Residual Impact Very High Very High Very High Very High
Residual Likelihood Low Very Low Very Low Very Low
Residual Risk Medium Low Low Low
B.3.10 T.GLITCH_WRITE: Glitching during a write

Description: An attacker with physical access might be able to disrupt the power or clock to prevent awrite from being completed.
In this threat, an attacker with physical access to the device causes a power or frequency glitch to cause awrite to fail.
Adversarial Model AM.3
Security Goal SG.INTEGRITY

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 52



Deployment Model DM.PROTECTED DM.EXPOSED DM.AUTHORIZED DM.SECURE_LINK
Unmitigated Impact Very High Very High Very High Very High
Unmitigated Likelihood High High High High
Unmitigated Risk Very High Very High Very High Very High
Mitigating Actions M.MAC. Transfer to the implementation:

∙ For DM.PROTECTED and DM.EXPOSED, if the implementation applies aMAC, a subsequent read can detect that data had not been writtencorrectly. However, MAC’s are not error correcting, therefore theimplementation can only mark the data as corrupt and the data is lost.
∙ For DM.AUTHORIZED and DM.SECURE_LINK, if the implementation relies onthe channel to provide the MAC or tag, there is a brief time of check, timeof use (TOCTOU) window, where the storage medium has verified thecommand but has not written the data to physical storage. If a glitchoccurs in this window, and then a subsequent read occurs, the storagemedium will apply a new tag to a reply containing corrupt data, and thestorage service will not be aware that that data returned has beencorrupted. However, if the storage service applies a MAC beforesubmitting the command, it can detect, but not correct, this corruption.

M.ErrorCorrectingCoding. Transfer to the implementation: for all deploymentmodels, if the storage medium uses error correcting codes (ECC), it can detectand correct a certain number of incorrect bits in the data it reads back — at theexpense of extra storage. If the storage medium does not offer ECC capability,the storage service could apply it and verify the coding in software, althoughthis is generally less efficient than hardware.
M.GlitchDetection. Transfer to the implementation: for all deployment models,glitch detection can reduce the risk of a successful glitch.
M.ReadAfterWrite. Transfer to the implementation: for all deployment models,perform a checked-read after a write in the storage service. The storage servicecan perform a read operation immediately after a write, while it still retains theoriginal value in memory, and compare the two before reporting a successfulwrite. However, this has performance challenges: therefore, the implementationcan decide to do this on a sampling basis.

Residual Impact Very High Very High High High
Residual Likelihood Low Very Low Very Low Very Low
Residual Risk Medium Low Low Low

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 53



B.4 Mitigation Summary
This section provides a summary of the mitigations described in the threat analysis, organized by the entityresponsible for providing the mitigation.
B.4.1 Architecture level mitigations

Table 10 lists the mitigations that are controlled by the architecture.
Table 10Mitigations that are controlled by the Architecture

Mitigations Description Threats

M.MemoryBuffer In all deployment models, input buffers are fullyconsumed by the implementation before returningfrom a function.
T.INTERFACE_ABUSE

B.4.2 Implementation-level mitigations

Table 11 lists the mitigations that are transferred to the implementation. These are also known as‘remediations’.
Table 11Mitigations that are transferred to the implementation

Mitigations Description Threats

M.AntiRollback When using DM.EXPOSED, the implementationmust provide a mechanism to prevent an attackerfrom replacing the stored data with a version thatwas valid at a previous date. An attacker can usethis attack to reinstate flawed firmware, or toreturn to a version with a broken credential.

T.DIRECT_WRITE

M.AuthenticateEndpoints When using DM.AUTHORIZED or DM.SECURE_LINK,the storage service must authenticate the storagemedium before reading from it or writing to it.
T.MITM

M.Encrypt When using DM.EXPOSED or DM.AUTHORIZED, thestorage service must encrypt data to be written tostorage, and decrypt data read from storage, insidethe isolated environment to ensure confidentiality.

T.EAVESDROPPING,
T.MITM, T.DIRECT_READ,
T.DIRECT_WRITE

M.ErrorCorrectingCoding In all deployments, to deter attacks based onglitching the power or clock, the implementationcan implement error correcting coding on storeddata.

T.GLITCH_WRITE

continues on next page

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 54



Table 11 – continued from previous page

Mitigations Description Threats

M.FullyQualifiedNames In all deployments, the implementation mustidentify which caller each stored object belongs toand must refer to them internally by thecombination of caller identity and name.Otherwise, it might return a stored object to thewrong caller.

T.SPOOF_READ,
T.SPOOF_WRITE

M.ImplicitIdentity In all deployments, the implementation mustidentify the caller. T.SPOOF_READ,
T.SPOOF_WRITE

M.GlitchDetection In all deployments, to deter attacks based onglitching the power or clock, the implementationcan implement detection circuits.
T.GLITCH_READ,
T.GLITCH_WRITE

M.MAC In DM.EXPOSED, the storage service must apply anintegrity check, a MAC, signature, orauthenticated encryption tag, within the storageservice before it is sent to storage. It must alsoverify this on every read.

T.MITM,
T.DIRECT_WRITE,
T.REPLACE

M.PRoTRootedSecLink In DM.SECURE_LINK, the storage service must usea secure channel rooted within the isolatedenvironment to ensure there is no opportunity foreavesdropping.

T.EAVESDROPPING

M.ReadAfterWrite To deter glitch attacks on writing data, theimplementation can read the data it has justwritten to verify it.
T.GLITCH_WRITE

M.ReplayProtection In DM.AUTHORIZED and DM.SECURE_LINK theremust be protection against an attacker replayingprevious messages.
T.DIRECT_READ,
T.DIRECT_WRITE

M.UniqueKeys In DM.AUTHORIZED and DM.SECURE_LINK the keysused by the storage service and storage mediummust be unique, otherwise there is no mechanismfor detecting that the storage medium has beenreplaced.

T.MITM, T.REPLACE

M.ValidateParameter In all deployment models, check all API parametersto lie within valid ranges, including memory accesspermissions.
T.INTERFACE_ABUSE

M.VerifyReplies In DM.AUTHORIZED and DM.SECURE_LINK thestorage service must verify all replies from thepartition that implements storage, to ensure thatthey do indeed come from the expected partitionand no errors are reported.

T.MITM, T.REPLACE

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 55



B.4.3 User-level mitigations

Table 12 lists mitigations that are transferred to the application or other external components. These arealso known as ‘residual risks’.
Table 12Mitigations that are transferred to the application

Mitigations Description Threats

M.UseSecurePartitions In all deployments, if the caller wants to be certainthat there is no chance of eavesdropping, theyshould make use of caller isolation, with eachcaller in its own isolated partition.

T.EAVESDROPPING

B.4.4 Mitigations required by each deployment model

Table 13 summarizes the mitigations required in each deployment model.
Table 13Mitigations required by each deployment model

Implementation Mitigations

DM.PROTECTED M.ErrorCorrectingCoding, M.FullyQualifiedNames, M.GlitchDetection,
M.ImplicitIdentity, M.MemoryBuffer, M.ReadAfterWrite, M.UseSecurePartitions,
M.ValidateParameter

DM.EXPOSED M.AntiRollback, M.Encrypt, M.ErrorCorrectingCoding, M.FullyQualifiedNames,
M.GlitchDetection, M.ImplicitIdentity, M.MAC, M.MemoryBuffer, M.ReadAfterWrite,
M.UseSecurePartitions, M.ValidateParameter

DM.AUTHORIZED M.AuthenticateEndpoints, M.ErrorCorrectingCoding, M.FullyQualifiedNames,
M.GlitchDetection, M.ImplicitIdentity, M.MemoryBuffer, M.ReadAfterWrite,
M.ReplayProtection, M.UniqueKeys, M.UseSecurePartitions, M.VerifyReplies,
M.ValidateParameter

DM.SECURE_LINK M.AuthenticateEndpoints, M.ErrorCorrectingCoding, M.FullyQualifiedNames,
M.GlitchDetection, M.ImplicitIdentity, M.MemoryBuffer, M.PRoTRootedSecLink,
M.ReadAfterWrite, M.ReplayProtection, M.UniqueKeys, M.UseSecurePartitions,
M.VerifyReplies, M.ValidateParameter

In implementations DM.PROTECTED and DM.SECURE_LINK, the stored data can be implicitly trusted, andtherefore it is not required to be encrypted or authenticated. There is no more secure location to storeverification data, therefore, any attacker able to access the stored data would also be able to access thekey. However, it is possible for the data to be accidentally corrupted, therefore standard engineeringpractice to guard against this, for example the use of error correcting codes, should be used.
In implementation DM.EXPOSED, the data can be read or modified by an attacker, therefore the storageservice must provide confidentiality, integrity, and authenticity by cryptographic means. The keys used todo this must be stored securely. This could be a key derived from the HUK, or separately stored in fuse in alocation only readable from the PRoT.
IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 56



As the attacker can always read and modify the stored data, even if they cannot decrypt the data, they canattempt to subvert a change by resetting the storage medium to a prior state. To detect this, the storageservice needs to have some means of authenticating that it is reading the most recent state. This impliessome form of authentication data stored in a location the attacker cannot modify.
In implementation DM.AUTHORIZED, the data can be observed, even if it cannot be modified. Therefore,data stored does need to be encrypted for confidentiality. However, provided the authentication protocolis strong, and prevents replay, it should not be possible for an attacker to modify the stored data. As thestore applies a MAC to each reply, the storage service does not need to apply extra integrity.
In implementation DM.SECURE_LINK provided the secure channel is rooted within the PRoT, the datatransferred cannot be observed, and any modification will be detected. Therefore, no further encryption isneeded for confidentiality or integrity.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 57



Appendix C: Document history

Date Release Details

2019-02-25 1.0 Beta 2 First Release
2019-06-12 1.0 Rel Final 1.0 API

The protected storage API now supports flags
PSA_STORAGE_FLAG_NO_CONFIDENTIALITY and
PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION.
Error values now use standard PSA error codes, which are now definedin <psa/error.h>.
Input parameters are now separate from output parameters. There areno longer any in/out parameters.
Size types have been replaced with size_t instead of uint32_t.

2022-10-17 1.0.1 Rel Relicensed the document under Attribution-ShareAlike 4.0 Internationalwith a patent license derived from Apache License 2.0. See License onpage v.
Documentation clarifications.

2023-03-23 1.0.2 Rel Clarified the protection requirements for ITS. See Internal TrustedStorage requirements on page 15.
Fixed inconsistent descriptions of PSA_ERROR_STORAGE_FAILURE errors.

2024-01-22 1.0.3 Rel Introduced a Security Risk Assessment. See Security Risk Assessment onpage 35.

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 58



Index of API elements

PSA_I
PSA_ITS_API_VERSION_MAJOR, 19
PSA_ITS_API_VERSION_MINOR, 19
psa_its_get, 21
psa_its_get_info, 22
psa_its_remove, 23
psa_its_set, 20
PSA_P
PSA_PS_API_VERSION_MAJOR, 23
PSA_PS_API_VERSION_MINOR, 24
psa_ps_create, 28
psa_ps_get, 25
psa_ps_get_info, 26
psa_ps_get_support, 30
psa_ps_remove, 27
psa_ps_set, 24
psa_ps_set_extended, 29
PSA_S
PSA_STORAGE_FLAG_NONE, 18
PSA_STORAGE_FLAG_NO_CONFIDENTIALITY, 19
PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION, 19
PSA_STORAGE_FLAG_WRITE_ONCE, 18
PSA_STORAGE_SUPPORT_SET_EXTENDED, 19
psa_storage_create_flags_t, 18
psa_storage_info_t, 18
psa_storage_uid_t, 18

IHI 00871.0.3 Copyright© 2018-2019, 2022-2024 Arm Limited and/or its affiliatesNon-confidential Page 59


	About this document
	Release information
	License
	References
	Terms and abbreviations
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Feedback

	1 Introduction
	1.1 About Platform Security Architecture
	1.2 About the Secure Storage API

	2 Architecture
	2.1 Use Cases and Rationale
	2.2 Technical Background
	2.3 The Protected Storage API
	2.4 The Internal Trusted Storage API
	2.5 UIDs
	2.6 Atomicity of Operations
	2.7 Components

	3 Requirements
	3.1 Protected Storage requirements
	3.2 Internal Trusted Storage requirements

	4 Theory of Operation
	4.1 Internal Trusted Storage API
	4.2 Memory access errors

	5 API Reference
	5.1 Status codes
	5.2 General Definitions
	5.2.1 psa_storage_info_t (struct)
	5.2.2 psa_storage_create_flags_t (typedef)
	5.2.3 psa_storage_uid_t (typedef)
	5.2.4 PSA_STORAGE_FLAG_NONE (macro)
	5.2.5 PSA_STORAGE_FLAG_WRITE_ONCE (macro)
	5.2.6 PSA_STORAGE_FLAG_NO_CONFIDENTIALITY (macro)
	5.2.7 PSA_STORAGE_FLAG_NO_REPLAY_PROTECTION (macro)
	5.2.8 PSA_STORAGE_SUPPORT_SET_EXTENDED (macro)

	5.3 Internal Trusted Storage API
	5.3.1 PSA_ITS_API_VERSION_MAJOR (macro)
	5.3.2 PSA_ITS_API_VERSION_MINOR (macro)
	5.3.3 psa_its_set (function)
	5.3.4 psa_its_get (function)
	5.3.5 psa_its_get_info (function)
	5.3.6 psa_its_remove (function)

	5.4 Protected Storage API
	5.4.1 PSA_PS_API_VERSION_MAJOR (macro)
	5.4.2 PSA_PS_API_VERSION_MINOR (macro)
	5.4.3 psa_ps_set (function)
	5.4.4 psa_ps_get (function)
	5.4.5 psa_ps_get_info (function)
	5.4.6 psa_ps_remove (function)
	5.4.7 psa_ps_create (function)
	5.4.8 psa_ps_set_extended (function)
	5.4.9 psa_ps_get_support (function)


	A Example header files
	A.1 psa/storage_common.h
	A.2 psa/internal_trusted_storage.h
	A.3 psa/protected_storage.h

	B Security Risk Assessment
	B.1 About this assessment
	B.1.1 Subject and scope
	B.1.2 Risk assessment methodology

	B.2 Feature definition
	B.2.1 Introduction
	Background
	Purpose

	B.2.2 Lifecycle
	B.2.3 Operation and trust boundaries
	B.2.4 Deployment models
	Optional isolation

	B.2.5 Assumptions, constraints, and interacting entities
	B.2.6 Stakeholders and Assets
	B.2.7 Goals
	B.2.8 Adversarial models

	B.3 Threats
	B.3.1 T.INTERFACE_ABUSE: Illegal inputs to the API
	B.3.2 T.SPOOF_READ: Use the API to read another caller’s data
	B.3.3 T.SPOOF_WRITE: Use the API to modify another caller’s data
	B.3.4 T.EAVESDROPPING: Eavesdropping
	B.3.5 T.MITM: Man In The Middle
	B.3.6 T.DIRECT_READ: Bypassing the API to directly read data
	B.3.7 T.DIRECT_WRITE: Bypassing the API to directly modify data
	B.3.8 T.REPLACE: Physical replacement of the storage medium
	B.3.9 T.GLITCH_READ: Glitching during a read
	B.3.10 T.GLITCH_WRITE: Glitching during a write

	B.4 Mitigation Summary
	B.4.1 Architecture level mitigations
	B.4.2 Implementation-level mitigations
	B.4.3 User-level mitigations
	B.4.4 Mitigations required by each deployment model


	C Document history
	Index of API elements

