CMSIS-DSP  Version 1.10.0
CMSIS DSP Software Library
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
Real FFT Functions

Content

 Real FFT Tables
 

Functions

void arm_rfft_f32 (const arm_rfft_instance_f32 *S, float32_t *pSrc, float32_t *pDst)
 Processing function for the floating-point RFFT/RIFFT. Source buffer is modified by this function. More...
 
void arm_rfft_fast_f16 (const arm_rfft_fast_instance_f16 *S, float16_t *p, float16_t *pOut, uint8_t ifftFlag)
 Processing function for the floating-point real FFT. More...
 
void arm_rfft_fast_f32 (const arm_rfft_fast_instance_f32 *S, float32_t *p, float32_t *pOut, uint8_t ifftFlag)
 Processing function for the floating-point real FFT. More...
 
void arm_rfft_fast_f64 (arm_rfft_fast_instance_f64 *S, float64_t *p, float64_t *pOut, uint8_t ifftFlag)
 Processing function for the Double Precision floating-point real FFT. More...
 
arm_status arm_rfft_fast_init_f16 (arm_rfft_fast_instance_f16 *S, uint16_t fftLen)
 Initialization function for the floating-point real FFT. More...
 
arm_status arm_rfft_fast_init_f32 (arm_rfft_fast_instance_f32 *S, uint16_t fftLen)
 Initialization function for the floating-point real FFT. More...
 
arm_status arm_rfft_fast_init_f64 (arm_rfft_fast_instance_f64 *S, uint16_t fftLen)
 Initialization function for the Double Precision floating-point real FFT. More...
 
arm_status arm_rfft_init_f32 (arm_rfft_instance_f32 *S, arm_cfft_radix4_instance_f32 *S_CFFT, uint32_t fftLenReal, uint32_t ifftFlagR, uint32_t bitReverseFlag)
 Initialization function for the floating-point RFFT/RIFFT. More...
 
arm_status arm_rfft_init_q15 (arm_rfft_instance_q15 *S, uint32_t fftLenReal, uint32_t ifftFlagR, uint32_t bitReverseFlag)
 Initialization function for the Q15 RFFT/RIFFT. More...
 
arm_status arm_rfft_init_q31 (arm_rfft_instance_q31 *S, uint32_t fftLenReal, uint32_t ifftFlagR, uint32_t bitReverseFlag)
 Initialization function for the Q31 RFFT/RIFFT. More...
 
void arm_rfft_q15 (const arm_rfft_instance_q15 *S, q15_t *pSrc, q15_t *pDst)
 Processing function for the Q15 RFFT/RIFFT. More...
 
void arm_rfft_q31 (const arm_rfft_instance_q31 *S, q31_t *pSrc, q31_t *pDst)
 Processing function for the Q31 RFFT/RIFFT. More...
 

Description

The CMSIS DSP library includes specialized algorithms for computing the FFT of real data sequences. The FFT is defined over complex data but in many applications the input is real. Real FFT algorithms take advantage of the symmetry properties of the FFT and have a speed advantage over complex algorithms of the same length.
The Fast RFFT algorithm relays on the mixed radix CFFT that save processor usage.
The real length N forward FFT of a sequence is computed using the steps shown below.
RFFT.gif
Real Fast Fourier Transform
The real sequence is initially treated as if it were complex to perform a CFFT. Later, a processing stage reshapes the data to obtain half of the frequency spectrum in complex format. Except the first complex number that contains the two real numbers X[0] and X[N/2] all the data is complex. In other words, the first complex sample contains two real values packed.
The input for the inverse RFFT should keep the same format as the output of the forward RFFT. A first processing stage pre-process the data to later perform an inverse CFFT.
RIFFT.gif
Real Inverse Fast Fourier Transform
The algorithms for floating-point, Q15, and Q31 data are slightly different and we describe each algorithm in turn.
Floating-point
The main functions are arm_rfft_fast_f16() and arm_rfft_fast_init_f16().
The FFT of a real N-point sequence has even symmetry in the frequency domain. The second half of the data equals the conjugate of the first half flipped in frequency. Looking at the data, we see that we can uniquely represent the FFT using only N/2 complex numbers. These are packed into the output array in alternating real and imaginary components:
X = { real[0], imag[0], real[1], imag[1], real[2], imag[2] ... real[(N/2)-1], imag[(N/2)-1 }
It happens that the first complex number (real[0], imag[0]) is actually all real. real[0] represents the DC offset, and imag[0] should be 0. (real[1], imag[1]) is the fundamental frequency, (real[2], imag[2]) is the first harmonic and so on.
The real FFT functions pack the frequency domain data in this fashion. The forward transform outputs the data in this form and the inverse transform expects input data in this form. The function always performs the needed bitreversal so that the input and output data is always in normal order. The functions support lengths of [32, 64, 128, ..., 4096] samples.
Q15 and Q31
The real algorithms are defined in a similar manner and utilize N/2 complex transforms behind the scenes.
The complex transforms used internally include scaling to prevent fixed-point overflows. The overall scaling equals 1/(fftLen/2). Due to the use of complex transform internally, the source buffer is modified by the rfft.
A separate instance structure must be defined for each transform used but twiddle factor and bit reversal tables can be reused.
There is also an associated initialization function for each data type. The initialization function performs the following operations:
  • Sets the values of the internal structure fields.
  • Initializes twiddle factor table and bit reversal table pointers.
  • Initializes the internal complex FFT data structure.
Use of the initialization function is optional except for MVE versions where it is mandatory. If you don't use the initialization functions, then the structures should be initialized with code similar to the one below:
      arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
      arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
  
where fftLenReal is the length of the real transform; fftLenBy2 length of the internal complex transform (fftLenReal/2). ifftFlagR Selects forward (=0) or inverse (=1) transform. bitReverseFlagR Selects bit reversed output (=0) or normal order output (=1). twidCoefRModifier stride modifier for the twiddle factor table. The value is based on the FFT length; pTwiddleARealpoints to the A array of twiddle coefficients; pTwiddleBRealpoints to the B array of twiddle coefficients; pCfft points to the CFFT Instance structure. The CFFT structure must also be initialized.
Note that with MVE versions you can't initialize instance structures directly and must use the initialization function.
The CMSIS DSP library includes specialized algorithms for computing the FFT of real data sequences. The FFT is defined over complex data but in many applications the input is real. Real FFT algorithms take advantage of the symmetry properties of the FFT and have a speed advantage over complex algorithms of the same length.
The Fast RFFT algorithm relays on the mixed radix CFFT that save processor usage.
The real length N forward FFT of a sequence is computed using the steps shown below.
RFFT.gif
Real Fast Fourier Transform
The real sequence is initially treated as if it were complex to perform a CFFT. Later, a processing stage reshapes the data to obtain half of the frequency spectrum in complex format. Except the first complex number that contains the two real numbers X[0] and X[N/2] all the data is complex. In other words, the first complex sample contains two real values packed.
The input for the inverse RFFT should keep the same format as the output of the forward RFFT. A first processing stage pre-process the data to later perform an inverse CFFT.
RIFFT.gif
Real Inverse Fast Fourier Transform
The algorithms for floating-point, Q15, and Q31 data are slightly different and we describe each algorithm in turn.
Floating-point
The main functions are arm_rfft_fast_f32() and arm_rfft_fast_init_f32(). The older functions arm_rfft_f32() and arm_rfft_init_f32() have been deprecated but are still documented.
The FFT of a real N-point sequence has even symmetry in the frequency domain. The second half of the data equals the conjugate of the first half flipped in frequency. Looking at the data, we see that we can uniquely represent the FFT using only N/2 complex numbers. These are packed into the output array in alternating real and imaginary components:
X = { real[0], imag[0], real[1], imag[1], real[2], imag[2] ... real[(N/2)-1], imag[(N/2)-1 }
It happens that the first complex number (real[0], imag[0]) is actually all real. real[0] represents the DC offset, and imag[0] should be 0. (real[1], imag[1]) is the fundamental frequency, (real[2], imag[2]) is the first harmonic and so on.
The real FFT functions pack the frequency domain data in this fashion. The forward transform outputs the data in this form and the inverse transform expects input data in this form. The function always performs the needed bitreversal so that the input and output data is always in normal order. The functions support lengths of [32, 64, 128, ..., 4096] samples.
Q15 and Q31
The real algorithms are defined in a similar manner and utilize N/2 complex transforms behind the scenes.
The complex transforms used internally include scaling to prevent fixed-point overflows. The overall scaling equals 1/(fftLen/2). Due to the use of complex transform internally, the source buffer is modified by the rfft.
A separate instance structure must be defined for each transform used but twiddle factor and bit reversal tables can be reused.
There is also an associated initialization function for each data type. The initialization function performs the following operations:
  • Sets the values of the internal structure fields.
  • Initializes twiddle factor table and bit reversal table pointers.
  • Initializes the internal complex FFT data structure.
Use of the initialization function is optional except for MVE versions where it is mandatory. If you don't use the initialization functions, then the structures should be initialized with code similar to the one below:
      arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
      arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
  
where fftLenReal is the length of the real transform; fftLenBy2 length of the internal complex transform (fftLenReal/2). ifftFlagR Selects forward (=0) or inverse (=1) transform. bitReverseFlagR Selects bit reversed output (=0) or normal order output (=1). twidCoefRModifier stride modifier for the twiddle factor table. The value is based on the FFT length; pTwiddleARealpoints to the A array of twiddle coefficients; pTwiddleBRealpoints to the B array of twiddle coefficients; pCfft points to the CFFT Instance structure. The CFFT structure must also be initialized.
Note that with MVE versions you can't initialize instance structures directly and must use the initialization function.

Function Documentation

void arm_rfft_f32 ( const arm_rfft_instance_f32 S,
float32_t pSrc,
float32_t pDst 
)
Deprecated:
Do not use this function. It has been superceded by arm_rfft_fast_f32 and will be removed in the future.
Parameters
[in]Spoints to an instance of the floating-point RFFT/RIFFT structure
[in]pSrcpoints to the input buffer
[out]pDstpoints to the output buffer
Returns
none
For the RIFFT, the source buffer must at least have length fftLenReal + 2. The last two elements must be equal to what would be generated by the RFFT: (pSrc[0] - pSrc[1]) and 0.0f
void arm_rfft_fast_f16 ( const arm_rfft_fast_instance_f16 S,
float16_t *  p,
float16_t *  pOut,
uint8_t  ifftFlag 
)
Parameters
[in]Spoints to an arm_rfft_fast_instance_f16 structure
[in]ppoints to input buffer (Source buffer is modified by this function.)
[in]pOutpoints to output buffer
[in]ifftFlag
  • value = 0: RFFT
  • value = 1: RIFFT
Returns
none
void arm_rfft_fast_f32 ( const arm_rfft_fast_instance_f32 S,
float32_t p,
float32_t pOut,
uint8_t  ifftFlag 
)
Parameters
[in]Spoints to an arm_rfft_fast_instance_f32 structure
[in]ppoints to input buffer (Source buffer is modified by this function.)
[in]pOutpoints to output buffer
[in]ifftFlag
  • value = 0: RFFT
  • value = 1: RIFFT
Returns
none
void arm_rfft_fast_f64 ( arm_rfft_fast_instance_f64 S,
float64_t p,
float64_t pOut,
uint8_t  ifftFlag 
)
Parameters
[in]Spoints to an arm_rfft_fast_instance_f64 structure
[in]ppoints to input buffer (Source buffer is modified by this function.)
[in]pOutpoints to output buffer
[in]ifftFlag
  • value = 0: RFFT
  • value = 1: RIFFT
Returns
none
arm_status arm_rfft_fast_init_f16 ( arm_rfft_fast_instance_f16 S,
uint16_t  fftLen 
)
Parameters
[in,out]Spoints to an arm_rfft_fast_instance_f16 structure
[in]fftLenlength of the Real Sequence
Returns
execution status
Description
The parameter fftLen specifies the length of RFFT/CIFFT process. Supported FFT Lengths are 32, 64, 128, 256, 512, 1024, 2048, 4096.
This Function also initializes Twiddle factor table pointer and Bit reversal table pointer.
arm_status arm_rfft_fast_init_f32 ( arm_rfft_fast_instance_f32 S,
uint16_t  fftLen 
)
Parameters
[in,out]Spoints to an arm_rfft_fast_instance_f32 structure
[in]fftLenlength of the Real Sequence
Returns
execution status
Description
The parameter fftLen specifies the length of RFFT/CIFFT process. Supported FFT Lengths are 32, 64, 128, 256, 512, 1024, 2048, 4096.
This Function also initializes Twiddle factor table pointer and Bit reversal table pointer.
arm_status arm_rfft_fast_init_f64 ( arm_rfft_fast_instance_f64 S,
uint16_t  fftLen 
)
Parameters
[in,out]Spoints to an arm_rfft_fast_instance_f64 structure
[in]fftLenlength of the Real Sequence
Returns
execution status
Description
The parameter fftLen specifies the length of RFFT/CIFFT process. Supported FFT Lengths are 32, 64, 128, 256, 512, 1024, 2048, 4096.
This Function also initializes Twiddle factor table pointer and Bit reversal table pointer.
arm_status arm_rfft_init_f32 ( arm_rfft_instance_f32 S,
arm_cfft_radix4_instance_f32 S_CFFT,
uint32_t  fftLenReal,
uint32_t  ifftFlagR,
uint32_t  bitReverseFlag 
)
Deprecated:
Do not use this function. It has been superceded by arm_rfft_fast_init_f32 and will be removed in the future.
Parameters
[in,out]Spoints to an instance of the floating-point RFFT/RIFFT structure
[in,out]S_CFFTpoints to an instance of the floating-point CFFT/CIFFT structure
[in]fftLenReallength of the FFT.
[in]ifftFlagRflag that selects transform direction
  • value = 0: forward transform
  • value = 1: inverse transform
[in]bitReverseFlagflag that enables / disables bit reversal of output
  • value = 0: disables bit reversal of output
  • value = 1: enables bit reversal of output
Returns
execution status
Description
The parameter fftLenRealspecifies length of RFFT/RIFFT Process. Supported FFT Lengths are 128, 512, 2048.
The parameter ifftFlagR controls whether a forward or inverse transform is computed. Set(=1) ifftFlagR to calculate RIFFT, otherwise RFFT is calculated.
The parameter bitReverseFlag controls whether output is in normal order or bit reversed order. Set(=1) bitReverseFlag for output to be in normal order otherwise output is in bit reversed order.
This function also initializes Twiddle factor table.
arm_status arm_rfft_init_q15 ( arm_rfft_instance_q15 S,
uint32_t  fftLenReal,
uint32_t  ifftFlagR,
uint32_t  bitReverseFlag 
)
Parameters
[in,out]Spoints to an instance of the Q15 RFFT/RIFFT structure
[in]fftLenReallength of the FFT
[in]ifftFlagRflag that selects transform direction
  • value = 0: forward transform
  • value = 1: inverse transform
[in]bitReverseFlagflag that enables / disables bit reversal of output
  • value = 0: disables bit reversal of output
  • value = 1: enables bit reversal of output
Returns
execution status
Details
The parameter fftLenReal specifies length of RFFT/RIFFT Process. Supported FFT Lengths are 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192.
The parameter ifftFlagR controls whether a forward or inverse transform is computed. Set(=1) ifftFlagR to calculate RIFFT, otherwise RFFT is calculated.
The parameter bitReverseFlag controls whether output is in normal order or bit reversed order. Set(=1) bitReverseFlag for output to be in normal order otherwise output is in bit reversed order.
This function also initializes Twiddle factor table.
arm_status arm_rfft_init_q31 ( arm_rfft_instance_q31 S,
uint32_t  fftLenReal,
uint32_t  ifftFlagR,
uint32_t  bitReverseFlag 
)
Parameters
[in,out]Spoints to an instance of the Q31 RFFT/RIFFT structure
[in]fftLenReallength of the FFT
[in]ifftFlagRflag that selects transform direction
  • value = 0: forward transform
  • value = 1: inverse transform
[in]bitReverseFlagflag that enables / disables bit reversal of output
  • value = 0: disables bit reversal of output
  • value = 1: enables bit reversal of output
Returns
execution status
Details
The parameter fftLenReal specifies length of RFFT/RIFFT Process. Supported FFT Lengths are 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192.
The parameter ifftFlagR controls whether a forward or inverse transform is computed. Set(=1) ifftFlagR to calculate RIFFT, otherwise RFFT is calculated.
The parameter bitReverseFlag controls whether output is in normal order or bit reversed order. Set(=1) bitReverseFlag for output to be in normal order otherwise output is in bit reversed order.
This function also initializes Twiddle factor table.
void arm_rfft_q15 ( const arm_rfft_instance_q15 S,
q15_t pSrc,
q15_t pDst 
)
Parameters
[in]Spoints to an instance of the Q15 RFFT/RIFFT structure
[in]pSrcpoints to input buffer (Source buffer is modified by this function.)
[out]pDstpoints to output buffer
Returns
none
Input an output formats
Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. Hence the output format is different for different RFFT sizes. The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
RFFTQ15.gif
Input and Output Formats for Q15 RFFT
RIFFTQ15.gif
Input and Output Formats for Q15 RIFFT
If the input buffer is of length N, the output buffer must have length 2*N. The input buffer is modified by this function.
For the RIFFT, the source buffer must at least have length fftLenReal + 2. The last two elements must be equal to what would be generated by the RFFT: (pSrc[0] - pSrc[1]) >> 1 and 0
void arm_rfft_q31 ( const arm_rfft_instance_q31 S,
q31_t pSrc,
q31_t pDst 
)
Parameters
[in]Spoints to an instance of the Q31 RFFT/RIFFT structure
[in]pSrcpoints to input buffer (Source buffer is modified by this function)
[out]pDstpoints to output buffer
Returns
none
Input an output formats
Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. Hence the output format is different for different RFFT sizes. The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
RFFTQ31.gif
Input and Output Formats for Q31 RFFT
RIFFTQ31.gif
Input and Output Formats for Q31 RIFFT
If the input buffer is of length N, the output buffer must have length 2*N. The input buffer is modified by this function.
For the RIFFT, the source buffer must at least have length fftLenReal + 2. The last two elements must be equal to what would be generated by the RFFT: (pSrc[0] - pSrc[1]) >> 1 and 0