24.08
|
Go to the documentation of this file.
38 if (inputShapes.size() != 2)
40 throw armnn::Exception(
"inputShapes' size is \"" + std::to_string(inputShapes.size()) +
41 "\" - should be \"2\".");
47 if (inputShapes[0].GetNumDimensions() < inputShapes[1].GetNumDimensions())
49 input1 = inputShapes[0];
50 input0 = inputShapes[1];
56 std::vector<unsigned int> dims(numDims);
57 for (
unsigned int i = shiftedDims; i < numDims; i++)
59 unsigned int dim0 = input0[i];
60 unsigned int dim1 = input1[i - shiftedDims];
63 if (dim0 != dim1 && dim0 != 1 && dim1 != 1)
65 throw armnn::Exception(
"Dimensions should either match or one should be of size 1.");
68 dims[i] = std::max(dim0, dim1);
72 for (
unsigned int i = 0; i < shiftedDims; i++)
77 return std::vector<TensorShape>({
TensorShape(numDims, dims.data()) });
93 if (inferredShapes.size() != 1)
96 + std::to_string(inferredShapes.size()) +
97 " elements - should only have 1.");
This layer represents a comparison operation.
const TensorInfo & GetTensorInfo() const override
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of ComparisonLayer.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
const ComparisonDescriptor & GetParameters() const override
const char * GetName() const override
Returns the name of the layer.
ComparisonDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Comparison type.
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Base class for all ArmNN exceptions so that users can filter to just those.
A ComparisonDescriptor for the ComparisonLayer.
const TensorShape & GetShape() const
ComparisonLayer(const ComparisonDescriptor ¶m, const char *name)
Constructor to create a ComparisonLayer.
Copyright (c) 2021 ARM Limited and Contributors.
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
ShapeInferenceMethod m_ShapeInferenceMethod
ComparisonLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0