ArmNN
 25.11
Loading...
Searching...
No Matches
ArmComputeTensorUtils.hpp
Go to the documentation of this file.
1//
2// Copyright © 2017-2024 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
5#pragma once
6
7#include <armnn/Tensor.hpp>
9
11
12#include <arm_compute/core/ITensor.h>
13#include <arm_compute/core/TensorInfo.h>
14#include <arm_compute/core/Types.h>
15#include <arm_compute/function_info/ScatterInfo.h>
16
17#include <Half.hpp>
18
19namespace armnn
20{
21class ITensorHandle;
22
23namespace armcomputetensorutils
24{
25
26/// Utility function to map an armnn::DataType to corresponding arm_compute::DataType.
27arm_compute::DataType GetArmComputeDataType(armnn::DataType dataType, bool multiScales);
28
29/// Utility function to map an arm_compute::DataType to corresponding armnn::DataType.
30armnn::DataType GetArmNNDataType(arm_compute::DataType datatype);
31
32/// Utility function used to set up an arm_compute::Coordinates from a vector of ArmNN Axes for reduction functions
33arm_compute::Coordinates BuildArmComputeReductionCoordinates(size_t inputDimensions,
34 unsigned int originalInputRank,
35 const std::vector<unsigned int>& armnnAxes);
36
37/// Utility function used to setup an arm_compute::TensorShape object from an armnn::TensorShape.
38arm_compute::TensorShape BuildArmComputeTensorShape(const armnn::TensorShape& tensorShape);
39
40/// Utility function used to setup an arm_compute::TensorShape object from an armnn::TensorShape. This will
41/// attempt to reduce the number of leading 1s until the dimension length is equal to the dimensions passed in.
42arm_compute::TensorShape BuildArmComputeTensorShape(const armnn::TensorShape& tensorShape, unsigned int dimensions);
43
44/// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
45/// armnn::ITensorInfo.
46arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo);
47
48/// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
49/// armnn::ITensorInfo. This will attempt to reduce the number of leading 1s until the dimension length is equal
50/// to the dimensions passed in.
51arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo, unsigned int dimensions);
52
53/// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
54/// armnn::ITensorInfo. This will attempt to reduce the number of leading 1s until the dimension length is equal
55/// to the dimensions passed in.
56arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo,
57 armnn::DataLayout dataLayout,
58 unsigned int dimensions);
59
60/// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
61/// armnn::ITensorInfo.
62/// armnn::DataLayout.
63arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo,
64 armnn::DataLayout dataLayout);
65
66/// Utility function used to setup an arm_compute::ITensorInfo object whose dimensions are based on the given
67/// armnn::ITensorInfo. This will attempt to reduce the number of leading 1s until the dimension length is equal
68/// to the dimensions passed in.
69arm_compute::TensorInfo BuildArmComputeTensorInfo(const armnn::TensorInfo& tensorInfo,
70 armnn::DataLayout dataLayout, unsigned int dimensions);
71
72/// Utility function used to convert armnn::DataLayout to arm_compute::DataLayout
73/// armnn::DataLayout.
74arm_compute::DataLayout ConvertDataLayout(armnn::DataLayout dataLayout);
75
76/// Utility function used to setup an arm_compute::PoolingLayerInfo object from given
77/// armnn::Pooling2dDescriptor
78/// bool fpMixedPrecision
79arm_compute::PoolingLayerInfo BuildArmComputePoolingLayerInfo(const Pooling2dDescriptor& descriptor,
80 bool fpMixedPrecision = false);
81
82/// Utility function used to setup an arm_compute::Pooling3dLayerInfo object from given
83/// armnn::Pooling3dDescriptor
84/// bool fpMixedPrecision
85arm_compute::Pooling3dLayerInfo BuildArmComputePooling3dLayerInfo(const Pooling3dDescriptor& descriptor,
86 bool fpMixedPrecision = false);
87
88/// Utility function to setup an arm_compute::NormalizationLayerInfo object from an armnn::NormalizationDescriptor.
89arm_compute::NormalizationLayerInfo BuildArmComputeNormalizationLayerInfo(const NormalizationDescriptor& desc);
90
91/// Utility function used to setup an arm_compute::PermutationVector object from an armnn::PermutationVector.
92/// \param perm PermutationVector used in Arm NN Permute layer
93/// \return PermutationVector used in ACL Transpose layer
94arm_compute::PermutationVector BuildArmComputePermutationVector(const armnn::PermutationVector& perm);
95
96/// Utility function used to setup an arm_compute::PermutationVector object from an armnn::PermutationVector.
97/// \param perm PermutationVector used in Arm NN Transpose layer
98/// \return PermutationVector used in ACL Transpose layer
99arm_compute::PermutationVector BuildArmComputeTransposeVector(const armnn::PermutationVector& perm);
100
101/// Utility function used to setup an arm_compute::Size2D object from width and height values.
102arm_compute::Size2D BuildArmComputeSize2D(const unsigned int width, const unsigned int height);
103
104/// Gets the appropriate PixelValue for the TensorInfo DataType
105arm_compute::PixelValue GetPixelValue(const arm_compute::ITensorInfo* tensorInfo, float value);
106
107/// Computes the depth multiplier parameter for the Depthwise Conv2d ACL workload.
108unsigned int ComputeDepthwiseConv2dDepthMultiplier(armnn::DataLayout layout,
109 const arm_compute::TensorShape& weightsShape,
110 const arm_compute::TensorShape& inputShape);
111
112/// Utility function used to setup an arm_compute::ScatterInfo from ArmNN ScatterNd descriptor
113arm_compute::ScatterInfo BuildArmComputeScatterInfo(const ScatterNdDescriptor& descriptor);
114
115/// Utility function used to setup an arm_compute::PadStrideInfo object from an ArmNN layer descriptor.
116template <typename Descriptor>
117arm_compute::PadStrideInfo BuildArmComputePadStrideInfo(const Descriptor& descriptor)
118{
119 return arm_compute::PadStrideInfo(descriptor.m_StrideX,
120 descriptor.m_StrideY,
121 descriptor.m_PadLeft,
122 descriptor.m_PadRight,
123 descriptor.m_PadTop,
124 descriptor.m_PadBottom,
125 arm_compute::DimensionRoundingType::FLOOR);
126}
127
128/// Utility function used to setup an arm_compute::Padding2D object from an armnn layer descriptor.
129template <typename Descriptor>
130arm_compute::Padding2D BuildArmComputePaddingInfo(const Descriptor &descriptor)
131{
132 return arm_compute::Padding2D(descriptor.m_PadLeft,
133 descriptor.m_PadRight,
134 descriptor.m_PadTop,
135 descriptor.m_PadBottom);
136}
137
138/// Utility function used to setup an arm_compute::CropInfo object from an ArmNN layer descriptor.
139template <typename Descriptor>
140arm_compute::CropInfo BuildArmComputeCropInfo(const Descriptor& descriptor, const unsigned int rank = 4)
141{
142 if (rank == 3)
143 {
144 return arm_compute::CropInfo(0, 0,
145 descriptor.m_Crops[0].first, descriptor.m_Crops[0].second);
146 }
147 else if (rank == 4)
148 {
149 return arm_compute::CropInfo(descriptor.m_Crops[1].first, descriptor.m_Crops[1].second,
150 descriptor.m_Crops[0].first, descriptor.m_Crops[0].second);
151 }
152 else
153 {
154 throw InvalidArgumentException("Tensor rank must be either 3 or 4", CHECK_LOCATION());
155 }
156}
157
158/// Sets up the given ArmCompute tensor's dimensions based on the given ArmNN tensor.
159template <typename Tensor>
160void BuildArmComputeTensor(Tensor& tensor, const armnn::TensorInfo& tensorInfo)
161{
162 tensor.allocator()->init(BuildArmComputeTensorInfo(tensorInfo));
163}
164
165/// Sets up the given ArmCompute tensor's dimensions based on the given ArmNN tensor.
166template <typename Tensor>
167void BuildArmComputeTensor(Tensor& tensor, const armnn::TensorInfo& tensorInfo, DataLayout dataLayout)
168{
169 tensor.allocator()->init(BuildArmComputeTensorInfo(tensorInfo, dataLayout));
170}
171
172template <typename Tensor>
173void InitialiseArmComputeTensorEmpty(Tensor& tensor)
174{
175 tensor.allocator()->allocate();
176}
177
178/// Utility function to free unused tensors after a workload is configured and prepared
179template <typename Tensor>
180void FreeTensorIfUnused(std::unique_ptr<Tensor>& tensor)
181{
182 if (tensor && !tensor->is_used())
183 {
184 tensor.reset(nullptr);
185 }
186}
187
188// Helper function to obtain byte offset into tensor data
189inline size_t GetTensorOffset(const arm_compute::ITensorInfo& info,
190 uint32_t depthIndex,
191 uint32_t batchIndex,
192 uint32_t channelIndex,
193 uint32_t y,
194 uint32_t x)
195{
196 arm_compute::Coordinates coords;
197 coords.set(4, static_cast<int>(depthIndex));
198 coords.set(3, static_cast<int>(batchIndex));
199 coords.set(2, static_cast<int>(channelIndex));
200 coords.set(1, static_cast<int>(y));
201 coords.set(0, static_cast<int>(x));
202 return armnn::numeric_cast<size_t>(info.offset_element_in_bytes(coords));
203}
204
205// Helper function to obtain element offset into data buffer representing tensor data (assuming no strides).
206inline size_t GetLinearBufferOffset(const arm_compute::ITensorInfo& info,
207 uint32_t depthIndex,
208 uint32_t batchIndex,
209 uint32_t channelIndex,
210 uint32_t y,
211 uint32_t x)
212{
213 const arm_compute::TensorShape& shape = info.tensor_shape();
214 uint32_t width = static_cast<uint32_t>(shape[0]);
215 uint32_t height = static_cast<uint32_t>(shape[1]);
216 uint32_t numChannels = static_cast<uint32_t>(shape[2]);
217 uint32_t numBatches = static_cast<uint32_t>(shape[3]);
218 return (((depthIndex * numBatches + batchIndex) * numChannels + channelIndex) * height + y) * width + x;
219}
220
221template <typename T>
222void CopyArmComputeITensorData(const arm_compute::ITensor& srcTensor, T* dstData)
223{
224 // If MaxNumOfTensorDimensions is increased, this loop will need fixing.
225 static_assert(MaxNumOfTensorDimensions == 5, "Please update CopyArmComputeITensorData");
226 {
227 const arm_compute::ITensorInfo& info = *srcTensor.info();
228 const arm_compute::TensorShape& shape = info.tensor_shape();
229 const uint8_t* const bufferPtr = srcTensor.buffer();
230 uint32_t width = static_cast<uint32_t>(shape[0]);
231 uint32_t height = static_cast<uint32_t>(shape[1]);
232 uint32_t numChannels = static_cast<uint32_t>(shape[2]);
233 uint32_t numBatches = static_cast<uint32_t>(shape[3]);
234 uint32_t depth = static_cast<uint32_t>(shape[4]);
235
236 for (unsigned int depthIndex = 0; depthIndex < depth; ++depthIndex)
237 {
238 for (unsigned int batchIndex = 0; batchIndex < numBatches; ++batchIndex)
239 {
240 for (unsigned int channelIndex = 0; channelIndex < numChannels; ++channelIndex)
241 {
242 for (unsigned int y = 0; y < height; ++y)
243 {
244 // Copies one row from arm_compute tensor buffer to linear memory buffer.
245 // A row is the largest contiguous region we can copy, as the tensor data may be using strides.
246 memcpy(
247 dstData + GetLinearBufferOffset(info, depthIndex, batchIndex, channelIndex, y, 0),
248 bufferPtr + GetTensorOffset(info, depthIndex, batchIndex, channelIndex, y, 0),
249 width * sizeof(T));
250 }
251 }
252 }
253 }
254 }
255}
256
257template <typename T>
258void CopyArmComputeITensorData(const T* srcData, arm_compute::ITensor& dstTensor)
259{
260 // If MaxNumOfTensorDimensions is increased, this loop will need fixing.
261 static_assert(MaxNumOfTensorDimensions == 5, "Please update CopyArmComputeITensorData");
262 {
263 const arm_compute::ITensorInfo& info = *dstTensor.info();
264 const arm_compute::TensorShape& shape = info.tensor_shape();
265 uint8_t* const bufferPtr = dstTensor.buffer();
266 uint32_t width = static_cast<uint32_t>(shape[0]);
267 uint32_t height = static_cast<uint32_t>(shape[1]);
268 uint32_t numChannels = static_cast<uint32_t>(shape[2]);
269 uint32_t numBatches = static_cast<uint32_t>(shape[3]);
270 uint32_t depth = static_cast<uint32_t>(shape[4]);
271
272 for (unsigned int depthIndex = 0; depthIndex < depth; ++depthIndex)
273 {
274 for (unsigned int batchIndex = 0; batchIndex < numBatches; ++batchIndex)
275 {
276 for (unsigned int channelIndex = 0; channelIndex < numChannels; ++channelIndex)
277 {
278 for (unsigned int y = 0; y < height; ++y)
279 {
280 // Copies one row from linear memory buffer to arm_compute tensor buffer.
281 // A row is the largest contiguous region we can copy, as the tensor data may be using strides.
282 memcpy(
283 bufferPtr + GetTensorOffset(info, depthIndex, batchIndex, channelIndex, y, 0),
284 srcData + GetLinearBufferOffset(info, depthIndex, batchIndex, channelIndex, y, 0),
285 width * sizeof(T));
286 }
287 }
288 }
289 }
290 }
291}
292
293/// Construct a TensorShape object from an ArmCompute object based on arm_compute::Dimensions.
294/// \tparam ArmComputeType Any type that implements the Dimensions interface
295/// \tparam T Shape value type
296/// \param shapelike An ArmCompute object that implements the Dimensions interface
297/// \param initial A default value to initialise the shape with
298/// \return A TensorShape object filled from the Acl shapelike object.
299template<typename ArmComputeType, typename T>
300TensorShape GetTensorShape(const ArmComputeType& shapelike, T initial)
301{
302 std::vector<unsigned int> s(MaxNumOfTensorDimensions, initial);
303 for (unsigned int i=0; i < shapelike.num_dimensions(); ++i)
304 {
305 s[(shapelike.num_dimensions()-1)-i] = armnn::numeric_cast<unsigned int>(shapelike[i]);
306 }
307 return TensorShape(armnn::numeric_cast<unsigned int>(shapelike.num_dimensions()), s.data());
308};
309
310/// Get the strides from an ACL strides object
311inline TensorShape GetStrides(const arm_compute::Strides& strides)
312{
313 return GetTensorShape(strides, 0U);
314}
315
316/// Get the shape from an ACL shape object
317inline TensorShape GetShape(const arm_compute::TensorShape& shape)
318{
319 return GetTensorShape(shape, 1U);
320}
321
322} // namespace armcomputetensorutils
323} // namespace armnn
#define CHECK_LOCATION()
Copyright (c) 2021 ARM Limited and Contributors.
std::enable_if_t< std::is_unsigned< Source >::value &&std::is_unsigned< Dest >::value, Dest > numeric_cast(Source source)
constexpr unsigned int MaxNumOfTensorDimensions
Definition Types.hpp:31
DataLayout
Definition Types.hpp:63
DataType
Definition Types.hpp:49