Computes the square root of a number. There are separate functions for Q15, Q31, and floating-point data types. The square root function is computed using the Newton-Raphson algorithm. This is an iterative algorithm of the form: 
     x1 = x0 - f(x0)/f'(x0)
 where x1 is the current estimate, x0 is the previous estimate, and f'(x0) is the derivative of f() evaluated at x0. For the square root function, the algorithm reduces to: 
    x0 = in/2                         [initial guess]
    x1 = 1/2 * ( x0 + in / x0)        [each iteration]
 
- Parameters
- 
  
    | [in] | in | input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF |  | [out] | pOut | points to square root of input value |  
 
- Returns
- execution status
 
 
- Parameters
- 
  
    | [in] | in | input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF |  | [out] | pOut | points to square root of input value |  
 
- Returns
- execution status
 
 
      
        
          | __STATIC_FORCEINLINE arm_status arm_sqrt_f16 | ( | float16_t | in, | 
        
          |  |  | float16_t * | pOut | 
        
          |  | ) |  |  | 
      
 
- Parameters
- 
  
    | [in] | in | input value |  | [out] | pOut | square root of input value |  
 
- Returns
- execution status
 
 
- Parameters
- 
  
    | [in] | in | input value |  | [out] | pOut | square root of input value |  
 
- Returns
- execution status
 
 
- Parameters
- 
  
    | [in] | in | input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF |  | [out] | pOut | points to square root of input value |  
 
- Returns
- execution status
 
 
- Parameters
- 
  
    | [in] | in | input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF |  | [out] | pOut | points to square root of input value |  
 
- Returns
- execution status