|  | 
| float32_t | arm_bilinear_interp_f32 (const arm_bilinear_interp_instance_f32 *S, float32_t X, float32_t Y) | 
|  | Floating-point bilinear interpolation.  More... 
 | 
|  | 
| q31_t | arm_bilinear_interp_q31 (arm_bilinear_interp_instance_q31 *S, q31_t X, q31_t Y) | 
|  | Q31 bilinear interpolation.  More... 
 | 
|  | 
| q15_t | arm_bilinear_interp_q15 (arm_bilinear_interp_instance_q15 *S, q31_t X, q31_t Y) | 
|  | Q15 bilinear interpolation.  More... 
 | 
|  | 
| q7_t | arm_bilinear_interp_q7 (arm_bilinear_interp_instance_q7 *S, q31_t X, q31_t Y) | 
|  | Q7 bilinear interpolation.  More... 
 | 
|  | 
| float16_t | arm_bilinear_interp_f16 (const arm_bilinear_interp_instance_f16 *S, float16_t X, float16_t Y) | 
|  | Floating-point bilinear interpolation.  More... 
 | 
|  | 
Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. The underlying function f(x, y) is sampled on a regular grid and the interpolation process determines values between the grid points. Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. Bilinear interpolation is often used in image processing to rescale images. The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
Algorithm 
- The instance structure used by the bilinear interpolation functions describes a two dimensional data table. For floating-point, the instance structure is defined as: 
  typedef struct
  {
    uint16_t numRows;
    uint16_t numCols;
    float16_t *pData;
} arm_bilinear_interp_instance_f16;
- where numRowsspecifies the number of rows in the table;numColsspecifies the number of columns in the table; andpDatapoints to an array of sizenumRows*numColsvalues. The data tablepTableis organized in row order and the supplied data values fall on integer indexes. That is, table element (x,y) is located atpTable[x + y*numCols]where x and y are integers.
- Let (x, y)specify the desired interpolation point. Then define:
    XF = floor(x)
    YF = floor(y)
- The interpolated output point is computed as: 
 f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
          + f(XF+1, YF) * (x-XF)*(1-(y-YF))
          + f(XF, YF+1) * (1-(x-XF))*(y-YF)
          + f(XF+1, YF+1) * (x-XF)*(y-YF)
Note that the coordinates (x, y) contain integer and fractional components. The integer components specify which portion of the table to use while the fractional components control the interpolation processor.
- if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. The underlying function f(x, y) is sampled on a regular grid and the interpolation process determines values between the grid points. Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. Bilinear interpolation is often used in image processing to rescale images. The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
Algorithm 
- The instance structure used by the bilinear interpolation functions describes a two dimensional data table. For floating-point, the instance structure is defined as: 
  typedef struct
  {
    uint16_t numRows;
    uint16_t numCols;
    float32_t *pData;
} arm_bilinear_interp_instance_f32;
- where numRowsspecifies the number of rows in the table;numColsspecifies the number of columns in the table; andpDatapoints to an array of sizenumRows*numColsvalues. The data tablepTableis organized in row order and the supplied data values fall on integer indexes. That is, table element (x,y) is located atpTable[x + y*numCols]where x and y are integers.
- Let (x, y)specify the desired interpolation point. Then define:
    XF = floor(x)
    YF = floor(y)
- The interpolated output point is computed as: 
 f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
          + f(XF+1, YF) * (x-XF)*(1-(y-YF))
          + f(XF, YF+1) * (1-(x-XF))*(y-YF)
          + f(XF+1, YF+1) * (x-XF)*(y-YF)
Note that the coordinates (x, y) contain integer and fractional components. The integer components specify which portion of the table to use while the fractional components control the interpolation processor.
- if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
end of LinearInterpolate group 
- Parameters
- 
  
    | [in,out] | S | points to an instance of the interpolation structure. |  | [in] | X | interpolation coordinate. |  | [in] | Y | interpolation coordinate. |  
 
- Returns
- out interpolated value. 
 
 
- Parameters
- 
  
    | [in,out] | S | points to an instance of the interpolation structure. |  | [in] | X | interpolation coordinate. |  | [in] | Y | interpolation coordinate. |  
 
- Returns
- out interpolated value. 
 
 
- Parameters
- 
  
    | [in,out] | S | points to an instance of the interpolation structure. |  | [in] | X | interpolation coordinate in 12.20 format. |  | [in] | Y | interpolation coordinate in 12.20 format. |  
 
- Returns
- out interpolated value. 
 
 
- Parameters
- 
  
    | [in,out] | S | points to an instance of the interpolation structure. |  | [in] | X | interpolation coordinate in 12.20 format. |  | [in] | Y | interpolation coordinate in 12.20 format. |  
 
- Returns
- out interpolated value. 
 
 
- Parameters
- 
  
    | [in,out] | S | points to an instance of the interpolation structure. |  | [in] | X | interpolation coordinate in 12.20 format. |  | [in] | Y | interpolation coordinate in 12.20 format. |  
 
- Returns
- out interpolated value.