CMSIS-DSP  Version 1.10.0
CMSIS DSP Software Library
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
Bilinear Interpolation

Functions

float32_t arm_bilinear_interp_f32 (const arm_bilinear_interp_instance_f32 *S, float32_t X, float32_t Y)
 Floating-point bilinear interpolation. More...
 
q31_t arm_bilinear_interp_q31 (arm_bilinear_interp_instance_q31 *S, q31_t X, q31_t Y)
 Q31 bilinear interpolation. More...
 
q15_t arm_bilinear_interp_q15 (arm_bilinear_interp_instance_q15 *S, q31_t X, q31_t Y)
 Q15 bilinear interpolation. More...
 
q7_t arm_bilinear_interp_q7 (arm_bilinear_interp_instance_q7 *S, q31_t X, q31_t Y)
 Q7 bilinear interpolation. More...
 
float16_t arm_bilinear_interp_f16 (const arm_bilinear_interp_instance_f16 *S, float16_t X, float16_t Y)
 Floating-point bilinear interpolation. More...
 

Description

Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. The underlying function f(x, y) is sampled on a regular grid and the interpolation process determines values between the grid points. Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. Bilinear interpolation is often used in image processing to rescale images. The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.

Algorithm

The instance structure used by the bilinear interpolation functions describes a two dimensional data table. For floating-point, the instance structure is defined as:
  typedef struct
  {
    uint16_t numRows;
    uint16_t numCols;
    float16_t *pData;
} arm_bilinear_interp_instance_f16;
where numRows specifies the number of rows in the table; numCols specifies the number of columns in the table; and pData points to an array of size numRows*numCols values. The data table pTable is organized in row order and the supplied data values fall on integer indexes. That is, table element (x,y) is located at pTable[x + y*numCols] where x and y are integers.
Let (x, y) specify the desired interpolation point. Then define:
    XF = floor(x)
    YF = floor(y)
The interpolated output point is computed as:
 f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
          + f(XF+1, YF) * (x-XF)*(1-(y-YF))
          + f(XF, YF+1) * (1-(x-XF))*(y-YF)
          + f(XF+1, YF+1) * (x-XF)*(y-YF)
Note that the coordinates (x, y) contain integer and fractional components. The integer components specify which portion of the table to use while the fractional components control the interpolation processor.
if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.

Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. The underlying function f(x, y) is sampled on a regular grid and the interpolation process determines values between the grid points. Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. Bilinear interpolation is often used in image processing to rescale images. The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.

Algorithm

The instance structure used by the bilinear interpolation functions describes a two dimensional data table. For floating-point, the instance structure is defined as:
  typedef struct
  {
    uint16_t numRows;
    uint16_t numCols;
    float32_t *pData;
} arm_bilinear_interp_instance_f32;
where numRows specifies the number of rows in the table; numCols specifies the number of columns in the table; and pData points to an array of size numRows*numCols values. The data table pTable is organized in row order and the supplied data values fall on integer indexes. That is, table element (x,y) is located at pTable[x + y*numCols] where x and y are integers.
Let (x, y) specify the desired interpolation point. Then define:
    XF = floor(x)
    YF = floor(y)
The interpolated output point is computed as:
 f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
          + f(XF+1, YF) * (x-XF)*(1-(y-YF))
          + f(XF, YF+1) * (1-(x-XF))*(y-YF)
          + f(XF+1, YF+1) * (x-XF)*(y-YF)
Note that the coordinates (x, y) contain integer and fractional components. The integer components specify which portion of the table to use while the fractional components control the interpolation processor.
if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.

end of LinearInterpolate group

Function Documentation

float16_t arm_bilinear_interp_f16 ( const arm_bilinear_interp_instance_f16 S,
float16_t  X,
float16_t  Y 
)
Parameters
[in,out]Spoints to an instance of the interpolation structure.
[in]Xinterpolation coordinate.
[in]Yinterpolation coordinate.
Returns
out interpolated value.
float32_t arm_bilinear_interp_f32 ( const arm_bilinear_interp_instance_f32 S,
float32_t  X,
float32_t  Y 
)
Parameters
[in,out]Spoints to an instance of the interpolation structure.
[in]Xinterpolation coordinate.
[in]Yinterpolation coordinate.
Returns
out interpolated value.
q15_t arm_bilinear_interp_q15 ( arm_bilinear_interp_instance_q15 S,
q31_t  X,
q31_t  Y 
)
Parameters
[in,out]Spoints to an instance of the interpolation structure.
[in]Xinterpolation coordinate in 12.20 format.
[in]Yinterpolation coordinate in 12.20 format.
Returns
out interpolated value.
q31_t arm_bilinear_interp_q31 ( arm_bilinear_interp_instance_q31 S,
q31_t  X,
q31_t  Y 
)
Parameters
[in,out]Spoints to an instance of the interpolation structure.
[in]Xinterpolation coordinate in 12.20 format.
[in]Yinterpolation coordinate in 12.20 format.
Returns
out interpolated value.
q7_t arm_bilinear_interp_q7 ( arm_bilinear_interp_instance_q7 S,
q31_t  X,
q31_t  Y 
)
Parameters
[in,out]Spoints to an instance of the interpolation structure.
[in]Xinterpolation coordinate in 12.20 format.
[in]Yinterpolation coordinate in 12.20 format.
Returns
out interpolated value.