|
void | arm_cmplx_dot_prod_f16 (const float16_t *pSrcA, const float16_t *pSrcB, uint32_t numSamples, float16_t *realResult, float16_t *imagResult) |
| Floating-point complex dot product. More...
|
|
void | arm_cmplx_dot_prod_f32 (const float32_t *pSrcA, const float32_t *pSrcB, uint32_t numSamples, float32_t *realResult, float32_t *imagResult) |
| Floating-point complex dot product. More...
|
|
void | arm_cmplx_dot_prod_q15 (const q15_t *pSrcA, const q15_t *pSrcB, uint32_t numSamples, q31_t *realResult, q31_t *imagResult) |
| Q15 complex dot product. More...
|
|
void | arm_cmplx_dot_prod_q31 (const q31_t *pSrcA, const q31_t *pSrcB, uint32_t numSamples, q63_t *realResult, q63_t *imagResult) |
| Q31 complex dot product. More...
|
|
Computes the dot product of two complex vectors. The vectors are multiplied element-by-element and then summed.
The pSrcA
points to the first complex input vector and pSrcB
points to the second complex input vector. numSamples
specifies the number of complex samples and the data in each array is stored in an interleaved fashion (real, imag, real, imag, ...). Each array has a total of 2*numSamples
values.
The underlying algorithm is used:
realResult = 0;
imagResult = 0;
for (n = 0; n < numSamples; n++) {
realResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
imagResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
}
There are separate functions for floating-point, Q15, and Q31 data types.
◆ arm_cmplx_dot_prod_f16()
void arm_cmplx_dot_prod_f16 |
( |
const float16_t * |
pSrcA, |
|
|
const float16_t * |
pSrcB, |
|
|
uint32_t |
numSamples, |
|
|
float16_t * |
realResult, |
|
|
float16_t * |
imagResult |
|
) |
| |
- Parameters
-
[in] | pSrcA | points to the first input vector |
[in] | pSrcB | points to the second input vector |
[in] | numSamples | number of samples in each vector |
[out] | realResult | real part of the result returned here |
[out] | imagResult | imaginary part of the result returned here |
- Returns
- none
◆ arm_cmplx_dot_prod_f32()
- Parameters
-
[in] | pSrcA | points to the first input vector |
[in] | pSrcB | points to the second input vector |
[in] | numSamples | number of samples in each vector |
[out] | realResult | real part of the result returned here |
[out] | imagResult | imaginary part of the result returned here |
- Returns
- none
◆ arm_cmplx_dot_prod_q15()
void arm_cmplx_dot_prod_q15 |
( |
const q15_t * |
pSrcA, |
|
|
const q15_t * |
pSrcB, |
|
|
uint32_t |
numSamples, |
|
|
q31_t * |
realResult, |
|
|
q31_t * |
imagResult |
|
) |
| |
- Parameters
-
[in] | pSrcA | points to the first input vector |
[in] | pSrcB | points to the second input vector |
[in] | numSamples | number of samples in each vector |
[out] | realResult | real part of the result returned here |
[out] | imagResult | imaginary part of the result returned her |
- Returns
- none
- Scaling and Overflow Behavior
- The function is implemented using an internal 64-bit accumulator. The intermediate 1.15 by 1.15 multiplications are performed with full precision and yield a 2.30 result. These are accumulated in a 64-bit accumulator with 34.30 precision. As a final step, the accumulators are converted to 8.24 format. The return results
realResult
and imagResult
are in 8.24 format.
◆ arm_cmplx_dot_prod_q31()
void arm_cmplx_dot_prod_q31 |
( |
const q31_t * |
pSrcA, |
|
|
const q31_t * |
pSrcB, |
|
|
uint32_t |
numSamples, |
|
|
q63_t * |
realResult, |
|
|
q63_t * |
imagResult |
|
) |
| |
- Parameters
-
[in] | pSrcA | points to the first input vector |
[in] | pSrcB | points to the second input vector |
[in] | numSamples | number of samples in each vector |
[out] | realResult | real part of the result returned here |
[out] | imagResult | imaginary part of the result returned here |
- Returns
- none
- Scaling and Overflow Behavior
- The function is implemented using an internal 64-bit accumulator. The intermediate 1.31 by 1.31 multiplications are performed with 64-bit precision and then shifted to 16.48 format. The internal real and imaginary accumulators are in 16.48 format and provide 15 guard bits. Additions are nonsaturating and no overflow will occur as long as
numSamples
is less than 32768. The return results realResult
and imagResult
are in 16.48 format. Input down scaling is not required.