24.02
|
Go to the documentation of this file.
24 virtual bool IsNull()
const {
return false; }
32 bool IsNull()
const override {
return true; }
226 void ReorderOrigins(
unsigned int* newOrdering,
unsigned int numNewOrdering);
235 unsigned int m_ConcatAxis;
237 uint32_t m_NumDimensions;
238 uint32_t** m_ViewOrigins;
291 uint32_t** m_ViewSizes;
292 bool m_IsAxisSet =
false;
299 template <
typename TensorShapeIt>
302 unsigned int concatenationDimension)
304 auto numInputs = std::distance(first, last);
311 const auto& firstInputShape = *first;
313 const unsigned int numDimensions = firstInputShape.GetNumDimensions();
314 for (
auto it = first + 1; it != last; ++it)
316 if (it->GetNumDimensions() != numDimensions)
322 if (concatenationDimension >= numDimensions)
327 for (
auto it = first; it != last; ++it)
329 for (
unsigned int d = 0; d < numDimensions; ++d)
331 const bool dimSizeOk = (d == concatenationDimension) || (firstInputShape[d] == (*it)[d]);
335 " except the concatenation dimension");
340 OriginsDescriptor viewsDescriptor(
static_cast<uint32_t
>(numInputs), numDimensions);
343 uint32_t viewIndex = 0u;
344 uint32_t coordAlongConcatDim = 0u;
345 for (
auto it = first; it != last; ++it)
347 const auto& inputShape = *it;
349 for (
unsigned int i = 0; i < concatenationDimension; ++i)
354 viewsDescriptor.
SetViewOriginCoord(viewIndex, concatenationDimension, coordAlongConcatDim);
355 unsigned int dimSize = inputShape[concatenationDimension];
356 coordAlongConcatDim += dimSize;
359 for (
unsigned int i = concatenationDimension + 1; i < numDimensions; ++i)
367 return viewsDescriptor;
884 std::vector<std::pair<unsigned int, unsigned int>> crops)
900 std::vector<std::pair<unsigned int, unsigned int>>
m_Crops;
947 unsigned int numOutputSlots = 2u,
1052 const std::vector<std::pair<unsigned int, unsigned int>>& padList)
1069 std::vector<std::pair<unsigned int, unsigned int>>
m_PadList;
1201 PadDescriptor(
const std::vector<std::pair<unsigned int, unsigned int>>& padList,
1202 const float& padValue = 0,
1218 std::vector<std::pair<unsigned int, unsigned int>>
m_PadList;
1230 SliceDescriptor(
const std::vector<unsigned int>& begin,
const std::vector<unsigned int>& size)
1306 const std::vector<int>& end,
1307 const std::vector<int>& stride)
1339 int startForAxis)
const;
1587 bool transposeY =
false,
1588 bool adjointX =
false,
1589 bool adjointY =
false,
1625 static std::pair<unsigned int, unsigned int>
GetAxesToMul(
A BatchNormalizationDescriptor for the BatchNormalizationLayer.
uint32_t m_PadTop
Padding top value in the height dimension.
float m_Beta
Beta, the offset scalar value applied for the normalized tensor. Defaults to 1.0.
bool IsEqual(const PermutationVector &other) const
std::vector< unsigned int > m_Begin
Beginning indices of the slice in each dimension.
armnn::DataType m_Output_Type
Deprecated and will be removed in future release.
uint32_t GetNumInputs() const
Get the number of views/inputs.
uint32_t m_Axis
Axis to apply channel shuffle operation on.
unsigned int GetConcatAxis() const
Get the concatenation axis value.
bool m_ConstantWeights
Enable/disable constant weights and biases.
PaddingMethod m_PaddingMethod
The padding method to be used. (Exclude, IgnoreValue).
A ViewsDescriptor for the SplitterLayer.
float m_NmsScoreThreshold
NMS score threshold.
float m_ForgetIntermediateScale
Forget intermediate quantization scale.
An ActivationDescriptor for the ActivationLayer.
uint32_t m_PadLeft
Padding left value in the width dimension.
bool m_TransposeX
Transpose the slices of each input tensor Transpose and Adjoint can not both be set to true for the s...
uint32_t GetNumViews() const
Get the number of views.
bool operator==(const FusedDescriptor &rhs) const
PadDescriptor(const std::vector< std::pair< unsigned int, unsigned int >> &padList, const float &padValue=0, const PaddingMode &paddingMode=PaddingMode::Constant)
A FullyConnectedDescriptor for the FullyConnectedLayer.
bool operator==(const DetectionPostProcessDescriptor &rhs) const
Null Descriptor used as a return value from the IConnectableLayer GetParameters method by layers whic...
bool operator==(const ChannelShuffleDescriptor &rhs) const
bool operator==(const PadDescriptor &rhs) const
float m_ScaleX
Center size encoding scale x.
A QLstmDescriptor for the QLstmLayer.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
FusedKernelType m_FusedKernelType
bool operator==(const FakeQuantizationDescriptor &rhs) const
StridedSliceDescriptor(const std::vector< int > &begin, const std::vector< int > &end, const std::vector< int > &stride)
bool m_ProjectionEnabled
Enable/disable the projection layer.
OutputShapeRounding m_OutputShapeRounding
The rounding method for the output shape. (Floor, Ceiling).
bool m_HalfPixelCenters
Half Pixel Centers.
bool m_TimeMajor
Enable/disable time major.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
StandInDescriptor(uint32_t numInputs, uint32_t numOutputs)
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
bool m_TransposeWeightMatrix
Enable/disable transpose weight matrix.
uint32_t m_TargetHeight
Target height value.
bool m_BiasEnabled
Enable/disable bias.
void ReorderOrigins(unsigned int *newOrdering, unsigned int numNewOrdering)
Reorders the viewOrigins in accordance with the indices presented in newOrdering array.
uint32_t m_PoolHeight
Pooling height value.
std::vector< int > m_Begin
Begin values for the input that will be sliced.
float m_ScaleY
Center size encoding scale y.
A Pooling3dDescriptor for the Pooling3dLayer.
bool m_AdjointX
Adjoint the slices of each input tensor Transpose and Adjoint can not both be set to true for the sam...
uint32_t m_MaxDetections
Maximum numbers of detections.
static std::pair< unsigned int, unsigned int > GetAxesToMul(DataLayout dataLayout, const TensorShape &tensorShape)
Static helper to get the two axes (for each input) for multiplication.
LogicalBinaryDescriptor(LogicalBinaryOperation operation)
uint32_t m_PadFront
Padding front value in the depth dimension.
A ResizeDescriptor for the ResizeLayer.
An ArgMinMaxDescriptor for ArgMinMaxLayer.
float m_A
Alpha upper bound value used by the activation functions. (BoundedReLu, Linear, TanH,...
An InstanceNormalizationDescriptor for InstanceNormalizationLayer.
int32_t m_EllipsisMask
Ellipsis mask value.
bool HasAxis() const
Returns true if an axis has been set.
float m_Beta
Exponentiation value.
bool operator==(const GatherDescriptor &rhs) const
A GatherDescriptor for the GatherLayer.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
bool operator==(const BatchNormalizationDescriptor &rhs) const
DataLayout m_DataLayoutX
Data layout of each input tensor, such as NHWC/NDHWC (leave as default for arbitrary layout)
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
A L2NormalizationDescriptor for the L2NormalizationLayer.
@ LocalBrightness
Krichevsky 2012: Local Brightness Normalization.
float m_Beta
Beta value for the normalization equation.
NormalizationAlgorithmMethod
uint32_t GetNumDimensions() const
Get the number of dimensions.
float m_Max
Maximum value.
A NormalizationDescriptor for the NormalizationLayer.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
bool operator==(const Pooling2dDescriptor &rhs) const
std::vector< unsigned int > m_BlockShape
Block shape values.
A ChannelShuffleDescriptor for the ChannelShuffle operator.
static PermutationVector GetPermuteVec(DataLayout dataLayout, const TensorShape &tensorShape)
Static helper to get the axes which will be transposed.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
uint32_t m_PadTop
Padding top value in the height dimension.
uint32_t m_PadTop
Padding top value in the height dimension.
ArgMinMaxFunction m_Function
Specify if the function is to find Min or Max.
std::vector< unsigned int > m_BlockShape
Block shape value.
bool operator==(const L2NormalizationDescriptor &rhs) const
int32_t m_BeginMask
Begin mask value.
uint32_t m_DilationX
Dilation along x axis.
PaddingMode
The padding mode controls whether the padding should be filled with constant values (Constant),...
uint32_t m_PadBottom
Padding bottom value in the height dimension.
bool operator==(const InstanceNormalizationDescriptor &rhs) const
float m_InputIntermediateScale
Input intermediate quantization scale.
float m_ScaleW
Center size encoding scale weight.
FusedDescriptor(unsigned int numInputSlots=4u, unsigned int numOutputSlots=2u, FusedKernelType fusedType=FusedKernelType::AddMulAdd)
float m_InputIntermediateScale
Input intermediate quantization scale.
A StackDescriptor for the StackLayer.
BroadcastToDescriptor(const TensorShape &shape)
bool operator==(const SpaceToDepthDescriptor &rhs) const
bool operator==(const LstmDescriptor &rhs) const
uint32_t m_StrideZ
Stride value when proceeding through input for the depth dimension.
SpaceToBatchNdDescriptor()
uint32_t m_NormSize
Depth radius value.
TensorShape m_BroadcastToShape
Target shape value.
TileDescriptor(std::vector< uint32_t > multiples)
uint32_t m_PoolWidth
Pooling width value.
uint32_t m_NumInputs
Number of input tensors.
TransposeConvolution2dDescriptor()
DataLayout m_DataLayout
The data layout to be used (NCDHW, NDHWC).
bool operator==(const ResizeDescriptor &rhs) const
uint32_t m_PadLeft
Padding left value in the width dimension.
std::vector< std::pair< unsigned int, unsigned int > > m_Crops
The values to crop from the input dimension.
Status SetViewSize(uint32_t view, uint32_t coord, uint32_t value)
Set the size of the views.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
uint32_t m_DilationY
Dilation along y axis.
PreCompiledDescriptor(unsigned int numInputSlots=1u, unsigned int numOutputSlots=1u)
StackDescriptor(uint32_t axis, uint32_t numInputs, const TensorShape &inputShape)
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_MaxClassesPerDetection
Maximum numbers of classes per detection, used in Fast NMS.
Convolution3dDescriptor()
BatchNormalizationDescriptor()
float m_CellIntermediateScale
Cell intermediate quantization scale.
NormalizationAlgorithmMethod m_NormMethodType
Normalization method algorithm to use (LocalBrightness, LocalContrast).
bool IsNull() const override
bool operator==(const LogicalBinaryDescriptor &rhs) const
FullyConnectedDescriptor()
bool operator==(const QLstmDescriptor &rhs) const
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
bool operator==(const FullyConnectedDescriptor &rhs) const
ReduceOperation m_ReduceOperation
Specifies the reduction operation to execute.
~PreCompiledDescriptor()=default
int GetStopForAxis(const TensorShape &inputShape, unsigned int axis, int startForAxis) const
unsigned int m_NumInputSlots
bool m_KeepDims
Enable/disable keep dimensions. If true, then the reduced dimensions that are of length 1 are kept.
PermuteDescriptor(const PermutationVector &dimMappings)
GatherDescriptor(int32_t axis)
bool operator==(const ElementwiseBinaryDescriptor &rhs) const
A ElementwiseBinaryDescriptor for the ElementwiseBinaryLayer.
const uint32_t * GetViewSizes(uint32_t idx) const
Get the view sizes at the int value idx.
bool operator==(const TransposeDescriptor &rhs) const
Status SetViewOriginCoord(uint32_t view, uint32_t coord, uint32_t value)
@Brief Set the view origin coordinates.
PoolingAlgorithm m_PoolType
The pooling algorithm to use (Max. Average, L2).
ResizeMethod m_Method
The Interpolation method to use (Bilinear, NearestNeighbor).
std::vector< std::pair< unsigned int, unsigned int > > m_PadList
Specifies the padding values for the input dimension: heightPad{top, bottom} widthPad{left,...
MeanDescriptor(const std::vector< unsigned int > &axis, bool keepDims)
bool m_PeepholeEnabled
Enable/disable peephole.
uint32_t m_PadRight
Padding right value in the width dimension.
NormalizationAlgorithmChannel m_NormChannelType
Normalization channel algorithm to use (Across, Within).
NormalizationDescriptor()
Convolution2dDescriptor()
A FusedDescriptor for the FusedLayer.
uint32_t m_NumInputs
Number of input tensors.
float m_ClippingThresProj
Clipping threshold value for the projection.
bool operator==(const DepthwiseConvolution2dDescriptor &rhs) const
uint32_t m_PoolWidth
Pooling width value.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
bool operator==(const StackDescriptor &rhs) const
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t GetNumInputs() const
uint32_t m_DilationY
Dilation factor value for height dimension.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
int32_t GetAxis() const
Get the axis value.
PaddingMethod m_PaddingMethod
The padding method to be used. (Exclude, IgnoreValue).
uint32_t m_PadRight
Padding right value in the width dimension.
BatchToSpaceNdDescriptor()
bool m_BiasEnabled
Enable/disable bias.
OriginsDescriptor & operator=(OriginsDescriptor rhs)
bool operator==(const PermuteDescriptor &rhs) const
LogicalBinaryOperation m_Operation
Specifies the logical operation to execute.
A PadDescriptor for the PadLayer.
A TransposeDescriptor for the TransposeLayer.
uint32_t m_DilationZ
Dilation along z axis.
const OriginsDescriptor & GetOrigins() const
Get the View Origins.
uint32_t m_NumClasses
Number of classes.
@ Exclude
The padding fields don't count and are ignored.
uint32_t m_Axis
0-based axis along which to stack the input tensors.
A SliceDescriptor for the SliceLayer.
FillDescriptor(const float &value)
float m_Gamma
Gamma, the scale scalar value applied for the normalized tensor. Defaults to 1.0.
float m_NmsIouThreshold
Intersection over union threshold.
ComparisonDescriptor(ComparisonOperation operation)
SpaceToBatchNdDescriptor(const std::vector< unsigned int > &blockShape, const std::vector< std::pair< unsigned int, unsigned int >> &padList)
bool operator==(const SoftmaxDescriptor &rhs) const
bool operator==(const BatchToSpaceNdDescriptor &rhs) const
bool m_BiasEnabled
Enable/disable bias.
ChannelShuffleDescriptor()
TransposeDescriptor(const PermutationVector &dimMappings)
A ReshapeDescriptor for the ReshapeLayer.
float m_HiddenStateScale
Hidden State quantization scale.
LogicalBinaryDescriptor()
bool operator==(const SpaceToBatchNdDescriptor &rhs) const
float m_PadValue
Optional value to use for padding, defaults to 0.
uint32_t m_PadRight
Padding right value in the width dimension.
bool operator==(const MeanDescriptor &rhs) const
uint32_t m_PadLeft
Padding left value in the width dimension.
ActivationFunction m_Function
The activation function to use (Sigmoid, TanH, Linear, ReLu, BoundedReLu, SoftReLu,...
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
int32_t m_HiddenStateZeroPoint
Hidden State zero point.
A PermuteDescriptor for the PermuteLayer.
A BatchMatMulDescriptor for the BatchMatMul operator.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
SliceDescriptor(const std::vector< unsigned int > &begin, const std::vector< unsigned int > &size)
InstanceNormalizationDescriptor()
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
unsigned int m_NumInputSlots
float m_ProjectionClip
Clipping threshold value for the projection.
int32_t m_Axis
The axis in params to gather indices from.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
A SpaceToBatchNdDescriptor for the SpaceToBatchNdLayer.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
friend void swap(OriginsDescriptor &first, OriginsDescriptor &second)
Swap the ViewsDescriptor values first and second.
A Convolution3dDescriptor for the Convolution3dLayer.
bool operator==(const BroadcastToDescriptor &rhs) const
TensorShape m_TargetShape
Target shape value.
bool operator==(const ComparisonDescriptor &rhs) const
Base class for all descriptors.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
ReshapeDescriptor(const TensorShape &shape)
int32_t m_EndMask
End mask value.
uint32_t m_PadLeft
Padding left value in the width dimension.
PermutationVector m_DimMappings
Indicates how to translate tensor elements from a given source into the target destination,...
uint32_t m_NumOutputs
Number of output tensors.
uint32_t m_PadFront
Padding front value in the depth dimension.
TensorShape m_InputShape
Required shape of all input tensors.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
float m_OutputIntermediateScale
Output intermediate quantization scale.
uint32_t m_PadRight
Padding right value in the width dimension.
bool operator==(const BatchMatMulDescriptor &rhs) const
void SetConcatAxis(unsigned int concatAxis)
Set the concatenation axis value.
uint32_t m_DetectionsPerClass
Detections per classes, used in Regular NMS.
DetectionPostProcessDescriptor()
float m_ScaleH
Center size encoding scale height.
ChannelShuffleDescriptor(const uint32_t &numGroups, const uint32_t &axis)
bool operator==(const StandInDescriptor &rhs) const
bool m_KeepDims
if true then output shape has no change.
A BatchToSpaceNdDescriptor for the BatchToSpaceNdLayer.
bool operator==(const ArgMinMaxDescriptor &rhs) const
A Convolution2dDescriptor for the Convolution2dLayer.
unsigned int m_NumOutputSlots
uint32_t m_PadBottom
Padding bottom value in the height dimension.
A ComparisonDescriptor for the ComparisonLayer.
A FillDescriptor for the FillLayer.
ComparisonOperation m_Operation
Specifies the comparison operation to execute.
float m_OutputIntermediateScale
Output intermediate quantization scale.
uint32_t m_PadRight
Padding right value in the width dimension.
UnaryOperation m_Operation
Specifies the elementwiseUnary operation to execute.
bool operator==(const ViewsDescriptor &rhs) const
int32_t m_ShrinkAxisMask
Shrink axis mask value. If set, the nth specification shrinks the dimensionality by 1.
A StandInDescriptor for the StandIn layer.
ViewsDescriptor & operator=(ViewsDescriptor rhs)
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
ElementwiseUnaryDescriptor(UnaryOperation operation)
unsigned int m_BlockSize
Scalar specifying the input block size. It must be >= 1.
OriginsDescriptor CreateDescriptorForConcatenation(TensorShapeIt first, TensorShapeIt last, unsigned int concatenationDimension)
Convenience template to create an OriginsDescriptor to use when creating a ConcatLayer for performing...
uint32_t m_TargetWidth
Target width value.
uint32_t m_PoolHeight
Pooling height value.
std::vector< int > m_Stride
Stride values for the input that will be sliced.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
bool operator==(const ElementwiseUnaryDescriptor &rhs) const
An LstmDescriptor for the LstmLayer.
A StridedSliceDescriptor for the StridedSliceLayer.
PermutationVector m_DimMappings
Indicates how to translate tensor elements from a given source into the target destination,...
std::vector< unsigned int > m_OutputShape
uint32_t m_PadBack
Padding back value in the depth dimension.
bool m_AlignCorners
Aligned corners.
std::vector< uint32_t > m_Multiples
The vector to multiply the input shape by.
std::vector< unsigned int > m_Axis
Values for the dimensions to reduce.
bool m_CifgEnabled
Enable/disable cifg (coupled input & forget gate).
A LogicalBinaryDescriptor for the LogicalBinaryLayer.
float m_Alpha
Alpha value for the normalization equation.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
float m_ForgetIntermediateScale
Forget intermediate quantization scale.
uint32_t m_PadLeft
Padding left value in the width dimension.
int32_t m_HiddenStateZeroPoint
Hidden State zero point.
uint32_t m_DilationX
Dilation along x axis.
int m_Axis
Scalar, defaulted to the last index (-1), specifying the dimension the activation will be performed o...
uint32_t m_PadBack
Padding back value in the depth dimension.
std::vector< uint32_t > m_vAxis
The indices of the dimensions to reduce.
std::vector< std::pair< unsigned int, unsigned int > > m_PadList
Specifies the padding for input dimension.
bool m_LayerNormEnabled
Enable/disable layer normalization.
uint32_t m_PadTop
Padding top value in the height dimension.
int GetStartForAxis(const TensorShape &inputShape, unsigned int axis) const
uint32_t GetNumDimensions() const
Get the number of dimensions.
uint32_t m_PadRight
Padding right value in the width dimension.
unsigned int m_NumOutputSlots
bool operator==(const Convolution3dDescriptor &rhs) const
bool operator==(const Pooling3dDescriptor &rhs) const
bool m_CifgEnabled
Enable/disable CIFG (coupled input & forget gate).
BinaryOperation m_Operation
Specifies the elementwiseBinary operation to execute.
ElementwiseUnaryDescriptor()
DepthwiseConvolution2dDescriptor()
uint32_t m_DilationY
Dilation along y axis.
An OriginsDescriptor for the ConcatLayer.
uint32_t GetNumInputs() const
Get the number of inputs.
Copyright (c) 2021 ARM Limited and Contributors.
A ElementwiseUnaryDescriptor for the ElementwiseUnaryLayer.
A TransposeConvolution2dDescriptor for the TransposeConvolution2dLayer.
bool m_BiasEnabled
Enable/disable bias.
int m_Axis
Axis to reduce across the input tensor.
float m_B
Beta lower bound value used by the activation functions. (BoundedReLu, Linear, TanH).
Status SetViewOriginCoord(uint32_t view, uint32_t coord, uint32_t value)
@Brief Set the view origin coordinates.
uint32_t m_StrideZ
Stride value when proceeding through input for the depth dimension.
bool m_UseRegularNms
Use Regular NMS.
SpaceToDepthDescriptor(unsigned int blockSize, DataLayout dataLayout)
uint32_t GetNumViews() const
Get the number of views.
float m_HiddenStateScale
Hidden State quantization scale.
float m_K
Kappa value used for the across channel normalization equation.
ElementwiseBinaryDescriptor(BinaryOperation operation)
float m_Min
Minimum value.
bool operator==(const StridedSliceDescriptor &rhs) const
bool m_ProjectionEnabled
Enable/disable the projection layer.
std::vector< int > m_End
End values for the input that will be sliced.
bool operator==(const TileDescriptor &rhs) const
BatchMatMulDescriptor(bool transposeX=false, bool transposeY=false, bool adjointX=false, bool adjointY=false, DataLayout dataLayoutX=DataLayout::NCHW, DataLayout dataLayoutY=DataLayout::NCHW)
virtual bool IsNull() const
PaddingMode m_PaddingMode
Specifies the Padding mode (Constant, Reflect or Symmetric)
bool operator==(const NormalizationDescriptor &rhs) const
OutputShapeRounding m_OutputShapeRounding
The rounding method for the output shape. (Floor, Ceiling).
BatchToSpaceNdDescriptor(std::vector< unsigned int > blockShape, std::vector< std::pair< unsigned int, unsigned int >> crops)
bool operator==(const TransposeConvolution2dDescriptor &rhs) const
bool m_OutputShapeEnabled
Output shape if it has been specified.
bool m_BiasEnabled
Enable/disable bias.
float m_CellClip
Clipping threshold value for the cell state.
bool m_LayerNormEnabled
Enable/disable layer normalization.
A PreCompiledDescriptor for the PreCompiledLayer.
friend void swap(ViewsDescriptor &first, ViewsDescriptor &second)
Swap the ViewsDescriptor value first and second.
virtual ~BaseDescriptor()=default
uint32_t m_NumGroups
Number of groups for the channel shuffle operation.
ElementwiseBinaryDescriptor()
DataLayout m_DataLayout
The data layout to be used (NDHWC, NCDHW).
float m_Eps
Used to avoid dividing by zero.
bool operator==(const SliceDescriptor &rhs) const
const uint32_t * GetViewOrigin(uint32_t idx) const
Return the view origin at the int value idx.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
std::vector< unsigned int > m_Size
Size of the slice in each dimension.
A Pooling2dDescriptor for the Pooling2dLayer.
uint32_t m_ActivationFunc
The activation function to use.
bool operator==(const ReduceDescriptor &rhs) const
NormalizationAlgorithmChannel
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
A DepthwiseConvolution2dDescriptor for the DepthwiseConvolution2dLayer.
A ReduceDescriptor for the REDUCE operators.
uint32_t m_DilationX
Dilation factor value for width dimension.
float m_Eps
Value to add to the variance. Used to avoid dividing by zero.
A FakeQuantizationDescriptor for the FakeQuantizationLayer.
float m_ClippingThresCell
Clipping threshold value for the cell state.
uint32_t m_PoolDepth
Pooling depth value.
static std::vector< unsigned int > GetAxesNotMul(DataLayout dataLayout, const TensorShape &tensorShape)
Static helper to get the axes (for each input) that will not be multiplied together.
PaddingMethod
The padding method modifies the output of pooling layers.
int32_t m_NewAxisMask
New axis mask value.
A MeanDescriptor for the MeanLayer.
bool m_PeepholeEnabled
Enable/disable peephole.
bool operator==(const ReshapeDescriptor &rhs) const
bool operator==(const ActivationDescriptor &rhs) const
L2NormalizationDescriptor()
A SoftmaxDescriptor for the SoftmaxLayer.
bool operator==(const FillDescriptor &rhs) const
PoolingAlgorithm m_PoolType
The pooling algorithm to use (Max. Average, L2).
float m_Eps
Epsilon, small scalar value added to variance to avoid dividing by zero. Defaults to 1e-12f.
FakeQuantizationDescriptor()
A SpaceToDepthDescriptor for the SpaceToDepthLayer.
void SetAxis(int32_t axis)
Set the axis value.
ActivationDescriptor(armnn::ActivationFunction activation, float a=0, float b=0)
float m_CellIntermediateScale
Cell intermediate quantization scale.
const uint32_t * GetViewOrigin(uint32_t idx) const
Get the view origin at the int value idx.
uint32_t GetNumInputs() const
Get the number of views/inputs.
bool operator==(const Convolution2dDescriptor &rhs) const
bool operator==(const OriginsDescriptor &rhs) const
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
uint32_t m_PadTop
Padding top value in the height dimension.